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1 Introduction

One of the traditional linguistic criteria for recog-
nizing dependency relations in a sentence is that
a head of a syntactic construction determines its
syntactic category and can often replace it with-
out any damage of syntactic correctness (Kübler
et al., 2009; Lopatková et al., 2005). Mareček
and Žabokrtský (2012) use similar principle for
unsupervised dependency parsing. They estimate
“reducibility”, a property describing how easily a
word may be omitted from sentence without dam-
aging it. Their hypothesis is that reducible words
are more likely to occur as leaves in dependency
trees. They simply declare a word reducible if
the same sentence without this word appears else-
where in the corpus. This very sparse method
showed that reducibility of adjectives and adverbs
is high, whereas reducibility of verbs is quite low.

With the advance of neural-network language
models, e.g. BERT (Devlin et al., 2018) or
ELMo (Peters et al., 2018), there are new ways
how to estimate reducibilities of words. In this pa-
per, we use English model of BERT and explore
how a deletion of one word in a sentence changes
representations of other words. Our hypothesis
is that removing a reducible word (e.g. an adjec-
tive) does not affect representation of other words
so much as removing e.g. the main verb, which
makes the sentence ungrammatical and of “high
surprise” for the language model.

We estimate reducibilities of individual words
and also of longer phrases (word n-grams), study
their syntax-related properties, and then also use
them to induce full dependency trees. A signifi-
cant difference between our work and most previ-
ous works (Hewitt and Manning, 2019; Belinkov,
2018) is that we estimate the reducibilities and de-
pendency trees directly from the models, without
any training on syntactically annotated data.

2 Reducibility scores from BERT

We use the pretrained English model (BERT-
Large, uncased)1, and sentences from the devel-
opment part of the EWT English treebank from
Universal Dependencies 2.3 (Nivre et al., 2018);
we subselect sentences containing only words in-
cluded in the vocabulary of the BERT model.

We compute the reducibility rp,s of each phrase
p (any word or continuous sequence of words) in
each sentence s as the average change of BERT
representations of the words in the sentence when
the phrase p is removed. By a BERT representa-
tion of a word we mean the state on the last layer
of the BERT encoder on the position correspond-
ing to the word.

rp,s =
1

|s−p|
∑

w∈s−p

||bw,s − bw,s−p ||2 (1)

where s−p is the sentence s with phrase p re-
moved, bw,s is the BERT representation of word
w in sentence s, and the distance of the BERT rep-
resentations is the Euclidean distance. The bw,s−p

representations are obtained by simply running
BERT on the sentence s with phrase p deleted.

3 Linguistic properties of reducibilities

In Figure 1, we show reducibility scores of all the
words in our testing data and average reducibility
scores for individual part-of-speech tags. To vi-
sualise how the word reducibility correlates with
being a leaf in the dependency tree, we color all
the leaf instances by yellow and all the non-leaf
by blue. It is apparent that in the right side of the
graph, the blue instances prevail.

The absolute word reducibilities are different in
each sentence, but we have found that the thresh-

1https://storage.googleapis.com/BERT_
models/2018_10_18/uncased_L-24_H-1024_
A-16.zip
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Figure 1: Distribution of reducibility scores across all
the tested instances and averaged scores for POS tags.
The leaf words are yellow, non-leaf words are blue.

old separating leafs and non-leaves in a given sen-
tence is around 1.2× the average word reducibility
in that sentence. This allows us to separate leafs
from non-leaves with an accuracy of 74.5%, com-
pared to the baseline of 66.4% (assuming every-
thing is a leaf).

The syntactic root of the sentence tends to be
the least reducible word. It is so in 34% of the sen-
tences; or in 46% if we ignore punctuation, which
tends to be very irreducible. The random baseline
here is 13%.

The dependency edge direction can be identi-
fied with a 70.6% accuracy, assuming that the par-
ent should be less reducible than the child node.
The right-chain baseline, assuming that parent is
to the right of the child, has a 65.8% accuracy.

4 Building dependency trees

We now examine to which extent the reducibilities
extracted from BERT can be used to build depen-
dency trees. We propose two algorithms, and com-
pare them to an uninformed baseline, which is the
right chain, attaching each node to its right neigh-
bor; the rightmost node becomes the root. For En-
glish, this is quite a strong baseline.

Algorithm D: In Algorithm D, we construct
a projective dependency tree based on phrase re-
ducibilities. We use the recursive headed brackets
encoding, where each subtree is enclosed in one
pair of brackets, containing subtrees (phrases in
brackets) and just one head (word without brack-

parser UAS
left chain baseline 6.8

right chain baseline 29.5
algorithm D 31.1

algorithm D, red. punct. 33.1
algorithm R 37.0

algorithm R, red. punct. 40.6

Table 1: Parsing results, Unlabelled Attachment Score

ets), e.g.: ( (subtree) head (subtree) (subtree) ). In
each step, we greedily insert a new pair of brackets
corresponding to the most reducible phrase such
that the resulting structure still satisfies the follow-
ing conditions: (a) brackets do not cross each other
(b) each subtree has a head. Table 1 shows that the
resulting structures only slightly surpass the unin-
formed baseline (this can be improved by explic-
itly setting a low reducibility for punctuation).

Algorithm R: Algorithm R directly builds upon
the right-chain baseline, modifying it by introduc-
ing a constraint that the parent of each node must
be less reducible than the child node; the least re-
ducible node becomes the root. Each node is thus
attached to the nearest subsequent more reducible
node; or to the root if all subsequent nodes are less
reducible. Table 1 shows that this outperforms the
baseline by 7 (or 11) percentage points.

5 Conclusions

We examine to what extent reducibility, which un-
derlies dependency syntactic structures, can be es-
timated from BERT representations. We devise a
method based on measuring the differences in the
representations when a word or phrase is removed
from the sentence, and denoting this difference as
the reducibility score of that word or phrase. We
find that such scores partially correspond to the
notion of reducibility in dependency trees, see-
ing a tendency of child nodes and leaf nodes to
be more reducible than parent nodes and the root.
We also show that these scores can be used in a
simple parsing algorithm to construct dependency
trees which are more accurate than an uninformed
baseline.
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Kuboň. 2005. Modeling syntax of free word-order
languages: Dependency analysis by reduction. In
Lecture Notes in Artificial Intelligence, Proceedings
of the 8th International Conference, TSD 2005, vol-
ume 3658 of Lecture Notes in Computer Science,
pages 140–147, Berlin / Heidelberg. Springer.
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