David Mareček, <u>Rudolf Rosa</u>

marecek@ufal.mff.cuni.cz, rosa@ufal.mff.cuni.cz

From Balustrades to Pierre Vinken:

Looking for Syntax in Transformer Self-Attentions

Charles University, Prague

Faculty of Mathematics and Physics Institute of Formal and Applied Linguistics

BlackboxNLP Workshop, Firenze, 1 August 2019

From balustrades to Pierre Vinken

by Jan Hein van Dierendonck

Transformer self-attentions → **syntactic trees**

Mareček & Rosa: From Balustrades to Pierre Vinken: Looking for Syntax in Transformer Self-Attentions

- Common pattern in Transformer NMT self-attention heads
 - "balusters"

- Common pattern in Transformer NMT self-attention heads
 - "balusters"
- Resemble syntactic phrases

- Common pattern in Transformer NMT self-attention heads
 - "balusters"
- Resemble syntactic phrases

- Common pattern in Transformer NMT self-attention heads
 - "balusters"
- Resemble syntactic phrases
 - To what extent?
 - → That's our research question!

1. Balusters → phrase candidates

- 1. Balusters → phrase candidates
- 2. Phrase candidates → constituency tree
 - Linguistically uninformed algorithm

Mareček & Rosa: From Balustrades to Pierre Vinken: Looking for Syntax in Transformer Self-Attentions

- 1. Balusters → phrase candidates
- 2. Phrase candidates → constituency tree
 - Linguistically uninformed algorithm
- 3. Compare to standard syntactic trees

- 1. Balusters → phrase candidates
- 2. Phrase candidates → constituency tree
 - Linguistically uninformed algorithm
- 3. Compare to standard syntactic trees: ~40%; baseline ~30%

Experiment setup

- Balusters: Transformer NMT system
 - Encoder: 6 layers x 16 heads

Experiment setup

- Balusters: Transformer NMT system
 - Encoder: 6 layers x 16 heads
 - Europarl: French ↔ English,
 German ↔ English, French ↔ German

Experiment setup

- Balusters: Transformer NMT system
 - Encoder: 6 layers x 16 heads
 - Europarl: French ↔ English,
 German ↔ English, French ↔ German

- Standard syntactic trees: Stanford parser
 - Penn Treebank, French Treebank, Negra Corpus
 - Only for evaluation

S N L P

Balustrades (~70% of the attention heads)

Diagonals (especially 1st layer)

Attend to end, mixed, scattered...

Phrase candidates

- All balusters of length ≥ 2 from all heads
 - Subselecting only some of the heads → see the paper!

Phrase candidates

- All balusters of length ≥ 2 from all heads
 - Subselecting only some of the heads → see the paper!
- Phrase score
 - Average attention weight
 - Sum over all heads
 - Equalize over different phrase lengths

Phrase candidates

- All balusters of length ≥ 2 from all heads
 - Subselecting only some of the heads → see the paper!
- Phrase score
 - Average attention weight
 - Sum over all heads
 - Equalize over different phrase lengths

Binary constituency tree

- Binary constituency tree
- Tree score = sum of phrase scores

$$s(T) = s(ab) + s(abc)$$

- Binary constituency tree
- Tree score = sum of phrase scores
- CKY algorithm
 - Finds tree (set of phrases) with maximal score

$$s(T) = s(ab) + s(abc)$$

Results

Results

Comparison to standard syntactic trees

- Balusters in Transformer NMT encoder self-attentions
 - Contiguous sequence of output states
 - Attention to the same one input state

- Balusters in Transformer NMT encoder self-attentions
 - Contiguous sequence of output states
 - Attention to the same one input state
- Interpret balusters as syntactic phrases
 - Phrase candidate extraction and scoring
- Construct a binary constituency tree
 - CKY algorithm

- Balusters in Transformer NMT encoder self-attentions
 - Contiguous sequence of output states
 - Attention to the same one input state
- Interpret balusters as syntactic phrases
 - Phrase candidate extraction and scoring
- Construct a binary constituency tree
 - CKY algorithm
- Compare to standard syntactic trees
 - ~40% match; base ~30% match

Thank you for your attention

David Mareček, <u>Rudolf Rosa</u> marecek@ufal.mff.cuni.cz, rosa@ufal.mff.cuni.cz

From Balustrades to Pierre Vinken: Looking for Syntax in Transformer Self-Attentions

Charles University, Prague Faculty of Mathematics and Physics Institute of Formal and Applied Linguistics

ufal.cz/grants/lsd