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Background check: do you know...

 Machine learning? (ML)
 Artificial neural networks? (NN)
 Deep neural networks? (DNN)
 Convolutional neural networks? (CNN)
 Recurrent neural networks? (RNN)

 Long short-term memory units? (LSTM)
 Gated recurrent units? (GRU)

 Attention mechanism? (Bahdanau+, 2014)

 Self-attentive networks? (SAN, Transformer)
 Word embeddings? (Bengio+, 2003)

 Word2vec? (Mikolov+, 2013)
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ML in Natual Language Processing

 Before: complex multistep pipelines
 Preprocessing, low-level processing, high-level 

processing, classification, post-processing…
 Massive feature engineering, linguistic knowledge…

 Now: monolitic end-to-end systems (or nearly)
 text → deep neural network → output
 Little or no linguistic knowledge required
 Little or no feature engineering
 Little or no dependence on external tools
 → so now is a good time for anyone to get into NLP!
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Neural networks & text processing

 Input to a neuron: fixed-dimension real vector
 Dimension should be reasonable (<103)
 Neural net: fixed-sized network of neurons

 Text input: sequence processing
 Sentence = sequence of words
 Words: discrete (but interrelated)

 Massively multi-valued (~106)
 Very sparse (Zipf distribution)

 Sentences: variable length (~1 to 100)
 Complex and hidden internal structure
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Warnings

 I am not a ML expert, rather a ML user
 Please excuse any errors and inaccuracies

 Focus of talk: input representation (“encoding”)
 Key problem in NLP, interesting properties

 Leaving out
 Generating output (“decoding”) – that’s also interesting

 Sequence generation
 Seq. elements discrete, large domain (softmax over 106)
 Sequence length not a priori known

 Decision at encoder/decoder boundary (if any)
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Problem 1: Words

Continuous low-dimensional vectors
(word embeddings)

Massively multi-valued discrete data
(words)
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Simplification

 For now, forget sentences

1 word some output

Word is positive/neutral/negative,
Definition of the word,

Hyperonym (dog → animal),
…

 Situation
 We have labelled training data for some words (103)
 We want to generalize (ideally) to all words (106)



Rudolf Rosa – Deep Neural Networks in Natural Language Processing 39/116

The problem with words

 How many words are there?



Rudolf Rosa – Deep Neural Networks in Natural Language Processing 40/116

The problem with words

 How many words are there? Too many!



Rudolf Rosa – Deep Neural Networks in Natural Language Processing 41/116

The problem with words

 How many words are there? Too many!
 Many problems with counting words, cannot be done



Rudolf Rosa – Deep Neural Networks in Natural Language Processing 42/116

The problem with words

 How many words are there? Too many!
 Many problems with counting words, cannot be done
 ~106



Rudolf Rosa – Deep Neural Networks in Natural Language Processing 43/116

The problem with words

 How many words are there? Too many!
 Many problems with counting words, cannot be done
 ~106 (but potentially infinite – new words get created every day)



Rudolf Rosa – Deep Neural Networks in Natural Language Processing 44/116

The problem with words

 How many words are there? Too many!
 Many problems with counting words, cannot be done
 ~106 (but potentially infinite – new words get created every day)

 Long-standing problem of NLP



Rudolf Rosa – Deep Neural Networks in Natural Language Processing 45/116

The problem with words

 How many words are there? Too many!
 Many problems with counting words, cannot be done
 ~106 (but potentially infinite – new words get created every day)

 Long-standing problem of NLP
 Natural representation: 1-hot vector 0 0 0 0 1 0 0 0 0… …

106

i



Rudolf Rosa – Deep Neural Networks in Natural Language Processing 46/116

The problem with words

 How many words are there? Too many!
 Many problems with counting words, cannot be done
 ~106 (but potentially infinite – new words get created every day)

 Long-standing problem of NLP
 Natural representation: 1-hot vector

 ML with ~106 binary features on input

0 0 0 0 1 0 0 0 0… …

106

i



Rudolf Rosa – Deep Neural Networks in Natural Language Processing 47/116

The problem with words

 How many words are there? Too many!
 Many problems with counting words, cannot be done
 ~106 (but potentially infinite – new words get created every day)

 Long-standing problem of NLP
 Natural representation: 1-hot vector

 ML with ~106 binary features on input
 Pair of words: ~1012

0 0 0 0 1 0 0 0 0… …

106

i



Rudolf Rosa – Deep Neural Networks in Natural Language Processing 48/116

The problem with words

 How many words are there? Too many!
 Many problems with counting words, cannot be done
 ~106 (but potentially infinite – new words get created every day)

 Long-standing problem of NLP
 Natural representation: 1-hot vector

 ML with ~106 binary features on input
 Pair of words: ~1012

 No generalization, meaning of words not captured
 dog~puppy, dog~~cat, dog~~~platypus, dog~~~~whiskey

0 0 0 0 1 0 0 0 0… …

106

i
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Split the words

 Split into characters
 Not that many (~102)
 Do not capture meaning

 Starts with “m-”, is it positive or negative?

