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Abstract:

Traditionally, most natural language processing tasks are solvedwithin the language,
relying on distributional properties of words. Representation learning abilities of
deep learning recently allowed using additional information source by grounding the
representations in the visual modality. One of the tasks that attempt to exploit the
visual information is multimodal machine translation: translation of image captions
when having access to the original image.

The thesis summarizes joint processing of language and real-world images us-
ing deep learning. It gives an overview of the state of the art in multimodal machine
translation and describes our original contribution to solving this task. We introduce
methods of combining multiple inputs of possibly different modalities in recurrent
and self-attentive sequence-to-sequence models and show results onmultimodal ma-
chine translation and other tasks related to machine translation. Finally, we analyze
how the multimodality influences the semantic properties of the sentence represen-
tation learned by the networks and how that relates to translation quality.
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Abstrakt:

Tradičně se většina úloh zpracování přirozeného jazyka řeší výhradně uvnitř jazyka,
kdymodely spoléhají na distribuční vlastnosti slov. Hluboké učení se svojí schopností
učit se vhodné reprezentace vstupních dat umožňuje využití více informací tím, že
trénovací signál nepochází pouze z jazyka, ale o i z obrazové modality. Jednou z úloh,
které se pokoušejí využít vizuální informace, je multimodální strojový překlad: pře-
klad popisků obrázků, kdy je stále k dispozici původní obrázek, který lze využít jako
vstup pro překladač.

Tato práce shrnuje metody společného zpracovávání jazykových dat a fotogra-
fií s využitím hlubokého učení. Uvádíme přehled metod, které se využívají k řešení
multimodálního strojového překladu a popisujeme náš původní příspěvek k řešení
této úlohy. Představujeme metody kombinování více vstupů z potenciálně různých
modalit v modelech sekvenčního učení založených na rekurentních neuronových sí-
tích a neuronových sítí s mechanismem sebepozornosti. Uvádíme výsledky, kterých
jsme dosáhli při řešení multimodálního strojového překladu a dalších úloh souvise-
jících se strojovým překladem. Na závěr analyzujeme, jak multimodalita ovlivňuje
sémantické vlastnosti větných reprezentací, které v sítích vznikají, a jak sémantické
vlastnosti reprezentací souvisí s kvalitou překladu.

Klíčová slova: multimodální strojový překlad, neuronový strojový překlad, kom-
binování zpracování jazyka a obrazu, hluboké učení
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1
Introduction

Computational Linguistics is a research field that declares the goal to invent and
develop mathematical models of natural languages and propose technological appli-
cations of these models. Due to this goal, it necessarily is a multidisciplinary field
which combines expertise from formal linguistics, Artificial Intelligence (AI), math-
ematics, and software engineering.

Attempts to automatic processing of natural languages have appeared from the
early days of AI (O’Regan, 2016, p. 264). After all, the famous Turing test (Turing,
1950), which is generally considered to be a criterion of AI being really intelligent,
assumes that an intelligent machine must be able to communicate in natural lan-
guage. The AI took a different direction in the last 50 years—most importantly, it
focused on attempts to model some of the most basic human cognitive abilities and
development of intelligent agents that try to meet some objectives in an environ-
ment. Computational linguistics with its effort to model language without general
AI behind the scene got established as a standalone research discipline.

In the last thirty years, computational linguistics has undergone a fascinating
development during which it transformed from a relatively unknown research dis-
cipline into a field solving practical engineering task used by millions of users every
day (Le and Schuster, 2016). When the focus lies more on solving language tasks
from the engineering point of view, we talk rather about Natural Language Process-
ing (NLP) than Computational Linguistics. The goal of NLP is then delivering solu-
tions for tasks like automatic speech recognition or machine translation. Acquiring
new knowledge about human language becomes secondary.
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Thirty years ago, it may have seemed that automatic NLP can provide the same
assurance of truth to the linguistic theories as engineering innovations provide to
theories in physics. Methods of NLP used linguistic theories during the development
and the source code was usually packed with explicit linguistic knowledge.

At the turn of the 21st century, it started to appear that machine-learning-based
systems learning from annotated data worked better than those where the program-
mers embedded the linguistic knowledge explicitly into the source code. With the
increasing availability of data and computational power, the amount of linguistic
knowledge required to develop a solution for NLP tasks decreased. In these days,
complex systems such as automatic speech recognition, machine translation or text
summarization are trained from the data with no linguistics inside. The technologies
found their own way, working totally independently of the language understanding
provided by linguistics.

This puts us in a unique situation where the language technologies exist out-
side of the conceptual framework provided by classical linguistics. The situation is
also different from natural science. Results of experiments in physics can often be
predicted using established theories. When researchers conduct machine learning
experiments in NLP, there is no theory that could in advance say what the results
will be. There is only researcher’s or developer’s (usually strongly mathematically
grounded) intuition which gets either confirmed or not.

Recent advances in deep learning, a machine learning technique using artificial
neural networks, reached a new state of the art in most of the NLP and Computer
Vision (CV) tasks. The deep learning models are usually trained end-to-end. Their
input is data in a raw form (numerical values of pixels, sequences of words or char-
acter) without complicated preprocessing, and they produce a directly usable output.
Not only end-to-end trained models perform better than methods based on explic-
itly programmed rules, but they also perform better than statistical systems based
on carefully engineered features. It might be for the first time in the history of com-
puter science, when we are able to develop systems that apparently know something
human knowledge and conceptualization is not capable to capture yet.

This thesis follows this trend. In the following chapters, we try to push forward
the state of the art in Multimodal Machine Translation (MMT) using deep learning.
We believe that working on a topic that combines NLP and CV has a big potential
not only to help to develop new technologies but also to contribute to the discussion
of how the language relates to the extra-linguistic world. Linguistics teaches us that
words in a language are signs which can be described as relations of the signifier and
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the signified (Saussure, 1916). Unlike most NLP tasks, which deal explicitly only with
the signifiers, tasks combining language and vision are the first real-world tasks that
need to tackle also what the signs stand for not in an abstract fashion as in tasks like
named entity recognition, but in concrete instances in the images.

MMT is machine translation of image descriptions from one language to another
when using both the image description in the source language and the image as
the input. It can also be viewed as a combination of image captioning and machine
translation, two tasks in which state of the art has been recently reached using deep
learning methods (Bahdanau et al., 2014; Xu et al., 2015) called sequence-to-sequence
learning. Solving MMT requires developing methods for combing the visual and the
textual input.

In this thesis, we present our novel methods for combining multiple sources in
commonly used sequence-to-sequence architectures along with other techniques for
improving MMT quality. We summarize our experience from three years of partic-
ipation in the MMT shared task at Workshop of Machine Translation (WMT). We
also present our contribution to the standard dataset (Elliott et al., 2016) for MMT,
for which we created a Czech version of the dataset that was used in the 2018 WMT
shared task.

In Chapter 2, we bring a comprehensive overview of the recent development of
deep learning for CV and NLP. First (Section 2.2), we discuss the machine learn-
ing innovations in CV which later found use in other fields including NLP. Second
(Section 2.3), we thoroughly discuss model architectures used in NLP, in particular:
a transition from discrete inputs to continuous representation, architectures for se-
quence processing, and generating discrete outputs. In Chapter 3, we provide an
overview of combining vision and language both for obtaining a grounded language
representation and for solving more practically motivated tasks. Chapter 4 intro-
duces the task of MMT and the dataset we work with, including of the Czech version
of the Multi30k dataset.

Chapter 5 describes our original contribution to solving the task of MMT. In par-
ticular, we present our innovations to the deep learning architectures for sequence-
to-sequence learning that allow combining multiple sources while generating a sin-
gle output sequence (Sections 5.1 and 5.2). We demonstrate the contribution of
our methods on MMT task and textual multi-source sequence-to-sequence learn-
ing tasks. We also provide an overview of how our methods were used by others
when approaching different tasks that require processing multiple inputs. In the fol-
lowing part of the chapter (Section 5.3), we experiment with data augmentation and
improving the system performance via multi-task learning.
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Finally, in Chapter 6, we provide an analysis of themodels presented in Chapter 5.
First, we analyze how the quality of the system outputs depends on the objects in
the image and on linguistic features of the source sentences. Later, in Section 6.2 we
introduce a method for intrinsic evaluation of the representations learned by deep
learning NLP models. We asses all the models presented in this thesis and draw
conclusions about the representation learning abilities of the model architectures we
worked with.
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2
Deep Learning for Language and

Vision

In this chapter, we introduce a collection of Machine Learning (ML) practices that the
research and engineering community calls deep learning. There is no clear consensus
on what should be called deep learning. No matter what exact definition we use, the
term always refers to a set of practices used in ML which utilize neural networks
with multiple layers and continuous optimization.

In this chapter, we discuss basic concepts of deep learning in Section 2.1, its con-
tribution to the development of Computer Vision (CV) in Section 2.2 and Natural
Language Processing (NLP) in Section 2.3.

CV is a field of computer science that deals with processing and understanding of
digital images and videos (Ballard and Brown, 1982; Sonka et al., 2007). The tasks that
CV addresses include object classification, object detection, face recognition, scene
reconstruction, etc.

NLP is also a field of computer science but is mainly concerned with interaction
between humans and machines in natural languages and ultimately understanding
human language using machines (Manning and Schütze, 1999; Jurafsky and Martin,
2009). NLP includes tasks like machine translation, information retrieval, sentiment
analysis or question answering. Besides the practicallymotivated tasks, NLP includes
intermediate tasks like part-of-speech tagging or syntactic parsing, which may serve
as a component in more complex pipelines, but more importantly help theoretical
understanding of natural languages and can also be used for linguistic research.
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The nature of the data that the two fields work with fundamentally differs.
Whereas in CV, we work with high-dimensional real-valued raw data produced by
sensors, in NLP we work with discrete symbols produced by humans. The important
feature that these fields have in common is that they ultimately try to automate tasks
which otherwise require human cognitive effort. Often, these are tasks that pose al-
most no difficulties for humans, but appear to be tremendously difficult to be tackled
computationally.

2.1 Fundamentals of Deep Learning

As already stated, deep learning is a branch of ML that does not have an exact defi-
nition. It usually means ML with neural networks which have many layers (Good-
fellow et al., 2016). By ‘many’, people usually mean more than experts before 2006
used to believe was numerically feasible (Hinton and Salakhutdinov, 2006; Bengio
et al., 2007). In practice, they are networks with dozens of layers. First, it were unsu-
pervised methods for layer-wise pre-training (Bengio et al., 2007) that demonstrated
the potential of deeper neural networks. This was followed by innovations allow-
ing training the models end-to-end by error back-propagation only (Srivastava et al.,
2014; Nair and Hinton, 2010; Ioffe and Szegedy, 2015; Ba et al., 2016; He et al., 2016)
without any pre-training, which allowed the boom of deep learning methods after
2014.

Neural networks and other ML models are trained to fit training data, while still
being able to generalize for unseen data instances. During training, we try to min-
imize an error the model makes on the training data. To ensure that the model can
make correct predictions on data instances that were not used for training, we use
another dataset, usually called the validation set which is only used for estimating
the performance of the model on unseen data.

2.1.1 Perceptron Algorithm

Deep learning originates in studying artificial neural networks (Goodfellow et al.,
2016, p. 12). Artificial neural networks are inspired by a simplistic model of a bio-
logical neuron (McCulloch and Pitts, 1943; Rosenblatt, 1958; Widrow, 1960). In the
model, the neuron collects information on its dendrites and based on that, it sends a
signal on the axon, its single output. Formally, we say that the artificial neuron has
an input, a vector x = (x1, . . . , xn) ∈ Rn of real numbers. For each input component
xi, there is a weight wi ∈ R corresponding to the importance of the input compo-
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Figure 2.1: Illustration of a single artificial neuron with inputs x = (x1, . . . , xn) and
weights w = (w1, . . . , wn).

nent. The weighted sum of the input is called the activation. We get the neuron
output by applying the activation function on the activation. In the simplest case, the
activation function is the signum function. More activation functions are discussed
in Section 2.2. The model is illustrated in Figure 2.1.

The first successful experiments with such a model date back to 1950s and the ge-
ometricallymotivated perceptron algorithm (Rosenblatt, 1958) for learning themodel
weights. The model is used for classification of the inputs into two distinct classes.
The inputs are interpreted as points in a multi-dimensional vector space. The learn-
ing algorithm searches for a hyperplane separating one class of the inputs from the
other. The trained weights are interpreted as a normal vector of the hyperplane. The
algorithm iterates over the training examples. If an example is misclassified, it rotates
the hyperplane towards the misclassified example by subtracting the input from the
weight vector. It can be proved that this simple algorithm converges to a separating
hyperplane if it exists (Novikoff, 1962). The linear-algebraic intuition developed for
the perceptron algorithm is important also for the current neural networks.

During the following 60 years of development of ML and Artificial Intelligence
(AI), neural networks fell out of the main research interest, especially during the
so-called AI winters in the 1970s and 1990s (Crevier, 1993, p. 203).
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In the rest of the chapter, we do not closely follow the history of neural networks
but only discuss the innovations that seem to be the most important from the current
perspective and relevant to our research. Techniques which are particularly useful
for CV and NLP are then discussed in Sections 2.2 and 2.3, respectively. For a com-
prehensive overview of the history of neural network research, we refer the reader
to a survey by Schmidhuber (2014).

2.1.2 Multi-Layer Networks

The geometrically motivated perceptron learning algorithm cannot be efficiently
generalized to networks with a more complicated structure of interconnected neu-
rons. In this case, we no longer interpret the learning as a geometric problem of
finding a separating hyperplane. Instead, we view the network as a parameterized
continuous function. The goal of the learning is to optimize the parameter values
with respect to a continuous error function, usually called the loss function.

During training, we treat the network as a function of its parameters, given a
training dataset which is considered constant at one training step. This allows com-
puting gradients of the network parameters with respect to the loss function and
updating the parameters accordingly. At inference time, the parameters are fixed
and the network is treated as a function of its inputs with constant parameters.

The original perceptron used the signum function as the activation function. In
order to make the function defined by the network differentiable, it was often re-
placed by sigmoid function or hyperbolic tangent, yielding values between -1 and 1.

For the sake of efficiency, the neurons in artificial neural networks are almost al-
ways organized in layers. This allows us to re-formulate the computation as a matrix
multiplication (Fahlman and Hinton, 1987). Such layers are called fully connected or
dense layers. Let hi = (h0

i , . . . , h
n
i ) ∈ Rn be the output of the i-th layer of the net-

work and the (i + 1)-th layer A : R → R activation function. The value of the k-th
neuron in the (i+ 1)-th layer of dimensionm is

hki+1 = A

(
n∑
l=0

hli · w(l,k)
i + b

(k)
i

)
(2.1)

which is in fact definition of matrix multiplication. It thus holds:

hi+1 = A (hiWi + bi) (2.2)

where Wi ∈ Rn×m is a parameter matrix and bi ∈ Rm is the bias.
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inputs hidden layers output

Figure 2.2: Multi-layer perceptron with two fully connected hidden layers.

Not only did this make this the computation efficient, but it also led to a re-
conceptualization of the network architectures. Current literature no longer talks
about single neurons, but always about network layers. This re-conceptualization
then allows innovations like attention mechanism (Bahdanau et al., 2014), residual
connections (He et al., 2016) or layer normalization (Ba et al., 2016) which concep-
tually, not only for the sake of computational efficiency, treat the neuron outputs as
elements of vectors and matrices.

A network with feed-forward fully connected layers is illustrated in Figure 2.2.
This architecture is usually calledmulti-layer perceptron, even though it is not trained
with the perceptron algorithm but the using the error back-propagation algorithm.

2.1.3 Error Back-Propagation

With the error back-propagation algorithm, the models are trained iteratively. In
every step of the model training, we compute values of the loss function, i.e., the
error the network makes on the training data, or more often a small subset of train-
ing data, called a mini-batch (Amari, 1993). Then, we compute the gradients of the
parameters with respect to the loss function using the back-propagation algorithm
(Werbos, 1990) and update the parameters accordingly. The parameter updates are
done using the stochastic gradient descent or its more advanced variants. For more
details, we refer the reader to Goodfellow et al. (2016, pp. 286–292).

While using the back-propagation algorithm, we represent the computation as a
directed acyclic graph where each node corresponds to an input, trainable parameter
or an operation. This graph is called forward computation graph. In order to compute
the derivative of a parameter with respect to the function, we build a backward graph
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Figure 2.3: Computation graph for back-propagation algorithm for logistic regression
o = σ (Wx + b). The highlighted path corresponds to the computation of ∂L

∂b
, which

is, according to the algorithm, equal to ∂L
∂o

· ∂o
∂h

· ∂h
∂b
.

with reversed edges and operations replaced by their derivatives. The derivative of a
parameter with respect to the loss is then computed by multiplying the values on a
path from the loss to a copy of the parameter in the backward graph. The algorithm
is illustrated in Figure 2.3.

The back-propagation algorithm together with techniques ensuring a smooth
gradient flowwithin the network and regularization techniques allows trainingmod-
els end-to-end from a raw input. During the training process, neural networks de-
velop an input representation such that the task becomes almost trivial to solve (Ben-
gio et al., 2003; LeCun et al., 2015).

2.1.4 Representation Learning

Many problems both in NLP and CV can be interpreted as searching for suitable data
representation. A naive representation, such as a sequence of characters or a set
of image pixels, is not well-suited for further processing, although they contain full
information that humans can interpret almost without effort.

Deep learning dramatically changes how data is represented. In NLP, the text
used to be tokenized and enriched by automatic annotations that include part-of-
speech tags, syntactic relations between words or entity detection. This represen-
tation was usually used to get meaningful features for a ML model. In statistical
Machine Translation (MT), words are represented by monolingual and bilingual co-
occurrence tables which are used for probability estimations within the models. In
deep learning models, text is represented with tensors of continuous values which
are not explicitly designed but implicitly inferred during model optimization.
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This is often considered to be one of the most important properties of neural
networks. Goodfellow et al. (2016, p. 5) even consider the representation learning
ability to be the feature that distinguishes deep learning from the previous ML tech-
niques. In both CV and NLP models, consecutive layers learn more contextualized
and presumably more abstract representation of the input. As we will discuss in the
following sections, the representations learned by the networks are often general and
can often be reused for solving different tasks than they were trained for.

2.2 Deep Learning Techniques in Computer Vision

In this section, we discuss the main concepts and approaches that deep learning
brought into CV. We limit this introduction to static images and focus on the im-
age classification task.

Before the advent of deep learning, bottom-up approaches dominated CV (Sonka
et al., 2007). Image understanding started from computationally inexpensive prim-
itives like edges, color blobs, extremal regions or recognized patterns. The further
processing utilized either rule-based or machine-learned combination of these build-
ing elements.

Deep learning models are usually trained in an end-to-end setup, i.e., the input of
the model is an image in a raw form, and all the processing steps are trained jointly
within one model. The basic deep learning tools that are used in computer vision are
Convolutional Neural Networks (CNNs) usually consisting of 2D convolutional and
max-pooling layers.

2.2.1 Convolutional Networks

In this section, we consider an image to be a table of three-channel (RGB: red, green,
blue) pixels, i.e., a three-dimensional tensor. Note that if we disregard the exact num-
ber of channels, this is the same form as input and outputs of most of the network
layers. This allows us to treat the input in the same way all other layers in the net-
work.

In general, an input of a convolutional layer is a three-dimensional tensor X ∈
mathbbRh×w×c of height h, width w and c channels in its third dimension. A con-
volution of kernel size k (typically 3 or 5) and p filters, is a non-linear projection
of sub-tensors of size k × k × c into p-dimensional vectors. Formally, the vector at
position i, j in the layer output H is defined as

Hij = A

(
[Xi+m,j+n]m=−k/2,...,+k/2

n=−k/2,...,+k/2
· W + b

)
(2.3)
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Figure 2.4: Illustration of a 2D convolution over a 9 × 9 RGB image with stride 2,
kernel size 3 and number of filters 6.

where W ∈ Rc×p and b ∈ Rp are trainable parameters and A : R → R is a non-
linear activation function.

2D convolutions can be explained as applying a sliding window projection over
the input tensor whichmeasures the similarity between the input window and filters.
Another attribute of the convolution is the stridewhich is the size of the step bywhich
the windowmoves. Note that the resulting feature map is always stride times smaller
in the first two dimensions. A 2D convolution over an RGB image is illustrated in
Figure 2.4.

Max-pooling is a dimensionality reduction technique that is used to decrease in-
formation redundancy during image processing. Analogically to the convolutions,
we process sub-tensor of size k × k × p with max-pooling, but instead of projecting
it, we take the element-wise maximum in the third dimension. Formally for input
tensor X,

Hi,j,k = max
m=−k/2,...,+k/2
n=−k/2,...,+k/2

Xi+m,j+n,k. (2.4)

Convolution is usually interpreted as a latent feature extraction over the input
tensor where the filters correspond to the latent features. Max-pooling can be in-
terpreted as a soft existential quantifier applied over the window, i.e., the result of
max-pooling says whether and howmuch the latent features are present in the given
region of the image.

12



0.00

0.05

0.10

0.15

0.20

0.25

0.30

2011 2012 2013 2014 2015 2016 2017

5-
be

st
er
ro
rr

at
e

err=.257

err=.153

err=.115

err=.074

err=.035 err=.029 err=.022

Sánchez and Perronnin (2011)

Krizhevsky et al. (2012)

Simonyan and Zisserman (2014)

He et al. (2016)
Hu et al. (2017)

AlexNet

VGG19

ResNet
Squeeze and Excitation

Figure 2.5: Development of performance in ImageNet image classification task be-
tween 2011 and 2017. The figures are taken from the official website of the challenge.
Columns without citations correspond to submissions that did not provide a citation.

Visualizations of trained convolution filters show that the representation in the
network is often similar to features used in classical CV methods such as edge detec-
tion (Erhan et al., 2009). It also appears that with the growing number of layers, more
abstract representations are learned. Although in theory, shallow networks with a
single hidden layer have the same capabilities (Hornik, 1991), in practice, well-trained
deeper networks usually perform better (Goodfellow et al., 2016, p. 192–194).

2.2.2 Image Classification using AlexNet

The success of neural networks in CV can be well illustrated on the ImageNet chal-
lenge (Deng et al., 2009). It is an annual competition in object recognition in real-
world photographs.

The challenge uses a large dataset of manually annotated images. Every image
is a real-world photograph focused on one object of 1,000 classes. The classes are
objects from every-day life excluding persons. The labels of the objects are manually
linked with WordNet synsets (Miller, 1995). The training part of the dataset consists
of 150 million labeled images, the test set contains other 150 thousand images. The
standard size of the images is 225 × 225 pixels. The dataset is an order of magnitude
bigger than all previously used datasets. Note that the word ‘net’ in the dataset name
does not refer to neural networks butWordNet which was an inspiration for creating
the ImageNet dataset.
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Figure 2.6: A scheme of the AlexNet architecture with stacked convolutional and
max-pooling layers followed by two fully connected layers and classification layers.
For clarity, we omit the technical model split for two GPUs. The visualization style
is adopted from LeCun et al. (1998).

