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Abstract: In linguistics, words are usually considered to be composed of morphemes:
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1. Introduction
One of the key notions in structural linguistics, and modern linguistics in gen-

eral, is the one of arbitrariness – among other uses of the term the arbitrariness of
vocabulary. The fact that the vocabulary of a language is arbitrary means that the
meaning of a word generally cannot be inferred from its form (i.e. the spoken sound
waveforms or the written characters) and vice versa – the user of a language has to
learn the form-meaning mapping for each word separately. There are specific cases of
non-arbitrariness (e.g. interjections – imitations of natural sounds tend to be similar
to those sounds), but in general, “vocabulary is arbitrary” is a fact often repeated in
introductory textbooks.

Aswith all introductory textbook facts, this statement is merely a simplification of
reality. Even the founders of modern structural linguistics knew that the meanings
of many words may be inferred (de Saussure, 1961). For example, if a student of
the Czech language already knows the words komín (“chimney”), zahrada (“garden”),
kominík (“chimney sweep”), zahradník (“gardener”) and tanec (“dance”), they may
infer the meaning of the word tanečník (“dancer”) by noticing a recurring pattern
in the language: kominík and zahradník can be decomposed into komín + -ík and
zahrada + -ík, with some fuzziness – the process is not a simple concatenation, but it
is close enough. The -ík part of the composite word modifies the meaning of the base
word, signifying “a person doing something with the base object”. Thus tanečník is
“a person doing something with a dance” – and a dancer seems to be the most likely
candidate for such a role.

The preceding paragraph implies that words have internal structure and that this
structure is important to users of the language. Such a statement is in line with the
findings of modern linguistics (Carstairs-McCarthy, 2005; Haspelmath et al., 2015),
and in fact, a whole subfield of linguistics, called morphology, is devoted to studying
this structure, its importance and implications (Aronoff; Fudeman, 2011, p. 1).

The importance is not merely theoretical. Different ways of splitting words into
some constituent sub-units are employed in many linguistic applications. To give a
few examples: hyphenation is used to break long words at the end of a line of text;
subword units are used in neural machine translation to compress the dictionary and
allow translation of previously unseen words (Sennrich et al., 2016); morphological
segmentation à la the motivating example above is used for teaching foreign lan-
guages; and some segmentation is employed by search engines to find your desired
text in sources where it doesn’t occur verbatim, but only in variation (Uyar, 2009).

For each of the examples above, a different method of segmentation is, or may
be, used. Hyphenation generally occurs at syllable boundaries in Czech (Martincová
et al., 1993), but British English prefers breaks at morphological boundaries (Hladký,
1987)1. These often give different results: syllabification of the Czech word větrat
(“to ventilate”) is vě·trat, but its morphological segmentation is větr·a·t. Translation
subword units are often technical and motivated by compression methods (Sennrich
et al., 2016). The advantage of morphological segmentation, which is to be the focus of
this thesis, is that the segments correspond with the meaning of the word.

1In English in general, the rules are complex and inconsistent. See e.g. the different hyphenation
patterns for the word interferometer given by the Merriam-Webster dictionary (in·ter·fer·om·e·ter) and
the American Heritage dictionary (in·ter·fe·rom·e·ter).
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1.1 Task statement
The aim of this thesis is to create a linguistically adequate method for automat-

ic segmentation of natural language words into morphs, with a focus on the Czech
language. The result is supposed to be used by the DeriNet project (Žabokrtský et
al., 2016), which aims to expand its annotation with information about morphematic
composition of lexemes in the next major version, 2.0.

Themethod is to be based onmachine learning techniques. In particular, we chose
two different algorithms, one supervised, which learns to segment words by looking
at correctly segmented examples, and one unsupervised, which segments words by
utilizing statistics of probable segments inferred without looking at premade exam-
ples. The unsupervisedmodel is based onmaximum likelihood probability estimation,
bootstrapped using the Expectation-Maximization algorithm. The supervised model
is based on neural networks. The examples needed for training the neural network
will be created as a part of the thesis, using the unsupervised model.

