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Abstract
Every year, the Conference on Com-
putational Natural Language Learning
(CoNLL) features a shared task, in which
participants train and test their learning
systems on the same data sets. In 2018,
one of two tasks was devoted to learn-
ing dependency parsers for a large num-
ber of languages, in a real-world setting
without any gold-standard annotation on
the input. All test sets followed the uni-
fied annotation scheme of Universal De-
pendencies (Nivre et al., 2016). This
shared task constitutes a 2nd edition—the
first one took place in 2017 (Zeman et al.,
2017); the main metric from 2017 was
kept, allowing for easy comparison, and
two new main metrics were introduced.
New datasets added to the Universal De-
pendencies collection between mid-2017
and the spring of 2018 contributed to the
increased difficulty of the task this year.
In this overview paper, we define the task
and the updated evaluation methodology,
describe data preparation, report and ana-
lyze the main results, and provide a brief
categorization of the different approaches
of the participating systems.

1 Introduction

The 2017 CoNLL shared task on universal depen-
dency parsing (Zeman et al., 2017) picked up the
thread from the influential shared tasks in 2006

and 2007 (Buchholz and Marsi, 2006; Nivre et al.,
2007) and evolved it in two ways: (1) the pars-
ing process started from raw text rather than gold
standard tokenization and part-of-speech tagging,
and (2) the syntactic representations were consis-
tent across languages thanks to the Universal De-
pendencies framework (Nivre et al., 2016). The
2018 CoNLL shared task on universal dependency
parsing starts from the same premises but adds a
focus on morphological analysis as well as data
from new languages.

Like last year, participating systems minimally
had to find labeled syntactic dependencies be-
tween words, i.e., a syntactic head for each word,
and a label classifying the type of the dependency
relation. In addition, this year’s task featured new
metrics that also scored a system’s capacity to pre-
dict a morphological analysis of each word, in-
cluding a part-of-speech tag, morphological fea-
tures, and a lemma. Regardless of metric, the as-
sumption was that the input should be raw text,
with no gold-standard word or sentence segmen-
tation, and no gold-standard morphological anno-
tation. However, for teams who wanted to con-
centrate on one or more subtasks, segmentation
and morphology predicted by the baseline UDPipe
system (Straka et al., 2016) was made available
just like last year.

There are eight new languages this year:
Afrikaans, Armenian, Breton, Faroese, Naija, Old
French, Serbian, and Thai; see Section 2 for more
details. The two new evaluation metrics are de-
scribed in Section 3.
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2 Data

In general, we wanted the participating systems to
be able to use any data that is available free of
charge for research and educational purposes (so
that follow-up research is not obstructed). We de-
liberately did not place upper bounds on data sizes
(in contrast to e.g. Nivre et al. (2007)), despite the
fact that processing large amounts of data may be
difficult for some teams. Our primary objective
was to determine the capability of current parsers
provided with large amounts of freely available
data.

In practice, the task was formally closed, i.e.,
we listed the approved data resources so that all
participants were aware of their options. How-
ever, the selection was rather broad, ranging from
Wikipedia dumps over the OPUS parallel corpora
(Tiedemann, 2012) to morphological transducers.
Some of the resources were proposed by the par-
ticipating teams.

We provided dependency-annotated training
and test data, and also large quantities of crawled
raw texts. Other language resources are available
from third-party servers and we only referred to
the respective download sites.

2.1 Training Data: UD 2.2

Training and development data came from the
Universal Dependencies (UD) 2.2 collection
(Nivre et al., 2018). This year, the official UD re-
lease immediately followed the test phase of the
shared task. The training and development data
were available to the participating teams as a pre-
release; these treebanks were then released exactly
in the state in which they appeared in the task.1

The participants were instructed to only use the
UD data from the package released for the shared
task. In theory, they could locate the (yet unre-
leased) test data in the development repositories
on GitHub, but they were trusted that they would
not attempt to do so.

82 UD treebanks in 57 languages were included
in the shared task;2 however, nine of the smaller
treebanks consisted solely of test data, with no
data at all or just a few sentences available for
training. 16 languages had two or more treebanks

1UD 2.2 also contains other treebanks that were not in-
cluded in the task for various reasons, and that may have been
further developed even during the duration of the task.

2Compare with the 81 treebanks and 49 languages in the
2017 task.

from different sources, often also from different
domains.3 See Table 1 for an overview.

61 treebanks contain designated development
data. Participants were asked not to use it
for training proper but only for evaluation, de-
velopment, tuning hyperparameters, doing error
analysis etc. Seven treebanks have reasonably-
sized training data but no development data;
only two of them, Irish and North Sámi, are
the sole treebanks of their respective languages.
For those treebanks cross-validation had to be
used during development, but the entire dataset
could be used for training once hyperparame-
ters were determined. Five treebanks consist
of extra test sets: they have no training or de-
velopment data of their own, but large train-
ing data exist in other treebanks of the same
languages (Czech-PUD, English-PUD, Finnish-
PUD, Japanese-Modern and Swedish-PUD, re-
spectively). The remaining nine treebanks are
low-resource languages. Their “training data” was
either a tiny sample of a few dozen sentences (Ar-
menian, Buryat, Kazakh, Kurmanji, Upper Sor-
bian), or there was no training data at all (Breton,
Faroese, Naija, Thai). Unlike in the 2017 task,
these languages were not “surprise languages”,
that is, the participants knew well in advance what
languages to expect. The last two languages are
particularly difficult: Naija is a pidgin spoken in
Nigeria; while it can be expected to bear some
similarity to English, its spelling is significantly
different from standard English, and no resources
were available to learn it. Even harder was Thai
with a writing system that does not separate words
by spaces; the Facebook word vectors were prob-
ably the only resource among the approved addi-
tional data where participants could learn some-
thing about words in Thai (Rosa and Mareček,
2018; Smith et al., 2018). It was also possible to
exploit the fact that there is a 1-1 sentence map-
ping between the Thai test set and the other four
PUD test sets.4

Participants received the training and develop-
ment data with gold-standard tokenization, sen-
tence segmentation, POS tags and dependency re-

3We distinguish treebanks of the same language by their
short names or acronyms. Hence, the two treebanks of An-
cient Greek are identified as Perseus and PROIEL, the three
treebanks of Latin are ITTB, Perseus and PROIEL, etc.

4While the test datasets were not available to the teams
when they developed their systems, the documentation of the
treebanks was supplied together with the training data, hence
the teams could learn that the PUD treebanks were parallel.
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Language Tbk Code 2017 TrWrds
Afrikaans af afribooms NA 34 K
Ancient Greek grc perseus grc 160 K
Ancient Greek grc proiel grc proiel 187 K
Arabic ar padt ar 224 K
Armenian hy armtdp NA 1 K
Basque eu bdt eu 73 K
Breton br keb NA 0 K
Bulgarian bg btb bg 124 K
Buryat bxr bdt bxr 0 K
Catalan ca ancora ca 418 K
Chinese zh gsd zh 97 K
Croatian hr set hr 154 K
Czech cs cac cs cac 473 K
Czech cs fictree NA 134 K
Czech cs pdt cs 1,173 K
Czech cs pud cs pud 0 K
Danish da ddt da 80 K
Dutch nl alpino nl 186 K
Dutch nl lassysmall nl lassysmall 75 K
English en ewt en 205 K
English en gum NA 54 K
English en lines en lines 50 K
English en pud en pud 0 K
Estonian et edt et 288 K
Faroese fo oft NA 0 K
Finnish fi ftb fi ftb 128 K
Finnish fi pud fi pud 0 K
Finnish fi tdt fi 163 K
French fr gsd fr 357 K
French fr sequoia fr sequoia 51 K
French fr spoken NA 15 K
Galician gl ctg gl 79 K
Galician gl treegal gl treegal 15 K
German de gsd de 264 K
Gothic got proiel got 35 K
Greek el gdt el 42 K
Hebrew he htb he 138 K
Hindi hi hdtb hi 281 K
Hungarian hu szeged hu 20 K
Indonesian id gsd id 98 K
Irish ga idt ga 14 K

Language Tbk Code 2017 TrWrds
Italian it isdt it 276 K
Italian it postwita NA 99 K
Japanese ja gsd ja 162 K
Japanese ja modern NA 0 K
Kazakh kk ktb kk 1 K
Korean ko gsd ko 57 K
Korean ko kaist NA 296 K
Kurmanji kmr mg kmr 0 K
Latin la ittb la ittb 270 K
Latin la perseus la 18 K
Latin la proiel la proiel 172 K
Latvian lv lvtb lv 81 K
Naija pcm nsc NA 0 K
North Sámi sme giella sme 17 K
Norwegian no bokmaal no bokmaal 244 K
Norwegian no nynorsk no nynorsk 245 K
Norwegian no nynorsklia NA 4 K
Old Church Slavonic cu proiel cu 37 K
Old French fro srcmf NA 136 K
Persian fa seraji fa 121 K
Polish pl lfg NA 105 K
Polish pl sz pl 63 K
Portuguese pt bosque pt 207 K
Romanian ro rrt ro 185 K
Russian ru syntagrus ru syntagrus 872 K
Russian ru taiga NA 10 K
Serbian sr set NA 66 K
Slovak sk snk sk 81 K
Slovenian sl ssj sl 113 K
Slovenian sl sst sl sst 19 K
Spanish es ancora es ancora 445 K
Swedish sv lines sv lines 48 K
Swedish sv pud sv pud 0 K
Swedish sv talbanken sv 67 K
Thai th pud NA 0 K
Turkish tr imst tr 38 K
Ukrainian uk iu uk 75 K
Upper Sorbian hsb ufal hsb 0 K
Urdu ur udtb ur 109 K
Uyghur ug udt ug 19 K
Vietnamese vi vtb vi 20 K

Table 1: Overview of the 82 test treebanks. TbkCode = Treebank identifier, consisting of the ISO 639
language code followed by a treebank-specific code. 2017 = Code of the corresponding treebank in
the 2017 task if applicable (“NA” otherwise). TrWrds = Size of training data, rounded to the nearest
thousand words.

lations; and for most languages also lemmas and
morphological features.

Cross-domain and cross-language training was
allowed and encouraged. Participants were free to
train models on any combination of the training
treebanks and apply it to any test set.