During the last 6 years, CNNs and other the deep learning techniques helped to
decrease the 5-best error (proportion of cases when the correct label is not present in
5 best scoring labels), the main evaluation measure on this task more than ten times
(see Figure 2.5 for more details).

CNNs were previously successfully used for simpler tasks such as handwritten
digit recognition (LeCun et al., 1998). However, the first architecture that showed
the potential of CNNs on large-scale tasks and made the research community focus
on CNNs was AlexNet (Krizhevsky et al., 2012). The authors of this network com-
bined many recent innovations in neural networks at the same time and developed
an efficient GPU implementation, which was not common at that time. The net-
work outperformed all previous approaches by a large margin. Moreover, the image
representation learned by the network (activations in its penultimate layer) showed
interesting semantic properties, allowing the network to be used to estimate image
similarity based on its content.

AlexNet consists of five convolutional layers with max-pooling after the first, the
second and the fifth convolutional layers and two fully connected layers of 2,048 hid-
den units before the classification layer, in total 7 layers with 208 million parameters.
The architecture is shown in Figure 2.6.

Instead of the smooth activation functions mentioned in the previous section
(2.1), it uses Rectified Linear Units (ReLUs) (Hahnloser et al., 2000; Nair and Hinton,
2010):

ReLU(x) = max(0, x). (2.5)

This activation function allows better propagation of the loss gradient to deeper lay-
ers of the network by reducing the effect of the vanishing gradient problem. The
derivative of hyperbolic tangent has an upper bound of one and has values close to
zero on most of its domain. It makes it hardly possible to train networks with more
than one or two hidden layers (AlexNet had 7 layers; Krizhevsky et al., 2012). During
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Figure 2.7: Activation functions and their derivatives.

the computation of the loss gradient with the chain rule, the gradient gets repeatedly
multiplied by values smaller than one and eventually vanishes. ReLU reduces this ef-
fect, although not entirely solves this problem. However, the gradient is zero on half
of the domain, which means that the probability that the gradient is zero grows ex-
ponentially with the network depth. See Figure 2.7 for visualization of courses of the
activation functions and their derivatives.

The AlexNet network has 208 million parameters, which makes it prone to over-
fitting because it has a capacity to memorize the training set with only little gener-
alization. AlexNet used dropout (Srivastava et al., 2014)1 to reduce overfitting. It is
a technique that introduces random noise in the network during training and thus
forces the model to be more robust to variance in the data. With dropout, neuron
outputs are randomly set to zero with a probability that is a hyperparameter of model
training. In practice, dropout is implemented as multiplication by a random binary
matrix after applying the activation function. Dropout can be also interpreted as en-
sembling of exponentially many networks with a subset of currently active neurons
that share all their weights.

1The paper was published in a journal in 2014, however its preprint was available already in 2012
before the ImageNet competition.
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2.2.3 Further Improving the Convolutional Networks

In 2014, AlexNetwas significantly outperformed by theVGGnetworks (Simonyan and
Zisserman, 2014) with two versions having 16 and 19 layers respectively. The authors
of the network did not use any fundamentally different techniques from AlexNet.
Unlike AlexNet that used convolutions with a large receptive field, VGG networks
only used convolutions with kernel size 3. Using smaller kernel size reduced the
number of parameters per layer and thus allowed to train a deeper network leading
to a presumably more abstract image representation.

An important innovation to the network architectures was batch normalization
(Ioffe and Szegedy, 2015). Batch normalization is a regularization technique that
tries to ensure the neuron activations have zero mean and unit variance. It makes
propagation of the gradient easier by keeping the neuron activations near the values
where the derivatives of the activation functions vary the most.

With batch normalization, neuron activations a ∈ Rp (i.e., neuron outputs be-
fore applying non-linearity, the activation function) are normalized using the sample
mean µ ∈ Rp and the standard deviation σ ∈ Rp

â = a − µ

σ + ϵ
(2.6)

where ϵ ∈ R is a hyperparameter that prevents numerical instability if the variance
is close to zero.

The mean and variance are estimated from mini-batches (tens to hundreds of
examples) of training data for each neuron independently. The stochasticity of the
training process with mini-batches would make the estimate numerically unstable.
For this reason, we should also consider estimates from the previous training batches.
However, we also need to take into account that the parameters of the network
change during the training. The solution that meets these constraints is Exponen-
tially Weighted Moving Average (Lawrance and Lewis, 1977). The current estimate
is combined with the previously estimated value multiplied by a factor 0 < α < 1
which is another hyperparameter of the training.

Theµ and σ estimation also requires relatively large training batches such that the
mean and variance estimate is robust enough. Note also that µ and σ are adjustable
parameters of the network but are trained using a different mechanism than error
back-propagation.

Batch normalization allowed development of another technique which makes
training of networks with many layers easier, residual connections (He et al., 2016).
In residual networks, outputs of later layers are summed with outputs of previous
layers (see Figure 2.8). Residual connections improve the flow of the gradient dur-
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Figure 2.8: Network with residual connection skipping one layer.

ing the loss back-propagation because the loss does not need to propagate via the
non-linearities causing the vanishing gradient problem. It can flow directly via the
summation operator which is linear with respect to the derivative. Note also that
applying the residual connection requires that the dimensionality of the layers must
not change during the convolution.

Before introducing residual connections, the state-of-the-art image classification
networks had around 20 layers (Simonyan and Zisserman, 2014; Szegedy et al., 2015),
ResNet (He et al., 2016) used up to 150 layers while decreasing the classification error
to only 3.5%.

Image classification into 1,000 classes is of course not the only task CV commu-
nity attempts to solve. CV tasks include object localization (Girshick, 2015; Ren et al.,
2015), face recognition (Parkhi et al., 2015; Schroff et al., 2015), traffic sign recogni-
tion (Zhu et al., 2016), scene text recognition (Jaderberg et al., 2014) and many others.
Although there are many task-specific techniques, in all current approaches, images
are first processed using a stack of convolutional layers with max-pooling and other
techniques used also in image classification.

Representations learned by networks trained on the ImageNet dataset generalize
beyond the scope of the task and seem to be aware of abstract concepts (Mahendran
and Vedaldi, 2015; Zeiler and Fergus, 2014; Olah et al., 2017). The ImageNet dataset is
also one of the biggest CV datasets available, often orders of magnitude bigger than
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datasets for more specific tasks (Huh et al., 2016). This makes the representations
learned by the image classification networks suitable to use in other CV tasks (Gir-
shick, 2015; Branson et al., 2014; Marmanis et al., 2016) as well as tasks combining
vision with other modalities (Antol et al., 2015; Vinyals et al., 2017).

2.3 Deep Learning Techniques in Natural Language
Processing

Unlike the CV models where the input is always a continuous signal, in NLP, we
need to deal with the fact that language is written using discrete symbols. The count
and the use of the symbols, how the symbols group into words or larger units, the
amount of information carried by a single symbol; this all varies dramatically across
languages. Nevertheless, the symbols are always discrete. Deep learning models for
NLP thus need to convert the discrete input into a continuous representation that is
processed by the network before it eventually generates a discrete output.

In all NLP tasks, we can thus distinguish three phases of the computation:

• Obtaining a continuous representation of the discrete input (often called word
or symbol embedding);

• Processing of the continuous representation (encoding) using various architec-
tures;

• Generating discrete (or rarely continuous) output, sometimes called decoding.

Approaches to the phases may vary in complexity. This is most apparent in case of
generating an output which can be done either using simple classification, sequence
labeling techniques such as conditional random fields (Lafferty et al., 2001) or con-
nectionist temporal classification (Graves et al., 2006) or using relatively complex
autoregressive decoders (Sutskever et al., 2014).

The rest of the section discusses these three phases in more detail. First (Sec-
tion 2.3.1), we discuss embedding of discrete symbols into a continuous space. In the
following section (2.3.2), we discuss three main architectures that can be used for
processing an embedded sequence: Recurrent Neural Networks (RNNs), CNNs and
Self-Attentive Networks (SANs). The following section (2.3.3) summarizes classifi-
cation and sequence labeling techniques as a means of generating discrete output.
Finally, we discuss autoregressive decoding which is a technique that allows gener-
ating arbitrarily long sequences.
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2.3.1 Word Embeddings

Neural networks rely on continuous mathematics. When using neural networks for
NLP, we need to bridge the gap between the symbolic nature of the written language
and the continuous quantities processed by neural networks. The most intuitive way
of doing so is using a predefined finite indexed set of symbols called a vocabulary
(those are typically words, characters or sub-word units) and represent the input as
one-hot vectors. A one-hot vector is a vector that has zeroes everywhere except for a
one at the position of the symbol that is represented by this vector. We denote a one-
hot vector having one on the i-th position as 1i. If the one-hot vector is used as input
of a layer, it gets multiplied by a weight matrix. The multiplication then corresponds
to selecting one column from the weight matrix. These vectors are called symbol
embeddings.

Note also that in this setup, the only information that the networks have available
about the input words is that they belong to certain classes of equivalence (usually
we consider words with the same spelling to be the equivalent) indicated by the
one-hot vector. The only information that the network can later work with is the
co-occurrence of these classes of equivalence. The models thus heavily rely on the
distributional hypothesis (Harris, 1954). The hypothesis says that the meaning of
the words can be inferred from the contexts in which they are used. The success of
neural networks for NLP shows that the hypothesis holds at least to some extent.

Now, consider we are going to train a neural network that predicts a probability
of a word in a sentence given a window of its three predecessors, i.e., acts like a
trigram Language Model (LM). The network has three input words represented by
one-hot vectors with vocabulary V , and one output, a distribution over the same
vocabulary. For simplicity, we further assume the network has one hidden layer
h ∈ Rm of dimensionm before the classification layer. Formally, we can write:

h = tanh
(
1wn−3W3 + 1wn−2W2 + 1wn−1W1 + bh

)
(2.7)

P(wn) = softmax(Wh + b) (2.8)

where Wi ∈ R|V |×m are the embedding matrices for the words in the window of
predecessors and W ∈ Rm×|V | a projection matrix from the hidden state h to the
output distribution, bh and b are corresponding biases.

All four projection matrices have |V | ·m parameters. With the vocabulary size of
ten thousand words and the hidden layer with hundreds of hidden units, this means
millions of parameters. All three embedding matrices have a similar function in the
model. They project the one hot vectors to a common representation used in the
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Figure 2.9: Feed-forward architecture of a language model with window size 3 with
shared word embeddings We.

hidden layer, also reflecting the position in the window of the predecessors. The
target representation space used by the hidden layer should be the same because the
output classifier cannot distinguish where the values came from unless the weight
matrices learn this during model training.

Given this observation, we can factorize the matrices into two parts: the first
one performing the projection to a common representation space of dimension m
that can be shared among the window of predecessors, and the second projection
adapting the vector to the specific role in the network based on the word position.
Formally:

h = tanh
(
1wn−3WeV3 + 1wn−2WeV2 + 1wn−1WeV1 + bh

)
(2.9)

where We ∈ R|V |×m is the sharedword embeddingmatrix and Vi are smaller projec-
tion matrices of sizem×m. This step approximately halves the number of network
parameters. This is also the way that word embeddings are currently used in most
NLP tasks. The architecture of the described trigram LM is illustrated in Figure 2.9.

The previous thoughts led us exactly to the architecture of the first successful neu-
ral LM (Bengio et al., 2003). The feed-forward architecture not only achieved decent
quantitative results in terms of corpus perplexity, but it also developed word rep-
resentations with interesting properties. Words with similar meaning tend to have
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similar vector representations in terms of Euclidean or cosine distance. Moreover,
the learned representations appear to be useful features for other NLP tasks (Col-
lobert et al., 2011). The reasons for introducing the embedding matrix are similar
also in case of RNN and CNN architectures discussed in the next section.

Mikolov et al. (2010) trained an RNN-based LM for speech recognition where the
word representations manifest another interesting property. The vectors seemed to
behave linearly with respect to some semantic shifts, e.g., words that differ only in
gender tend have a constant difference vector. Mikolov et al. (2013) further exam-
ined this property of the word vectors and developed a simple feed-forward archi-
tecture that was no longer a good LM but still produced word embeddings with all
the interesting properties, i.e., being useful machine-learning features for NLP tasks,
clustering words with similar meaning and behaving linearly with respect to some
semantic shifts.

Pre-trained embeddings using one of the above-mentioned methods are an im-
portant building block in NLP tasks with limited training data (dependency parsing:
Chen and Manning, 2014, Straka and Straková, 2017; question answering: Seo et al.,
2016) when the model is supposed to generalize for words which were not seen in
the training data, but for which we have good pre-trained embeddings. In tasks with
a large amount of training data such as MT, we usually train the word embeddings
together with the rest of the model (Qi et al., 2018).

Development of universally usable word vector representations became an in-
dependent subfield of NLP research. The research community mostly focuses on
studying theoretical properties of the embeddings (Levy and Goldberg, 2014; Agirre
et al., 2016) and multilingual embeddings either with or without the use of parallel
data (Luong et al., 2015a; Conneau et al., 2017).

2.3.2 Architectures for Sequence Processing

In NLP, we usually treat the text as a sequence of tokens which correspond to words,
subwords, or characters. Deep learning architectures for sequence processing thus
must be able to process sequential data of different lengths. The length of sentences
processed by the MT systems typically varies from a few words to tens of words. In
the CzEng parallel (Bojar et al., 2016b) 90% of sentences have between 20 and 350
tokens.

Currently, there are three main types of architectures used: RNNs, CNNs, and
SANs. The architectures are explained in detail in the following sections.
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Recurrent Networks

RNNs are historically the oldest and probably still the most frequently used archi-
tecture for sequence processing in a variety of tasks including speech recognition
(Graves et al., 2013; Chan et al., 2016), handwriting recognition (Graves and Schmid-
huber, 2009; Keysers et al., 2017) or neural machine translation (Bahdanau et al., 2014;
Chen et al., 2018). It was the architecture of the first choice partially because of its
theoretical strengths—RNNs are proved to be Turing complete (Siegelmann and Son-
tag, 1995)—and because an efficient way for training them has been known since 1997
(Hochreiter and Schmidhuber, 1997).

Unlike the feed-forward networks which are stateless, a recurrent network can be
best described as applying the same functionA sequentially on the previous network
state and current input (Elman, 1990). Computation of a new state ht ∈ Rd from
the previous state ht−1 ∈ Rd and current input xt ∈ Rn can be described using a
recurrent equation

ht = A(ht−1,xt) (2.10)

where the initial state h0 is either fixed or a result of previous computation. Depend-
ing on the output of the task, either the final state of the RNN hTx where Tx is the
length of the input sequence or the whole matrix H = (h1,h2, . . . ,hTx) ∈ RTx×d is
used for further processing.

For inference, only the current state of the network is required. However, to
learn its parameters via back-propagation in time (Werbos, 1990), we need to unroll
all its steps. In this sense, even a simple RNN is a deep network because the back-
propagation must be conducted through many unrolled layers. From the training
perspective, RNNs in NLP tasks can easily have tens or hundreds of layers. Unrolling
the network is illustrated in Figure 2.10.
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The depth of the unrolled network is the factor that makes training of such ar-
chitectures difficult. With a simple non-linear activation function (so-called Elman
cell, Elman, 1990):

ht = tanh (W[ht−1; xt] + b) , (2.11)

it would be impossible for the network to learn to also consider longer dependen-
cies in the sequence due to the vanishing gradient problem (already discussed in Sec-
tion 2.2).

The derivative of the network state ht in time twith respect to bias b from Equa-
tion 2.11 applied several time steps before t is:

∂ht
∂b

= ∂ tanh
=zt (activation)  

(Whht−1 + Wxxt + b)
∂b

(tanh′ is derivative of tanh)

= tanh′(zt) ·

⎛⎜⎜⎝∂Whht−1

∂b
+ ∂Wxxt

∂b  
=0

+ ∂b
∂b
=1

⎞⎟⎟⎠
= W

∼N (0,1)

tanh′(zt)  
∈(0;1]

∂ht−1

∂b
+ tanh′(zt).

The derivative of ht with respect to b gets multiplied in each step by a number be-
tween zero and one which effectively prevents the network from learning to consider
also longer dependencies.

ReLU activation is claimed to reduce the issue in the context of CV (see Sec-
tion 2.2). Its derivative is zero for x < 0 and one otherwise, so the gradient can
eventually vanish in case of longer sequences.

Another type of numeric instability that can occur during RNN training is the
exploding gradient problem (Pascanu et al., 2013). This type of instability is caused by
repetitive multiplication by the same matrix during the back-propagation.

A solution to the instability problems came with introducing the mechanism of
Long Short-Term Memory (LSTM) networks, which ensures that during the error
back-propagation, there is always a path through which the gradient can flow via
operations that are linear with respect to the derivative. The path, sometimes called
information highway (Srivastava et al., 2015), is illustrated as a red straight line on
the top of Figure 2.11.

This configuration is achieved by using two distinct hidden states, private state
C and public state h where the state C is updated using the linear operations only. A
gating mechanism explicitly decides what information from the input can enter the
information highway (input gate), which part of the state should be deleted (forget
gate) and what part of the private hidden state should be published (output gate).
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Figure 2.11: A scheme of an LSTM cell with the information highway on the top
of the scheme. Non-linear projections are in yellow boxes, point-wise operations in
pink boxes, variables denoted at the arrows correspond to Equations 2.12 to 2.17.

Formally, LSTM network of dimension d updates its two hidden states ht−1 ∈ Rd

and Ct−1 ∈ Rd based on the input xt in time step t in the following way:

ft = σ (Wf · [ht−1; xt] + bf ) (2.12)

it = σ (Wi · [ht−1; xt] + bi) (2.13)

ot = σ (Wo · [ht−1; xt] + bo) (2.14)

C̃t = tanh (Wc · [ht−1; xt] + bC) (2.15)

Ct = ft ⊙ Ct−1 + it ⊙ C̃t (2.16)

ht = ot ⊙ tanh Ct. (2.17)

where ⊙ denotes point-wise multiplication. The cell is shown in Figure 2.11.
The values of the forget gate ft ∈ (0, 1)d control how much information is kept

in the memory cell by point-wise multiplication. In the next step, we compute the
candidate state C̃ ∈ Rd in the same way as the new state is computed in the Elman
RNN cells. Values of this candidate state are not combined directly with the memory.
First, they are weighted using the input gate it ∈ (0, 1)d and added to the memory
already pruned by the forget gate. The new output state ht is computed by applying
tanh non-linearity on the memory state Ct and weighting it by the output gate ot ∈
(0, 1)d.

As previously mentioned, LSTM networks have two separate states Ct and ht.
The private hidden state Ct is only updated using addition and point-wise multipli-
cation. The tanh non-linearity is only applied while computing the output state ht.
The gradient from the output passes through only one non-linearity before entering
the information highway.
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Later, other numerically stable versions of RNNs appeared. They all have the
property that there is a path on which the gradient can propagate without vanishing
(Balduzzi and Ghifary, 2016; Lee et al., 2017b). The most frequently used variant are
Gated Recurrent Units (GRUs) (Cho et al., 2014b):

zt = σ (Wz[ht−1; xt] + bz) (2.18)

rt = σ (Wr[ht−1; xt] + br) (2.19)

h̃t = tanh (W[rt ⊙ ht−1; xt] + b) (2.20)

ht = (1 − zt) ⊙ ht−1 + zt ⊙ h̃t. (2.21)

TheGRUnetworks have fewer parameters than LSTMnetworkswhichmay speed
up training under some circumstances. Performance of both network types is com-
parable and is task dependent (Chung et al., 2014).

A commonly used method for improving the RNN performance is building a bidi-
rectional network (Schuster and Paliwal, 1997; Graves and Schmidhuber, 2005). Two
independent RNN networks are used in parallel, each of them processing the se-
quence from one end. The output states are then concatenated. In this way, the
network can better capture dependencies in both directions in the input sequence.
Bidirectional RNNs became a standard in many NLP tasks (Bahdanau et al., 2014;
Ling et al., 2015; Seo et al., 2016; Kiperwasser and Goldberg, 2016; Lample et al.,
2016). Note that in this setup, every network state may contain information about
the complete sequence.

Convolutional Networks

CNNs were already discussed in detail in Section 2.2 in the context of CV. Whereas
in the case of the CV tasks, convolutions are explained as applying a sliding window
over an image in two dimensions, in NLP, convolutions are usually one-dimensional.
CNNs applied on a sequence of states or embeddings can be interpreted as applying a
sliding window over the sequence that extracts useful features of the input n-grams
it processes.

Their most significant advantage over RNNs is that while processing a sequence,
the computation does not need to wait for the result of processing the previous inputs
and the computation can proceed in parallel. CNNs also resemble methods utiliz-
ing n-gram statistics, frequently used in older NLP techniques (Cavnar and Trenkle,
1994). Due to these properties, there have been attempts to use CNNs in NLP tasks
since the advent of deep learning techniques (Kalchbrenner and Blunsom, 2013; Kim,
2014), however with only limited success.
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Figure 2.12: One layer of a 1-D convolution.

In the bidirectional setups, RNNs cover the whole input sequence in every output
state, whereas the receptive field of the CNNs is limited to a small sliding window,
in practice of up to five tokens. In NLP, it took until 2017 (Wu et al., 2017; Gehring
et al., 2017) when CNNs gained popularity after techniques allowing stacking multi-
ple layers were available (Yu and Koltun, 2015; He et al., 2016; Ba et al., 2016). They
allowed enlarging the receptive field of the networks so that they succeed in more
complex tasks.

A vector on j-th position in the i-th layer of a 1D-CNN window of size k (kernel
size) is computed as

h(i)
j = f(W [h(i−1)

j− k
2

; h(i−1)
j− k

2 +1; . . . ; h(i−1)
j+ k

2
] + b). (2.22)

Applying the convolution window can be thus intuitively interpreted as extracting
features from k-grams of input symbols. One layer of a CNN is illustrated in Fig-
ure 2.12.

A shallow convolution can capture only properties of n-grams without long-
range dependencies and disregards mutual position of the n-grams. Single-layer
CNNs are therefore suitable just for tasks that are solvable without considering
broader context such as sentiment analysis (Kim, 2014) where even simple n-gram-
based statistical methods yield interesting results (Pak and Paroubek, 2010).

Enlarging the size of the convolution window would soon increase the number
of parameters prohibitively. A better way for expanding the receptive field of CNNs
is stacking multiple layers on each other (see Figure 2.13). With multiple layers, the
problem of vanishing gradients comes into play again.