 Split into subwords/morphemes
 Word starts with “mis-”: it is probably negative

 misclassify, mistake, misconception…
 Helps, used in practice

 Potentially infinite set covered by a finite set of subwords
 Meaning-capturing subwords still too many (~105)

M  O  C  K

mis   class    if       ied
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Distributional hypothesis

 Harris (1954): “Words that occur in the same 
contexts tend to have similar meanings.”

 Cooccurrence matrix
 # of sentences containing both WORD and CONTEXT

WORD CONTEXT

lunch caught oceans doctor green

smelt 10 10 10 1 1

salmon 100 100 100 1 1

flu 1 100 1 100 10

seaweed 10 1 100 1 100

 Cheap plentiful data (webs, news, books…): ~109

NxN,
N~106
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 Conditional probability matrix
 M

P
[i, j] = P(word
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)

 Conditional log-probability matrix
 M

LogP
[i, j] = log P(word

i
 | context

j
) = log M

P
[i, j]

 Pointwise mutual information matrix
 M

PMI
[i, j] = log [P(word

i
 | context

j
) / P(word

i
)]

 PMI(A, B) = log P(A & B) / P(A) P(B)

Association
measures
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From cooccurence to PMI

 Word representation still impratically huge
 M

PMI
[i] ∈ RN, N~106

 But better than 1-hot
 Meaningful continuous vectors (e.g. cos similarity)

 Just need to compress it!
 Explicitly: matrix factorization

 post-hoc, not used
 Implicitly: word2vec

 widely used
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Matrix factorization

 Levy&Goldberg (2014)

 Take M
LogP

 or M
PMI

 Shift the matrix to make it positive (- min)
 Truncated Singular Value Decomposition:

 M = UDVT       M ∈ RNxN→U ∈ RNxd, D ∈ Rdxd, V ∈ RNxd

 Word embedding matrix: W = UD ∈ RNxd

 Embedding vec(word
i
) = W[i] ∈ Rd

 Continuous low-dimensional vector
 Meaningful (cos similarity, algebraic operations)

N ~ 106

d ~ 102
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Word embeddings magic

 Word similarity (cos)
 vec(dog) ~ vec(puppy),      vec(cat) ~ vec(kitten)
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Word embeddings magic

 Word similarity (cos)
 vec(dog) ~ vec(puppy),      vec(cat) ~ vec(kitten)

 Word meaning algebra
 Some relations parallel across words
 vec(puppy) - vec(dog)   ~   vec(kitten) - vec(cat)

dog

puppy

cat

kitten

 => vec(puppy) - vec(dog) + vec(cat)   ~   vec(kitten)
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Word embeddings magic

 Word similarity (cos)
 vec(dog) ~ vec(puppy),      vec(cat) ~ vec(kitten)

 Word meaning algebra
 Some relations parallel across words
 vec(puppy) - vec(dog)   ~   vec(kitten) - vec(cat)

dog

puppy

cat

kitten

 => vec(puppy) - vec(dog) + vec(cat)   ~   vec(kitten)
 vodka – Russia + Mexico, teacher – school + hospital… 
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word2vec (Mikolov+, 2013)

 Predict word w
i
 from its context (CBOW)

 E.g.: “I had _____ for lunch”

 Sentence: … w
i-2

 w
i-1

 w
i
 w

i+1
 w

i+2 
… 

0 0 0 0 1 0 0 0 0… …

0 0 0 0 1 0 0 0 0… …

0 0 0 0 1 0 0 0 0… …

0 0 0 0 1 0 0 0 0… …

W

W

W

W

W
i-2

W
i-1

W
i+1

W
i+2

V 0 0 0 0 1 0 0 0 0… … W
i

∑

Context
vectors
(1-hot)

Shared
projection matrix

(Nxd)

”Linear
hidden
layer”

Another
matrix
(dxN)

Output word
(distribution)

σ

Softmax
(hierarchical)

Train with
SGD
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word2vec (Mikolov+, 2013)

 Predict context from a word w
i
 (SGNS)

 E.g.: “____ _____ smelt _____ _____”

 Sentence: … w
i-2

 w
i-1

 w
i
 w

i+1
 w

i+2 
… 

0 0 0 0 1 0 0 0 0… …

0 0 0 0 1 0 0 0 0… …

0 0 0 0 1 0 0 0 0… …

0 0 0 0 1 0 0 0 0… …

V

V

V

V

W
i-2

W
i-1

W
i+1

W
i+2

W0 0 0 0 1 0 0 0 0… …W
i

Output
context vectors
(distributions)

Another matrix,
shared
(dxN)

Projection
matrix
(Nxd)

Input
word

(1-hot)

σ

σ

σ

σ
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word2vec ~ implicit factorization