2.2 Supporting Data

To enable the induction of custom embeddings and
the use of semi-supervised methods in general,
the participants were provided with supporting re-
sources primarily consisting of large text corpora
for many languages in the task, as well as embed-
dings pre-trained on these corpora. In total, 5.9 M

sentences and 90 G words in 45 languages are
available in CoNLL-U format (Ginter et al., 2017);
the per-language sizes of the corpus are listed in
Table 2.

See Zeman et al. (2017) for more details on how
the raw texts and embeddings were processed.
Note that the resource was originally prepared for
the 2017 task and it was not extended to include
the eight new languages; however, some of the
new languages are covered by the word vectors
provided by Facebook (Bojanowski et al., 2016)
and approved for the shared task.
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Language Words
English (en) 9,441 M
German (de) 6,003 M
Portuguese (pt) 5,900 M
Spanish (es) 5,721 M
French (fr) 5,242 M
Polish (pl) 5,208 M
Indonesian (id) 5,205 M
Japanese (ja) 5,179 M
Italian (it) 5,136 M
Vietnamese (vi) 4,066 M
Turkish (tr) 3,477 M
Russian (ru) 3,201 M
Swedish (sv) 2,932 M
Dutch (nl) 2,914 M
Romanian (ro) 2,776 M
Czech (cs) 2,005 M
Hungarian (hu) 1,624 M
Danish (da) 1,564 M
Chinese (zh) 1,530 M
Norwegian-Bokmål (no) 1,305 M
Persian (fa) 1,120 M
Finnish (fi) 1,008 M
Arabic (ar) 963 M
Catalan (ca) 860 M
Slovak (sk) 811 M
Greek (el) 731 M
Hebrew (he) 615 M
Croatian (hr) 583 M
Ukrainian (uk) 538 M
Korean (ko) 527 M
Slovenian (sl) 522 M
Bulgarian (bg) 370 M
Estonian (et) 328 M
Latvian (lv) 276 M
Galician (gl) 262 M
Latin (la) 244 M
Basque (eu) 155 M
Hindi (hi) 91 M
Norwegian-Nynorsk (no) 76 M
Kazakh (kk) 54 M
Urdu (ur) 46 M
Irish (ga) 24 M
Ancient Greek (grc) 7 M
Uyghur (ug) 3 M
Kurdish (kmr) 3 M
Upper Sorbian (hsb) 2 M
Buryat (bxr) 413 K
North Sámi (sme) 331 K
Old Church Slavonic (cu) 28 K
Total 90,669 M

Table 2: Supporting data overview: Number of
words (M = million; K = thousand) for each lan-
guage.

2.3 Test Data: UD 2.2

Each of the 82 treebanks mentioned in Section 2.1
has a test set. Test sets from two different tree-
banks of one language were evaluated separately
as if they were different languages. Every test set
contains at least 10,000 words (including punctu-
ation marks). UD 2.2 treebanks that were smaller
than 10,000 words were excluded from the shared
task. There was no upper limit on the test data;
the largest treebank had a test set comprising 170K
words. The test sets were officially released as a
part of UD 2.2 immediately after the shared task.5

3 Evaluation Metrics

There are three main evaluation scores, dubbed
LAS, MLAS and BLEX. All three metrics reflect
word segmentation and relations between content
words. LAS is identical to the main metric of the
2017 task, allowing for easy comparison; the other
two metrics include part-of-speech tags, morpho-
logical features and lemmas. Participants who
wanted to decrease task complexity could concen-
trate on improvements in just one metric; however,
all systems were evaluated with all three metrics,
and participants were strongly encouraged to out-
put all relevant annotation, even if they just copy
values predicted by the baseline model.

When parsers are applied to raw text, the metric
must be adjusted to the possibility that the num-
ber of nodes in gold-standard annotation and in
the system output vary. Therefore, the evaluation
starts with aligning system nodes and gold nodes.
A dependency relation cannot be counted as cor-
rect if one of the nodes could not be aligned to a
gold node. See Section 3.4 and onward for more
details on alignment.

The evaluation software is a Python script that
computes the three main metrics and a number of
additional statistics. It is freely available for down-
load from the shared task website.6

3.1 LAS: Labeled Attachment Score

The standard evaluation metric of dependency
parsing is the labeled attachment score (LAS), i.e.,
the percentage of nodes with correctly assigned
reference to the parent node, including the label
(type) of the relation. For scoring purposes, only

5http://hdl.handle.net/11234/1-2837
6http://universaldependencies.org/

conll18/conll18_ud_eval.py

http://hdl.handle.net/11234/1-2837
http://universaldependencies.org/conll18/conll18_ud_eval.py
http://universaldependencies.org/conll18/conll18_ud_eval.py
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Content nsubj, obj, iobj, csubj, ccomp, xcomp, obl, vocative, expl,
dislocated, advcl, advmod, discourse, nmod, appos, nummod,
acl, amod, conj, fixed, flat, compound, list, parataxis,
orphan, goeswith, reparandum, root, dep

Function aux, cop, mark, det, clf, case, cc
Ignored punct

Table 3: Universal dependency relations considered as pertaining to content words and function words,
respectively, in MLAS. Content word relations are evaluated directly; words attached via functional
relations are treated as features of their parent nodes.

Features PronType, NumType, Poss, Reflex, Foreign, Abbr, Gender,
Animacy, Number, Case, Definite, Degree, VerbForm, Mood,
Tense, Aspect, Voice, Evident, Polarity, Person, Polite

Table 4: Universal features whose values are evaluated in MLAS. Any other features are ignored.

universal dependency labels were taken into ac-
count, which means that language-specific sub-
types such as expl:pv (pronoun of a pronomi-
nal verb), a subtype of the universal relation expl
(expletive), were truncated to expl both in the
gold standard and in the system output before
comparing them.

In the end-to-end evaluation of our task, LAS is
re-defined as the harmonic mean (F1) of precision
P and recall R, where

P =
#correctRelations
#systemNodes

(1)

R =
#correctRelations

#goldNodes
(2)

LAS =
2PR

P +R
(3)

Note that attachment of all nodes including punc-
tuation is evaluated. LAS is computed separately
for each of the 82 test files and a macro-average of
all these scores is used to rank the systems.

3.2 MLAS: Morphology-Aware Labeled
Attachment Score

MLAS aims at cross-linguistic comparability of
the scores. It is an extension of CLAS (Nivre and
Fang, 2017), which was tested experimentally in
the 2017 task. CLAS focuses on dependencies be-
tween content words and disregards attachment of
function words; in MLAS, function words are not
ignored, but they are treated as features of content
words. In addition, part-of-speech tags and mor-
phological features are evaluated, too.

The idea behind MLAS is that function words
often correspond to morphological features in
other languages. Furthermore, languages with
many function words (e.g., English) have longer
sentences than morphologically rich languages
(e.g., Finnish), hence a single error in Finnish
costs the parser significantly more than an error
in English according to LAS.

The core part is identical to LAS (Section 3.1):
for aligned system and gold nodes, their respec-
tive parent nodes are considered; if the system
parent is not aligned with the gold parent, or if
the universal relation label differs, the word is not
counted as correctly attached. Unlike LAS, cer-
tain types of relations (Table 3) are not evaluated
directly. Words attached via such relations (in ei-
ther system or gold data) are not counted as inde-
pendent words. Instead, they are treated as fea-
tures of the content words they belong to. There-
fore, a system-produced word counts as correct if
it is aligned and attached correctly, its universal
POS tag and selected morphological features (Ta-
ble 4) are correct, all its function words are at-
tached correctly, and their POS tags and features
are also correct. Punctuation nodes are neither
content nor function words; their attachment is ig-
nored in MLAS.

3.3 BLEX: Bilexical Dependency Score

BLEX is similar to MLAS in that it focuses on
relations between content words. Instead of mor-
phological features, it incorporates lemmatization
in the evaluation. It is thus closer to semantic
content and evaluates two aspects of UD annota-
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tion that are important for language understand-
ing: dependencies and lexemes. The inclusion of
this metric should motivate the competing teams
to model lemmas, the last important piece of an-
notation that is not captured by the other metrics.
A system that scores high in all three metrics will
thus be a general-purpose language-analysis tool
that tackles segmentation, morphology and sur-
face syntax.

Computation of BLEX is analogous to LAS and
MLAS. Precision and recall of correct attachments
is calculated, attachment of function words and
punctuation is ignored (Table 3). An attachment
is correct if the parent and child nodes are aligned
to the corresponding nodes in gold standard, if the
universal dependency label is correct, and if the
lemma of the child node is correct.

A few UD treebanks lack lemmatization (or, as
in Uyghur, have lemmas only for some words and
not for others). A system may still be able to
predict the lemmas if it learns them in other tree-
banks. Such system should not be penalized just
because no gold standard is available; therefore,
if the gold lemma is a single underscore character
(“ ”), any system-produced lemma is considered
correct.

3.4 Token Alignment
UD defines two levels of token/word segmenta-
tion. The lower level corresponds to what is usu-
ally understood as tokenization. However, unlike
some popular tokenization schemes, it does not
include any normalization of the non-whitespace
characters. We can safely assume that any two tok-
enizations of a text differ only in whitespace while
the remaining characters are identical. There is
thus a 1-1 mapping between gold and system non-
whitespace characters, and two tokens are aligned
if all their characters match.

3.5 Syntactic Word Alignment
The higher segmentation level is based on the no-
tion of syntactic word. Some languages contain
multi-word tokens (MWT) that are regarded as
contractions of multiple syntactic words. For ex-
ample, the German token zum is a contraction of
the preposition zu “to” and the article dem “the”.

Syntactic words constitute independent nodes in
dependency trees. As shown by the example, it
is not required that the MWT is a pure concate-
nation of the participating words; the simple to-
ken alignment thus does not work when MWTs

are involved. Fortunately, the CoNLL-U file for-
mat used in UD clearly marks all MWTs so we
can detect them both in system output and in gold
data. Whenever one or more MWTs have overlap-
ping spans of surface character offsets, the longest
common subsequence algorithm is used to align
syntactic words within these spans.

3.6 Sentence Segmentation

Words are aligned and dependencies are evaluated
in the entire file without considering sentence seg-
mentation. Still, the accuracy of sentence bound-
aries has an indirect impact on attachment scores:
any missing or extra sentence boundary necessar-
ily makes one or more dependency relations incor-
rect.

3.7 Invalid Output

If a system fails to produce one of the 82 files or
if the file is not valid CoNLL-U format, the score
of that file (counting towards the system’s macro-
average) is zero.