This problem is approached similarly as in deep CV networks or LSTMs by mod-
ifying the architecture in such a way that the computation graph contains a path on
which the gradient can flow through operations which are linear with respect to the
derivative. The path is created using residual connections, which sum up the output
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embeddings x = (x1, . . . ,xN)x0 = 0⃗ xN+1 = 0⃗

h(3)
i

Figure 2.13: Receptive field of a multi-layer CNN. With kernel size 3, stride 1 and 3
layers, a vector in the third layer covers 7 input embedding vectors.

embeddings x = (x1, . . . ,xN)x0 = 0⃗ xN+1 = 0⃗

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

hi = f (W [xi−1; xi; xi+1] + b) + xi

Figure 2.14: Convolutional layer with residual connections.

of the layer with its input (see Figure 2.14):

h(i)
j = f

(
W[h(i−1)

j− k
2

; h(i−1)
j− k

2 +1; . . . ; h(i−1)
j+ k

2
] + b

)
+ h(i−1)

j . (2.23)

As was already discussed in Section 2.2, training a network with residual connec-
tions suffers from numerical instability because the output and input of the network
can shift to a different scale and one term in the summation can outweigh the other
one. To stabilize the training, the output activation of the network needs to be nor-
malized. Unlike in CV, where batch normalization (Ioffe and Szegedy, 2015) is used
to address this problem, in NLP, layer normalization (Ba et al., 2016) is prevails due
to its empirically better performance even with small training batches.

The activations (the values before applying a non-linear activation function) on
the i-th layer are normalized:

a(i) = h(i)

σi

(
a(i) − µ(i)

)
(2.24)
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where g(i) ∈ Rdi is a layer specific trainable parameter. The scalar sample mean µ(i)

and deviance σ(i) are estimated as follows:

µ(i) = 1
di

di∑
j=1

a(i)
j , σ(i) =

√ 1
di

di∑
j=1

(a(i)
j − µ(i))

2
. (2.25)

where di is dimension of the i-th layer.
In 2016, CNNs started to be used for obtaining character-level representations

which were later processed using RNNs (e.g., character-level MT, Lee et al., 2017a;
question answering, Seo et al., 2016). Later in 2017, methods using multi-layer CNNs
with residual connections appeared (e.g., MT, Gehring et al., 2017; question answer-
ing, Wu et al., 2017) offering significant speedup in training while maintaining the
performance of previous RNN-based models.

Unlike RNNs, CNNs are by design not aware ofmutual positions of symbols in the
sequence and treat all n-grams in the sequence equally. In tasks where the n-gram
order plays an important role such as in MT, this can be solved by introducing posi-
tion embeddings which can encode either absolute (Gehring et al., 2017) or relative
position of the symbols (Shaw et al., 2018). Such embeddings are trained jointly with
the model.

Although CNNs are in theory weaker models than RNNs which are known to
be Turing complete, they are computationally more efficient due to the possibility
to parallelize their computation. They can achieve the same results as RNNs when
correctly designed and trained (Gehring et al., 2017; Wu et al., 2017).

Self-Attentive Networks

SANs are neural networks where at least for some layers, the states of the next layer
H(i) = (h(i)

0 , . . . ,h
(i)
T ) ∈ RT×d for a sequence of length T and dimension d are

computed as a linear combination of the states on previous layer H(i−1). Formally,

h(i)
k =

∑
j

α
(i)
j,kh

(i−1)
j (2.26)

where α(i)
·,k ∈ (0; 1]T is a trained probability distribution which depends on the values

on layer H(i−1).
There exist several variants of SANs (Parikh et al., 2016; Lin et al., 2017). In

this section, we discuss in detail the encoder part of the architecture introduced
by Vaswani et al. (2017), called Transformer, that achieves state-of-the-art results in
MT and that we also use in our experiments with Multimodal Machine Translation
(MMT).
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A Transformer layer for sequence encoding consists of two sub-layers2. The first
sub-layer is self-attentive, the second one is a non-linear projection to a larger dimen-
sion followed by a linear projection back to the original dimension. All sub-layers
contain dropout, layer normalization and are connected using residual connections.
The scheme of the architecture is displayed in Figure 2.16.

The self-attentive sub-layer first computes a similarity between all states using
the scaled dot-product attention. Attention is usually interpreted as probabilistic
retrieving of values V = (v1, . . . ,vn) ∈ Rn×d which are associated with some keys
K = (k1, . . . ,kn) ∈ Rn×d for each of m query vectors Q = (q1, . . . ,qm) ∈ Rm×d.
We define the scaled dot-product attention as

Attn(Q,K,V) = softmax
(

QK⊤
√
d

)
V (2.27)

where d is the model dimension, i.e., the second dimension of all three matrices in-
volved in the equation, which is the Transformer model constant across the layers.

By normalizing the similarity over the keys, we get a probability distribution
which is then applied over the value matrix V in a weighted sum as shown in Equa-
tion 2.26. In case of the self-attentive encoder, all three matrices Q, K, V are the
same, i.e., the states on the next layer H(i) = (hi1, . . . ,h(i)

n ) are computed as:

H(i) =
∑

softmax
(

H(i−1)H(i−1)⊤
√
d

)
H(i−1). (2.28)

The dot-product had been used as a similarity measure in the attention mecha-
nism previously (Luong et al., 2015b), Vaswani et al. (2017) added the scaling factor by√
d to prevent absolute values of the similarity to grow with the growing model di-

mension. The dot product is a computationally cheaper alternative to using a single-
layer network (Bahdanau et al., 2014) later called feed-forward attention (Luong et al.,
2015b).

Vaswani et al. (2017) also introduced another innovation to the attention mecha-
nism, multi-headed attention. This technique allows collecting different information
from different states of the previous layer into a single context vector. In the multi-
head setup, all the query, key and value matrices are first linearly projected as illus-
trated in Figure 2.15. Note that even if the inputs to the attention are the same, the
projections do not share parameters. The projected states are then split into multi-
ple sub-matrices, so-called heads. The attention is computed for each of the heads

2Note that even the sub-layer consists of several network layers. A better term would probably be
block as in ResNet (He et al., 2016), however, we follow the terminology introduced by Vaswani et al.
(2017).
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Figure 2.15: A scheme of the multi-headed scaled dot-product attention.

independently according to Equation 2.27. Outputs of the attention are then concate-
nated and linearly projected to the original model dimension, forming a sequence of
context vectors. In the Transformer model, the keys and values are always the same.
In case the attention is used as self-attention, the queries are identical as well.

The multi-head setup uses two independent projections for keys and values. The
keys and values are thus different in the individual heads. Formally for h heads,

Multihead(Q,V) = (H1 ⊕ · · · ⊕ Hh)WO (2.29)

Hi = Attn(QWQ
i ,VWK

i ,VWV
i ) (2.30)

where WO ∈ Rhd×d, and WQ
i , WK

i , WV
i ∈ Rd×d are trainable parameters.

Similar to CNNs, SANs do not have anymeans to capture the order of the symbols
and thus require using additional positional encoding to distinguish the positions
within the sequence. Instead of trained positional embeddings (Gehring et al., 2017),
the Transformer model uses analytically computed positional encoding of dimension
d:

pos(i) =

⎧⎪⎪⎨⎪⎪⎩
sin

(
t

104

i
d

)
, if i mod 2 = 0

cos
(

t
104

i−1
d

)
, otherwise

(2.31)
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Figure 2.17: Visualization of the position encoding used in the Transformer model
with embedding dimension 300 and input length up to 120.

computation sequential operations memory

Recurrent O(n · d2) O(n) O(n · d)
Convolutional O(k · n · d2) O(1) O(n · d)
Self-attentive O(n2 · d) O(1) O(n2 · d)

Table 2.1: Comparison of the asymptotic computational, sequential and memory
complexities of the architectures processing a sequence of length n, and state di-
mensionality d. CNN has kernel size k. The first column contains complexity in
case of sequential computation, the second column shows the asymptotic number of
sequential operation during parallel computation, and the third column shows the
memory complexity.

The positional encoding for model dimension 300 is plotted in Figure 2.17. Note
that for different dimensions, the encoding values change with a different frequency
which allows estimating relative position of the inputs.

Computationally, SANs are as fast as convolutions because the self-attention can
be computed in a single matrix multiplication which can be highly parallelized when
computed on GPU. On the other hand, we need to store a matrix with similarity of
all pairs of the input states in the GPU memory for each layer of the network. Due to
this, the memory demands grow quadratically with the length of the input sequence.
A summary of the computational complexity of the discussed networks for sequence
processing is given in Table 2.1.
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2.3.3 Generating Output

So far, we have only discussed how the neural networks process symbolic input into
an intermediate representation. In the following sections, we discuss what architec-
tures are used to generate an output from neural networks.

We discuss in detail three special cases:

• The output is exactly one symbol from a closed set of possible answers—
classification;

• The output is a sequence of symbols of the same length as the input—sequence
labeling;

• The output is a sequence of symbols of an arbitrary length—autoregressive de-
coding.

Classification

In the simplest case, the network produces only one discrete output, i.e., we want to
classify the input into a fixed set of previously known classes. An example of such an
NLP task is sentiment analysis (Pang et al., 2002; Pak and Paroubek, 2010) where the
goal is to classify whether a text carries a positive or a negative sentiment. Another
example can be classification of text into a set of genres (Kessler et al., 1997; Lee and
Myaeng, 2002).

The most common approach to these tasks is applying a multi-layer perceptron
over a fixed-size representation of the input. The fixed-size vector can be for instance
the final state of an RNN or a result of a pooling function applied over states produced
by one of the architectures mentioned in Section 2.3.2. The most frequently used
methods are max-pooling and mean-pooling, computing the maximum or average
of the states in time, respectively.

The classification network can then consist of multiple non-linear layers before
the actual classification, which is usually done by taking the maximum or sampling
from a distribution estimated by the softmax function.

The softmax function over a vector l is defined as:

softmax (l)i = exp li∑
lj∈l exp lj

. (2.32)

Note that the softmax function is monotonic, so if we are interested only in the best-
scoring prediction, at inference time, we can take the maximum value of vector l
before the softmax function. The values of l are often called logits.
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When the output of the network is estimated using the softmax function, we can
measure the error that the network makes as a cross entropy between the estimated
probability distribution Py and the true output distribution, given such distribution
exists. In practice, the true distribution is unknown. However, we usually assume
that the true distribution exists and assigns all the probabilitymass to the target value
y∗ in the training data. This assumption might be problematic, e.g., when estimating
the probability of the next word in a text. It is in fact never the case that there
is only one possible follow-up word. Nevertheless, the assumption simplifies the
computation of cross-entropy loss which can be then expressed as

L(Py, y∗) = − log Py(y∗). (2.33)

In this way, the derivative of the loss function with respect to the logits is

∂L(Py, y∗)
∂l

= − ∂

∂l
log exp li∑

lj∈l exp lj
= ∂

∂l

⎛⎝log
∑
lj∈l

exp lj − ly∗

⎞⎠ =

=
∑1y∗ exp l∑ exp l − 1y∗ = Py − 1y∗ (2.34)

where 1y∗ is a one-hot vector for value y∗.
The loss gradient with respect to the logits is back-propagated to the network

using the chain rule. The softmax function with cross-entropy loss is used not only
in case of single-output classification but also in sequence labeling and autoregressive
decoding discussed in the following sections.

For completeness, we should also mention that when the output of the network
is supposed to be a continuous value, we can perform a linear regression over the
input representation and optimize the estimation using a mean squared error

L(y, y∗) = (y − y∗)2, (2.35)

which is differentiable and thus the error can be back-propagated to the network.

Sequence Labeling

When the desired output of a network is a sequence of discrete symbols having the
same length as the input and monotonically aligned with the input, we can apply
a multi-layer perceptron over each state of the network. In this case, the labels as-
signed to every state are conditionally independent given the network states. The
loss function used to train the network is a sum of cross entropy over the network
output distributions.
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In NLP, many tasks can be formulated as sequence labeling. Besides the more
theoretically motivated tasks such as part-of-speech tagging or semantic role label-
ing, we can mention information extraction where the goal is marking entities in a
text or named entity recognition.

The labels assigned to the input symbols often have their own, usually simple
grammar rules. When we label beginnings and ends of sequences, we need to make
sure the end symbol never comes before the start symbol. In these cases, conditional
random fields can be applied over the state sequence (Lafferty et al., 2001; Do and
Artieres, 2010).

If there are fewer output symbols than the states of the network, we can use a
technique called connectionist temporal classification (Graves et al., 2006). This is
often the case in speech recognition or handwriting recognition where the network
states correspond to relatively short input signal segments. Connectionist temporal
classification introduces a special output symbol for “no output” and thus is able
to generate shorter sequences than the number of the input state. Note that this
approach still assumes monotonic alignment of the labels with the input sequence.

Autoregressive Decoding

In some tasks such as MT or abstractive text summarization, the output cannot be
monotonically aligned with the input and the number of output symbols differs from
the number of the input symbols. In such cases, we need a mechanism that is able
to generate output symbols in a general while loop and is conditioned on the entire
input. Such a while loop is sometimes called autoregressive decoder because the com-
putation in every time step depends on the previous state of the loop and previous
outputs and generates the output symbols left-to-right.

Historically, autoregressive decoding has developed from discriminative lan-
guage modeling using RNNs. We will thus first explain this principle on the RNN
LMs and later generalize the principle for CNNs and SANs.

LMs are probabilisticmodels estimating the probability of sentences in a language
represented by a corpus that the model is trained on. The probability is factorized
over the words or smaller units. Within the statistical paradigm, word probabilities
were usually estimated based on a finite window of previous words using n-gram
statistics computed on a training corpus (Manning and Schütze, 1999). When ap-
proached as a sequence labeling problem, it can be done using an RNN which can, in
theory, handle unlimited history (Mikolov et al., 2010; Sundermeyer et al., 2012). In
both cases, the probability of a sentence is estimated using the chain rule:

P(w1, . . . , wn) = P(w1|<s>) · · · · · P(wn|wn−1, . . . , w1, <s>) (2.36)
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Figure 2.18: An illustration of LM formulated as a sequence labeling problem.

The inputs to the neural LM are word embeddings. In every time step, the model
estimates a probability distribution over the vocabulary. Formally we let

P(wn+1|wn, . . . , w1, <s>), sn = RNN(wn, sn−1) (2.37)

where sn is the state of the model in the n-th step. The distribution expresses how
likely the following word wn+1 is to appear in a sentence with a prefix of words
w1, . . . , wn. The model is optimized towards cross entropy as a standard sequence la-
beling task. An RNN LM formulated as sequence labeling is illustrated in Figure 2.18.

Autoregressive decoding is based on sampling from such a model. In every time
step, we can sample from a distribution over the output words. In the next step, the
sampled word is provided as the model input as if it were a word in a sentence that
the LM is supposed to score. The words are sampled from the model in a while loop
until a special end symbol is generated. The sampling is illustrated in Figure 2.19.

Themissing part that distinguishes a LM from an autoregressive decoder is condi-
tioning the LM on other inputs than the previously decoded symbols. In case of MT,
it would be the source sentence. In the simplest case, this can be done by explicitly
assigning the initial state of the RNN with a result of a previous computation.

In the early work, these were max-pooled CNN states (Kalchbrenner and Blun-
som, 2013), however, more promising results are achieved with LSTM networks
(Sutskever et al., 2014). A disadvantage of this approach is that the input needs to
be represented as a fixed-sized vector (max-pooled CNN states, the final state of an
RNN) regardless of what the input length is. Performance of such models quickly
decreases with the size of the input (Sutskever et al., 2014).
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Figure 2.19: RNN LM used as an autoregressive decoder.

Bahdanau et al. (2014) introduced a technique overcoming this drawback of au-
toregressive decoding, called attention mechanism. In every decoding step, the model
computes a distribution over the variable-length input representation and uses it to
compute the context vector, a weighted average over the input representation. Having
been originally introduced in the context of Neural Turing Machines (Graves et al.,
2014), the distribution is usually interpreted as addressing the input representation
analogically to addressing memory cells in a random-access memory.

For input sequence of length Tx, encoder states H = (h1, . . . ,hTx) ∈ RTx×dn of
dimension dh, and decoder state si of dimension ds, the attention model with inter-
mediate dimension da defines the attention energies eij ∈ R, attention distribution
αi ∈ RTx , and the context vector ci ∈ Rdh in the i-th decoder step as:

eij = v⊤
a tanh(Wasi + Uahj + ba) + be, (2.38)

αij = exp(eij)∑Tx
k=1 exp(eik)

, (2.39)

ci =
Tx∑
j=1

αijhj. (2.40)

The trainable parametersWa ∈ Rds×da andUa ∈ Rdh×da are projectionmatrices that
transform the decoder and encoder states si and hj into a common vector space and
va ∈ Rda is a weight vector over the dimensions of this space, ba ∈ Rda and be ∈ R
are biases for the respective projections. The context vector ci is then concatenated
with the decoder state si and used for classification of the following output symbol.
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Together with techniques for data preprocessing (Sennrich et al., 2016a,b), the
attention model was the crucial innovation that helped to improve neural MT quality
over the statistical MT and set a new state of the art in the field of MT.

As already mentioned, autoregressive decoding is not limited only to RNNs. The
same principle can be applied to CNNs. A convolutional decoder (Gehring et al., 2017)
applies a stack of 1D convolutional layers on the sequence generated so far and uses
its last, i.e., the right-most state to compute a distribution over the possible output
symbols from which we can sample and append the sample to the already generated
sequence. Note that in each step, all states of the CNN was already computed in the
previous step of the decoder, except for the last one which can be added in constant
time. The decoder utilizes the attention mechanism in the same way as the RNN
decoders. Gehring et al. (2017) use deep CNN of 15 layers both in the encoder and
the decoder and uses the attention mechanism between the corresponding layers.

The autoregressive nature of decoding prevents parallelization of the decoder
computation at inference time. At training time, the target sentence is known in
advance and all the intermediate states of the convolutional decoder can be computed
in parallel. Convolutional sequence-to-sequence models offer a significant training
time speedup while maintaining similar performance as recurrent models (Gehring
et al., 2017).

SANs can be used similarly to CNNs. In the Transformer model (Vaswani et al.,
2017), a stack of self-attentive and feed-forward sub-layers is applied on the already
decoded sequence and the result is used to produce the next output symbol. Similar to
the CNN decoder, the self-attentive layers are interleaved with cross-attentive layers
attending the encoder states (see Figure 2.20).

At training time, the computation can be parallelized as in the case of the CNN
decoder. In the self-attentive layers, we need to limit the attention distribution only
to the words that have already been decoded. This is in practice implemented by
multiplying the matrix of attention energies with a triangle matrix as shown in Fig-
ure 2.21.

Self-attentive sequence-to-sequence models currently provide the best results in
sequence generation tasks (Bojar et al., 2018). Nevertheless, they suffer from the low
decoding speed and quadratic memory demands which limit practical application to
sequences of at most hundreds of tokens.

So far, we have only discussed how the output sequence probability is modeled
using the autoregressive decoder. Finding the sequence that receives the highest
probability by the decoder is however a difficult problem. The number of possible
output sequences grows exponentially with its length which makes an exhaustive
search intractable.
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Figure 2.21: Masking while computing energy values in the self-attention layer in
the Transformer decoder. Masking prevents the self-attention to attend to symbols
to the right from the previously decoded symbol.

The most straightforward heuristics is greedily choosing the most probable out-
put symbol in every step. Another commonly used heuristic is the beam search al-
gorithm that simulates the exhaustive search while keeping only a few best-scoring
hypotheses in every time step (Sutskever et al., 2014). The algorithm that trades off
the efficiency of greedy decoding (when the output symbol with maximum probabil-
ity is selected at each time step) with maintaining a relatively wide search space.

The algorithm keeps track of k hypotheses (beam). A hypothesis is either a par-
tially generated sequence (unfinished), or a sequence that ends with a special end
symbol (finished). In each step, all hypotheses are expanded with all possible tokens
from the vocabulary. The expanded hypotheses are scored and k best of them are
kept for the next step. The beam search algorithm is illustrated in Figure 2.22.

In the basic variant of the beam search decoding, the score of a hypothesis is
computed using the chain rule (see Equation 2.36). The scores computed in this way
do not allow comparing scores of hypotheses of different lengths. The probability
score of a sequence assigned by the chain rule decreases exponentially with the se-
quence length. This problem is particularly apparent in models with large output
vocabularies and high perplexities of the output distribution.

A frequently used feature of the scoring function is length normalization that
tackles this issue. Length normalization divides the log sequence probability by the
sequence length. The final score can thus be interpreted as the geometric mean of
token probabilities. Nematus (Sennrich et al., 2017), a toolkit for neural sequence-to-
sequence learning divides the sequence log probability by tα where t is the length

40



…

…

…

…

Hey

world

World

<s>

there

Hi

…

…

hello

world

Hello

!

Figure 2.22: Beginning of beam search generating sentence “Hello world!” with a
beam of width 2. In every step, each active hypothesis is expanded by three possi-
ble continuations from which two best scoring (marked with gray background) are
selected for the next step.

1.0

1.5

2.0

2.5

3.0

3.5

4.0

5 10 15 20 25 30
Sequence length

Sennrich et al. (2017)

5 10 15 20 25 30
Sequence length

Wu et al. (2016)

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
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(2017) and Wu et al. (2016) with different values of hyperparameter α.
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of a partial hypothesis being decoded. Wu et al. (2016), in a paper that claims to
describe a production system by Google, use a heuristic formula

(5 + t)α

(5 + 1)α . (2.41)

In both cases, t denotes the step of the decoder (i.e., the maximum length of a par-
tially decoded hypothesis) and α is a hyperparameter. This is the heuristic that we
use in most of our experiments. The length normalization terms are visualized in
Figure 2.23.
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3
Combining Language and Vision

Computational linguistics has always been concerned with ambiguous sentences
like: “I saw a man with a telescope” which are particularly challenging for morpho-
logical, syntactic and semantic analysis in most of the theoretical frameworks. The
truth is that most of such sentences are no longer ambiguous if we consider broader
context in which the sentences are spoken or written. In many cases, it is the visual
context that can be used to resolve the ambiguities.

Deep learning methods which are used similarly both in Computer Vision (CV)
and Natural Language Processing (NLP) allow combining visual and textual infor-
mation seamlessly. It is the first time in the history of computer science when the
methodology established in both research communities is almost the same. The abil-
ity of deep learning models to learn a general and information-rich representation
of input data allows learning representations within a single modality and reuse it
in a multimodal context, or the other way round, train a more robust multimodal
representation and use it for single-modality tasks.