 Word embedding matrix W ∈ RNxd

 embedding(word
i
) = W[i] ∈ Rd

 Levy&Goldberg (2014)
 word2vec SGNS implicitly factorizes M

PMI

 M
PMI

[i, j] = log [P(word
i
 | context

j
) / P(word

i
)]

 SGNS: M
PMI

 = WV

 M
PMI

 ∈ RNxN→W ∈ RNxd, V ∈ RdxN

W0 0 0 0 1 0 0 0 0… …W
i

0 0 0 0 1 0 0 0 0… …V W
i-2

σ
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Problem 2: Sentences

Fixed-sized neural units (attention mechanisms)

Variable-length input sequences with long-distance 
relations between elements (sentences)
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Processing sentences

 Convolutional neural netowrks
 Recurrent neural networks
 Attention mechanism
 Self-attentive networks
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Convolutional neural networks

 Input: sequence of word embeddings
 Filters (size 3-5), norm, maxpooling
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 Filters (size 3-5), norm, maxpooling
 Training deep CNNs hard→residual connections

 Layer input averaged with output, skips non-linearity
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Convolutional neural networks

 Input: sequence of word embeddings
 Filters (size 3-5), norm, maxpooling
 Training deep CNNs hard→residual connections

 Layer input averaged with output, skips non-linearity
 Problem: capturing long-range dependencies

 Receptive field of each filter is limited
 My computer works, but I have to buy a new mouse.
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Convolutional neural networks

 Input: sequence of word embeddings
 Filters (size 3-5), norm, maxpooling
 Training deep CNNs hard→residual connections

 Layer input averaged with output, skips non-linearity
 Problem: capturing long-range dependencies

 Receptive field of each filter is limited
 My computer works, but I have to buy a new mouse.

 Good for word ngram spotting
 Sentiment analysis, named entity detection…
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Recurrent neural networks

 Input: sequence of word embeddings
 Output: final state of RNN
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 Output: final state of RNN
 Problems
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Recurrent neural networks

 Input: sequence of word embeddings
 Output: final state of RNN
 Problems

 Vanishing gradient → memory cells (LSTM, GRU)
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Recurrent neural networks

 Input: sequence of word embeddings
 Output: final state of RNN
 Problems

 Vanishing gradient → memory cells (LSTM, GRU)
 Long distance dependencies not perfectly captured
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Recurrent neural networks

 Input: sequence of word embeddings
 Output: final state of RNN
 Problems

 Vanishing gradient → memory cells (LSTM, GRU)
 Long distance dependencies not perfectly captured
 Final state is biased (“forgetting”)

 …sentence end better captured than sentence start



Rudolf Rosa – Deep Neural Networks in Natural Language Processing 105/116

Recurrent neural networks

 Input: sequence of word embeddings
 Output: final state of RNN
 Problems

 Vanishing gradient → memory cells (LSTM, GRU)
 Long distance dependencies not perfectly captured
 Final state is biased (“forgetting”)

 …sentence end better captured than sentence start
 Bidirectional RNN, output = concat of both final states

 Still may not well capture the middle parts…
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Recurrent neural networks

 Input: sequence of word embeddings
 Output: final state of RNN
 Problems

 Vanishing gradient → memory cells (LSTM, GRU)
 Long distance dependencies not perfectly captured
 Final state is biased (“forgetting”)

 …sentence end better captured than sentence start
 Bidirectional RNN, output = concat of both final states

 Still may not well capture the middle parts…
 Using all hidden states as output, not just the final one

 We loose the fixed-sized representation
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Attention (on top of a RNN)


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Attention (on top of a RNN)

∑



 Classifier/decoder gets a fixed-size context vector
 Weighted average of encoder hidden states
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Attention (on top of a RNN)

∑



 Classifier/decoder gets a fixed-size context vector
 Weighted average of encoder hidden states
 Attention weights computed by a feed-forward subnet

 weight
i
 ~ NN(state

i
, state

decoder
)

   
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Advanced attention

 Multi-head attention
 Multiple attention heads (~8), each has its own distro
 Resulting context vectors concatenated
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Advanced attention

 Multi-head attention
 Multiple attention heads (~8), each has its own distro
 Resulting context vectors concatenated

 Self-attentitive encoder (SAN, Transformer)
 CNN/attention hybrid
 CNN: cell gets small local context via filters
 SAN: cell gets global context via attention heads
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Conclusion
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Conclusion

 Words → word embeddings
 Too many, too sparse
 Word meaning ~ context in which it appears
 Cooccurrence matrix, implicit/explicit factorization
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Conclusion

 Words → word embeddings
 Too many, too sparse
 Word meaning ~ context in which it appears
 Cooccurrence matrix, implicit/explicit factorization

 Sentences → attention
 Variable length, complex internal structure
 biRNN (LSTM, GRU), CNN+residuals
 Attention: weighted sum of encoder hidden states
 Self-attention: à la CNN, filters → attention
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Thank you for your attention

http://ufal.mff.cuni.cz/rudolf-rosa/
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