Formal validity is defined more leniently than
for UD-released treebanks. For example, a non-
existent dependency type does not render the
whole file invalid, it only costs the system one in-
correct relation. However, cycles and multi-root
sentences are disallowed. A file is also invalid
if there are character mismatches that could make
the token-alignment algorithm fail.

3.8 Extrinsic Parser Evaluation

The metrics described above are all intrinsic mea-
sures: they evaluate the grammatical analysis task
per se, with the hope that better scores corre-
spond to output that is more useful for downstream
NLP applications. Nevertheless, such correlations
are not automatically granted. We thus seek to
complement our task with an extrinsic evaluation,
where the output of parsing systems is exploited
by applications like biological event extraction,
opinion analysis and negation scope resolution.

This optional track involves English only. It
is organized in collaboration with the EPE initia-
tive;7 for details see Fares et al. (2018).

4 TIRA: The System Submission
Platform

Similarly to our 2017 task and to some other re-
cent CoNLL shared tasks, we employed the cloud-

7http://epe.nlpl.eu/

http://epe.nlpl.eu/
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based evaluation platform TIRA (Potthast et al.,
2014),8 which implements the evaluation as a ser-
vice paradigm (Hanbury et al., 2015). Instead of
processing test data on their own hardware and
submitting the outputs, participants submit work-
ing software. Naturally, software submissions
bring about additional overhead for both organiz-
ers and participants, whereas the goal of an evalua-
tion platform like TIRA is to reduce this overhead
to a bearable level.

4.1 Blind Evaluation

Traditionally, evaluations in shared tasks are half-
blind (the test data are shared with participants
while the ground truth is withheld). TIRA en-
ables fully blind evaluation, where the software is
locked in a datalock together with the test data, its
output is recorded but all communication channels
to the outside are closed or tightly moderated. The
participants do not even see the input to their soft-
ware. This feature of TIRA was not too impor-
tant in the present task, as UD data is not secret,
and the participants were simply trusted that they
would not exploit any knowledge of the test data
they might have access to.

However, closing down all communication
channels also has its downsides, since participants
cannot check their running software; before the
system run completes, even the task moderator
does not see whether the system is really pro-
ducing output and not just sitting in an endless
loop. In order to alleviate this extra burden, we
made two modifications compared to the previ-
ous year: 1. Participants were explicitly advised
to invoke shorter runs that process only a subset
of the test files. The organizers would then stitch
the partial runs into one set of results. 2. Partici-
pants were able to see their scores on the test set
rounded to the nearest multiple of 5%. This way
they could spot anomalies possibly caused by ill-
selected models. The exact scores remained hid-
den because we did not want the participants to
fine-tune their systems against the test data.

4.2 Replicability

It is desirable that published experiments can be
re-run yielding the same results, and that the al-
gorithms can be tested on alternative test data in
the future. Ensuring both requires that a to-be-
evaluated software is preserved in working con-

8http://www.tira.io/

dition for as long as possible. TIRA supplies
participants with a virtual machine, offering a
range of commonly used operating systems. Once
deployed and tested, the virtual machines are
archived to preserve the software within.

In addition, some participants agreed to share
their code so that we decided to collect the respec-
tive projects in an open source repository hosted
on GitHub.9

5 Baseline System

We prepared a set of baseline models using UD-
Pipe 1.2 (Straka and Straková, 2017).

The baseline models were released together
with the UD 2.2 training data. For each of the
73 treebanks with non-empty training data we
trained one UDPipe model, utilizing training data
for training and development data for hyperparam-
eter tuning. If a treebank had no development data,
we cut 10% of the training sentences and consid-
ered it as development data for the purpose of tun-
ing hyperparameters of the baseline model (em-
ploying only the remainder of the original training
data for the actual training in that case).

In addition to the treebank-specific models, we
also trained a “mixed model” on samples from all
treebanks. Specifically, we utilized the first 200
training sentences of each treebank (or less in case
of small treebanks) as training data, and at most 20
sentences from each treebank’s development set as
development data.

The baseline models, together with all informa-
tion needed to replicate them (hyperparameters,
the modified train-dev split where applicable, and
pre-computed word embeddings for the parser) are
available from http://hdl.handle.net/11234/

1-2859.
Additionally, the released archive also contains

the training and development data with predicted
morphology. Morphology in development data
was predicted using the baseline models, morphol-
ogy in training data via “jack-knifing” (split the
training set into 10 parts, train a model on 9 parts,
use it to predict morphology in the tenth part, re-
peat for all 10 target parts). The same hyperparam-
eters were used as those used to train the baseline
model on the entire training set.

The UDPipe baseline models are able to recon-
struct nearly all annotation from CoNLL-U files
– they can generate segmentation, tokenization,

9https://github.com/CoNLL-UD-2018

http://www.tira.io/
http://hdl.handle.net/11234/1-2859
http://hdl.handle.net/11234/1-2859
https://github.com/CoNLL-UD-2018
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Treebank without Substitution
training data model

Breton KEB mixed model
Czech PUD Czech PDT
English PUD English EWT
Faroese OFT mixed model
Finnish PUD Finnish TDT
Japanese Modern Japanese GSD
Naija NSC mixed model
Swedish PUD Swedish Talbanken
Thai PUD mixed model

Table 5: Substitution models of the baseline sys-
tems for treebanks without training data.

multi-word token splitting, morphological annota-
tion (lemmas, UPOS, XPOS and FEATS) and de-
pendency trees. Participants were free to use any
part of the model in their systems – for all test sets,
we provided UDPipe processed variants in addi-
tion to raw text inputs.

Baseline UDPipe Shared Task System The
shared task baseline system employs the UDPipe
1.2 baseline models. For the nine treebanks with-
out their own training data, a substitution model
according to Table 5 was used.

6 Results

6.1 Official Parsing Results
Table 6 gives the main ranking of participating
systems by the LAS F1 score macro-averaged over
all 82 test files. The table also shows the perfor-
mance of the baseline UDPipe system; 17 of the
25 systems managed to outperform it. The base-
line is comparatively weaker than in the 2017 task
(only 12 out of 32 systems beat the baseline there).
The ranking of the baseline system by MLAS is
similar (Table 7) but in BLEX, the baseline jumps
to rank 13 (Table 8). Besides the simple explana-
tion that UDPipe 1.2 is good at lemmatization, we
could also hypothesize that some teams put less
effort in building lemmatization models (see also
the last column in Table 10).

Each ranking has a different winning system, al-
though the other two winners are typically closely
following. The same 8–10 systems occupy best
positions in all three tables, though with variable
mutual ranking. Some teams seem to have delib-
erately neglected some of the evaluated attributes:
Uppsala is rank 7 in LAS and MLAS, but 24 in

Team LAS
1. HIT-SCIR (Che et al.) 75.84
2. TurkuNLP (Kanerva et al.) 73.28
3. UDPipe Future (Straka) 73.11

LATTICE (Lim et al.) 73.02
ICS PAS (Rybak and Wróblewska) 73.02

6. CEA LIST (Duthoo and Mesnard) 72.56
7. Uppsala (Smith et al.) 72.37

Stanford (Qi et al.) 72.29
9. AntNLP (Ji et al.) 70.90

NLP-Cube (Boros, et al.) 70.82
11. ParisNLP (Jawahar et al.) 70.64
12. SLT-Interactions (Bhat et al.) 69.98
13. IBM NY (Wan et al.) 69.11
14. UniMelb (Nguyen and Verspoor) 68.66
15. LeisureX (Li et al.) 68.31
16. KParse (Kırnap et al.) 66.58
17. Fudan (Chen et al.) 66.34
18. BASELINE UDPipe 1.2 65.80
19. Phoenix (Wu et al.) 65.61
20. CUNI x-ling (Rosa and Mareček) 64.87
21. BOUN (Özateş et al.) 63.54
22. ONLP lab (Seker et al.) 58.35
23. iParse (no paper) 55.83
24. HUJI (Hershcovich et al.) 53.69
25. ArmParser (Arakelyan et al.) 47.02
26. SParse (Önder et al.) 1.95

Table 6: Ranking of the participating systems by
the labeled attachment F1-score (LAS), macro-
averaged over 82 test sets. Pairs of systems with
significantly (p < 0.05) different LAS are sepa-
rated by a line. Citations refer to the correspond-
ing system-description papers in this volume.

BLEX; IBM NY is rank 13 in LAS but 24 in
MLAS and 23 in BLEX.

While the LAS scores on individual treebanks
are comparable to the 2017 task, the macro aver-
age is not, because the set of treebanks is different,
and the impact of low-resource languages seems to
be higher in the present task.

We used bootstrap resampling to compute 95%
confidence intervals: they are in the range ±0.11
to ±0.16 (% LAS/MLAS/BLEX) for all systems
except SParse (where it is ±0.00).
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Team MLAS
1. UDPipe Future (Praha) 61.25
2. TurkuNLP (Turku) 60.99

Stanford (Stanford) 60.92
4. ICS PAS (Warszawa) 60.25
5. CEA LIST (Paris) 59.92
6. HIT-SCIR (Harbin) 59.78
7. Uppsala (Uppsala) 59.20
8. NLP-Cube (Bucureşti) 57.32
9. LATTICE (Paris) 57.01

10. AntNLP (Shanghai) 55.92
11. ParisNLP (Paris) 55.74
12. SLT-Interactions (Bengaluru) 54.52
13. LeisureX (Shanghai) 53.70

UniMelb (Melbourne) 53.62
15. KParse (İstanbul) 53.25
16. Fudan (Shanghai) 52.69
17. BASELINE UDPipe 1.2 52.42

Phoenix (Shanghai) 52.26
19. BOUN (İstanbul) 50.40

CUNI x-ling (Praha) 50.35
21. ONLP lab (Ra’anana) 46.09
22. iParse (Pittsburgh) 45.65
23. HUJI (Yerushalayim) 44.60
24. IBM NY (Yorktown Heights) 40.61
25. ArmParser (Yerevan) 36.28
26. SParse (İstanbul) 1.68

Table 7: Ranking of the participating systems by
MLAS, macro-averaged over 82 test sets. Pairs
of systems with significantly (p < 0.05) different
MLAS are separated by a line.