The rest of this section discusses more deeply how the modalities can be com-
bined (Section 3.1), and presents an overview of the most important tasks combin-
ing language and vision which are important for our work on Multimodal Machine
Translation (MMT): multimodal representation learning (Section 3.2) and image cap-
tioning (Section 3.3).
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3.1 From Language Models to Multimodal Models

In NLP, language modeling was for a long time considered to be one of the most im-
portant tasks (Manning and Schütze, 1999, p. 5). Statistical Language Models (LMs)
estimate a probability that a sentence can be produced in a given language and are
usually trained on large corpora of text. Languagemodels can be used as tools for dis-
tinguishing which sequence of words forms a better utterance in a given language. If
we followed Chomsky’s terminology, we can say that we model linguistic competence
inferred from corpora of linguistic performances. The important difference between a
probabilistic LM and modeling language by writing rules based on language syntax
is that the LMs are trained on sentences that were actually spoken or written with
some purpose, and they relate to the extra-linguistic reality. Because of this implicit
relation to the world, LMs necessarily carry some semantic and pragmatic informa-
tion as well. LMs do not only model syntactic correctness of a sentence, but also in
some sense capture how the sentence relates to the world.

For most NLP applications, it is a great benefit. It actually means that LMs are
also implicitlymodels of theworldwithout the necessity to step outside the language.
Moreover, texts in corpora that we use for training our models usually do not expect
that its author shares much of the context with the reader. They indeed share cultural
context and some texts may rely on intertextuality. Nevertheless, the author and the
reader are rarely at the same place at the same time, they are not in the same weather,
they do not sharewhat they currently see. Therefore, the language context itself must
be informative.

In the context of deep learning, modeling a language also includes generation
continuous vector representations of words and sentences. This creates new possi-
bilities on how to evaluate the quality of LMs. A goodmodel of a language should not
only assign a high probability to plausible sentences but also yield representations
that capture important aspects of the language—and thus could be reused in other
NLP tasks. For the same reasons as mentioned above, the representation must also
carry some world knowledge.

Traditionally, language models are trained using language data only. Even
though they can capture semantic or even pragmatic information, they cannot cap-
ture in any sense how the words or sentences refer to extra-linguistic phenomena,
simply because they are not present during the model training. If we want to ob-
tain LMs that at least somehow model language denotation, we need to train them
multimodally.
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Representations learned by neural networks for CV andNLP tasksmanifest many
similarities. Most importantly, similar inputs get similar representation even in cases
when resolving the similarity requires non-trivial semantic reasoning (Deselaers
and Ferrari, 2011; Mikolov et al., 2013). This naturally raises a research question
of whether the representations can be somehow projected between each other and
used for solving tasks that integrate language and vision.

Apart from the research questions regarding continuous representations, more
engineering oriented tasks appeared. These are most importantly automatic image
captioning, that we thoroughly describe in the following chapter, and visual question
answering (Antol et al., 2015; Zhang et al., 2016; Goyal et al., 2017). The goal of visual
question answering is to select a correct single-word answer to a natural language
question about a photograph. An example of a challenging task combining language
and vision that still awaits a satisfactory solution is generating images to textual
descriptions (Reed et al., 2016). Grounding language in the visual modality can go
even beyond the written text. Harwath and Glass (2017) used a pre-trained image
classification network and spoken descriptions of images to learn word-like units
from the audio and relate them using the attention mechanism with areas in the
images.

3.2 Visually Grounded Representation

Acquiring visually grounded language representation is not only an intriguing re-
search challenge, but also one of the main assumptions that MMT might bring any
improvement over the standard text-only Machine Translation (MT), or help in other
NLP tasks. The notion of grounding can be, in theory, seen both ways between lan-
guage and vision. The annotation that is used for training CV models (e.g., object
recognition or detection) is in fact already grounded in language because it uses la-
bels which are already part of some language conceptualization of the world. When
talking about representation grounding, we do not mean this implicit grounding of
CV models in language, but the opposite direction: grounding language representa-
tion explicitly via having access to a visual representation of what language denotes.

Multimodal representations are often evaluated by how efficiently they can be
used to retrieve objects from one modality given an object from other modality as a
query. Another way of the representation quality evaluation is measuring the corre-
lation of the representation distances with the semantic similarity of words or sen-
tences as assessed by human annotators.
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For words embeddings, Silberer and Lapata (2014) introduced a dataset for eval-
uation of semantic and visual similarity. Their evaluation is based on an observation
that some concepts that are semantically similar might not be visually similar and
vice versa. If a model succeeds in grounding the representation in the visual modal-
ity, the learned word embeddings should not only capture the semantic similarity
that usually emerges while training a LM, but also the visual similarity.

Multimodal sentence representations are evaluated as retrieval models on image
captioning datasets, most frequently Flickr30k (Young et al., 2014) and MS COCO
(Chen et al., 2015). See Section 3.3 for more details on the datasets.

Representations can also be evaluated using downstream tasks. Large collec-
tions of such tasks for sentence representation evaluation are available (Conneau and
Kiela, 2018; Wang et al., 2018a). Using standardized methods for representation eval-
uation requires getting representations of millions of sentences and training models
for dozens of tasks using the representation which makes the evaluation often in-
conveniently slow.

The first experiments with visual grounding of neural language representation
focused on word embeddings. Silberer and Lapata (2014) used autoencoders on
word properties extracted automatically from a corpus and image vectors from a
pre-trained Convolutional Neural Network (CNN) to get a grounded representation.
Their evaluation shows that word embeddings trained in this setup capture both the
semantic similarity between words and the visual similarity.

A more elegant method for grounding word embeddings in visual modality was
introduced by Lazaridou et al. (2015) who extended the skip-gram model (Mikolov
et al., 2013). During training, the model simultaneously predicts what words are in
the neighborhood of a given word and a representation of an image that shows a cor-
responding concept. Themultimodally trainedmodels showed superior performance
when evaluated on capturing semantic similarity between words.

Chrupała et al. (2015) trained visually informed sentence representation with a
model called Imaginet. Themodel is a bidirectional Recurrent Neural Network (RNN)
trained using a multi-task learning objective. The RNN was simultaneously trained
in a LM setup and as a predictor of the image representation.

A body of work that does not aim to develop a general multimodal representation
focuses on image retrieval based on a textual description. These models are usually
trained using objectives based on Canonical Correlation Analysis (CCA) (Hardoon
et al., 2004; Andrew et al., 2013; Benton et al., 2017). CCAfinds a linear projection that
maximizes correlation between two collections of data. Whereas the standard CCA
has a closed-form solution, the generalized versions back-propagate the correlation
into a neural network and update the weights as in case of any other loss function.
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The common representation can then be learned with a bag of words model (Gong
et al., 2014) or a randomly initialized RNN (Yan and Mikolajczyk, 2015) and a pre-
trained CNN for an image. An alternative to CCA-based methods for image retrieval
are methods using a ranking-based objective (Wang et al., 2017).

3.3 Image Captioning

A Language and Vision task that attracts a lot of attention is automatic image caption
generation. The goal of the task is to generate a sentence in natural language which
is a description of a photograph provided as an input to the model. The task is usually
approached with supervised learning.

The generated captions are automatically evaluated using standard MT metrics
such as BLEU (Papineni et al., 2002) and METEOR (Denkowski and Lavie, 2011). The
number of possible correct descriptions of an image is enormous and the variabil-
ity of output that can be considered correct is much higher than in MT. Unlike MT
evaluation, where we usually use a single reference sentence, image captioning is
usually evaluated on four or five independently manually created image captions.
More details on the evaluation metrics are provided in Section 4.1.2.

There are several standard datasets which are used for model training and eval-
uation. The most frequently used are:

• Flickr8k (Rashtchian et al., 2010) contains crowd-sourced descriptions of 9,000
images randomly sampled from Flickr images published with permissive li-
censes. Every image is accompanied by 4 or 5 independently created captions.

• Flickr30k (Young et al., 2014) is a dataset of 30 thousand randomly chosen im-
ages from Flickr filtered in such a way that it should not contain images which
are almost identical. Each image is accompanied by 5 crowd-sourced captions.
Later, object annotations were added (Plummer et al., 2015) which are linked
with words in the captions. The dataset is the basis of the Multi30k dataset
(Elliott et al., 2016) that we use in our experiments with MMT.

• MS COCO (Lin et al., 2014; Chen et al., 2015) is a large CV dataset that contains
417 thousand photographs of common objects in a common environment. The
images were crawled from Flickr in such a way that they contain 80 common
objects in a common environment. Originally, the images were annotated with
objects and semantic relations between the objects. Later, five crowd-sourced
English captions were added to each image.
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A group of people wearing snowshoes, and
dressed for winter hiking, is standing in
front of a building that looks like it’s made
of blocks of ice.

The people are quietly listening while the
story of the ice cabin was explained to them.

A group of people standing in front of an
igloo.

Several students waiting outside an igloo.

Figure 3.1: An example of an image and human captions form the Flick30k dataset.

In all the datasets, an image caption is a single sentence, usually in the present
tense. A common feature of all the datasets is that the captions rarely contain named
entities. The captions usually refer to people by their gender or activity they are
involved in. An example is shown in Figure 3.1. More detailed linguistic analysis of
English sentences from the Flickr30k dataset is provided in Section 4.2.

Image captioning was traditionally approached using complex pipelines combin-
ing statistical models for object detection, resolving relations between the objects
and rules for generating the descriptions (Farhadi et al., 2010; Li et al., 2011; Kulkarni
et al., 2011). The focus of the work lied in the CV components, the language gener-
ation usually relied on templates and rarely employed language modeling (Mitchell
et al., 2012).

The paradigm shift in image captioning came with the work of Vinyals et al.
(2015) who used a pre-trained CNN originally trained for image classification and an
autoregressive RNN decoder for generating the captions. The model outperformed
all the previouswork by a largemargin in the BLEU-1metric, whichwas a standard at
that time. Unlike the standard BLEU score, BLEU-1 considers unigram precision only.
All the following work uses the n-gram precision up to 4-grams as when evaluating
machine translation.

Vinyals et al. (2015) used the penultimate layer of a batch-normalized deep CNN
for image classification (Ioffe and Szegedy, 2015) for extracting visual features. A
projection of the image representation vector is used as an initial state of an RNN
decoder (see Section 2.3.3 for more details on autoregressive decoding).

Xu et al. (2015) extended this model with the attention mechanism from neural
MT models. In this captioning model, a convolutional map from the last convolu-
tional layer is used instead of a single image vector. The convolutional map is treated
as an unordered set of vectors, the same way as the encoder states in sequence-to-
sequence architectures (Bahdanau et al., 2014).
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Model BLEU

CNN → vanilla RNN decoder (Vinyals et al., 2015) 31.4
CNN → attentive RNN decoder (Xu et al., 2015) 32.6
CNN → SAN decoder (Zhu et al., 2018) 33.3

Table 3.1: Performance of the image captioning models on the MS COCO dataset
when using ResNeXt (Xie et al., 2017) network for image representation as reported
by Zhu et al. (2018).

The attentive model by Xu et al. (2015) not only brings a quantitative improve-
ment over the non-attentive RNN decoder, but it also makes the model more in-
terpretable. By visualizing the convolutional maps over the original image, we can
estimate what part of the image was used for generating particular words in the out-
put.

Lu et al. (2017) extended the attentive model by introducing another gate into the
Long Short-Term Memory (LSTM) cell, sentinel gate, which enables the decoder to
ignore the visual input and predict the next word based on its previous state only.
This approach even increases the interpretability of the model because it allows to
explicitly determinewhen the decision of the decoder is based on the image andwhen
it is based on the language context. We discuss this approach also in Section 5.1 in
the context of MMT.

CNN maps can be used as input also in the Self-Attentive Network (SAN) archi-
tectures. The captioning model using self-attentive Transformer architecture with
multi-headed scaled dot-product attention reaches a minor improvement over the
RNN model (Zhu et al., 2018). Before using the image features in the cross-attention
sub-layer, the convolutional maps are projected to a larger dimension and projected
to the decoder dimension with the Rectified Linear Unit (ReLU) non-linearity. We
use the same approach in the experiments with Transformer models for MMT in
Section 5.2.

Performance of the captioning systems strongly depends on the quality of the
underlying image representation. Xu et al. (2015) already reported that using VGG
networks (Simonyan and Zisserman, 2014) brings a performance boost over AlexNet
(Krizhevsky et al., 2012). Zhu et al. (2018) replicated the original experiments of
Vinyals et al. (2015) and Xu et al. (2015) with ResNeXt architecture (Xie et al., 2017)
and report 3.7 BLEU points improvement for the non-attentive RNN model and 8.3
BLEU points improvement for the attentive RNNmodel. The comparison of the mod-
els with the same image representation is displayed in Table 3.1.
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The above-mentioned results suggest that image representation may carry rich
semantic information. Madhyastha et al. (2018) showed that this interpretationmight
not be as straightforward as the authors of the original papers claimed. Madhyastha
et al. (2018) trained a captioning model that used binary features of objects detected
in the image (Redmon et al., 2016), and a model which used as an input a low-
dimensional projection of the image representation. The caption quality was almost
identical to models utilizing the image representation from ResNet (He et al., 2016).
Their conclusions are that the image representation is not likely to be semantically
richer than indication vectors of detected objects from the 80 MS COCO classes.
Moreover, the fact the low-dimensional projection of the ResNet image representa-
tions is as informative as the vectors themselves suggests that the models rely on rel-
atively shallow image similarity than on presumably deep semantic features present
in the representation from ResNet.
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4
Multimodal Machine Translation

In this chapter, we introduce Multimodal Machine Translation (MMT), currently one
of the most intensively studied problems that combine language and vision. It is de-
fined as translation of image captions when having both the caption in the source
language and the image as the system input. The advances in the task were annu-
ally evaluated within a shared task at the Workshop of Machine Translation (WMT)
workshop (Specia et al., 2016; Elliott et al., 2017; Barrault et al., 2018). Since intro-
ducing the task in 2015 (Elliott et al., 2015), the translation quality of MMT systems
almost doubled in terms of BLEU. The task allows evaluating under what circum-
stances visual informationmight be useful and identifies the main challenges in com-
bining two different modalities.

The structure of the chapter is as follows: First, we introduce the task and de-
scribe theoretical and practical motivation (Section 4.1). Then, we introduce the
standard dataset used for training and evaluation MMT models (Section 4.2) includ-
ing its Czech version created by us. Finally, Section 4.3 provides an overview of the
state-of-the-art MMT models.

4.1 Task Definition and Motivation

In this section, we present a definition and description of Machine Translation (MT)
and MMT, discuss the motivation behind introducing the MMT task and identify the
main issues connected with solving the task.
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4.1.1 Machine Translation

In general terms, MT can be defined as translation from one (source) natural language
into another (target) natural language by using machines only (Dorr et al., 1998;
Lopez, 2008). The drawback of a straightforward definition like this is that in order to
evaluate how successful an MT system is, we would need to find an exact definition
of what translation is. A simple claim that translation is a process of generating
a text in the target language that has the same meaning as the text in the source
language is not helpful as well. Deciding whether two texts have the same meaning
is a tremendously difficult task and attempts to solve it would only delve us deeper
into more complex theoretical questions.

The MT community thus opted to approach MT as a behaviorist simulation. Peo-
ple are capable of translating from one language into another and judge what a good
translation is even if they are not able to rigorously define what translation is. This
idea bases both how MT systems are developed and how they are evaluated. MT
systems are trained on examples of translations produced by humans. Automatic
MT evaluation then measures similarity of the system outputs to manually created
reference sentences (Hovy et al., 2002; Papineni et al., 2002). In fact, they measure
how well the system simulates an expert human behavior.

4.1.2 MT Evaluation

As discussed previously, MT is approached as behaviorist simulation. Because it is
difficult to formulate any external objective criteria what translation quality is, we
only measure how much the system outputs resemble translation produced by hu-
mans. This is a difficult task as well, mostly because multiple correct translations are
always possible. Ultimately, this can be avoided by conducting a manual evaluation,
which is, on the other hand, slow and expensive. Because of that, we only work with
automatic metrics in this thesis.

MT evaluation is an intensively studied problem. New metrics are annually eval-
uated in the WMT share tasks (Neves et al., 2018). In this thesis, we only work with
the two most commonly used evaluation metrics: BLEU and METEOR.

BLEU (Bilingual Evaluation Understudy; Papineni et al., 2002) is the most com-
monly used MT evaluation metric, presumably because of its simplicity. The BLEU
score is based on computing frequencies of overlapping word n-grams in system
output and references sentences.
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The n-gram precision values pn are computed (for unigrams, bigrams, trigrams
and, 4-grams) as a proportion of n-grams in the system output which are present in
the references sentences.

To avoid maximizing the precision by generating short outputs, the metric intro-
duces a corpus-level statistic called the brevity penalty:

BP =

⎧⎪⎨⎪⎩1 h > c

exp
(
1 − r

c

)
otherwise

(4.1)

where r is a number of words in the corpus of reference sentences and c is a number
of words in the system output.

The final score is

BLEU = BP · exp
(

1
4

4∑
n=1

pn

)
. (4.2)

Note that the n-gram precisions are averaged on the corpus level and the brevity
penalty is a corpus-level statistic as well. BLEU is thus a corpus-level metric and
cannot be factorized over sentences.

Originally, the BLEU score was designed to work with multiple reference sen-
tences for a single source sentence. Under these circumstances, it manifests high
correlation with human judgment. However, in practice, only one reference sen-
tence is usually available, which is also the case of this thesis.

METEOR (Metric for Evaluation of Translation with Explicit ORdering; Banerjee
and Lavie, 2005; Denkowski and Lavie, 2011) is an evaluation metric based on mea-
suring word precision and recall.

The key component of the METEOR score is monolingual word-level alignment
between the system output and the reference sentence. The main idea behind the
metric is: the more words from the system output are aligned with reference, the
better the translation quality.

The alignment algorithm aligns first the exactly same n-grams in the output and
the reference, then it aligns n-grams which are the same after stemming, and finally,
it uses a language-specific n-gram paraphrase table. The alignment is computed in
such a way that every word is matched at most once. The number of covered words
is maximized, the number of contiguous chunks is minimized, and the difference
of absolute positions in system output and reference is minimized. The use of the
paraphrases during the alignment should tackle the problem of not having multiple
references.
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The final score is computed as a product of a disfluency score d and an adequacy
score a. The disfluency score is computed as

d = 1
2

(
# alignment steps

# unigrams matched

)3

(4.3)

and captures how much the system output sentence would need to be split apart in
order to be aligned with the reference.

In more recent versions (Denkowski and Lavie, 2011; ?), METEOR distinguishes
between function words and content words. Content words are included in the preci-
sion and recall with a higher weight than the function words. The weights are tuned
for every target language.

Lexical adequacy is computed as a weighted harmonic mean of precision and
recall:

a = 10 · P ·R
R + 9P (4.4)

where P andR stand for precision and recall of the output words computed over the
monolingual alignment. The final score is the arithmetic average over the evaluated
sentences.

For clarity of the presented results, we follow the conventions in the field and
report BLEU and METEOR as percentages.

4.1.3 Bringing in Multimodality

MMT is defined as automatic translation of image captions from one natural language
into another when using both the source sentence and the image as the system input.

Image captions are a specific text genre. In a coherent text, the textual context
of relatively long sentences or even whole documents can contribute to resolving
potential ambiguities. This is not true in the case of image descriptions. They are
usually short, and thus more prone to suffer from ambiguity. On the other hand,
most of the content words in the captions refer to something in the image. If this
denotation relation is either implicitly or explicitly captured in the MT model, it can
help to achieve better translation of image captions. The learned representations
can be used in image retrieval and for theoretical study of how denotation can be
computationally grasped.

We can think of many examples where the visual context can play a role in dis-
ambiguation, both grammatical and factual. When translating from English to a lan-
guage that has gendered nouns, the image can be used to decide whether to use a
masculine or a feminine form. Without visual grounding, the best option the sys-
tem choose is to prefer the variant that was more frequent in similar context in the
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En: A baseball player in a black shirt just
tagged a player in a white shirt.

Fr: Une joueuse de baseball en maillot noir
vient de toucher une joueuse en maillot
blanc.

The source English sentence misses the gen-
der information necessary for the French
translation.

En: A woman sitting on a very large rock
smiling at the camera with trees in the
background.

De: Eine Frau sitzt vor Bäumen im Hinter-
grund auf einem sehr großen Stein und
lächelt in die Kamera.

The word rock is ambiguous. It can be trans-
lated as Stein (a stone) or Felsen (a crag).

En: A boy in a red suit plays in the water.
Cs: Chlapec v červených plavkách si hraje

ve vodě.

The word suit can be translated into Czech
as oblek (lounge suit) or plavky (swimming
suit).

Figure 4.1: Examples of sentences from Multi30k dataset which might be ambiguous
without providing the visual evidence.

training data. The second group of examples where visual grounding might help are
content words naming object which are not distinguished in the source language but
are in the target language. This is shown in Figure 4.1 on examples from theMulti30k
dataset.

The examples suggest that if we design a model architecture that is able to utilize
both textual and visual input, the model optimization should find a way to represent
them. Although the examples seem to point out serious issues for the translation
quality, a user study (Frank et al., 2018) showed that resolving the ambiguities only
has a limited impact on how users perceive the translation quality and has a minor
influence on automatic MT metrics. Proper evaluation of MMT is also a challenging
problem.
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The user study (Frank et al., 2018) also showed that users are not able to distin-
guish whether an image caption was written already in the presented language or
was translated from a different language. This observation also creates important
practical motivation. A potential use case of multimodal translation is translation
of manuals with instructional images. Additionally, MMT can find use in digital hu-
manities when making an available image collection captioned in a less frequently
spoken language (Elliott and Kleppe, 2016).

4.2 Multi30k Dataset

The machine-learning-based approaches to solve the MMT task require a specialized
dataset consisting of images, image captions in a source language and their trans-
lations to a target language. In the following sections, we describe the Multi30k
dataset (Elliott et al., 2016) first used for the WMT16 shared task. Later, we describe
the Czech version of the dataset that we have prepared for the WMT18 shared task.

4.2.1 German and French Versions of Multi30k

Multi30k is a standard dataset used for MMT (Elliott et al., 2016). It is an extension
of the Flickr30k dataset (Young et al., 2014) for English image captioning.

The original Flickr30k dataset consists of photos capturing mostly people posing
for pictures and during various activities, but also sports events, pets or outdoor ur-
ban and landscape scenes. The images were collected from albums that Flickr users
made publicly available under the Creative Commons license. All images are ac-
companied by five independent English captions that should describe what is in the
image, usually in general terms, trying to avoid using specific knowledge of places
and people displayed in the pictures.

The training set consists of 29,000 images, the validation set contains 1,000 im-
ages, and 1,041 images are left for testing. The Multi30k dataset uses the same splits
as Flickr30k. One caption for each image is translated into German, French, and
Czech. The German captions were produced by professional translators, the French
and Czech versions were crowd-sourced.