Note that the difference between supervised and unsupervised learning is quite
thin here, because even the unsupervised algorithm utilizes expensive, manually an-
notated data, thus potentially also qualifying as “supervised”. However, the machine
learning method used inside the model is of the unsupervised family.

The task itself is found under many different names in literature, and there is some
confusion in the naming. Most commonly, it is called morphological (or morphemat-
ic, or morpheme) segmentation (or boundary detection, or analysis). Other terms
include “segmentation of words” (Creutz, 2003), “discovery of morphemes” (Creutz;
Lagus, 2002), “morphological decomposition” (Lehtonen et al. (2011), used especially
in the psycholinguistic, cognitive and neurolinguistic circles), “morphological pars-
ing” (Karttunen et al., 2001) and “word segmentation” (Hafer et al., 1974).

Some of these terms are also used for other tasks: the term “word segmenta-
tion” is primarily used for the task of segmenting running text into words (i.e. word
boundary discovery) and morphological parsing usually means creating parse trees
over words, i.e. annotating not only the boundaries, but also the order of affixation
or modification. All these names, but predominantly the names which contain the
term “morpheme”, are also used for the very similar task of segmenting words into
canonical segments (i.e. decomposing beaches into beach + -s, or even men into man
+ -s) or for morpheme analysis (beach + PLURAL).

Our task is focused on the surface segmentation, without such canonicalization
or high-level annotation of the results – we want to segment the word into morphs
represented as contiguous substrings, which, when concatenated together in the orig-
inal order, form the whole word (i.e. no characters are missing). Stated differently,
we want to find segmentation points (segment boundaries) in words.

1.2 Prior publication disclaimer
Parts of the work presented here have already been published elsewhere:

• The Longest Common Substring algorithm and the boundary propagation al-
gorithm were published by Macháček et al. (2018). Despite the co-authorship
with Dominik Macháček and Ondřej Bojar, I am the sole author of all the parts
of my thesis published therein.
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• I submitted a slight modification of the parent-prediction part of the neural net-
work segmentation model to a state-of-the-art Czech lemmatization competi-
tion organized as part of the Deep Learning course (NPFL114) at the Charles
University, Faculty of Mathematics and Physics during the 2017-2018 academic
year.
The code is based on a template by Milan Straka, containing the data-loading
and result-printing code, which was necessary for submission. The architec-
ture of the neural network itself, the code implementing it and its training,
optimization and evaluation were selected, written and conducted entirely by
me.

1.3 Outline
The first three chapters of this thesis are introductory. Chapter 2 introduces the

important terms and concepts, with Section 2.1 focusing on the linguistic theory and
Section 2.2 on the definitions used when processing language on a computer.

Chapter 3 presents the data resources used by our models and related work in the
form of other segmentation tools.

Chapter 4 introduces our unsupervised segmentation model. There, we explain
both our novel probabilistic formulation of the segmentation task using derivational
data, and the well-known techniques used to create and train the model.

In Chapter 5, we do the same for the supervised model. Again, the methods used
to construct and train the neural network are desribed in referenced literature, but
the concrete form of the network and the idea of using derivations to help train a
segmentation model are novel.

Chapter 6 contains a desription of the experiments we performed to compare our
systems with the state-of-the-art, the results we obtained and their interpretation and
explanation.

Chapter 7 concludes the thesis.
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2. Basic notions
In this chapter, we introduce and explain basic terms and notions that will be used

throughout the rest of the thesis. The first section deals with linguistic theories and
the theoretical view on language. In the second section, we define our own terminol-
ogy for dealing with segmentation on a technical, character-string-wise level.

2.1 Linguistic terminology
Although the aim of this thesis is producing segmentation, we will start our lin-

guistic introduction with derivation, since derivation is the process we will use for
inferring segmentation afterwards.

2.1.1 Derivation

Derivation is one of several word-formation processes in natural languages. It
creates new words out of existing ones, usually by adding, changing or removing af-
fixes (Dokulil et al., 1986; Aronoff; Fudeman, 2011). For example, we can derive the
word friendly from the word friend by adding the suffix -ly. Derived words can them-
selves serve as bases for further derivation, such as the words unfriendly or friendli-
ness derived from friendly, and so the sets of words related by derivation form directed
graphs (Aronoff; Fudeman, 2011). We will use the terms (derivational) parent for the
base word and (derivational) child for the derived word, and together we will call
them derivational pair.