We used paired bootstrap resampling to com-
pute whether the difference between two neigh-
boring systems is significant (p < 0.05).10

6.2 Secondary Metrics

In addition to the main LAS ranking, we evaluated
the systems along multiple other axes, which may
shed more light on their strengths and weaknesses.
This section provides an overview of selected sec-
ondary metrics for systems matching or surpassing
the baseline; a large number of additional results
are available at the shared task website.11

The website also features a LAS ranking of
unofficial system runs, i.e. those that were not

10Using Udapi (Popel et al., 2017) eval.Conll18, marked
by the presence or absence of horizontal lines in Tables 6–8.

11http://universaldependencies.org/
conll18/results.html

Team BLEX
1. TurkuNLP (Turku) 66.09
2. HIT-SCIR (Harbin) 65.33
3. UDPipe Future (Praha) 64.49

ICS PAS (Warszawa) 64.44
5. Stanford (Stanford) 64.04
6. LATTICE (Paris) 62.39

CEA LIST (Paris) 62.23
8. AntNLP (Shanghai) 60.91
9. ParisNLP (Paris) 60.70

10. SLT-Interactions (Bengaluru) 59.68
11. UniMelb (Melbourne) 58.67
12. LeisureX (Shanghai) 58.42
13. BASELINE UDPipe 1.2 55.80

Phoenix (Shanghai) 55.71
15. NLP-Cube (Bucureşti) 55.52
16. KParse (İstanbul) 55.26
17. CUNI x-ling (Praha) 54.07

Fudan (Shanghai) 54.03
19. BOUN (İstanbul) 53.45
20. iParse (Pittsburgh) 48.71
21. HUJI (Yerushalayim) 48.05
22. ArmParser (Yerevan) 39.18
23. IBM NY (Yorktown Heights) 32.55
24. Uppsala (Uppsala) 32.09
25. ONLP lab (Ra’anana) 28.29
26. SParse (İstanbul) 1.71

Table 8: Ranking of the participating systems by
BLEX, macro-averaged over 82 test sets. Pairs
of systems with significantly (p < 0.05) different
BLEX are separated by a line.

marked by their teams as primary runs, or were
even run after the official evaluation phase closed
and test data were unblinded. The difference from
the official results is much less dramatic than in
2017, with the exception of the team SParse, who
managed to fix their software and produce more
valid output files.

As an experiment, we also applied the 2017 sys-
tem submissions to the 2018 test data. This allows
us to test how many systems can actually be used
to produce new data without a glitch, as well as
to see to what extent the results change over one
year and two releases of UD. Here it should be
noted that not all of the 2018 task languages and
treebanks were present in the 2017 task, therefore
causing many systems fail due to an unknown lan-
guage or treebank code. The full results of this

https://github.com/udapi/udapi-python/blob/master/udapi/block/eval/conll18.py
http://universaldependencies.org/conll18/results.html
http://universaldependencies.org/conll18/results.html
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Team Toks Wrds Sents
1. Uppsala 97.60 98.18 83.80
2. HIT-SCIR 98.42 98.12 83.87
3. CEA LIST 98.16 97.78 82.79
4. CUNI x-ling 98.09 97.74 82.80
5. TurkuNLP 97.83 97.42 83.03
6. SLT-Interactions 97.51 97.09 83.01
7. UDPipe Future 97.46 97.04 83.64
8. Phoenix 97.46 97.03 82.91
9. BASELINE UDPipe 97.39 96.97 83.01

ParisNLP 97.39 96.97 83.01
AntNLP 97.39 96.97 83.01
UniMelb 97.39 96.97 83.01
BOUN 97.39 96.97 83.01
ICS PAS 97.39 96.97 83.01
LATTICE 97.39 96.97 83.01
LeisureX 97.39 96.97 83.01
KParse 97.39 96.97 83.01

18. Fudan 97.38 96.96 82.85
19. IBM NY 97.30 96.92 83.51
20. ONLP lab 97.28 96.86 83.00
21. NLP-Cube 97.36 96.80 82.55
22. Stanford 96.19 95.99 76.55
23. HUJI 94.95 94.61 80.84
24. ArmParser 79.75 79.41 13.33
25. iParse 78.45 78.11 68.37
26. SParse 2.32 2.32 2.34

Table 9: Tokenization, word segmentation and
sentence segmentation (ordered by word F1

scores; out-of-order scores in the other two
columns are bold).

experiment are available on the shared task web-
site.12

Table 9 evaluates detection of tokens, syntactic
words and sentences. About a third of the sys-
tems trusted the baseline segmentation; this is less
than in 2017. For most languages and in aggre-
gate, the segmentation scores are very high and
their impact on parsing scores is not easy to prove;
but it likely played a role in languages where seg-
mentation is hard. For example, HIT-SCIR’s word
segmentation in Vietnamese surpasses the second
system by a margin of 6 percent points; likewise,
the system’s advantage in LAS and MLAS (but
not in BLEX!) amounts to 7–8 points. Similarly,
Uppsala and ParisNLP achieved good segmenta-

12http://universaldependencies.org/
conll18/results-2017-systems.html

Team UPOS Feats Lemm
1. Uppsala 90.91 87.59 58.50
2. HIT-SCIR 90.19 84.24 88.82
3. CEA LIST 89.97 86.83 88.90
4. TurkuNLP 89.81 86.70 91.24
5. LATTICE 89.53 83.74 87.84
6. UDPipe Future 89.37 86.67 89.32
7. Stanford 89.01 85.47 88.32
8. ICS PAS 88.70 85.14 87.99
9. CUNI x-ling 88.68 84.56 88.96

10. NLP-Cube 88.50 85.08 81.21
11. SLT-Interactions 88.12 83.72 87.51
12. IBM NY 88.02 59.11 59.51
13. UniMelb 87.90 83.74 87.84
14. KParse 87.62 84.32 86.26
15. Phoenix 87.49 83.87 87.69
16. ParisNLP 87.35 83.74 87.84
17. BASELINE UDPipe 87.32 83.74 87.84

AntNLP 87.32 83.74 87.84
19. ONLP lab 87.25 83.67 57.10
20. Fudan 87.25 83.47 85.91
21. BOUN 87.19 83.73 87.68
22. LeisureX 87.15 83.46 87.77
23. HUJI 85.06 81.51 85.61
24. ArmParser 72.99 69.91 72.22
25. iParse 71.38 68.64 71.68
26. SParse 2.25 2.29 2.28

Table 10: Universal POS tags, features and lem-
mas (ordered by UPOS F1 scores; out-of-order
scores in the other two columns are bold).

tion scores (better than their respective macro-
averages) on Arabic. They were able to translate it
into better LAS, but not MLAS and BLEX, where
there were too many other chances to make an er-
ror.

The complexity of the new metrics, especially
MLAS, is further underlined by Table 10: Uppsala
is the clear winner in both UPOS tags and morpho-
logical features, but 6 other teams had better de-
pendency relations and better MLAS. Note that as
with segmentation, morphology predicted by the
baseline system was available, though only a few
systems seem to have used it without attempting
to improve it.

6.3 Partial Results

Table 11 gives the three main scores averaged over
the 61 “big” treebanks (training data larger than

http://universaldependencies.org/conll18/results-2017-systems.html
http://universaldependencies.org/conll18/results-2017-systems.html
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Team LAS MLAS BLEX
1. HIT-SCIR 84.37 70.12 75.05
2. Stanford 83.03 72.67 75.46
3. TurkuNLP 81.85 71.27 75.83
4. UDPipe Future 81.83 71.71 74.67
5. ICS PAS 81.72 70.30 74.42
6. CEA LIST 81.66 70.89 72.32
7. LATTICE 80.97 66.27 71.50
8. NLP-Cube 80.48 67.79 64.76
9. ParisNLP 80.29 65.88 70.95

10. Uppsala 80.25 68.81 36.02
11. SLT-Interactions 79.67 64.95 69.77
12. AntNLP 79.61 65.43 70.34
13. LeisureX 77.98 63.79 68.55
14. UniMelb 77.69 63.17 68.25
15. IBM NY 77.55 47.34 36.68
16. Fudan 75.42 62.28 62.90
17. KParse 74.84 62.40 63.84
18. BASELINE UDPipe 74.14 61.27 64.67
19. Phoenix 73.93 61.12 64.47
20. BOUN 72.85 60.00 62.99
21. CUNI x-ling 71.54 58.33 61.63
22. ONLP lab 67.08 55.20 33.08
23. iParse 66.55 55.37 58.80
24. HUJI 62.07 53.20 56.90
25. ArmParser 58.14 45.87 49.25
26. SParse 2.63 2.26 2.30

Table 11: Average LAS on the 61 “big” treebanks
(ordered by LAS F1 scores; out-of-order scores in
the other two columns are bold).

test data, development data available). Higher
scores reflect the fact that models for these test
sets are easier to learn: enough data is available,
no cross-lingual or cross-domain learning is nec-
essary (the extra test sets are not included here).
Regarding ranking, the Stanford system makes a
remarkable jump when it does not have to carry
the load of underresourced languages: from rank
8 to 2 in LAS, from 3 to 1 in MLAS and from 5 to
2 in BLEX.