For the 2017 and the 2018 competitions, new test sets of 1,000 images were cre-
ated. The preparation of the test sets followed the same methodology as was used
for collecting the original Flickr30k dataset. Additionally, a smaller dataset focused
on ambiguous words was created from the MS COCO dataset. The images were
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split sentences English German

tok./sent. ch./tok. OOV tok./sent. ch./tok. OOV

train 29,000 13.0 4.8 — 12.4 5.9 —
validation 1,014 13.1 4.8 1.2% 12.7 6.0 3.0%
test 2016 1,000 13.0 4.9 1.1% 12.1 5.9 2.6%
test 2017 1,000 11.3 4.8 1.8% 10.8 6.1 4.1%
test COCO 461 11.3 4.9 1.1% 11.2 5.9 3.7%

French Czech

tok./sent. ch./tok. OOV tok./sent. ch./tok. OOV

train 29,000 14.1 5.4 — 10.2 6.0 —
validation 1,014 14.2 5.4 1.2% 10.2 5.9 3.9%
test 2016 1,000 14.0 5.5 1.1% 10.5 6.0 4.0%
test 2017 1,000 12.6 5.5 1.6%
test COCO 461 12.4 5.6 1.6%

Table 4.1: Statistics of the Multi30k dataset for different languages that include the
average number of tokens per sentence (tok./sent.), the average number of characters
per token (ch./tok.) and out-of-vocabulary rate (OOV) with respect to the training
set.

taken from a subset of the MS COCO dataset that is included in the VerSe dataset
(Gella et al., 2016) where the captions were annotated with the OntoNote word senses
(Pradhan et al., 2007). Using these annotations, 416 images with captions containing
potentially ambiguous words were selected.

Statistics of the dataset are tabulated in Table 4.1. The statistics correspond to
typological differences between the used languages. Whereas English and French
have sentences of similar length (in terms of a number of tokens), German and Czech
sentences are shorter. On the other hand, both the languages have a much higher
out-of-vocabulary rate, in German because of compounding, in Czech due to the rich
inflection. Note also that even though the 2017 test set was collected using a similar
protocol as the rest of the data, it has on average shorter sentences and higher out-
of-vocabulary rate which suggests that the methodology of collecting the data differs
in some important details.

Because of that and to make results of our experiments in Chapter 5 comparable
even with the early work on MMT, we report all our results on the 2016 test set.
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In addition to the translation data, the images are also accompanied by 5 inde-
pendently created crowd-sourced German captions. These were originally intended
for experiments with cross-lingual image captioning, a task of generating (German)
image captions. At test time, only the image is available as a system input, whereas
during training, captions in multiple languages (both English and German) can be
used.

The dataset has several shortcomings. A relatively small number of sentences,
limited vocabulary and similar structure of most sentences make it easy to achieve a
good translation quality with phrase-based models or neural models with only tex-
tual input (Specia et al., 2016). The statistics of linguistic phenomena in the dataset
and the comparison with the general domain data is tabulated in Table 4.2. There
were also cultural and ethical issues identified in the underlying Flickr30k dataset
(Miltenburg, 2016) which is burdened with racial and gender stereotypes.

4.2.2 Czech Version of Multi30k

The original WMT shared task in MMT in 2016 was organized with English-to-
German translation only. In 2017, French was added as another target language. For
the 2018 competition, we also created a Czech version of the dataset. Our motiva-
tion was that Czech as a morphologically rich language might be a more challenging
target language given the limited vocabulary.

The translation was conducted using the same methodology and software as the
French translation in 2017. The translators were presented with the images in a ran-
dom order, and they always saw the image and the English caption at the same time
and were asked to provide the Czech translation.

Most of the translation was conducted by high school and university students,
native speakers of Czech with a good command of English. The test data was trans-
lated by English teachers and is thus supposed to have higher quality than the rest
of the dataset. This resulted in a slight domain mismatch because the high school
students preferred to use informal language whereas the translations conducted by
the teachers tend to be more formal.

The dataset was automatically checked for:

• Mismatching punctuation at the end of the sentence;

• Spelling errors using GNU Aspell1;

• Missing punctuation between clauses;

1http://aspell.net/
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Multi30k CzEng

corpus statistics

sentence count 29,000 1,163,584
unique tokens 9,795 196,519
unique tokens at least 5 times 2,903 43,563
unique tokens at least 10 times 1,967 29,732
unique lemmas 7,333 183,011
unique lemmas at least 5 times 2,387 36,458
unique lemmas at least 10 times 1,651 24,311
sentence lengts 13.1 ±4.1 13.2 ±15.8

morphology and
syntax

number of clauses 1.5 ± .7 1.3 ± .8
auxiliary verb ratio 2.6% 2.9%
content verb ratio 11.5% 14.4%
noun ratio 30.2% 14.7%
pronoun ratio 0.4% 8.2%
adjective ratio 9.0% 6.5%
adverb ratio 1.1% 5.9%
numeral ratio 1.9% 1.5%
subject ‘I’ frequency 0.1% 15.6%
subject ‘you’ frequency 0.1% 13.0%
subject ‘he’/’she’/’it’ frequency 1.3% 13.2%
subject ‘we’ frequency 0.1% 4.2%
subject ‘they’ frequency 0.6% 2.7%
subject ‘there’ frequency 0.8% 1.8%
subject ‘this’ frequency 0.2% 1.6%
contains modal verb 0.2% 17.6%
contains past tense 13.3% 36.2%
contains future tense 0.0% 1.9%
contains conditional 0.0% 1.8%
is question 0.0% 13.0%

named entities

entities per sentence .323 .672
person .009 .115
nationalities and other groups .028 .021
facilities (buildings, airports, highways, …) .001 .003
organization (companies, agencies, institutions) .018 .189
countries, cities, states .009 .060
other locations .002 .008
product .003 .008
event (hurricanes, battles, sports events) .000 .003
work of art .001 .004
law (named documents) .000 .021
language .000 .001
date .013 .079
time .006 .016
percent .000 .008
money .000 .003
quantity .002 .005
ordinal number .002 .018
cardinal number .228 .111

Table 4.2: Statistics of linguistic features of the English side of the Multi30k dataset
comparedwith a 1million sample of the CzEng parallel corpus computed using spaCy
(https://spacy.io).
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Proportion Annotator
of data agreement

No spelling errors 94% 92%
Stylistically appropriate 75% 73%
Adequate in meaning 96% 93%
No inappropriate lexical anglicism 94% 90%
No inappropriate syntactic anglicism 93% 91%

Table 4.3: Error analysis on the Czech version of the dataset.

• Suspiciously short and long sentences when compared to the source sentence
length;

• Characters which are neither in the Czech alphabet and neither are punctua-
tion.

The sentences where any of the errors were spotted were manually corrected. In
total, 5,255 sentences (16%) were manually corrected, mostly for spelling and gram-
mar errors.

During the manual checking, we encountered many cases with lexical or syn-
tactic anglicism which did not sound as fluent Czech sentences. After the manual
correction, we randomly sampled 1% of the sentences and manually annotated the
quality of the translations. Three people annotated the data, every sentence was
annotated by two different people. The results are tabulated in Table 4.3. The sen-
tences are mostly (over 90% sentences, with over 90% annotators agreement) without
spelling errors and adequate in meaning. One quarter of the sentences was marked
as stylistically inappropriate, however, the annotator agreement is only 73% for this
category.

4.3 Model Architectures for Multimodal
Translation

In this section, we provide an overview of existing models for MMT and classify the
approaches into groups based on what form of visual information they exploit and
how the visual information is plugged into the models. The section briefly mentions
some of our models which are discussed in more detail in Sections 5.1 and 5.2. For a
fair comparison, we report only results achieved in the constrained setup, i.e., while
using only Multi30k dataset for training.
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The approaches to MMT can be categorized based on the way the image features
are incorporated into the translation system. Even though there are attempts to ex-
ploit the visual information within the phrase-based paradigm (Koehn et al., 2007),
most of theMMT systems follow the encoder-decoder scheme from neural MT.There
are four main ways of using visual information:

• Use the image to re-rank an n-best list from a text-only system (either neural
or phrase-based);

• Use the visual input on the source side (as a part of the encoder) and pass
multimodal representation from the encoder to the decoder;

• Use the visual input on the target side and combine independent visual and
textual inputs in the decoder;

• Use the visual grounding only as an auxiliary objective during the model train-
ing.

Another criterion we can use to categorize the models is in what form the image
features are incorporated. These can be:

• Explicit object recognition;

• A fixed-sized vector representation summarizing the image (the penultimate
layer of an image classification network);

• The model can attend different image areas (convolutional map) with attention
mechanism independently.

Shah et al. (2016) used a hybrid approach based on a statistical MT system (Koehn
et al., 2007) trained on the Multi30k data only. The n-best list produced by an MT
system is re-ranked using a probability distribution over objects from an image clas-
sification network together with features from the MT system.

The first purely neural approach we know of (Elliott et al., 2015) used the Re-
current Neural Network (RNN) encoder-decoder setup without attention (Sutskever
et al., 2014). The image vector is used to initialize both encoder and decoder. Themul-
timodal setup clearly surpasses the text-only model, but the translation quality is by
large margin worse than results achieved later with the attention model (Bahdanau
et al., 2014) or even the phrase-based systems (Koehn et al., 2007).

Calixto and Liu (2017) experimented with plugging the last fully connected
layer of the VGG-19 network (Simonyan and Zisserman, 2014) in the attentive RNN
sequence-to-sequence model (Bahdanau et al., 2014). The decoder only attends to the
hidden states of the text encoder. The authors explored encoder and decoder initial-
ization with a projection of the image representation. The best results are achieved
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with the decoder initialization. The paper reports significant improvement over the
text-only baseline. However, the presented results are lower than the results of sim-
ilar experiments conducted by Caglayan et al. (2017) where the multimodal combi-
nation did not improve the translation quality of the text-only systems.

The approach by Calixto and Liu (2017) is similar to our first system for theWMT
competition (Libovický et al., 2016). Besides initializing the decoder with the image
vector, we also used output of a phrase-based MT (Koehn et al., 2007) system with
an additional Language Model (LM) based on coarse bi-token classes (Stewart et al.,
2014) as additional input. MMT is in this case treated as an MT post-editing task.

Caglayan et al. (2017) in the winning submission to the WMT17 shared task, sys-
tematically explored various strategies how the convolutional map from ResNet (He
et al., 2016) can be projected into a single vector and plugged into an RNN sequence-
to-sequence model (Bahdanau et al., 2014). The strategies include encoder and de-
coder initialization, and point-wise gating of the attention context vector and target
embeddings. Their results do not show any significant differences from the text-only
model. A similar approach was taken also by Madhyastha et al. (2017) who tried
to use a posterior probability distribution instead of the image representation from
intermediate layers.

A combination of explicit object detection and image vector representation was
used by Huang et al. (2016), the WMT16 shared task winners. Their system first
detects the three largest objects in the image. Then, the representation from the
penultimate layer of the VGG-19 network for both the original image and the cropped
areas are used to initialize four independent sentence encoders. All the encoders are
attended in the decoder that concatenates the context vectors before computing the
next token probabilities.

Caglayan et al. (2016) presented a doubly attentive model performing the atten-
tion independently over the image and the source sentence. The authors make a
strong assumption that the network can be trained in such a way that the hidden
states of the encoder and the projected states of the convolutional network occupy
the same vector space and thus sum the context vectors from both modalities. In this
way, their MMT system remains far below the text-only setup.

Similarly, Calixto et al. (2017) used two independent attention mechanisms and
concatenated the context vectors. The authors claimed that the multimodal model
significantly surpasses the text-only model. However, their baseline model achieves
lower scores than Caglayan et al. (2016) while using almost the same architecture.
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An approach that uses the visual information at the training time only was intro-
duced by Toyama et al. (2016). Their system uses a variational autoencoder (Kingma
et al., 2014) approach to generate a latent variable that should capture the visual
grounding of the source sentence. At the inference time, the image is no longer nec-
essary because the latent variable is inferred using the encoder states only.

The Imaginationmodel (Elliott and Kádár, 2017) exploits the same idea but applies
it in a fully discriminative multi-task learning setup. This model is an RNN-based
encoder-decoder architecture for MT with an auxiliary output which is an image
representation from the penultimate layer of an image classification network. Fol-
lowing Chrupała et al. (2015), the model generates also an estimated image represen-
tation computed using regression from the mean-pooled encoder states. The main
advantage of this approach is that it can make use of additional training data for
both translation and image representation. Although such a model is not capable of
directly using the input image for word disambiguation, it was able to significantly
improve the translation quality by using an order of magnitude larger data, namely
the NewsCommentary parallel corpus (Tiedemann, 2012) and English image captions
from the MS COCO dataset (Chen et al., 2015).

Current state-of-the-art results were achieved by Grönroos et al. (2018). Their
multimodal system is based on a pre-trained Transformer model trained on a large
parallel corpus consisting of sentence-pairs filtered from the OpenSubtitles corpus
(Tiedemann, 2012) and synthetic target sentences produced by a text-only system
trained on large data. The encoder is then given a special token indicating whether
the target sentence is an automatic or a manual translation. With this domain adap-
tation technique, the model already outperforms all other MMT models. To add the
multimodal information in the model, the authors introduced a gating mechanism
that modifies the logits over the vocabulary using the image representation and cur-
rent state of the decoder. The last step, however, only provides a negligible improve-
ment.

A summary of the approaches categorized according to the discussed criteria is
provided in Table 4.4. In the case of the non-attentive RNN encoder-decoder model
without attention, the visual information brings substantial improvement (Elliott
et al., 2015). With stronger attentive models, the contribution of multimodal infor-
mation is often not significant. Even though some papers report improvements using
multimodal models (Calixto and Liu, 2017; Calixto et al., 2017), similar approaches
with stronger text-only baselines do not confirm these results (Caglayan et al., 2016,
2017; Libovický et al., 2016; Helcl and Libovický, 2017a).
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method image
place in the

model

image in-
formation

type

BLEU

Moses (Specia et al., 2016) — — 34.6 ×
RNN, text only — — 36.7 ∗
Transformer, text only — — 38.3 ∗

Elliott et al. (2015) enc., dec. vector 23.1
Shah et al. (2016) reranking vector 34.8 ×
Huang et al. (2016) encoder vector 36.8 ×
Caglayan et al. (2016) decoder conv. 36.2 ×
Caglayan et al. (2017) decoder conv. 37.8
Calixto and Liu (2017) decoder vector 37.3
Calixto et al. (2017) decoder conv. 36.5
Libovický and Helcl (2017), Section 5.1 decoder conv. 37.6 ∗
Toyama et al. (2016) auxiliary vector 36.5
Elliott and Kádár (2017) auxiliary vector 36.8
Libovický et al. (2018a), Section 5.2 decoder conv. 38.5
Helcl et al. (2018b), Section 5.3 auxiliary vector 39.2
the same model in unconstrained setup auxiliary vector 42.6
Grönroos et al. (2018), unconstrained decoder vector 45.1

Table 4.4: An overview of the methods used for MMT. The BLEU scores are reported
on English-to-German translation, for constrained (trained onMulti30k only), single-
model setup on the 2016 test set. Results marked with ‘∗’ were computed for this the-
sis. Results marked with ‘×’ were obtained from the WMT16 submissions provided
by theWMT organizers and re-evaluated with tokenization that was used in the later
WMT competitions. The values thus differ from what was reported in teh original
papers. The other results are reported as they were originally published. Grönroos
et al. (2018) did not report a model trained on Multi30k only, therefore we compare
it with an unconstrained version of our best system (both in gray color).

In 2017 (Elliott et al., 2017) and 2018 (Barrault et al., 2018), the WMT shared task
included human evaluation of the submitted systems. In most of the cases, the results
of the human evaluation agree with the automatic metrics. In the 2017 evaluation,
the results were in favor of the multimodal systems which may suggest that the
multimodal systems might help the translation in aspects which are not captured
with the automatic evaluation metrics.
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5
Architectures for Multi-Source

Sequence-to-Sequence Learning

In this chapter, we present our original contributions to solving Multimodal Machine
Translation (MMT) which lie mostly in the model architecture design.

In Section 5.1, we present a modification of the Recurrent Neural Network (RNN)
sequence-to-sequence models that allows the decoder to attend multiple sources at
once in an interpretable way. Section 5.2 introduces similar modifications made in
the Transformer architecture. In both cases, we conduct experiments on MMT and
one additional task to prove general usability of the proposed architectures.

Additionally, Section 5.3 summarizes experiments with additional data andmulti-
task learning that further improve the quality of the MMT model outputs.

5.1 Modality Combination in Recurrent
Sequence-to-Sequence Models

This section is based on the paper “Attention Strategies for Multi-Source Sequence-to-
Sequence Learning”, joint work with Jindřich Helcl published at ACL 2017.

In this section, we introduce a modification to the attentive sequence-to-sequence
models (Bahdanau et al., 2014) that allows working with multiple inputs while gen-
erating a single output sequence. In attentive RNN sequence-to-sequence models
with multiple inputs, the decoder needs to combine information collected from the
encoders. We describe a novel architecture that we have developed to tackle this
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problem. Unlike previous work, our techniques explicitly model distribution over
the inputs and is more interpretable. We evaluate the method not only on the MMT
but also on the Automatic MT Post-Editing (APE) task to show it can be used in
general multi-source setup.

In the single-source setup, the attention is formulated in the following way. We
denote H = (h1, . . . ,hTx) ∈ RTx×dh the input states of the encoder of dimension dh,
Tx input length, Ty ground-truth output length and si ∈ Rds states of the decoder
of dimension ds. As already described in Section 2.3.3, in the single-input setup, the
attention mechanism with intermediate state size da works as follows:

eij = v⊤
a tanh(Wasi + Uahj + ba) + be, (5.1)

αij = exp(eij)∑Tx
k=1 exp(eik)

, (5.2)

ci =
Tx∑
j=1

αijhj. (5.3)

The energies ei ∈ RTx are computed as a projection of the input states and the
current decoder state. They are normalized using a softmax to the attention distri-
bution αi. The distribution is used to compute a weighted sum over the input states
which is called the context vector ci ∈ Rdh .

In the following description, different inputs to the decoder are denoted by up-
per indices in brackets. Assume that the decoder can use N independent inputs
H(1), . . . ,H(N). Unlike Chapter 2, the upper index is used to distinguish the model
inputs, not layers in the network. The simplest solution for combining two attention
models in the decoder is a concatenation of the context vectors c(1)

i , . . . , c(N)
i of N

inputs (Zoph and Knight, 2016; Firat et al., 2016). In this setting, the decoder attends
to all inputs independently and the interaction of the inputs is resolved implicitly in
the decoder layers that follow the context vector.

Instead, we propose two alternative strategies for attention combination when
using multiple inputs and a single decoder. We either let the decoder learn the αi
distribution jointly over all inputs states (flat attention combination) or we factor-
ize the distribution over individual encoders (hierarchical combination). Both of the
methods explicitly compute a distribution over the inputs. The distribution tells how
much attention is paid to each input at every step of the decoder.
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Additionally, we experimentwith the sentinel gate (Lu et al., 2017), an extension of
the attentive RNN decoder with Long Short-TermMemory (LSTM) units (Hochreiter
and Schmidhuber, 1997) originally introduced in the context of image captioning. We
adjust the mechanism for Gated Recurrent Unit (GRU) networks (Cho et al., 2014a),
which we use in our experiments. The gate applied over state si ∈ Rds is computed
as:

ψi = σ(Wyyi + Wssi−1) (5.4)

where Wy ∈ Rde×s and Ws ∈ Rds×ds are trainable parameters, yi ∈ Rde is the
embedded decoder input of dimension de, and si−1 is the previous decoder state.

Analogically to Equation 5.1, we compute a scalar energy term for the sentinel
gate:

eψi
= v⊤

a tanh
(
W(ψ)

a si + U(ψ)
a (ψi−1 ⊙ si) + b(ψ)

a

)
+ b(ψ)

e (5.5)

where W(ψ)
a ∈ Rds×da , U(ψ)

a ∈ Rds×da are the projection matrices, va ∈ Rda is the
weight vector, b(ψ)

a ∈ Rda and be ∈ R biases, and ψi ⊙ si is the sentinel vector. Note
that the sentinel energy term does not depend on any of the inputs. The sentinel vec-
tor is projected to the same vector space as the encoder state hj in Equation 5.1. The
term eψi

is added as an extra attention energy term to Equation 5.2 and the sentinel
vector ψi ⊙ si is used as the corresponding vector in the summation in Equation 5.3.

This technique allows the decoder to choose whether to attend to the input or
utilize the information that is already in the decoder state and thus act more like a
Language Model (LM).

5.1.1 Proposed Strategies

Flat. In the flat attention combination, we first project the states of all inputs into
a shared space and then compute a distribution over the projections. The main dif-
ference between the context vector concatenation and the flat attention combination
is that the αi ∈ R

∑
k
T

(k)
x coefficients are computed jointly for all inputs:

e
(k)
ij = v⊤

a tanh
(
Wasi + U(k)

a h(k)
j + b(k)

a

)
+ b(k)

e (5.6)

α
(k)
ij =

exp(e(k)
ij )∑N

n=1
∑T

(n)
x
m=1 exp

(
e

(n)
im

) (5.7)

where T (k)
x is the length of the k-th input sequence and e(k)

ij ∈ R is the attention
energy of the j-th state of the k-th encoder in the i-th decoding step.
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The attention energies are computed in the same way as in Equation 5.1. The
parameters va ∈ Rda and Wa ∈ Rds×da are shared among the inputs, and U (k)

a ∈
Rd

(k)
h

×da is trained independently for each input and serves as an input-specific pro-
jection of hidden states into a common vector space.

The states of the individual inputs may have a different dimensionality and the
dimensions may have a different meaning, especially when we use pre-trained net-
works for different modality representation. The context vector cannot be computed
as their weighted sum. Instead, we first project all the input states into a common
space using linear projections:

ci =
N∑
k=1

T
(k)
x∑
j=1

α
(k)
ij U(k)

c h(k)
j + b(k)

c (5.8)

where U(k)
c ∈ Rd

(k)
h

×da and b(k)
c ∈ Rda are additional trainable parameters.

The matrices U(k)
c should project the hidden states into a common space. From

the architecture design, it is not clear whether these projections can be the same
as the one used in the energy computation using matrices U(k)

a in Equation 5.1, i.e.,
whether U(k)

c = U(k)
a . In our experiments, we explore both options. We also try both

adding and not adding the sentinel α(ψ)
i U(ψ)

c (ψi ⊙ si) to the context vector.