Derivation is best defined in comparison and contrast with similar language pro-
cesses: It can be compared with inflection (e.g. shelf → shelves or print → print-
ed), a process that is not word-formational, but which is usually very similar in the
changes it induces; and with other word-formation processes such as compounding
(putting together two independent words, e.g. skin + head → skinhead) or conver-
sion (changing the category of a word without changing its form, e.g. (a) ship → (to)
ship (something)), which induce different changes.

The difference between word-formation (those that create new words) and non-
word-formation (those that create forms of the base word) processes is blurry, but
some of its aspects are discussed below. The main point is that inflection changes the
word to fit grammatical categories in a sentence, while derivation changes the word
to fit a desired meaning. Another possible comparison, discussed below, is between
derivation as a synchronic view of language, and etymology as diachronic view of
language.

As a concept of western linguistic tradition, derivation is easy to identify in lan-
guages where utterances break down to words, which are viewed as being made up
of morphemes. This is the case in Indo-European languages. In languages which
don’t have the word as a core concept, derivation is either considered not to exist, or
is difficult to define. For example, in Mandarin (Standard) Chinese, most words are
single-morpheme and multi-morpheme words are generally considered to be com-
pounds, and thus prototypical derivation through affixation is very limited. See Ar-
codia (2013) for a discussion of the status of Chinese derivation.
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In this thesis, we will focus mostly on Czech, where derivation is well established
and mostly well defined, as it has been the object of scientific inquiry for centuries
(Dobrovský, 1791). Only this chapter is more diverse as to the considered set of lan-
guages and phenomena, because it has the secondary purpose of drawing attention
to the possible shortcomings of our methods in multilingual settings.

2.1.2 Morphemes

Derived and compound words are also sometimes called motivated words, as op-
posed to the basal unmotivated words (Dokulil et al., 1986). These terms describe the
difference in the sign nature of the words – unmotivated words are arbitrary1, there
is no connection between their phonetic or orthographic form and their meaning out-
side the word itself. The individual phones or letters do not mean anything on their
own. To a speaker of the language, motivated words do have such a connection, as
they are composed of parts which carry the meaning. For example, the meaning of
the word happiness can be approximated by taking its motivating word happy and
modifying it with the affix -ness, whose meaning can be inferred by analogy from
words such as closeness, holiness or darkness to be “the state of being X (the base
word)”. A speaker can thus infer the meaning of a novel, previously unheard word,
by mentally decomposing it into its base parts and relating it to known words with
similar compositions.

The smallest such recurring parts which carry meaning, are called morphemes
(de Saussure, 1961). Their exact properties depend on the theory you follow, but in
general, they have the three following ones:

1. Morphemes carry meaning.

2. Morphemes are not subdivisible into smaller meaning-carrying units.

3. Morphemes are repeatable – one morpheme occurs in multiple contexts, i.e. in
multiple words.

The third property is especially important for morpheme discovery and is often used
both by automatic segmentation systems and as a criterion for manual segmentation
(Slavíčková, 1975).

All three of these requirementsmay be violated, though. According to proponents
of cognitive and usage-based theories, this is due to the inherent fuziness of language,
which is a result of the constant evolution of our mental grammar, as it is being affect-
ed by experience and other cognitive factors. As stated by Bybee (2013), “we should
not expect linguistic constructs such as segment, syllable, morpheme, word, or con-
struction to have strict definitions, nor do we expect all the manifestations of these
constructs in languages to exhibit exactly the same behavior”.