Table 12 gives the LAS F1 score on the nine
low-resource languages only. Here we have a true
specialist: The team CUNI x-ling lives up to its
name and wins in all three scores, although in the
overall ranking they fall even slightly behind the
baseline. On the other hand, the scores are ex-
tremely low and the outputs are hardly useful for
any downstream application. Especially morphol-

Team LAS MLAS BLEX
1. CUNI x-ling 27.89 6.13 13.98
2. Uppsala 25.87 5.16 9.03
3. CEA LIST 23.90 3.75 10.99
4. HIT-SCIR 23.88 2.88 10.50
5. LATTICE 23.39 4.38 10.01
6. TurkuNLP 22.91 3.59 11.40
7. IBM NY 21.88 2.62 7.17
8. UDPipe Future 21.75 2.82 8.80
9. ICS PAS 19.26 1.89 6.17

10. AntNLP 18.59 3.43 8.61
11. KParse 17.84 3.32 6.58
12. SLT-Interactions 17.47 1.79 6.95
13. Stanford 17.45 2.76 7.63
14. BASELINE UDPipe 17.17 3.44 7.63

UniMelb 17.17 3.44 7.63
16. LeisureX 17.16 3.43 7.63
17. Phoenix 16.99 3.02 8.00
18. NLP-Cube 16.85 3.39 7.05
19. ParisNLP 16.52 2.53 6.75
20. ONLP lab 15.98 3.58 4.96
21. Fudan 15.45 2.98 6.61
22. BOUN 14.78 2.59 6.43
23. HUJI 8.53 0.92 2.77
24. ArmParser 7.47 1.86 3.54
25. iParse 2.82 0.23 0.97
26. SParse 0.00 0.00 0.00

Table 12: Average LAS, MLAS and BLEX on the
9 low-resource languages: Armenian (hy), Bre-
ton (br), Buryat (bxr), Faroese (fo), Kazakh (kk),
Kurmanji (kmr), Naija (pcm), Thai (th) and Upper
Sorbian (hsb) (ordered by LAS F1 scores; out-of-
order scores in the other two columns are bold).

ogy is almost impossible to learn from foreign lan-
guages, hence the much lower values of MLAS
and BLEX. BLEX is a bit better than MLAS,
which could be explained by cases where a word
form is identical to its lemma. However, there
are significant language-by-language differences;
the best LAS on Faroese and Upper Sorbian sur-
passing 45%. This probably owes to the presence
of many Germanic and Slavic treebanks in train-
ing data, including some of the largest datasets in
UD. Three languages, Buryat, Kurmanji and Up-
per Sorbian, were introduced in the 2017 task as
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Team LAS MLAS BLEX
1. HIT-SCIR 69.53 45.94 53.30
2. LATTICE 68.12 45.03 51.71
3. ICS PAS 66.90 49.24 54.89
4. TurkuNLP 64.48 47.63 53.54
5. UDPipe Future 64.21 47.53 49.53
6. AntNLP 63.73 42.24 48.31
7. Uppsala 63.60 46.00 29.25
8. ParisNLP 60.84 40.71 46.08
9. CEA LIST 57.34 39.97 43.39

10. KParse 57.32 39.20 43.61
11. NLP-Cube 56.78 37.13 38.30
12. SLT-Interactions 56.74 35.73 42.90
13. IBM NY 56.13 26.51 25.23
14. UniMelb 56.12 36.09 42.09
15. BASELINE UDPipe 55.01 38.80 41.06

LeisureX 55.01 38.80 41.06
17. Phoenix 54.63 38.38 40.72

Fudan 54.63 38.15 40.07
19. CUNI x-ling 54.33 38.10 40.70
20. BOUN 50.18 34.29 36.75
21. Stanford 48.56 34.86 38.55
22. ONLP lab 47.49 32.74 22.39
23. iParse 38.79 28.03 29.62
24. HUJI 36.74 24.47 27.70
25. ArmParser 34.54 22.94 25.26
26. SParse 0.00 0.00 0.00

Table 13: Average attachment score on the 7
small treebanks: Galician TreeGal, Irish, Latin
Perseus, North Sámi, Norwegian Nynorsk LIA,
Russian Taiga and Slovenian SST (ordered by
LAS F1 scores; out-of-order scores in the other
two columns are bold).

surprise languages and had higher scores there.13

This is because in 2017, the segmentation, POS
tags and morphology UDPipe models were trained
on the test data, applied to it via cross-validation,
and made available to the systems. Such an ap-
proach makes the conditions unrealistic, therefore
it was not repeated this year. Consequently, pars-
ing these languages is now much harder.

In contrast, the results on the 7 treebanks with
“small” training data and no development data
(Table 13) are higher on average, but again the
variance is significant. The smallest treebank

13The fourth surprise language, North Sámi, has now ad-
ditional training data and does not fall in the low-resource
category.

Team LAS MLAS BLEX
1. HIT-SCIR 74.20 55.52 62.34
2. Stanford 73.14 58.75 61.96
3. LATTICE 72.34 55.60 60.42
4. Uppsala 72.27 57.80 29.73
5. ICS PAS 72.18 58.07 60.97
6. TurkuNLP 71.78 57.54 63.25
7. UDPipe Future 71.57 57.93 61.52
8. CEA LIST 70.45 54.99 57.83
9. NLP-Cube 69.83 55.01 54.15

10. IBM NY 69.40 46.59 38.12
11. AntNLP 68.87 53.47 57.71
12. UniMelb 68.72 52.05 56.77
13. Phoenix 66.97 52.26 55.69
14. BASELINE UDPipe 66.63 51.75 54.87
15. KParse 66.55 51.29 54.45
16. SLT-Interactions 64.73 48.47 54.90
17. CUNI x-ling 64.70 49.71 52.72
18. ParisNLP 64.09 48.79 53.16
19. Fudan 63.54 45.54 50.73
20. LeisureX 61.05 41.95 50.60
21. BOUN 56.46 41.91 45.12
22. HUJI 56.35 46.52 50.10
23. iParse 44.20 33.43 38.18
24. ONLP lab 43.33 30.20 20.08
25. ArmParser 0.00 0.00 0.00

SParse 0.00 0.00 0.00

Table 14: Average attachment score on the 5 addi-
tional test sets for high-resource languages: Czech
PUD, English PUD, Finnish PUD, Japanese Mod-
ern and Swedish PUD (ordered by LAS F1 scores;
out-of-order scores in the other two columns are
bold).

in the group, Norwegian Nynorsk LIA, has only
3583 training words. There are two larger Nor-
wegian treebanks that could be used as additional
training sources. However, the LIA treebank con-
sists of spoken dialects and is probably quite dis-
similar to the other treebanks. The same can be
said about Slovenian SST and the other Slove-
nian treebank; SST is the most difficult dataset
in the group, despite of having almost 20K of its
own training words. Other treebanks, like Rus-
sian Taiga and Galician TreeGal, have much bet-
ter scores (74% LAS, about 61% MLAS and 64%
BLEX). There are also two treebanks that are the
sole representatives of their languages: Irish and
North Sámi. Their best LAS is around 70%: com-
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parable to Nynorsk LIA but much better than SST.
ICS PAS is the most successful system in the do-
main of small treebanks, especially when judged
by MLAS and BLEX.

Table 14 gives the average LAS on the 5 ex-
tra test sets (no own training data, but other tree-
banks of the same language exist). Four of them
come from the Parallel UD (PUD) collection in-
troduced in the 2017 task (Zeman et al., 2017).
The fifth, Japanese Modern, turned out to be one of
the toughest test sets in this shared task. There is
another Japanese treebank, GSD, with over 160K
training tokens, but the Modern dataset seems al-
most inapproachable with models trained on GSD.
A closer inspection reveals why: despite its name,
it is actually a corpus of historical Japanese, al-
though from the relatively recent Meiji and Taishō
periods (1868–1926). An average sentence in
GSD is about 1.3× longer than in Modern. GSD
has significantly more tokens tagged as auxiliaries,
but more importantly, the top ten AUX lemmas
in the two treebanks are completely disjoint sets.
Some other words are out-of-vocabulary because
their preferred spelling changed. For instance, the
demonstrative pronoun sore is written using hira-
gana in GSD, but a kanji character is used in Mod-
ern. Striking differences can be observed also in
dependency relations: in GSD, 3.7% relations are
nsubj (subject), and 1.2% are cop (copula). In
Modern, there is just 0.13% of subjects, and not a
single occurrence of a copula.

See Tables 15, 16 and 17 for a ranking of all
test sets by the best scores achieved on them by
any parser. Note that this cannot be directly inter-
preted as a ranking of languages by their parsing
difficulty: many treebanks have high ranks simply
because the corresponding training data is large.
Table 18 compares average LAS and MLAS for
each treebank.

Finally, Tables 19 and 20 show the treebanks
where word and sentence segmentation was ex-
tremely difficult (judged by the average parser
score). Not surprisingly, word segmentation is dif-
ficult for the low-resource languages and for lan-
guages like Chinese, Vietnamese, Japanese and
Thai, where spaces do not separate words. No-
tably the Japanese GSD set is not as difficult, but
whoever trusted it, crashed on the “Modern” set.
Sentence segmentation was particularly hard for
treebanks without punctuation, i.e., most of the
classical languages and spoken data.

Treebank LAS Best system Avg StDev
1. pl lfg 94.86 HIT-SCIR 85.89 ± 6.97
2. ru syntagrus 92.48 HIT-SCIR 79.68 ± 9.09
3. hi hdtb 92.41 HIT-SCIR 85.16 ± 5.32
4. pl sz 92.23 HIT-SCIR 81.47 ± 7.27
5. cs fictree 92.02 HIT-SCIR 82.10 ± 7.26
6. it isdt 92.00 HIT-SCIR 87.61 ± 4.12
7. cs pdt 91.68 HIT-SCIR 82.18 ± 6.91
8. ca ancora 91.61 HIT-SCIR 83.61 ± 6.01
9. cs cac 91.61 HIT-SCIR 82.69 ± 6.93