Hierarchical. In the hierarchical attention combination, we first compute a con-
text vector for each input independently, similarly to the concatenation approach.
Instead of concatenating them, we perform a second attention mechanism over the
context vectors where we treat the context vectors as states of an encoder.

The hierarchical attention is thus computed in two steps. In the first step, we
compute the context vector c(k)

i for each encoder independently using Equation 5.3.
In the second step, we project the context vectors (and optionally the sentinel) into
a common space and compute another distribution βi over the projected context
vectors and their corresponding weighted average ci:

e
(k)
i = v⊤

b tanh
(
Wbsi + U(k)

b c(k)
i + b(k)

b

)
+ b

(k)
f (5.9)

β
(k)
i = exp(e(k)

i )∑N
n=1 exp(e(n)

i )
, (5.10)

ci =
N∑
k=1

β
(k)
i U(k)

c c(k)
i + b(k)

c (5.11)
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Figure 5.1: Learning curves for German MMT with RNN-based models on valida-
tion data for context vector concatenation (blue), flat (green) and hierarchical (red)
attention combination without sentinel and without sharing the projection matrices.
To make the trends more clearly visible, the learning curves are smoothed using the
cubic spline.

where c(k)
i ∈ Rd

(k)
h is the context vector computed from the k-th input. The additional

trainable parameters vb ∈ Rda and Wb ∈ Rds×da are shared for all encoders, matrices
U(k)
b ∈ Rd

(k)
h

×da and U(k)
c ∈ Rd

(k)
h

×da are used for encoder-specific projection that can
be shared, similarly to the case of flat attention combination.

5.1.2 Experiments with Multimodal Translation

The models were implemented using Neural Monkey, a framework for sequence-to-
sequence learning (Helcl and Libovický, 2017b; Helcl et al., 2018a).1

We process the textual input with bidirectional GRU network (Cho et al., 2014a)
with 300 units in the hidden state in each direction and 300 units in embeddings. For
the attention projection space, we use 500 hidden units. We optimize the network to
minimize the output cross entropy using the Adam algorithm (Kingma and Ba, 2014)
with learning rate of 10−4.

In the original experiments for ACL 2017, the visual input is processed with a
pre-trained VGG-16 network (Simonyan and Zisserman, 2014) without further fine-
tuning. Attention distribution over the visual input is computed from the last con-
volutional layer of the network. The decoder utilizes conditional GRU units (Firat

1http://github.com/ufal/neuralmonkey
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and Cho, 2016) with both layers of dimension 500. We use Byte-Pair Encoding (BPE)
(Sennrich et al., 2016b) with a vocabulary of 20,000 sub-word units shared between
the text encoder and the decoder. The target sentences are decoded greedily. The
experiments were conducted only with the English-to-German translation.

For a better comparison with more recently published results, we also present
another set of experiments. We replaced the VGG-16 network with ResNet (He et al.,
2016) which showed superior performance in many tasks combining language and
vision (Elliott and Kádár, 2017; Zhu et al., 2018). During decoding, we use beam
search of width 10 and length normalization of 1.0 (Wu et al., 2016). These experi-
ments cover all 3 target languages present in the Multi30k dataset. We do not repeat
experiments with sentinel gate and sharing the projection matrices which led to sub-
stantially worse performance.

During the evaluation, we follow the preprocessing used inWorkshop ofMachine
Translation (WMT) Multimodal Translation Shared Task (Specia et al., 2016). The
sentences are tokenized with the Moses tokenizer with normalized punctuation and
lowercased. We evaluate the results using BLEU (Papineni et al., 2002) and METEOR
(?) as implemented in MultEval2 which estimates the confidence intervals for the
scores using bootstrap resampling (Koehn, 2004).

Results of related work show (Elliott and Kádár, 2017) that the increased transla-
tion quality of the multimodal models compared to text-only models can come from
enhancing the input representation, or the imagemay only introduce noise and act as
a regularizer. In order to test whether it is also the case with our models or whether
our models explicitly use the visual input, we perform an adversarial evaluation sim-
ilar to Elliott (2018). We evaluate the model when providing a random image as an
input unrelated to the source sentence and observe how it affects the scores and
whether providing the incorrect image influences the translation quality.

The results of the original experiments are shown in Table 5.1. None of the mul-
timodal models outperforms the text-only models. The best multimodal results are
achieved using the hierarchical attention combination without the sentinel mecha-
nism, which also shows the fastest convergence (see learning curves in Figure 5.1).
The flat combination strategy achieves similar results eventually. Sharing the pro-
jections for energy and context vector computation does not improve over the con-
catenation baseline and slows down the training convergence almost prohibitively.

Compared to a single-layer GRU, using the conditional GRUs brought an im-
provement of about 1.5 BLEU points on average, except for the concatenation sce-
nario where the translation quality dropped by almost 5 BLEU points. We hypothe-
size this is caused by the fact themodel has to learn the implicit attention combination

2https://github.com/jhclark/multeval
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shared proj. sentinel MMT APE

BLEU METEOR BLEU HTER

baseline 32.4 49.3 62.3 24.8

concatenation 31.4 ± .8 48.0 ± .7 62.3 ± .5 24.4 ± .4

flat

× × 30.2 ± .8 46.5 ± .7 62.6 ± .5 24.2 ± .4
× ✓ 29.3 ± .8 45.4 ± .7 62.3 ± .5 24.3 ± .4
✓ × 30.9 ± .8 47.1 ± .7 62.4 ± .6 24.4 ± .4
✓ ✓ 29.4 ± .8 46.9 ± .7 62.5 ± .6 24.2 ± .4

hierarchical

× × 32.1 ± .8 49.1 ± .7 62.3 ± .5 24.1 ± .4
× ✓ 28.1 ± .8 45.5 ± .7 62.6 ± .6 24.1 ± .4
✓ × 26.1 ± .7 42.4 ± .7 62.4 ± .5 24.3 ± .4
✓ ✓ 22.0 ± .7 38.5 ± .6 62.5 ± .5 24.1 ± .4

Table 5.1: Results of our experiments on the test sets of Multi30k dataset and the
APE dataset as originally published (Libovický and Helcl, 2017). The column ‘shared
proj.’ denotes whether the projectionmatrix is shared for energies and context vector
computation.

on multiple places—once in the output projection and three times for each projection
matrix inside the conditional GRU (Firat and Cho, 2016, Equations 10-12). We thus
report the scores of the flat and the hierarchical attention combination techniques
trained with conditional GRUs and compare them with the concatenation baseline
trained with plain GRUs.

Results of the re-done experiments are tabulated in Table 5.2. Even with a
stronger image representation, we were not able to surpass the text-only baseline.
The adversarial evaluation with randomly selected input images shows differences
of around 0.5 BLEU points which suggests that the models really utilize the visual
information during inference. The difference between the translation quality of the
text-only and the multimodal models can be probably due to overfitting. The 2 to 4
BLEU points improvement compared to the original results can be mostly attributed
to using BPE-based vocabulary and beam search during decoding.

The strongest feature of the attention combinationmodels is their interpretability.
Figure 5.2 shows the attention paid to the inputs during the decoding with the hier-
archical attention model using the sentinel. We can see that while decoding preposi-
tions and articles, the model pays attention to the sentinel, presumably because the
words can be inferred from the language context. Most of the attention is distributed
to the textual input which, as the adversarial evaluation suggests. The attention is
distributed more towards the image only in cases when it generates names of objects
which are present in the image.
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English → German BLEU METEOR Adversarial

BLEU METEOR

text-only 36.7 ± .8 55.1 ± .7 — —

decoder initialization 36.9 ± .8 54.2 ± .6 35.8 ± .8 54.5 ± .6
concatenation 35.7 ± .8 54.4 ± .6 30.9 ± .8 54.7 ± .6
flat 34.6 ± .8 54.3 ± .6 33.8 ± .8 53.7 ± .6
hierarchical 37.6 ± .8 56.0 ± .6 34.2 ± .8 55.2 ± .6

English → French BLEU METEOR Adversarial

BLEU METEOR

text-only 48.3 ± .8 69.5 ± .6 — —

decoder initialization 48.1 ± .8 68.3 ± .3 48.1 ± .9 69.0 ± .6
concatenation 47.7 ± .8 68.5 ± .6 41.3 ± .8 68.2 ± .6
flat 46.0 ± .9 68.2 ± .6 43.5 ± .8 67.5 ± .6
hierarchical 48.2 ± .9 69.2 ± .6 44.9 ± .8 68,7 ± .6

English → Czech BLEU METEOR Adversarial

BLEU METEOR

text-only 30.0 ± .8 29.1 ± .4 — —

decoder initialization 29.6 ± .8 29.0 ± .4 29.3 ± .8 28.7 ± .4
concatenation 29.3 ± .8 28.6 ± .4 24.2 ± .8 28.7 ± .4
flat 29.1 ± .8 28.3 ± .4 26.5 ± .8 28.1 ± .4
hierarchical 29.5 ± .8 28.7 ± .4 28.1 ± .8 28.5 ± .4

Table 5.2: Quantitative results of the MMT experiments on the 2016 test set using
the RNN models in terms of BLEU and METEOR.
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Source: a man sleeping in a green room on a couch .
Reference: ein Mann schläft in einem grünen Raum auf einem Sofa .
Output with attention:

ein M
an
n

sc
hl
äft

au
f

ein
em

gr
ün

en
So
fa

in ein
em

gr
ün

en
Ra

um
.

(1)
(2)
(3)
(1) source, (2) image, (3) sentinel

Figure 5.2: Visualization of hierarchical attention in MMT. Each column in the di-
agram corresponds to the weights of the encoder, the image, and sentinel (Equa-
tion 5.10). Note that despite the overall low importance of the image encoder, it gets
activated for the content words. The visualization is taken from the original paper
(Libovický and Helcl, 2017).

Figure 5.3 shows the attention paid to the visual and the textual input for de-
coding without the sentinel mechanism. Here again, most of the attention is to the
textual input. The image is attended only when the decoder generates a noun. We
hypothesize this is because the pre-trained Convolutional Neural Network (CNN)
that we used for extracting image features is trained for object recognition where
the object often corresponds to nouns in the image descriptions.

5.1.3 Experiments with Automatic Machine Translation
Post-Editing

As another use case for our attention combination strategies, we experiment with
APE. It is a task of improving automatically generated translation given both the
system output and the source sentence. The original translation system is treated as
a black box and cannot be modified in any way. The main idea behind this task is
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Source: a brown dog is running after the
black dog .

Reference de: ein brauner hund rennt dem
schwarzen hund hinterher .

Reference fr: un chien brun court après le
chien noir .

Reference cs: hnědý pes běží za černým
psem .

Output with attention:

(1)
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Source: a female playing a song on her
violin .

Reference de: eine frau spielt ein lied auf
ihrem cello .

Reference fr: une femme jouant un
morceau sur son violon .

Reference cs: žena hraje píseň na housle .

Output with attention:

(1)
(2)
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Figure 5.3: Visualization of the MMT model with hierarchical attention without the
sentinel gate. The diagrams show distribution βi (Equation 5.10) for (1) source sen-
tence, and (2) the image.

that different Machine Translation (MT) systems based on different principles tend
to make different types of errors which might be in some sense complementary. An
APE system based on a different principle the primary MT system then can help to
fix some of these errors.
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Source Choose Uncached Refresh from the Histogram panel menu.

MT Wählen1 Sie2 Uncached3 ”4 Aktualisieren5 ”6 aus7 dem8 Menü9
des10 Histogrammbedienfeldes11 .15

Reference Wählen1 Sie2 ”4 Nicht12 gespeicherte13 aktualisieren13 ”6 aus7
dem8 Menü9 des10 Histogrammbedienfeldes11 .15

Edit ops. keep1 keep2 delete3 keep4 Nicht12 gespeicherte13 aktualisieren13
delete5 keep6 keep7 keep8 keep9 keep10 keep11 keep15

Figure 5.4: An example of a sequence of edit operations that our system should learn
to producewhen given the candidate automatic translation. The colors and subscripts
denote the alignment between the edit operations and the machine-translated and
post-edited sentence. The example is taken from Libovický et al. (2016).

We used data from the WMT16 APE Task (Bojar et al., 2016a; Turchi et al., 2016),
which consists of 12,000 training, 2,000 validation, and 1,000 test sentence triplets
from the IT domain. Each triplet contains an English source sentence, an automati-
cally generated German translation of the source sentence using a phrase-based sta-
tistical MT system, and a manually post-edited German sentence as a reference. In
case of this dataset, the MT outputs are almost perfect and only little effort was re-
quired to post-edit the sentences. The results are evaluated using the human-targeted
error rate (HTER) (Snover et al., 2006) and BLEU (Papineni et al., 2002). An impor-
tant methodological point in the evaluation is that the systems are not evaluated
with respect to original reference translation but using sentences that were created
by manual post-editing of the MT system outputs.

To make the network focused more on editing the input sentence instead of
preserving the meaning of the sentences, we represented the target sentence as a
minimum-length sequence of edit operations needed to turn the machine-translated
sentence into the reference post-edit. We extended the vocabulary by two special to-
kens keep and delete and then encoded the reference sentence as a sequence of keep,
delete and insert operations with the insert operations by the actual words from the
vocabulary. See Figure 5.4 for an example.

The decoder is a GRU network with 300 hidden units. Unlike in the MMT setup,
we do not use the conditional GRU because it is prone to overfitting on the small
dataset we work with.

The models were able to slightly, but statistically significantly improve over the
baseline—leaving the MT output as is. The differences between the attention combi-
nation strategies are not significant.
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5.1.4 Other Uses of the Attention Combination Strategies

Since publishing the attention combination strategies for RNN sequence-to-sequence
models (Libovický and Helcl, 2017), our architectures have been used in several other
publications.

Bawden et al. (2018) used the hierarchical attention model in MT experiments in
which one previous sentence is used as additional input to the decoder. Hierarchi-
cal attention appeared to be the most successful method, improving the translation
quality by around 1 BLEU point in all text genres that were evaluated.

Currey and Heafield (2018) experimented with adding explicit syntactic informa-
tion into neural MT models. They use a linearized dependency parse of the source
sentence and its delexicalized version as additional inputs to themodel. All the inputs
are processed with an independent RNN encoder and combined using the hierarchi-
cal attention model. In this way, they are able to improve the English-to-German
translation, mostly for longer sentences, for which the translation quality usually
degrades.

A paper introducing a Multimodal Summarization Task (Li et al., 2018) uses the
hierarchical attention model as one of their baselines. The goal of the task is to
generate a summary, i.e., the newspaper headline, of a short newspaper article and
a photograph that illustrates the news story. Li et al. (2018) also introduced a more
complex architecture that contains hierarchical attention as a subcomponent and
achieves substantially higher score in terms of ROUGE (Lin, 2004).

Wang et al. (2018b) used hierarchical attention in end-to-end speech recognition
utilizing multiple microphones located in different places. Hierarchical attention al-
lows the decoder to decide what input is currently the most relevant for decoding.

Hierarchical attention was also used in the winning submission (?) to the Audio
Visual Scene-Aware Dialog task at Dialog System Technology Challenge 7 (Yoshino
et al., 2018). The task can be described as conversational question answering where
an agent is supposed to answer a question about a visual scene, but before providing
the final answer, it is can collect more information from the user. Hierarchical atten-
tion is used together with co-attention (Lu et al., 2016) to combine information from
the visual scene and the conversational history.
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5.2 Attention Models for Modality Combinations in
Self-Attentive Sequence-to-Sequence Learning

This section is based on the paper “Input Combination Strategies for Multi-Source Trans-
former Decoder”, joint work with Jindřich Helcl and David Mareček, published as a research
paper at WMT18.

In 2017, the fully self-attentive Transformer model (Vaswani et al., 2017) became
the new state of the art in MT, significantly outperforming the RNN-based models
(Bahdanau et al., 2014) and increasing the training speed.

As already discussed in Section 2.3.3, the outline of the Transformer architec-
ture is similar to the RNN-based models. The attention to the encoder is called
cross-attention and is implemented as a separate sub-layer. The previously intro-
duced methods for attention combination cannot be directly applied in the multi-
head setup. We thus introduce four new attention combination strategies suited
for the Transformer model. Two of them are a direct extension of the Transformer
decoder with the cross-attention sub-layers connected either after each other or in
parallel. The other two strategies are an adjustment of the attention strategies intro-
duced for RNN models.

In the Transformer decoder, the cross attention is a separate sub-layer that fol-
lows the self-attentive sub-layer attending to the previously decoded symbols and
before a feed-forward sub-layer. All the sub-layers are interconnected with residual
connections. Formally, for a set of queries Q, i.e., the decoder states, and the set of
values V, i.e., the encoder states, the multi-headed scaled dot-product attention with
h heads is defined as:

Multihead(Q,V) = (H1 ⊕ · · · ⊕ Hh)WO (5.12)

Hi = Attn(QWQ
i ,VWK

i ,VWV
i ) (5.13)

Attn(Q,K,V) = softmax
(

QK⊤
√
d

)
V (5.14)

where WO ∈ Rhd×d, WQ
i , WK

i and WV
i ∈ Rd×d are trainable parameters, d is

the dimension of the model. More details on the multi-headed scaled dot-product
attention are provided in Section 2.3.2.
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Figure 5.4: Schemes of computational steps of the serial, parallel, flat, and hierarchical
attention combination in a single layer of the Transformer decoder.
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5.2.1 Proposed Strategies

The input combination strategies are schematically depicted in Figure 5.4. A detailed
description of the strategies follows. For clarity, we do not follow the upper-index
notation from the previous section and denote values of the inputs Vi where i is the
index of the input which is not consistent with the notation in the previous section
where the lower index denotes position in a sequence of states.

Serial. In the serial strategy (Figure 5.4a), we compute the cross-attention in subse-
quent sub-layers for each input. The query set Q of the first cross-attention sub-layer
is hence the set of the context vectors computed by the preceding self-attention sub-
layer. The query set of each following cross-attention sub-layer is an output of the
preceding sub-layer. All the sub-layers are interconnected with residual connections.

It can be recursively described:

Multiheadserial(Q,V1:n) = Multihead(Multiheadserial(Q,V1:n−1),Vn) + Q

Multiheadserial(Q,∅) = Q

Parallel. In the parallel combination strategy (Figure 5.4b), the model attends to
each encoder independently and then sums up the context vectors and form only
one sub-layer in the decoder. Each input Vi is attended using the same set of queries
Q, i.e., the output of the self-attention sub-layer. The residual connection is used
between the queries and the summed context vectors from the parallel attention.

Multiheadparallel (Q,V1:n) =
n∑
i=1

Multihead(Q,Vi) + Q (5.15)

Flat. The cross-attention in the flat combination strategy (Figure 5.4c) treats all the
input states as a single set of keys and values. The cross-attention hence models a
joint distribution over a flattened set of all input states:

Multiheadflat (Q,V1:n) = Multihead(Q, (V1 ⊕ . . .⊕ Vn)) + Q (5.16)

Unlike the approach that we have taken with the RNNmodels (Section 5.1, Equa-
tion 5.8), where the flat combination strategy requires an explicit projection of the
input states into a shared vector space, in the Transformer models, representations
on all layers are tied with residual connections. Therefore, the intermediate projec-
tion of the states of each encoder is not necessary, and we assume that we can share
the projections within the attention heads.
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Hierarchical. In the hierarchical combination (Figure 5.4d), we first compute the
attention independently over each input. The resulting contexts are then treated as
states of another input and the attention is computed once again over these states.
Note that the query set Q is the same for all the attention computations.

Multiheadhier (Q,V1:n) = Multihead(Q, concati=1...n(Multihead(Q,Vi)))

To be able to interpret the hierarchical attention in the multi-head setup, we do
not compute the hierarchy within individual heads, but only after the outputs of
the heads are projected to a single context vector. This projection also replaces the
additional projection when computing the distribution β in the RNN model (Equa-
tion 5.10). It also theoretically allows utilizing a different number of heads for each
input.

5.2.2 Experiments with Multimodal Translation

As in the case of the RNN models, we use Neural Monkey (Helcl and Libovický,
2017b; Helcl et al., 2018a)3 for design, training, and evaluation of the experiments.

In all experiments, the encoder part of the network follows the Transformer BIG
architecture (Vaswani et al., 2017, Table 3), including most of the hyperparameters.
We use 6 layers in both the text encoder and decoder with the model dimension of
512. We set the dimension of the hidden layers in the feed-forward sub-layers to
4,096. The attention uses 16 heads.

The model is optimized with the Adam optimizer (Kingma and Ba, 2014) with ini-
tial learning rate 0.2, and Noam learning rate decay (Vaswani et al., 2017, Equation 3)
with β1 = 0.9, β2 = 0.98, ϵ = 10−9, and 4,000 warm-up steps. The main difference
from the original Transformer training setup is a smaller size of a mini-batch which
we set to 32. During the decoding, we use beam search of width 10 and length nor-
malization of 1.0 (Wu et al., 2016).

As in the previous experiments, we use the same image features as in the RNN
setup, extracted from the last convolutional layer of the ResNet network (He et al.,
2016). We apply a linear projection into 512 dimensions to adjust the image features
to the model dimension. For each language pair, we create a shared wordpiece-based
vocabulary of approximately 40 thousand wordpieces. We share the embedding ma-
trices between the encoder and the decoder and use the transposed embeddingmatrix
as the output projection matrix (Press and Wolf, 2017).

We evaluate the experiments the same way as the experiments with RNN archi-
tectures (Section 5.1.2), including the adversarial evaluation.

3http://github.com/ufal/neuralmonkey
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English → German BLEU METEOR Adversarial

BLEU METEOR

RNN text-only 36.7 ± .8 55.1 ± .7 — —
Transformer text-only 38.3 ± .8 56.7 ± .7 — —

serial 38.7 ± .9 57.2 ± .6 37.3 ± .6 56.4 ± .7
parallel 38.6 ± .9 57.4 ± .7 38.2 ± .8 56.7 ± .7
flat 37.1 ± .8 56.5 ± .6 35.7 ± .8 54.7 ± .6
hierarchical 38.5 ± .8 56.5 ± .6 38.1 ± .8 56.5 ± .6

English → French BLEU METEOR Adversarial

BLEU METEOR

RNN text-only 48.3 ± .8 69.5 ± .6 — —
Transformer text-only 59.6 ± .9 72.7 ± .7 — —

serial 60.8 ± .9 75.1 ± .6 58.9 ± .9 73.7 ± .6
parallel 60.2 ± .9 74.9 ± .6 58.9 ± .9 74.0 ± .6
flat 58.0 ± .9 73.3 ± .7 57.0 ± .9 72.1 ± .6
hierarchical 60.8 ± .9 75.1 ± .6 60.2 ± .9 74.5 ± .6

English → Czech BLEU METEOR Adversarial

BLEU METEOR

RNN text-only 30.0 ± .8 29.1 ± .4 — —
Transformer text-only 30.9 ± .8 29.5 ± .4 — —

serial 31.0 ± .8 29.9 ± .4 29.7 ± .8 29.2 ± .4
parallel 31.1 ± .9 30.0 ± .4 30.4 ± .8 29.3 ± .4
flat 29.9 ± .8 29.0 ± .4 28.2 ± .8 28.2 ± .4
hierarchical 31.3 ± .9 30.0 ± .4 31.0 ± .8 29.7 ± .4

Table 5.3: Quantitative results of the MMT experiments with input combination
strategies for the Transformer decoder on the 2016 test in terms of BLEU and ME-
TEOR.
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Figure 5.5: Learning curves of German Transformer-based MMT on validation data
for context vector flat (red), hierarchical (green), parallel (blue) and serial (magenta)
attention combination strategy compared to the hierarchical attention with RNN
models (gray). The learning curves are smoothed the same way in Figure 5.1.

The quantitative results are tabulated in Table 5.3. In all cases, the models per-
formed significantly better than RNN models. Unlike the experiments with the RNN
models, the translation quality of the multimodal models is slightly better than the
text-only baseline. However, the difference is statistically significant only in the case
of the English-to-French translation.

The only casewhen themultimodalmodels scoreworse than the text-onlymodels
was the flat combination strategy. We hypothesize this might be because the opti-
mization failed to find a common representation of the input modalities that could be
used to compute the joint distribution, presumably because the image regions repre-
sented by the convolutional maps are not one-by-one semantically comparable with
the wordpieces from the textual input.

The adversarial evaluation with randomly selected input images shows that all
our models rely on both inputs while generating the target sentence and that provid-
ing incorrect visual input harms the translation quality. However, the fact that the
scores are usually around 1 BLEU point lower, shows that the models rely almost ex-
clusively on the textual part of the input than the image. The explicit modality choice
in the hierarchical attention combination seems to make the models more robust to
noisy visual input.
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Learning curves from the experiments are displayed in Figure 5.5. Unlike in
the strategies for the RNN models, there are basically no differences in convergence
speed of the model except for the flat strategy that eventually reaches a worse trans-
lation quality. Compared to the hierarchical RNN model, the Transformer models
converge more slowly in terms of the number of processed sentences. However,
the total training time is smaller with the Transformer models which can be trained
non-autoregressively.

5.2.3 Experiments with Multi-Source Machine Translation

In this set of experiments, we attempt to generate a sentence in a target language,
given a set of equivalent sentences in multiple source languages.

To our knowledge, multi-source MT was previously studied only using the
RNN-based models. Dabre et al. (2017) use concatenation of source sentences in
various languages and process them with a single multilingual encoder. Zoph and
Knight (2016) encode every sentence with a separate encoder and combine the inputs
after independently computing context vectors with the attention mechanism. The
techniques they propose are context vector concatenation and a gated sum of the
context vectors. In all their experiments, the multi-source methods outperform the
single-source baseline. Nishimura et al. (2018) deal with the setups when one of the
source languages might be missing. Their system can benefit from having multiple
sources but does not overly rely on a single source language which is the case of the
models presented in this thesis.

We conduct our experiments using the Europarl corpus (Koehn, 2005). The Eu-
roparl corpus is compiled from the proceedings of the European Parliament which
are published in all official languages of the European Union. The corpus contains
sentences from the proceedings published between 1996 and 2011. This means that
for some languages, only a subset of the corpus is available because of the respec-
tive countries joining the European Union during the period when the dataset was
collected. The corpus is divided into bilingual sub-corpora with English as a pivot
language.

We use Spanish, French, German, and English as source languages and Czech
as a target language. We selected an intersection of the bilingual sub-corpora. Our
dataset contains 511,600 5-tuples of sentences for training, 1,000 for validation and
another 1,000 for testing.

We use almost the same setup as for the MMT experiments. Due to the memory
demands of having four encoders, we use a smaller model than in the previous ex-
periments. The encoders only consist of 4 layers and the decoder has 6 layers with
embedding size 256, feed-forward layer dimension 2,048, and 8 attention heads. We
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MSMT Adversarial evaluation (BLEU)

BLEU METEOR en de fr es

baseline 16.5 ± .5 20.5 ± .3 — — — —

serial 20.5 ± .6 23.5 ± .5 8.1 ± .4 19.7 ± .5 19.5 ± .6 18.4 ± .5
parallel 20.5 ± .6 23.3 ± .3 1.4 ± .2 18.7 ± .5 17.9 ± .5 20.3 ± .5
flat 20.4 ± .6 23.3 ± .3 0.2 ± .1 19.9 ± .6 20.0 ± .6 19.6 ± .5
hierarchical 19.4 ± .5 22.7 ± .3 4.2 ± .3 18.3 ± .5 18.3 ± .5 15.3 ± .5

Table 5.4: Quantitative results of the experiments with multi-source translation. The
adversarial evaluation shows the BLEU scores when sentences of one of the input
languages were randomly shuffled.

use a shared wordpiece vocabulary of 48 thousand wordpieces and share the em-
beddings between all encoders and the decoder. As in the MMT experiments, the
transposition of the embedding matrix is reused as the parameters of the output pro-
jection layer (Press and Wolf, 2017). Due to the memory limitations, we reduce the
batch size to 24.

We use bilingual English-to-Czech translation as a single source baseline. The
baseline uses a different vocabulary of 42 thousand subwords trained only on the
Czech-English parallel data.

We follow the evaluation protocol for MMT and evaluate the models using the
BLEU andMETEOR score. Similar to theMMT, we also perform an adversarial evalu-
ation. To evaluate the importance of the source languages for the translation quality,
we randomize the order of source sentences in respective languages one by one and
observe the effect it has on the translation quality.

The results are shown in Table 5.4. All the proposed strategies perform better
than the single-source translation from English to Czech. The best-scoring strategy
is the serial stacking of the attention sub-layers. This result is in agreement with the
MMT experiments (Table 5.3). Unlike the MMT where the flat combination did not
appear to be a suitable technique, here it performs on par with other methods.

Figure 5.6 shows cross-attention weights visualizations for the four proposed
combination strategies onMulti-sourceMT.TheCzech target wordpieces are in rows,
the source Spanish, French, German, and English wordpieces are concatenated and
shown in columns. The attention values were taken from the fourth layer of the de-
coder and were averaged across the heads. For the serial and the parallel strategy, the
cross-attention weights sum up to one for each language separately. The flat strat-
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egy has only one common cross-attention over all input tokens. For the hierarchical
strategy visualization, the cross-attention weights for the languages are multiplied
by the weights from the attention distribution over the first context vectors. In the
latter two cases, the complete rows sum up to one.

The visualization of the attention distributions shows that the serial strategy uses
information from all source languages. The parallel strategy almost does not use the
Spanish source. The flat strategy relies almost exclusively on English. The hierar-
chical strategy uses information from all source languages, however, the attention
distributions seems to be fuzzier than in the other strategies.

The adversarial evaluation shows that all the models use English as the primary
source. Providing incorrect English source always makes the translation incompre-
hensible. Introducing noise into other languages negatively affects the score on a
much smaller scale. The usage of other languages seems to be arbitrary. Both the
visualization in Figure 5.6 and Table 5.4 show that the hierarchical model relies also
on the Spanish source sentences. On the other hand, in case of the parallel attention
combination model, the output seems to be totally unaffected by Spanish.

The learning curves in Figure 5.7 show that the flat and hierarchical combination
models converge from the beginning more slowly. A similar trend can be observed
in the case of MMT, but the hierarchical combination at the end performs equally
to other combination. The learning curve is steeper for the serial and the parallel
combination strategies which eventually slightly outperform the others. The learn-
ing curve of the baseline bilingual model is at the beginning similarly steep as of the
serial and parallel combinations but is eventually outperformed by all multilingual
models.
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d) hierarchical

Figure 5.6: Multi-source MT attention visualization. The rows correspond to the
decoded wordpieces. The columns correspond to the source wordpieces. The source
languages (Spanish, French, German and English) are separated by white lines. The
visualizations were originally published by Libovický et al. (2018a)
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Figure 5.7: Learning curves for the multi-source MT on validation data for context
vector flat (red), hierarchical (green), parallel (blue) and serial (magenta) attention
combination strategy compared to the bilingual English-to-Czech baseline (gray).
The learning curves are smoothed the same way as in Figure 5.1.

5.3 Improving Model Performance with Additional
Data

This section is based the papers “CUNI Submission for the WMT17 Multimodal Translation
Task” and “CUNI Submission for theWMT18 Multimodal Translation Task”, joint work with
Jindřich Helcl and Dušan Variš published as system description papers at WMT17 andWMT18.

To boost the translation quality in the shared task evaluation, we experimented with
methods for increasing the volume of training data. In the first part of this section,
we present methods of acquiring additional textual data by mining in-domain data
from parallel corpora.

In the second part of this section, we experiment with the Imagination model
(Elliott and Kádár, 2017) which allows adding monolingual image captioning data in
the source language.

Following the terminology from the WMT MMT Task, models that use only the
Multi30k data are called constrained, models utilizing also the additional data are
called unconstrained.

87



5.3.1 Acquiring Additional Training Data

NeuralMT requires a large amount of training data toworkwell. Koehn and Knowles
(2017) claim that in order to outperform a phrase-based MT system in terms of BLEU,
we need training data of over 107 words and more than 108 words to outperform a
statistical systemwith a LM trained on large monolingual data. Although this empir-
ical observation clearly does not hold for the Multi30k dataset with 29,000 training
instances (Moses reaches 32.5 BLEU points, the Transformer gets 38.3 BLEU points,
see Table 4.4), it is clear that acquiring additional training data has the potential to
improve translation quality.

We already mentioned in Section 4.1 that image captions are a specific genre of
text where the language is rather limited in terms of vocabulary and grammatical
means. The sentences are almost always in the present tense, there are almost no
named entities and the sentences rarely consist of more than one clause. On one
hand, we would like to extend the training data as much as possible, on the other
hand, we would like to avoid forcing the model to deal with linguistic phenomena
that are not present in the Multi30k dataset.

To acquire additional parallel training data, we used a filtering technique to select
in-domain sentences from both parallel and monolingual data similar to a method by
Yasuda et al. (2008). We trained an RNN character-level LMs for the target languages
using the sentences available in the training part of the Multi30k dataset. We used a
GRU network with 512 hidden units and character embedding size of 128.

We used a LM to select sentence pairs from parallel corpora. By scoring the
German part of several parallel corpora: EU Bookshop (Skadiņš et al., 2014), News
Commentary (Tiedemann, 2012) and CommonCrawl (Smith et al., 2013). In this way,
were only able to retrieve a few hundreds of in-domain sentences. For that reason,
we also included sentences with a higher perplexity filtered using additional rules.
We analyzed the sentences using spaCy4 and used the following empirical rules for
filtering: The sentences

• Must have between 2 and 30 tokens;

• Must be in the present tense;

• Must not contain non-standard punctuation, numbers of multiple digits,
acronyms, or named entities; and

• Must have at most 15% out-of-vocabulary rate with respect to the vocabulary
inferred from the training part of Multi30k.

4https://spacy.io/
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We extracted additional 3,000 in-domain parallel sentences using these rules. Exam-
ples of the additional data are given in Table 5.5.

For Czech, we computed perplexities of the Czech part of the CzEng corpus (Bojar
et al., 2016b). We selected 15 thousand low-perplexity sentence pairs out of 64million
sentence pairs in total by setting the perplexity threshold to 2.5.

By applying the same approach to the French versions of the corpora, we were
able to extract only a few additional in-domain sentences. We thus only use the
Multi30k as in-domain data.

For German, we selected 30,000 best-scoring German sentences from the mono-
lingual The SDEWAC corpus (Faaß and Eckart, 2013) which were both semantically
and structurally similar to the sentences in the Multi30k dataset. SDEWAC corpus
consists of 880 million sentences crawled from the web. Following Calixto et al.
(2017), we back-translated (Sennrich et al., 2016a) the German captions intended for
cross-lingual captioning (i.e., 5 captions for each image), and sentences retrieved from
the SDEWAC corpus. We include these back-translated sentence pairs as additional
training data for the text-only systems. The back-translation system was a text-only
RNN model that was trained on the Multi30k dataset only.

For Czech, we applied the perplexity criterion on monolingual corpora and used
back-translation to create synthetic parallel data. We scored 333 million sentences
from the CommonCrawl corpus and 66 million sentences from the News Crawl data
(which is used in the WMT News Translation Task; Bojar et al., 2016a) and extracted
18 thousand and 11 thousand sentences from these datasets respectively.

Finally, we use thewhole EUBookshop corpus (Tiedemann, 2012) as an additional
out-of-domain parallel data. Since the size of this dataset is large compared to the
sizes of the other parts, we oversample the rest of the data to balance the in-domain
and out-of-domain portions of the training dataset. The oversampling factors are
shown in Table 5.6.

To summarize, we compiled an order of magnitude bigger training datasets for
all the three language pairs which should increase the variability in the training data
but at the same time retain the properties of the image captioning domain.
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SDEWAC (with back-translation)
German English

Zwei Männer unterhalten sich Two men are talking to each other.
Menschen auf der Straße. People on the street.
Ein kleines Mädchen sitzt auf einer
Schaukel.

A little girl is sitting on a swing.

Eine junge Frau sitzt auf einer Bank
und liest ein Buch.

A young woman sits on a bench
reading a book.

Eine Katze braucht Unterhaltung. A cat is having a discussion.
Dieser Knabe streichelt das
Schlagzeug.

This professional is petting the
drums.

Parallel Corpora
German English

Menschen bei der Arbeit People at work
Kinder und Jugendliche in der Stadt Children and young people in the

urban environment
Männer und Frauen Men and women
Sicherheit bei der Arbeit Safety at work
Personen in der Öffentlichkeit Members of the public
Frauen und Männer Women and men

Table 5.5: Random examples of the collected additional training data for English-to-
German translation.

de fr cs

Multi30k 29k
oversampling factor 273× 366× 9×

Task 2 BT 145k — —
in-domain parallel 3k — 15k
in-domain back-translation 30k — 29k
oversampling factor 39× — 7×

EU Bookshop 9.3M 10.6M 445k

MS COCO (English only) 414k

Table 5.6: Overview of the data used for training our models with oversampling
factors. The EU Bookshop data were not oversampled.
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5.3.2 Imagination Model

Another way of enriching the training data that is more sophisticated than adding
more parallel data was introduced with the Imagination model (Elliott and Kádár,
2017). This model employs multi-task learning (Caruana, 1997) when sharing the
encoder for two different tasks: generating a sentence in the target language and
predicting a representation of an image corresponding to the sentence. The model
allows using not only additional parallel training data, but also monolingual image
captioning data.

The imagination component serves effectively as a regularizer to the encoder,
making it consider the visual aspects ofmeaning and presumablymaking the encoder
representation semantically richer. This is achieved by training the model to predict
the image representations that correspond to those computed by a pre-trained image
classification network. Given a set of encoder states H = (h1, . . . ,hTx) ∈ RTx×dh ,
the model computes the predicted image representation as follows:

ŷimg = WR
2 ReLu

⎛⎝WR
1
∑
j

hj + b1

⎞⎠+ b2 (5.17)

where WR
1 ∈ Rdh×di , b1 ∈ Rdi , WR

2 ∈ Rdi×dy , and b2 ∈ Rdy are trainable parame-
ter matrices, di is the dimension of the intermediate projection, and dy is the image
representation. Equation 5.17 corresponds to a single-hidden-layer feed-forward net-
work with a Rectified Linear Unit (ReLU) activation function (Nair and Hinton, 2010),
applied to the sum of the encoder states.

Since the encoder part of the model is shared, additional weight updates are prop-
agated to the encoder during the model optimization with respect to this additional
objective. For the generated image representation ŷ and the reference representation
y, the error is estimated as a margin-based loss with margin parameter α ∈ R:

Limag = max (0, α + dist(ŷ,y) − dist(ŷ,yc)) (5.18)

where yc is a contrastive example randomly drawn from the training mini-batch and
dist is a distance function between the representation vectors, in our case the cosine
distance, α is a hyperparameter. This loss function is frequently used in similar setups
(Chrupała et al., 2017; Elliott and Kádár, 2017) because it empirically performs better
than different regression loss functions.

Unlike Elliott and Kádár (2017), we sum both translation and imagination losses
within the training batches rather than alternating between the training of each com-
ponent separately.
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Figure 5.8: Learning curves for the MMT into German using the Transformer model.
The plot compares the text-only model with the constrained (red) and unconstrained
dataset (green) data and the Imagination models with the constrained (blue) and un-
constrained (magenta) data. Note that the horizontal axis shows the number of pro-
cessed sequences because the number of epochs differs among experiments.

5.3.3 Experiments

In the experiments with additional data and the Imagination model, we use the same
RNN and Transformer architectures that were discussed in Sections 5.1 and 5.2 re-
spectively.

In the RNN setup, it means a single layer bidirectional GRU encoder with 300
hidden units and embeddings of 300 dimensions. The decoder uses the conditional
GRU (Firat and Cho, 2016) with 500 hidden units and a vocabulary of 20 thousand
BPE tokens.

In the Transformer models, we use an encoder and a decoder with 6 layers, model
dimension 512 and 4,096 units in the feed-forward layers. We used awordpiece-based
vocabulary of approximately 20 thousand symbols.

The results are tabulated in Table 5.7. With the Transformer model, adding the
parallel data improved the translation quality by 1.5 BLEU points for each of the
language pairs. An additional improvement was achieved by adding the Imagination
component. The biggest gain was achieved in Czech where the Imagination model
adds 4 BLEU points. Results of experiments with the RNN models are inconclusive.
The translation quality increased for German but significantly dropped for French
and Czech.
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English → German BLEU METEOR

RN
N Co

ns
. Textual 36.7 ± .8 55.1 ± .7

Imagniation 36.8 ± .8 55.3 ± .6
Multimodal (hierarchical) 37.6 ± .8 56.0 ± .6

U
nc

. Textual 38.7 ± .8 56.3 ± .7
Imagination 38.2 ± .8 56.7 ± .7

Tr
an

fo
rm

er

Co
ns

. Textual 38.3 ± .8 56.0 ± .7
Imagniation 39.2 ± .8 56.8 ± .7
Multimodal (serial) 38.7 ± .8 57.2 ± .6

U
nc

. Textual 40.4 ± .9 59.0 ± .6
Imagination 42.6 ± .8 59.4 ± .6

English → French BLEU METEOR

RN
N Co

ns
. Textual 48.3 ± .8 69.5 ± .6

Imagniation 47.6 ± .8 68.8 ± .6
Multimodal (hierarchical) 48.2 ± .9 69.2 ± .6

U
nc

. Textual 42.8 ± .8 66.3 ± .6
Imagination 43.4 ± .8 67.0 ± .6

Tr
an

fo
rm

er

Co
ns

. Textual 59.6 ± .9 74.1 ± .6
Imagniation 59.7 ± .9 74.4 ± .6
Multimodal (serial) 60.8 ± .9 75.1 ± .6

U
nc

. Textual 62.5 ± .8 76.7 ± .6
Imagination 62.8 ± .9 77.0 ± .6

English → Czech BLEU METEOR

RN
N Co

ns
. Textual 30.0 ± .8 29.1 ± .4

Imagniation 29.8 ± .8 28.8 ± .4
Multimodal (hierarchical) 29.5 ± .8 28.7 ± .4

U
nc

. Textual 27.7 ± .8 27.6 ± .4
Imagination 31.0 ± .8 30.0 ± .4

Tr
an

fo
rm

er

Co
ns

. Textual 30.9 ± .8 29.5 ± .4
Imagniation 30.5 ± .9 29.6 ± .4
Multimodal (serial) 31.0 ± .8 29.9 ± .4

U
nc

. Textual 32.3 ± .9 30.7 ± .4
Imagination 36.3 ± .9 32.8 ± .4

Table 5.7: Results on the 2016 test set in terms of BLEU score and METEOR score.
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The learning curves in Figure 5.8 show a different training dynamics of the con-
strained and unconstrained Transformer models. The unconstrained models con-
verge from the beginning of the training faster than the constrained models. The
learning curve of the unconstrained Imagination model is remarkably close to the
text-only model, even though the training data contains target sentences for only a
half of the training instances. The Imagination model in the constrained setup has a
steep learning curve at the beginning, however, the validation BLEU score becomes
rather unstable as the model starts to overfit.

By the time, we achieved the presented results, it was the state-of-the-art transla-
tion quality on the Multi30k dataset. Recently, the new state of the art was achieved
by Grönroos et al. (2018) with the Transformer architecture with the same hyper-
parameters as ours implemented in OpenNMT (Klein et al., 2018). As discussed in
Section 4.3, their improvement comes from utilizing large parallel corpora, creating
a synthetic dataset based on MS COCO and more careful preprocessing of the data.
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6
Analysis of Multimodal Translation

Systems

In the previous chapter, we have introduced several methods of combining multiple
inputs in sequence-to-sequence models based on Recurrent Neural Networks (RNNs)
(Section 5.1) and Self-Attentive Network (SAN) (Section 5.2). We further discussed
techniques for improving translation quality by collecting additional training data
(Section 5.3). We used automatic metrics for estimating the translation quality and
adversarial evaluation to asses whether the models rely on the image information
or not. However, we did not conduct any deeper analysis either of the translation
outputs or the model themselves.

In this chapter, we go beyond the standard automatic evaluation metrics and try
to asses the models in more detail. In Section 6.1, we examine how the translation
quality is influenced by the objects present in the source image and by linguistic phe-
nomena occurring in the source sentence. In Section 6.2, we intrinsically evaluate the
representations learned by the Multimodal Machine Translation (MMT) models and
compare them with other multimodal and monomodal models on sentence semantic
similarity and image retrieval tasks.

6.1 Model Performance Analysis

In this section, we evaluate translation quality on the sentence level and try to assess
how the properties of the image and the properties of the source sentences influence
the translation quality.
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object frequency

person 896
dog 70
car 50
chair 38
bicycle 27
cup 13
backpack 11
handbag 9
bottle 8

Table 6.1: The most frequent objects detected in the test part of the Multi30k dataset
and their frequency.

For all systems that we have introduced through this thesis (Sections 5.1, 5.2,
and 5.3), we obtain the sentence-level BLEU score (Chen and Cherry, 2014) and com-
pute Pearson correlation with quantitative properties of the source images and sen-
tences.

We processed the images from the test set with the YOLO object detector (Red-
mon et al., 2016) and selected all objects that appear at least ten times in the test set.
The YOLO object detector is a ResNet-based deep neural network which detects ob-
jects and classifies them into 80 categories used in the MS COCO dataset. The most
frequently detected objects and their frequencies in the 1,000 images of the test set
are tabulated in Table 6.1.