10. sl ssj 91.47 HIT-SCIR 75.00 ± 9.13
11. no bokmaal 91.23 HIT-SCIR 79.80 ± 7.29
12. bg btb 91.22 HIT-SCIR 82.52 ± 5.88
13. no nynorsk 90.99 HIT-SCIR 78.55 ± 7.88
14. es ancora 90.93 HIT-SCIR 82.84 ± 6.17
15. fi pud 90.23 HIT-SCIR 68.87 ±15.61
16. fr sequoia 89.89 LATTICE 80.55 ± 5.91
17. el gdt 89.65 HIT-SCIR 80.65 ± 6.05
18. nl alpino 89.56 HIT-SCIR 77.76 ± 7.42
19. sk snk 88.85 HIT-SCIR 76.53 ± 7.24
20. fi tdt 88.73 HIT-SCIR 73.55 ± 9.39
21. sr set 88.66 Stanford 79.84 ± 6.57
22. sv talbanken 88.63 HIT-SCIR 77.71 ± 6.50
23. fi ftb 88.53 HIT-SCIR 76.89 ± 7.60
24. uk iu 88.43 HIT-SCIR 72.47 ± 8.25
25. fa seraji 88.11 HIT-SCIR 78.71 ± 6.04
26. en pud 87.89 LATTICE 74.51 ± 8.28
27. pt bosque 87.81 Stanford 80.49 ± 5.46
28. hr set 87.36 HIT-SCIR 78.37 ± 6.42
29. fro srcmf 87.12 UDPipe Future 74.38 ±16.74
30. la ittb 87.08 HIT-SCIR 77.00 ± 7.42
31. ko kaist 86.91 HIT-SCIR 77.10 ± 8.72
32. fr gsd 86.89 HIT-SCIR 79.43 ± 5.47
33. ro rrt 86.87 HIT-SCIR 75.77 ± 7.66
34. nl lassysmall 86.84 HIT-SCIR 75.08 ± 6.59
35. da ddt 86.28 HIT-SCIR 75.02 ± 6.47
36. cs pud 86.13 HIT-SCIR 73.24 ± 9.97
37. af afribooms 85.47 HIT-SCIR 76.61 ± 6.17
38. et edt 85.35 HIT-SCIR 72.08 ± 8.71
39. ko gsd 85.14 HIT-SCIR 71.88 ±10.53
40. en gum 85.05 LATTICE 74.20 ± 6.27
41. en ewt 84.57 HIT-SCIR 75.99 ± 5.40
42. eu bdt 84.22 HIT-SCIR 72.08 ± 8.83
43. sv lines 84.08 HIT-SCIR 73.76 ± 5.98
44. lv lvtb 83.97 HIT-SCIR 67.76 ± 9.01
45. ur udtb 83.39 HIT-SCIR 75.89 ± 4.69
46. ja gsd 83.11 HIT-SCIR 73.68 ± 4.55
47. gl ctg 82.76 Stanford 72.46 ± 7.13
48. hu szeged 82.66 HIT-SCIR 67.05 ± 8.63
49. en lines 81.97 HIT-SCIR 72.28 ± 5.59
50. de gsd 80.36 HIT-SCIR 70.13 ± 7.14
51. sv pud 80.35 HIT-SCIR 67.02 ± 9.23
52. id gsd 80.05 HIT-SCIR 73.05 ± 4.69
53. it postwita 79.39 HIT-SCIR 64.95 ± 6.88
54. grc perseus 79.39 HIT-SCIR 59.01 ±15.56
55. grc proiel 79.25 HIT-SCIR 65.02 ±14.58
56. ar padt 77.06 Stanford 64.07 ± 6.41
57. zh gsd 76.77 HIT-SCIR 60.32 ± 6.14
58. he htb 76.09 Stanford 58.73 ± 5.29
59. fr spoken 75.78 HIT-SCIR 64.66 ± 5.35
60. cu proiel 75.73 Stanford 62.64 ± 6.98
61. gl treegal 74.25 UDPipe Future 64.65 ± 5.61
62. ru taiga 74.24 ICS PAS 56.27 ± 9.16
63. la proiel 73.61 HIT-SCIR 61.25 ± 6.87
64. la perseus 72.63 HIT-SCIR 46.91 ±11.12
65. ga idt 70.88 TurkuNLP 58.37 ± 7.05
66. no nynorsklia 70.34 HIT-SCIR 50.33 ± 9.28
67. sme giella 69.87 LATTICE 51.10 ±14.32
68. got proiel 69.55 Stanford 60.55 ± 4.93
69. ug udt 67.05 HIT-SCIR 54.27 ± 6.90
70. tr imst 66.44 HIT-SCIR 55.61 ± 6.49
71. sl sst 61.39 HIT-SCIR 47.07 ± 5.84
72. vi vtb 55.22 HIT-SCIR 40.40 ± 4.43
73. fo oft 49.43 CUNI x-ling 27.87 ± 9.75
74. hsb ufal 46.42 SLT-Interactions 26.48 ± 8.90
75. br keb 38.64 CEA LIST 13.27 ± 8.77
76. hy armtdp 37.01 LATTICE 22.39 ± 7.91
77. kk ktb 31.93 Uppsala 19.11 ± 6.34
78. kmr mg 30.41 IBM NY 20.27 ± 6.14
79. pcm nsc 30.07 CUNI x-ling 13.19 ± 5.76
80. ja modern 28.33 Stanford 18.92 ± 5.14
81. bxr bdt 19.53 AntNLP 11.45 ± 4.28
82. th pud 13.70 CUNI x-ling 1.38 ± 2.83

Table 15: Treebank ranking by best parser LAS
(Avg=average LAS over all systems, out-of-order
scores in bold).
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Treebank MLAS Best system Avg StDev
1. pl lfg 86.93 UDPipe Future 73.73 ± 7.29
2. ru syntagrus 86.76 UDPipe Future 71.63 ± 9.36
3. cs pdt 85.10 UDPipe Future 73.61 ± 6.32
4. cs fictree 84.23 ICS PAS 69.91 ± 7.77
5. ca ancora 84.07 UDPipe Future 74.62 ± 7.69
6. es ancora 83.93 Stanford 74.61 ± 7.43
7. it isdt 83.89 Stanford 77.14 ± 8.89
8. fi pud 83.78 Stanford 62.38 ±14.83
9. no bokmaal 83.68 UDPipe Future 70.75 ± 8.92

10. cs cac 83.42 UDPipe Future 71.39 ± 6.89
11. bg btb 83.12 UDPipe Future 73.18 ± 7.15
12. fr sequoia 82.55 Stanford 70.42 ± 9.04
13. sl ssj 82.38 Stanford 62.41 ± 9.18
14. no nynorsk 81.86 UDPipe Future 68.62 ± 9.45
15. ko kaist 81.29 HIT-SCIR 70.18 ± 9.36
16. ko gsd 80.85 HIT-SCIR 63.73 ±16.02
17. fi tdt 80.84 Stanford 65.27 ± 9.22
18. fa seraji 80.83 UDPipe Future 71.23 ± 7.77
19. pl sz 80.77 Stanford 64.80 ± 8.49
20. fro srcmf 80.28 UDPipe Future 65.19 ±16.58
21. la ittb 79.84 ICS PAS 67.77 ± 8.37
22. fi ftb 79.65 TurkuNLP 66.11 ± 8.86
23. sv talbanken 79.32 Stanford 68.05 ± 8.49
24. ro rrt 78.68 TurkuNLP 67.43 ± 7.24
25. el gdt 78.66 Stanford 64.29 ± 8.28
26. fr gsd 78.44 Stanford 69.33 ± 8.59
27. hi hdtb 78.30 UDPipe Future 68.48 ± 5.88
28. sr set 77.73 UDPipe Future 67.33 ± 5.96
29. da ddt 77.31 Stanford 65.00 ± 6.89
30. et edt 76.97 TurkuNLP 63.59 ± 8.34
31. nl alpino 76.52 Stanford 62.82 ± 9.81
32. en ewt 76.33 Stanford 66.84 ± 5.86
33. pt bosque 75.94 Stanford 66.22 ± 6.76
34. cs pud 75.81 UDPipe Future 60.47 ±11.36
35. af afribooms 75.67 UDPipe Future 63.76 ± 7.06
36. sk snk 75.01 Stanford 56.82 ± 8.32
37. en pud 74.86 Stanford 63.05 ± 7.89
38. nl lassysmall 74.11 Stanford 61.95 ± 9.12
39. hr set 73.44 Stanford 60.08 ± 7.07
40. en gum 73.24 ICS PAS 61.72 ± 7.69
41. ja gsd 72.62 HIT-SCIR 59.52 ± 6.20
42. uk iu 72.27 UDPipe Future 55.45 ± 8.08
43. en lines 72.25 ICS PAS 62.35 ± 8.04
44. eu bdt 71.73 UDPipe Future 58.49 ± 8.62
45. gl ctg 70.92 Stanford 57.92 ±14.10
46. ar padt 68.54 Stanford 53.28 ± 6.12
47. it postwita 68.50 Stanford 51.72 ± 8.80
48. id gsd 68.36 Stanford 61.03 ± 6.49
49. lv lvtb 67.89 Stanford 53.31 ± 7.96
50. hu szeged 67.13 UDPipe Future 53.08 ± 8.01
51. zh gsd 66.62 HIT-SCIR 50.42 ± 5.87
52. sv lines 66.58 Stanford 57.40 ± 7.43
53. fr spoken 64.67 HIT-SCIR 53.17 ± 5.61
54. he htb 63.38 Stanford 45.22 ± 4.94
55. cu proiel 63.31 Stanford 50.28 ± 6.69
56. ru taiga 61.59 ICS PAS 37.16 ± 7.53
57. gl treegal 60.63 UDPipe Future 47.35 ± 5.93
58. grc proiel 60.27 Stanford 47.62 ±11.82
59. la proiel 59.36 Stanford 47.79 ± 6.90
60. de gsd 58.04 TurkuNLP 39.13 ±10.35
61. ur udtb 57.98 TurkuNLP 49.64 ± 4.21
62. no nynorsklia 57.51 ICS PAS 37.08 ± 7.78
63. sme giella 57.47 TurkuNLP 38.29 ±12.37
64. got proiel 56.45 UDPipe Future 46.18 ± 5.36
65. tr imst 55.73 Stanford 45.26 ± 6.15
66. grc perseus 54.98 HIT-SCIR 35.65 ±12.31
67. sv pud 51.74 TurkuNLP 39.41 ± 7.78
68. la perseus 49.77 ICS PAS 28.67 ± 8.06
69. vi vtb 47.61 HIT-SCIR 32.45 ± 7.28
70. sl sst 45.93 ICS PAS 33.12 ± 5.33
71. ga idt 45.79 TurkuNLP 33.70 ± 5.18
72. ug udt 45.78 UDPipe Future 35.08 ± 5.96
73. br keb 13.91 Uppsala 1.52 ± 3.34
74. hy armtdp 13.36 CUNI x-ling 5.94 ± 2.92
75. ja modern 11.82 Uppsala 6.45 ± 2.59
76. hsb ufal 9.09 LATTICE 4.66 ± 2.37
77. kk ktb 8.93 CUNI x-ling 5.04 ± 2.34
78. kmr mg 7.98 IBM NY 4.01 ± 1.96
79. th pud 6.29 CUNI x-ling 0.42 ± 1.27
80. pcm nsc 5.30 KParse 3.00 ± 1.30
81. bxr bdt 2.98 AntNLP 1.33 ± 0.72
82. fo oft 1.07 CUNI x-ling 0.37 ± 0.21

Table 16: Treebank ranking by best parser MLAS.

Treebank BLEX Best system Avg StDev
1. pl lfg 90.42 TurkuNLP 72.81 ±16.96
2. ru syntagrus 88.65 TurkuNLP 68.57 ±18.07
3. cs pdt 87.91 HIT-SCIR 74.41 ±14.88
4. cs fictree 87.81 ICS PAS 71.10 ±16.26
5. cs cac 86.79 TurkuNLP 71.61 ±18.18
6. hi hdtb 86.74 HIT-SCIR 75.80 ± 9.28
7. pl sz 86.29 TurkuNLP 67.33 ±17.15
8. no bokmaal 85.82 UDPipe Future 69.52 ±13.54
9. ca ancora 85.47 UDPipe Future 72.60 ±12.31

10. es ancora 84.92 HIT-SCIR 72.10 ±12.71
11. it isdt 84.76 ICS PAS 75.42 ±10.72
12. fr sequoia 84.67 ICS PAS 70.63 ±11.66
13. no nynorsk 84.44 TurkuNLP 67.43 ±14.10
14. la ittb 84.37 TurkuNLP 68.10 ±17.85
15. bg btb 84.31 TurkuNLP 68.13 ±15.02
16. fro srcmf 84.11 UDPipe Future 70.46 ±16.40
17. sr set 83.28 TurkuNLP 65.62 ±17.61
18. sl ssj 83.23 Stanford 62.54 ±17.20
19. fi ftb 82.44 TurkuNLP 59.66 ±16.50
20. fi pud 82.44 TurkuNLP 52.25 ±18.50
21. sv talbanken 81.44 TurkuNLP 66.45 ±13.18
22. fi tdt 81.24 TurkuNLP 54.70 ±17.25
23. fr gsd 81.18 HIT-SCIR 69.61 ±10.58
24. ro rrt 80.97 TurkuNLP 63.53 ±15.84
25. sk snk 80.74 TurkuNLP 58.35 ±15.07
26. pt bosque 80.62 TurkuNLP 68.71 ±11.27
27. en pud 80.53 LATTICE 64.73 ±10.88
28. cs pud 80.53 ICS PAS 64.62 ±16.03
29. hr set 80.50 TurkuNLP 64.64 ±17.13
30. fa seraji 80.44 Stanford 68.38 ± 7.39
31. el gdt 80.09 TurkuNLP 63.26 ±15.60
32. ko kaist 79.55 TurkuNLP 57.32 ±20.78
33. et edt 79.37 TurkuNLP 57.06 ±16.14
34. nl alpino 79.15 HIT-SCIR 64.29 ±10.83
35. en ewt 78.44 HIT-SCIR 67.53 ± 8.47
36. uk iu 78.38 TurkuNLP 57.78 ±15.95
37. eu bdt 78.15 TurkuNLP 60.52 ±15.24
38. da ddt 78.07 TurkuNLP 63.16 ±11.41
39. sv lines 77.01 ICS PAS 63.13 ±11.72
40. id gsd 76.56 Stanford 62.52 ± 7.89
41. nl lassysmall 76.54 HIT-SCIR 60.92 ±11.93
42. af afribooms 76.44 TurkuNLP 63.87 ± 9.62
43. ko gsd 76.31 TurkuNLP 54.13 ±17.78
44. en lines 75.29 HIT-SCIR 62.29 ± 9.27
45. gl ctg 75.14 Stanford 60.86 ±10.82
46. ur udtb 73.79 TurkuNLP 62.93 ± 6.42
47. ja gsd 73.79 HIT-SCIR 60.87 ± 6.04
48. en gum 73.57 ICS PAS 61.02 ± 8.59
49. hu szeged 73.17 TurkuNLP 55.42 ±10.95
50. zh gsd 72.97 HIT-SCIR 55.66 ± 6.26
51. lv lvtb 72.40 TurkuNLP 53.42 ±14.56
52. de gsd 71.40 HIT-SCIR 54.86 ±14.99
53. cu proiel 71.31 Stanford 51.27 ±15.35
54. ar padt 70.06 Stanford 49.13 ±18.98
55. it postwita 69.34 HIT-SCIR 50.97 ± 8.76
56. grc proiel 69.03 TurkuNLP 48.58 ±19.91
57. la proiel 67.60 TurkuNLP 51.03 ±14.56
58. sv pud 66.12 TurkuNLP 50.20 ±11.30
59. fr spoken 65.63 HIT-SCIR 52.57 ± 7.29
60. he htb 65.04 Stanford 47.22 ± 6.60
61. ru taiga 64.36 ICS PAS 39.32 ±10.49
62. gl treegal 64.29 UDPipe Future 49.38 ± 8.18
63. got proiel 63.98 Stanford 48.79 ±13.77
64. no nynorsklia 60.98 ICS PAS 41.20 ± 8.64
65. tr imst 60.13 TurkuNLP 45.39 ±10.38
66. sme giella 60.10 TurkuNLP 35.76 ±12.68
67. grc perseus 58.68 TurkuNLP 36.48 ±16.03
68. ug udt 55.42 HIT-SCIR 41.64 ± 8.09
69. ga idt 55.18 TurkuNLP 37.83 ± 7.61
70. la perseus 52.75 ICS PAS 30.16 ±11.05
71. sl sst 50.94 ICS PAS 37.20 ± 6.87
72. vi vtb 44.02 Stanford 35.50 ± 3.74
73. pcm nsc 26.04 CUNI x-ling 12.07 ± 5.63
74. hsb ufal 21.09 LATTICE 11.26 ± 4.97
75. br keb 20.70 TurkuNLP 4.19 ± 4.93
76. hy armtdp 19.04 CUNI x-ling 10.68 ± 4.37
77. fo oft 14.40 CUNI x-ling 7.32 ± 3.33
78. ja modern 13.79 Stanford 7.70 ± 2.86
79. kmr mg 13.66 LATTICE 8.44 ± 3.11
80. kk ktb 11.33 CUNI x-ling 6.75 ± 2.95
81. th pud 10.77 CUNI x-ling 0.91 ± 2.11
82. bxr bdt 6.65 AntNLP 3.39 ± 1.61

Table 17: Treebank ranking by best parser BLEX.
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Treebank LAS MLAS Diff Language
1. de gsd 70.13 39.13 31.01 German
2. sv pud 67.02 39.41 27.61 Swedish
3. fo oft 27.87 0.37 27.50 Faroese
4. ur udtb 75.89 49.64 26.25 Urdu
5. ga idt 58.37 33.70 24.66 Irish
6. grc perseus 59.01 35.65 23.36 Ancient Greek
7. hsb ufal 26.48 4.66 21.82 Upper Sorbian
8. sk snk 76.53 56.82 19.71 Slovak
9. ug udt 54.27 35.08 19.20 Uyghur

10. ru taiga 56.27 37.16 19.12 Russian
11. hr set 78.37 60.08 18.29 Croatian
12. la perseus 46.91 28.67 18.24 Latin
13. grc proiel 65.02 47.62 17.40 Ancient Greek
14. gl treegal 64.65 47.35 17.30 Galician
15. uk iu 72.47 55.45 17.01 Ukrainian
16. hi hdtb 85.16 68.48 16.68 Hindi
17. pl sz 81.47 64.80 16.67 Polish
18. hy armtdp 22.39 5.94 16.45 Armenian
19. el gdt 80.65 64.29 16.36 Greek
20. sv lines 73.76 57.40 16.36 Swedish
21. kmr mg 20.27 4.01 16.26 Kurmanji
22. nl alpino 77.76 62.82 14.95 Dutch
23. gl ctg 72.46 57.92 14.55 Galician
24. lv lvtb 67.76 53.31 14.45 Latvian
25. got proiel 60.55 46.18 14.37 Gothic
26. pt bosque 80.49 66.22 14.27 Portuguese
27. ja gsd 73.68 59.52 14.16 Japanese
28. kk ktb 19.11 5.04 14.07 Kazakh
29. hu szeged 67.05 53.08 13.96 Hungarian
30. sl sst 47.07 33.12 13.95 Slovenian
31. eu bdt 72.08 58.49 13.59 Basque
32. he htb 58.73 45.22 13.51 Hebrew
33. la proiel 61.25 47.79 13.46 Latin
34. no nynorsklia 50.33 37.08 13.25 Norwegian
35. it postwita 64.95 51.72 13.22 Italian
36. nl lassysmall 75.08 61.95 13.14 Dutch
37. af afribooms 76.61 63.76 12.84 Afrikaans
38. sme giella 51.10 38.29 12.82 North Sámi
39. cs pud 73.24 60.47 12.77 Czech
40. sl ssj 75.00 62.41 12.59 Slovenian
41. sr set 79.84 67.33 12.50 Serbian
42. en gum 74.20 61.72 12.48 English
43. ja modern 18.92 6.45 12.47 Japanese
44. cu proiel 62.64 50.28 12.36 Old Church Slavonic
45. cs fictree 82.10 69.91 12.19 Czech
46. pl lfg 85.89 73.73 12.17 Polish
47. id gsd 73.05 61.03 12.02 Indonesian
48. br keb 13.27 1.52 11.75 Breton
49. fr spoken 64.66 53.17 11.49 French
50. en pud 74.51 63.05 11.46 English
51. cs cac 82.69 71.39 11.29 Czech
52. ar padt 64.07 53.28 10.79 Arabic
53. fi ftb 76.89 66.11 10.78 Finnish
54. it isdt 87.61 77.14 10.47 Italian
55. tr imst 55.61 45.26 10.34 Turkish
56. pcm nsc 13.19 3.00 10.19 Naija
57. fr sequoia 80.55 70.42 10.13 French
58. bxr bdt 11.45 1.33 10.12 Buryat
59. fr gsd 79.43 69.33 10.10 French
60. da ddt 75.02 65.00 10.02 Danish
61. no nynorsk 78.55 68.62 9.93 Norwegian
62. en lines 72.28 62.35 9.93 English
63. zh gsd 60.32 50.42 9.90 Chinese
64. sv talbanken 77.71 68.05 9.66 Swedish
65. bg btb 82.52 73.18 9.34 Bulgarian
66. la ittb 77.00 67.77 9.23 Latin
67. fro srcmf 74.38 65.19 9.18 Old French
68. en ewt 75.99 66.84 9.15 English
69. no bokmaal 79.80 70.75 9.05 Norwegian
70. ca ancora 83.61 74.62 8.99 Catalan
71. cs pdt 82.18 73.61 8.57 Czech
72. et edt 72.08 63.59 8.50 Estonian
73. ro rrt 75.77 67.43 8.33 Romanian
74. fi tdt 73.55 65.27 8.28 Finnish
75. es ancora 82.84 74.61 8.23 Spanish
76. ko gsd 71.88 63.73 8.15 Korean
77. ru syntagrus 79.68 71.63 8.05 Russian
78. vi vtb 40.40 32.45 7.95 Vietnamese
79. fa seraji 78.71 71.23 7.48 Persian
80. ko kaist 77.10 70.18 6.92 Korean
81. fi pud 68.87 62.38 6.49 Finnish
82. th pud 1.38 0.42 0.96 Thai

Table 18: Treebank ranking by difference between
average parser LAS and MLAS.