On the language side, we are interested in how the following features influence
the translation quality:

• Source sentence length;

• Number/proportion of auxiliary and content verbs;

• Tense used in the source sentence;

• Average log-frequency of the source words in the training data;

• Presence of numbers (image captioning models tend to have problems with
counting objects);

• Presence of words denoting colors.

The features were extracted by rules based on part-of-speech tags and dependency
parsing obtained from spaCy1.

1https://spacy.io/

96

https://spacy.io/


The models that we evaluated were all RNN and Transformer models that were
mentioned in the previous sections: multimodal models using various attention com-
bination strategies, text-only models, and imagination models trained in both the
constrained and unconstrained setup. The detailed results are tabulated in Table 6.2.
We only show the table for German as a target language as the remaining two target
languages deliver similar results.

All correlation values lie in the interval from -0.2 to +0.2 with only minor differ-
ences between the text-only and multimodal models. Themost important conclusion
that types of model and the choice of the target language does not influence how the
translation quality depends on the features of the input images and source sentences.
Our main observations are that, first, the unconstrained models seem to be more in-
dependent on the measured input qualities and, second, that the RNN-based models
are more sensitive to all tracked features.

Presumably, the more complex the source sentence is, the worse translation qual-
ity we obtain. Longer sentences, sentences with more nouns and content verbs tend
to score worse. With the increasing number of objects detected in the images, the
sentence-level BLUE drops as well.

Sentences in past tense seem to score worse. This might be either because of un-
derfitting due to the low number of past sentences in the training data, or the vari-
ability in how the past tense might be expressed in the target languages (preterite
or perfective in German) which might differ from the reference sentence. The trans-
lation quality seems to be positively affected by the word frequency in the training
data and the presence of words expressing colors.

The sentence-level BLEU score appears to be mostly independent of what ob-
jects are in the input image. System outputs for images with people tend to receive
lower scores, whereas sentences outputs for images with dogs tend to receive higher
scores. We believe that this can be explained by low source sentence variability in
the respective object categories.
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RNN
Text-only Imagination Multimodal

con. unc. con. unc. init. concat flat hier.
ob

je
ct

co
un

t >90% confidence -.14 -.13 -.12 -.16 -.13 -.16 -.17 -.14
>50% confidence -.14 -.13 -.14 -.16 -.14 -.17 -.17 -.13

ob
je
ct
s

in
th
e
im

ag
e person -.10 -.06 -.08 -.10 -.08 -.11 -.10 -.11

car .04 .05 .05 .06 .05 .05 .05 .07
chair -.03 .01 .00 -.05 -.03 -.04 -.04 -.03
dog .08 .04 .09 .09 .08 .09 .09 .09
handbag .01 .03 .01 .02 .05 .02 .00 .02
bicycle -.04 -.05 -.05 -.06 -.08 -.05 -.06 -.06

so
ur

ce
se
nt
en

ce
pr

op
er
tie

s

sentence length -.10 -.12 -.11 -.13 -.12 -.13 -.10 -.09
non-aux. verb ratio -.13 -.12 -.11 -.11 -.12 -.11 -.13 -.12
aux. verb ratio .13 .15 .16 .15 .17 .14 .19 .16
noun count -.13 -.15 -.13 -.15 -.14 -.15 -.13 -.13
past tense -.15 -.15 -.16 -.14 -.15 -.17 -.15 -.14
contains numeral .00 -.03 -.02 -.02 -.02 -.02 -.01 -.03
contains color .15 .12 .14 .11 .15 .14 .19 .19
avg. word freq. .27 .26 .28 .29 .29 .29 .27 .28

Tranformer
Text-only Imagination Multimodal

con. unc. con. unc. flat hier. par. serial

ob
je
ct

co
un

t >90% confidence -.11 -.05 -.08 -.08 -.09 -.11 -.11 -.11
>50% confidence -.11 -.06 -.09 -.09 -.10 -.11 -.10 -.12

ob
je
ct
s

in
th
e
im

ag
e person -.08 -.03 -.07 -.05 -.06 -.09 -.08 -.07

car .02 .01 .03 -.01 .03 .01 .00 .00
chair .04 .01 .04 .01 .01 .03 .03 .01
dog .04 .02 .05 .03 .06 .06 .06 .05
handbag -.01 -.01 -.01 -.01 .00 -.01 -.01 .00
bicycle -.02 -.01 -.02 -.02 -.02 -.05 -.02 -.03

so
ur

ce
se
nt
en

ce
pr

op
er
tie

s

sentence length -.02 .05 .01 .02 -.02 -.01 .01 .02
non-aux. verb ratio .02 .00 .03 .00 -.01 -.01 -.01 -.02
aux. verb ratio .10 .05 .07 .09 .13 .12 .07 .11
noun count -.15 -.05 -.10 -.07 -.11 -.11 -.10 -.09
past tense -.08 -.04 -.07 -.06 -.11 -.09 -.08 -.11
contains numeral .00 .04 .01 .01 -.03 -.01 -.03 -.01
contains color .17 .09 .15 .13 .18 .18 .17 .17
avg. word freq. .22 .13 .17 .14 .22 .23 .21 .19

Table 6.2: Pearson correlation of sentence-level BLEU with quantitative properties
of source sentences and images for the test part of Multi30k data for translation from
English to German. For text-only and imagination models, we report both the con-
strained (‘con.’) and unconstrained (‘unc.’) data setup. With the multimodal models,
we only use the Multi30k dataset and report all variants of adding the visual infor-
mation introduced in Sections 5.1 and 5.2.
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6.2 Assessing Representations Learned by the
Models

This section is based on the paper “Assessing Representations Learned in the Multimodal
Translation Models”, joint work with Pranava Madhyastha, currently under review for ACL
2019.

In the previous section, we have shown that multimodal information can improve
the quality of the Machine Translation (MT) systems. Experiments with represen-
tation learning (see Section 3.2) suggest that the improved translation quality might
be a consequence of improved quality of the representation learned in the networks.
There are other experiments showing the usefulness of grounding representation
learned in deep learning models by conditioning on multimodal information (Chru-
pała et al., 2015).

On the other hand, recent work towards universal sentence representation shows
that language modeling on large-scale datasets can provide sufficiently informative
representations reusable in most Natural Language Processing (NLP) tasks while
reaching state-of-the-art results in most of them (Peters et al., 2018; Devlin et al.,
2018).

In this section, we systematically approach these seemingly contradictory results
and investigate representations obtained specifically from grounded models using
RNNs and SANs. Our main observations are:

• Models with explicit access to visual information learn to ignore image infor-
mation;

• Grounding representation in visual modality leads to semantically better repre-
sentation as it provides a stronger training signal and is especially pronounced
when the model has access to less training samples;

• While Transformer-based models might have better task performance, we ob-
serve that RNN-based models capture semantic information better .

In the rest of this section, we intrinsically evaluate all MMT models presented
in the previous sections and compare them with Language Models (LMs) and image
retrieval models with similar architectures. We obtain a highly correlated mutual
projection between representations of source sentences and representations of the
corresponding images, and we evaluate the ability to capture visual features. By
assessing the representations on the Semantic Textual Similarity (STS) task, we eval-
uate their semantic properties. In addition, we compute the Distance Correlation
(DC) between representations from all pairs of the probed models.
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6.2.1 Related Work

Previous research proposed several ways to evaluate representations that emerge
in neural models. The most common technique is measuring correlation between
similarity of learned representations and semantic similarity of words (Hill et al.,
2015; Gerz et al., 2016) and sentences (Agirre et al., 2012, 2016). Other methods in-
clude relating the representations to the existing well-trained models by finding mu-
tual projection between the representation in the probed model and observing how
the projected representations perform within the trained model (Saphra and Lopez,
2018) or observing the effect of changes in the representation by backpropagating
the changes to the input (Poerner et al., 2018).

Universal sentence representations are often evaluated on downstream tasks.
Conneau and Kiela (2018) andWang et al. (2018a) recently introduced comprehensive
sets of such downstream tasks providing a benchmark for the sentence representa-
tion evaluation. The tasks include various sentence classification tasks, entailment
or coreference resolution. The drawback of these methods is that they require gen-
erating representations of millions of sentences which are later used for a rather
time-consuming training of models for the downstream tasks.

6.2.2 Assessing Contextual Representations

In this section, we describe how we extract the representations and the methods we
use for the representation evaluation.

Contextual Representation. By contextual representation, we mean hidden
states of a network processing textual input, in our case either an RNN or a SAN. Un-
like the embedding layer which assigns vectors to all tokens independently, hidden
states on later layers already may contain information from the rest of the sentence,
therefore we call the representations contextual.

In all our models, the number of hidden states is the same as the number of input
tokens. Because all the evaluation methods that we use, require a fixed-sized sen-
tence representation, we mean-pool the hidden states, i.e., compute the arithmetic
mean over the sentence length. In the rest of this section, we call this vector a rep-
resentation of a sentence.

Canonical Correlation Analysis. We use Canonical Correlation Analysis (CCA)
over the mean-pooled sentence representations and image representations to obtain
two highly correlated projections respectively. CCA and its variants have been used
in previous research to obtain cross-modal representations (Gong et al., 2014; Yan
and Mikolajczyk, 2015).
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We take input as the two sets of aligned representations from two different sub-
spaces, say T = {t1, . . . , tn} and V = {v1, . . . ,vn}, where ti and vi are vector
representations. CCA (Hotelling, 1936) finds pairs of directions Wt,Wv, such that
the linear projections of T and V onto these directions, i.e., the canonical represen-
tations Wt

⊤T and Wv
⊤V, are maximally correlated:

Wt,Wv = argmax
W′

t,W′
v

corr
(
Wt

⊤T,Wv
⊤V

)
(6.1)

For further details on CCA, we refer the reader to Hardoon et al. (2004).
The most significant property of CCA for our analysis is that CCA is a subspace

only method where we only obtain a highly correlated linear transformation for each
of the representations given paired sentence and image representations. We do not
explicitly learn any new information. We evaluate the projected representations on
image retrieval task and report Recall at 10, i.e., a proportion of caseswhen the correct
image is within the 10 nearest neighbors of the sentence representation.

We fit the CCA on the 29,000 image-sentence pairs of the training portion of the
Multi30k and evaluate on the 1,000 pairs from the test set.

Cosine Distance. Besides the ability to represent the visual content of an image,
we evaluate the representation on the STS task. The STS task focuses on evaluation
of semantic similarity of sentences regardless of their relation to the visual modality
and thus can capture more abstract aspects of meaning that cannot be represented
visually in a straightforward manner.

For the STS task, we use cosine distance between vectors tand v:

sim(t,v) = 1 − t · v
∥t∥∥v∥

. (6.2)

Following the SentEval benchmark (Conneau and Kiela, 2018), we report the
Spearman correlation between the cosine distance and human assessments. We eval-
uate the representations on the STS SemEval 2016 task (Agirre et al., 2016). The test
set consists of 1,186 sentence pairs collected from datasets of newspaper headlines,
machine translation post-editing, plagiarism detection, and question-to-question and
answer-to-answer matching on the Stack Exchange data. Each sentence pair is anno-
tated with a similarity value. Similar to the image retrieval task, we do not fine-tune
the representations for the task.

Distance Correlation. The third method that we use for probing the represen-
tations learned in the MMT and other models is measuring a mutual similarity of
representations. We measure the similarity using DC.
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DC is a measure of dependence between any two paired vectors of arbitrary di-
mensions (Székely et al., 2007). Given, two paired vectors, t ∈ Rm and v ∈ Rn and
suppose that φ1(t), φ2(v) and φ3(t,v) are the individual characteristic functions and
joint characteristic function of the two vectors respectively. The distance covariance
between t and v with finite first moments is a non-negative number given by:

dcov2(t,v) =
∫
Rm+n

∥φ3(t,v) − φ1(t)φ2(v)∥2
2 ψ(t,v)dt dv, (6.3)

where ψ(t,v) = {∥t∥1+m
m ∥v∥1+n

n }−1; m and n are the dimensionalities of t and v
respectively. The DC is then defined as:

dcorr(t, v) = dcov(t,v)√
dcov(t, t)dcov(v,v)

(6.4)

A detailed description of DC is beyond the scope of this thesis, but we refer the
reader to Székely et al. (2007) for a thorough analysis.

Our use of DC is motivated by the result that DC quantifies dependence measure,
especially it equals zero exactly when the two vectors are mutually independent and
are not correlated.

Also, DC measures both linear and non-linear association between two vectors,
unlike the CCA and cosine similarity, which are linear. We are especially interested
in studying the degree to which two independently learned representations are cor-
related.

6.2.3 Experiments

In our experiments, we assess representations learned in all MMT models presented
in Chapter 5. We compare their representations with representations from LMs and
image retrieval models with comparable architectures trained on dataset of different
sizes.

Datasets

For all models, we use the training part of Multi30k (Elliott et al., 2016) that consists
of only 29 thousand training images with English captions and their translations. For
monolingual experiments, we further use English captions from the Flickr30k dataset
(Plummer et al., 2015) with 5 captions for each image, in total 145 thousand sentences.
We also use the MS COCO data (Lin et al., 2014), with 414 thousand descriptions of
82 thousand images. For more details on the multimodal datasets, see Sections 3.3
and 4.2.
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We also included the unconstrained MMT, with additional data harvested from
parallel and monolingual corpora (Helcl and Libovický, 2017a; Helcl et al., 2018b)
combined with the EU Bookshop corpus (Tiedemann, 2012), in total of 200 million
words. See Section 5.3 for more details.

Models

We evaluate the following MMT models:

• RNN text-only models trained on Multi30k (Section 5.1) and on the uncon-
strained data (Section 5.3)

• RNN multimodal models with concatenation, flat and hierarchical attention
combination strategy trained on Multi30k (Section 5.1)

• RNN Imagination models trained on Multi30k data and the unconstrained data
(Section 5.3)

• Transformer text-only models trained on Multi30k (Section 5.2) and the un-
constrained data (Section 5.3)

• Transformer multimodal models with serial, parallel, flat and hierarchical in-
put combination strategy trained on Multi30k (Section 5.2)

• Transformer Imagination model trained on Multi30k and the unconstrained
data (Section 5.3)

Language Models. We trained an RNN LM with a single Gated Recurrent Unit
(GRU) layer (Cho et al., 2014a) of 1,000 dimensions end embeddings of 300. The
Transformer LM (Vaswani et al., 2017) has model dimension 512, 6 layers, 8 attention
heads and hidden layer size 4,096. The LMs thus mimic the hyperparameters of de-
coders used in the MMT experiments. We evaluate the models using perplexity on
the test part of Multi30k.

For completeness, we also compare the LMs with ELMo (Peters et al., 2018), a
representation based on deep RNN LM with character-based embeddings trained on
a large corpus of 30 million sentences, and BERT (Devlin et al., 2018), a Transformer-
based sentence representation that is similar to Transformer LM. We note however
that BERT is trained in a significantly different procedure than regular LMs. We do
not train ELMo and BERT ourselves, but rather use the pre-trained models provided
by the authors of the respective papers. We neither attempt to compute perplexity
of ELMo because it uses a different output vocabulary, nor perplexity of BERT where
the architecture does not easily allow such estimate.
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BLEU vs. … Trans. RNN

image retrieval R@10 .825 .700
STS performance .852 .873
training data size .867 .724

Table 6.3: Pearson correlation of MMT quality and representation properties.

Imaginet. The Imaginet models (Chrupała et al., 2015) predict image representa-
tion given a sentence and thus train the representations only via its grounding in the
image representation.

We use a bidirectional RNN encoder with 300 hidden units in each direction and
word embeddings of 300 dimensions. The Transformer-based Imaginet uses the same
hyperparameters as the Transformer-based LM. Note that the hyperparameters are
the same as in the decoder part of the respective MMT models. The states of the en-
coder are then mean-pooled and projected with a hidden layer of 4,096 and Rectified
Linear Unit (ReLU) non-linearity to a 2,048-dimensional vector corresponding to the
image representation from the ResNet (He et al., 2016), in the same way as in the
Imagination models.

We evaluate the models on image retrieval on the test part of Multi30k and report
Recall at 10. For a fair comparison, we use the representation before the final non-
linear projection in the probing experiment and omit the layer that was explicitly
trained to fit the image representations.

6.2.4 Results & Discussion

The quantitative results of the image retrieval and STS along with the task-specific
metrics are tabulated in Table 6.4. The results show that on moderate-sized data-
sets, the target language and visual modality provide a stronger training signal for
sentence representations than language modeling. The unconstrained variant of the
RNN MMT models obtains a similar performance in the STS as the ELMo and BERT
models even though the amount of training data was 25 times smaller than for ELMo.

Although the Transformer models achieve a superior translation quality on the
MMT tasks, the results on STS suggest that RNN models obtain semantically richer
representations. While the text-only RNN translation models perform better on the
image retrieval than the Transformer models, Transformer-based Imagination mod-
els that are explicitly trained to predict the image representation outperform their
RNN counterparts.
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Figure 6.1: Distance correlation of pairs of selected models.

We also evaluate the STS performance of the representations with the CCA pro-
jections. The Spearman correlation is consistently worse by about 0.02−0.03. As we
notice in Figure 6.1, images have the least DC resulting in information poorer CCA
based projections.

The encoder of theMMTmodels that explicitly use the visual input in the decoder
achieves substantially lower image retrieval scores. This observation suggests that
the text encoder seems to ignore information about visual aspects of the meaning as
the decoder has full access to this information from the explicit conditioning on im-
age representation. This observation is in line with the conclusions of the adversarial
evaluation (Elliott, 2018; Libovický et al., 2018a).

Our experiments also indicate that the performance on STS is highly correlated
with the translation quality for both the RNN and the Transformer models (see Fig-
ure 6.2). However, we observe that the Transformers perform substantially worse
with STS than their RNN counterparts. Not surprisingly, the translation quality also
appears to be highly correlated not only with the amount of available training data
but also with image retrieval abilities of the representation (see Table 6.3).

The result of DC for selected models are shown in Figure 6.1. TheDC of the image
and the sentence representations is proportional to the image retrieval score. Repre-
sentations seem to be more similar among the tasks than among the architectures.
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6.2.5 Conclusions

We conducted a set of controlled experiments to asses the representational qualities
of monomodal and multimodal sequential models with RNN and SAN architectures.
Our experiments show that grounding, in either the visual modality or with another
language, and especially their combination in the Imagination models, results in bet-
ter representations than LMs trained on datasets of similar sizes. We also showed
that the translation quality of the MMT models is highly correlated both, with the
ability of the models to retain image information and with the semantic properties
of the representations. Importantly, we note that the RNN-based models are better
at capturing semantics than Transformer-based models under similar training con-
ditions.
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Language Model ppl.↓ Img.↑ STS↑

RNN
Multi30k 12.10 16.6 .267
Flickr30k 11.80 22.4 .340
Flickr30k + COCO 11.80 23.0 .378

Transformer
Multi30k 12.42 8.9 .256
Flickr30k 11.87 17.6 .283
Flickr30k + COCO 11.69 21.0 .303

ELMo — 28.4 .631
BERT — 22.4 .624
Imaginet R@10↑ Img.↑ STS↑

RNN
Multi30k 29.5 24.4 .401
Flickr30k 37.8 26.3 .483
Flickr30k + COCO 39.4 25.4 .501

Transormer
Multi30k 25.5 22.1 .338
Flickr30k 36.6 29.5 .436
Flickr30k + COCO 38.4 28.0 .451

Textual MT BLEU↑ Img.̆ STS↑

RNN

Textual 36.7 22.5 .527
Textual U 38.7 21.8 .621

Imagination 36.8 20.1 .550
Imagination U 38.2 27.4 .622

Transformer

textual 38.3 18.8 .374
textual U 40.4 21.3 .509

Imagination 39.2 26.5 .433
Imagination U 42.6 31.9 .512

Multimodal MT BLEU↑ Img.↑ STS↑

RNN

Decoder init. 36.9 16.6 .536
Att. concatenation 35.7 11.4 .429
Flat att. comb. 34.6 14.6 .487
Hierar. att. comb. 37.6 16.7 .553

Transformer

Serial att. comb. 38.7 15.8 .383
Parallel att. comb. 38.6 16.8 .398
Flat att. comb. 37.1 16.6 .385
Hierar. att. comb. 38.5 14.3 .346

Table 6.4: Recall at 10 for image retrieval (‘Img.’) and Spearman correlation for the
Sentence similarity task (‘STS’) for representation extracted the models. ‘U’ denotes
use of the unconstrained dataset. The first column contains task specific metrics on
the Multi30k test set: LM perplexity, image Recall at 10 and BLUE score, respectively.
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7
Conclusions

In this thesis, we were concerned with grounding the Natural Language Processing
(NLP) models in the visual modality. The popularity of deep learning in Computer
Vision (CV) and NLP allowed straightforward reusing of continuous representations
between modalities. The models can be trained end-to-end which forces the mod-
els to at least to some extent capture how words from language relate to the visual
modality. Moreover, they allow solving problems that would otherwise be hardly
solvable, such as image captioning or visual question answering. For this thesis, we
have chosen the task ofMultimodalMachine Translation (MMT).This task ismachine
translation of image description with the image available as an additional input to
the translation model.

We summarized our research on this topic, that included data preparation, in-
troducing novel model architectures and analysis of representation learned by the
models. The thesis also summarizes experience from three years of participation in
the Workshop of Machine Translation (WMT) shared task on MMT.

Our main contributions are the following:

• We bring a comprehensive overview of deep learning techniques for combing
language and vision (Chapter 2).

• We created a Czech version of the MMT benchmark, Multi30k dataset. Ad-
ditionally, we gathered a large dataset of pseudo-in-domain data that can be
used for improving MMT quality (Chapter 4).
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• We introduced novel methods for combining multiple sources in sequence-to-
sequence models with Recurrent Neural Networks (RNNs) and Self-Attentive
Networks (SANs). These methods proved to be useful not only for the MMT
task, but they were also adopted by several other authors that used our meth-
ods for solving other tasks (Chapter 5).

• We present a thorough analysis of representations that emerge in text-only
and multimodal NLP models and show that visual modality provides a strong
training signal for semantic properties of the representations (Chapter 6).

The results that we achieved while attempting to solve the task are encouraging
and positive even though themultimodal training only brings amodest improvement
in translation quality compared to training machine translation on parallel corpora
only. The model architectures that we have proposed are able to learn when the
visual modality is beneficial for the task and when not. Our analyses also show that
the models are at least to some extent capable of capturing some aspects of meaning
in the visual modality and that grounding representation in vision improves semantic
properties of the representations.

All these findings are encouraging for continuing research on joint modeling of
language and other modalities in more challenging and realistic setups which can
include tasks like video captions translation (Sanabria et al., 2018) or video summa-
rization (Libovický et al., 2018b).
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