Treebank Best Best system Avg StDev
70. bxr bdt 99.24 IBM NY 88.64 ± 8.09
71. fi pud 99.69 Uppsala 88.13 ±10.81
72. zh gsd 96.71 HIT-SCIR 86.91 ± 3.83
73. fo oft 99.47 CUNI x-ling 86.76 ±10.68
74. ar padt 96.81 Stanford 86.62 ± 7.00
75. kmr mg 96.97 Uppsala 86.61 ± 7.16
76. kk ktb 97.40 Uppsala 85.55 ± 7.45
77. br keb 92.45 TurkuNLP 83.76 ± 7.37
78. he htb 93.98 Stanford 82.45 ± 3.80
79. vi vtb 93.46 HIT-SCIR 81.71 ± 3.73
80. pcm nsc 99.71 CEA LIST 79.94 ±10.69
81. ja modern 75.69 HIT-SCIR 59.40 ± 7.70
82. th pud 69.93 Uppsala 17.16 ±20.57

Table 19: Treebanks with most difficult word seg-
mentation (by average parser F1).

Treebank Best Best system Avg StDev
73. grc proiel 51.84 HIT-SCIR 42.46 ± 7.33
74. cu proiel 48.67 Stanford 35.54 ± 4.02
75. la proiel 39.61 Stanford 33.40 ± 5.39
76. got proiel 38.23 Stanford 27.22 ± 4.47
77. it postwita 65.90 Stanford 25.25 ±14.30
78. sl sst 24.43 NLP-Cube 20.92 ± 4.70
79. fr spoken 24.17 Stanford 20.43 ± 2.89
80. th pud 12.37 TurkuNLP 1.75 ± 3.68
81. pcm nsc 0.93 Stanford 0.06 ± 0.19
82. ja modern 0.23 Stanford 0.01 ± 0.04

Table 20: Treebanks with most difficult sentence
segmentation (by average parser F1).

7 Analysis of Submitted Systems

Table 21 gives an overview of 24 of the systems
evaluated in the shared task. The overview is
based on a post-evaluation questionnaire to which
24 of 25 teams responded. Systems are ordered
alphabetically by name and their LAS rank is in-
dicated in the second column.

Looking first at word and sentence segmenta-
tion, we see that, while a clear majority of systems
(19/24) rely on the baseline system for segmenta-
tion, slightly more than half (13/24) have devel-
oped their own segmenter, or tuned the baseline
segmenter, for at least a subset of languages. This
is a development from 2017, where only 7 out of
29 systems used anything other than the baseline
segmenter.

When it comes to morphological analysis, in-
cluding universal POS tags, features and lemmas,
all systems this year include some such compo-
nent, and only 6 systems rely entirely on the base-
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System R Segment Morph Syntax WEmb Additional Data MultiLing
AntNLP 9 Base Base Single-G FB None OwnS
ArmParser 25 Base Own Single FB None None
BOUN 21 Base Base Single-T Base None None
CEA LIST 6 Base BL/Own Single-G/T B/FB OPUS/Wikt OwnL
CUNI x-ling 20 B/Own B/Own Single/Ens FB/None O/UM/WALS/Wiki OwnL,S
Fudan 17 Base Base Ensemble None None OwnL,S
HIT-SCIR 1 B/Own Base Ensemble B/FB/Crawl None OwnL,S
HUJI 24 Base Base Single-T FB None OwnL
IBM NY 13 B/Own B/Joint Ensemble-T B/FB Wiki OwnL,S
ICS PAS 3 Base Own Single-G FB/None None None
KParse 16 B/Own Own Single Other None OwnL
LATTICE 3 Base OwnU Single-G/Ens B/FB/Crawl OPUS/Wiki OwnL,S
LeisureX 15 Base Own Single Base None OwnL
NLP-Cube 9 Own Own Single FB None OwnL
ONLP lab 22 Base Base Single-T None UML None
ParisNLP 11 B/Own B/Own Single-G FB UML OwnL
Phoenix 19 Own OwnU Single Train None OwnL
SLT-Interactions 12 B/Own Own Single Crawl None OwnL
SParse 26 B/Own Own Single-G Crawl None OwnL
Stanford 7 Own Own Single-G B/FB None None
TurkuNLP 2 B/Own Own Single-G B/FB OPUS/Aper OwnL
UDPipe Future 3 Own Joint Single-G B/FB None None
UniMelb 14 Base Joint Single Base None Base
Uppsala 7 Own OwnU,F Single-T B/FB/Wiki OPUS/Wiki/Aper OwnL,S

Table 21: Classification of participating systems. R = LAS ranking. Segment = word/sentence segmen-
tation. Morph = morphological analysis, including universal POS tags [U], features [F] and lemmas [L],
with subscripts for subsets [Joint = morphological component trained jointly with syntactic parser]. Syn-
tax = syntactic parsing [Single = single parser; Ensemble (or Ens) = parser ensemble; G = graph-based;
T = transition-based]. WEmb = pre-trained word embeddings [FB = Facebook; Crawl = trained on web
crawl data provided by the organizers; Wiki = trained on Wikipedia data; Train = trained on treebank
training data]. Additional Data = data used in addition to treebank training sets [OPUS (or O) = OPUS,
Aper = Apertium morphological analysers, Wikt = Wiktionary, Wiki = Wikipedia, UM = UniMorph,
UML = Universal Morphological Lattices, WALS = World Atlas of Language Structures]. MultiLing =
multilingal models used for low-resource (L) or small (S) languages. In all columns, Base (or B) refers
to the Baseline UDPipe system or the baseline word embeddings provided by the organizers, while None
means that there is no corresponding component in the system.

line UDPipe system. This is again quite different
from 2017, where more than half the systems ei-
ther just relied on the baseline tagger (13 systems)
or did not predict any morphology at all (3 sys-
tems). We take this to be primarily a reflection
of the fact that two out of three official metrics
included (some) morphological analysis this year,
although 3 systems did not predict the lemmas re-
quired for the BLEX metric (and 2 systems only
predicted universal POS tags, no features). As far
as we can tell from the questionnaire responses,

only 3 systems used a model where morphology
and syntax were predicted jointly.14

For syntactic parsing, most teams (19) use a sin-
gle parsing model, while 5 teams, including the
winning HIT-SCIR system, build ensemble mod-
els, either for all languages or a subset of them.
When it comes to the type of parsing model, we
observe that graph-based models are more popu-
lar than transition-based models this year, while
the opposite was true in 2017. We hypothesize that

14The ONLP lab system also has a joint model but in the
end used the baseline morphology as it gave better results.



this is due to the superior performance of the Stan-
ford graph-based parser in last year’s shared task,
and many of the high-performing systems this year
either incorporate that parser or a reimplementa-
tion of it.15

The majority of parsers make use of pre-trained
word embeddings. Most popular are the Facebook
embeddings, which are used by 17 systems, fol-
lowed by the baseline embeddings provided by the
organizers (11), and embeddings trained on web
crawl data (4).16 When it comes to additional data,
over and above the treebank training sets and pre-
trained word embeddings, the most striking obser-
vation is that a majority of systems (16) did not use
any at all. Those that did primarily used OPUS
(5), Wikipedia dumps (3), Apertium morpholog-
ical analyzers (2), and Universal Morphological
Lattices (2). The CUNI x-ling system, which fo-
cused on low-resource languages, also exploited
UniMorph and WALS (in addition to OPUS and
Wikipedia).

Finally, we note that a majority of systems make
use of models trained on multiple languages to
improve parsing for languages with little or no
training data. According to the questionnaire re-
sponses, 15 systems use multilingual models for
the languages classified as “low-resource”, while
7 systems use them for the languages classified as
“small”.17 Only one system relied on the baseline
delexicalized parser trained on data from all lan-
guages.

8 Conclusion

The CoNLL 2018 Shared Task on UD parsing, the
second in the series, was novel in several respects.
Besides using cross-linguistically consistent lin-
guistic representations, emphasizing end-to-end
processing of text, and in using a multiply paral-
lel test set, as in 2017, it was unusual also in fea-
turing an unprecedented number of languages and
treebanks and in integrating cross-lingual learning
for resource-poor languages. Compared to the first
edition of the task in 2017, this year several lan-
guages were provided with little-to-no resources,
whereas in 2017, predicted morphology trained on

15This is true of at least 3 of the 5 best performing systems.
16The baseline embeddings were the same as in 2017 and

therefore did not cover new languages, which may partly ex-
plain the greater popularity of the Facebook embeddings this
year.

17We know that some teams used them also for clusters
involving high-resource languages, but we have no detailed
statistics on this usage.

the language in question was available for all of
the languages. The most extreme example of these
is Thai, where the only accessible resource was the
Facebook Research Thai embeddings model and
the OPUS parallel corpora. This year’s task also
introduced two additional metrics that take into
account morphology and lemmatization. This en-
couraged the development of truly end-to-end full
parsers, producing complete parses including mor-
phological features and lemmas in addition to the
syntactic tree. This also aimed to improve the util-
ity of the systems developed in the shared task for
later downstream applications. For most UD lan-
guages, these parsers represent a new state of the
art for end-to-end dependency parsing.

The analysis of the shared task results has so far
only scratched the surface, and we refer to the sys-
tem description papers for more in-depth analysis
of individual systems and their performance. For
many previous CoNLL shared tasks, the task it-
self has only been the starting point of a long and
fruitful research strand, enabled by the resources
created for the task. We hope and believe that the
2017 and 2018 UD parsing tasks will join this tra-
dition.
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Cebiroğlu Eryiğit, Giuseppe G. A. Celano, Savas
Cetin, Fabricio Chalub, Jinho Choi, Yongseok Cho,
Jayeol Chun, Silvie Cinková, Aurélie Collomb,
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Ion, Elena Irimia, Tomáš Jelínek, Anders Johannsen,
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Zdeňka Urešová, Larraitz Uria, Hans Uszkoreit,
Sowmya Vajjala, Daniel van Niekerk, Gertjan van
Noord, Viktor Varga, Veronika Vincze, Lars Wallin,
Jonathan North Washington, Seyi Williams, Mats
Wirén, Tsegay Woldemariam, Tak-sum Wong,
Chunxiao Yan, Marat M. Yavrumyan, Zhuoran Yu,
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