Examples of morphemes carrying very little to no discernible meaning are in-
terfixes (connectors) in compounds, such as speed‧o‧meter, or the apparent prefixes
in words like de‧ceive, de‧sist, re‧ceive and re‧sist. Due to this, some authors reject

1Onomatopoeic words and most interjections are the exception. They are (extralinguistically) mo-
tivated by the natural sounds they imitate. But even they have some degree of arbitrariness: The
English imitation of the sound of a cow is /muː/, while the Czech version is /buː/, even when imitating
the same cow. And some words with onomatopoeic origin have developed to be nearly fully arbitrary,
such as pidgeon, originally from the onomatopoeic Vulgar Latin pipio (de Saussure, 1961).
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their morphemic status and analyze these prefixed words as single-morpheme units
(Marchand, 1969). This, on the other hand, creates a problem with subdivisibility, as
the facts that these subunits can be freely recombined, and that the prefixes occur
in contexts where they do have a clear meaning (re‧load, re‧paint – “to do something
again”).

Some linguists propose theories of morphology without morphemes (Neuvel et
al., 2002), or suggest that some sub-morpheme language phenomena are difficult to
explain in theories involving morphemes (Zingler, 2017). However, apart from triv-
ial arguments such as the one made by us at the beginning of this section, there is
also neurolinguistic evidence for morphemes (Lehtonen et al., 2011). We therefore
simplify matters by considering their existence to be given.

2.1.3 Morpheme classification

Morphemes can be classified into categories based on their form, function and
position.

A basic categorization based on form is into continuous and discontinuous mor-
phemes. Continuous morphemes have contiguous phonological or orthographical
representations, i.e. they are not split into multiple parts by phonemes or characters
that belong to other morphemes. Discontinuous morphemes are the opposite, they
contain spaces for other morphemes or their parts inside them (Bauer, 2014, p. 124).

One possible categorization based on function is into lexical (have meaning by
themselves) and grammatical (modify the meaning or inflectional features of lexical
morphemes) morphemes – with a whole spectrum in between, for example affixoids
(Olsen, 2014).

Another opposition is free vs. bound morphemes – free morphemes may form a
single-morphemeword on their own, while boundmorphemesmust attach to another
morpheme or a group of already attachedmorphemes. Such a group is often called the
base or stem. We will use the term stem throughout the rest of this thesis, knowing
that it is a slight departure from the standard usage, which reserves the term for the
base to which only inflectional affixes are attached, see below.

Another classification is into roots, which form the base of a word and usually
coincide with lexical morphemes; and affixes, which attach to the roots and usually
coincide with grammatical morphemes. Continuous affixes can be further divided
into prefixes, which stand before the root or stem they modify; suffixes, which stand
after it; infixes, which interrupt another morpheme and stand inside it, and interfixes,
which stand between two stems in compounds, belonging to neither (Bauer, 2014).

Discontinuous affixes come in many forms, many examples from the complex
field of nonconcatenative morphology2 (Davis et al., 2014) belong to this class. The
one most relevant for this thesis is circumfixation, where the affix modifies the stem
from both sides at the same time, as if it was simultaneously attaching a prefix and a
suffix. Clear examples of circumfixation are rare, because it must be argued why the
affix is not composed of its two parts (Bauer, 2014, p. 127). In Czech, examples such as
les → polesí are sometimes considered to be circumfixation because there is neither
*poles nor *lesí, but since both the prefixal and the suffixal parts occur on their own
in other contexts, they can be also interpreted as two affixations.

2Also called parasynthesis.
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Other nonconcatenative processes include root-and-pattern derivation3, common
in Semitic languages, where the root is composed of consonants, the affix of vowels,
and they intermesh to create a pronounceable form (Shay, 2014). As these processes
do not occur in Czech and therefore in our data, we will not consider them further.

2.1.4 Morphs

Themental decomposition of a word into morphemes is not problem-free. One of
the issues is that morphemes do not have a unique surface representation. A single
morpheme may have multiple possible forms, each used in a different context. For
example, the English plural morpheme has two variants in writing: -s as in book →
books, and -es as in beach → beaches; and three in speech: [z] as in bed → beds, [s]
as in book → books, and [əz] as in beach → beaches. Some theories even consider
children, cacti, sheep or women to contain the same morpheme, just in a form very
different from the typical ones (Aronoff; Fudeman, 2011, p. 74; Spencer, 1994), while
other will say these are different morphemes or even results of non-morphological
processes such as suppletion (complete replacement of one form with another, unre-
lated form), just with the same semantics (Mel’čuk, 2006, p. 309).

Such variants are called allomorphs and their existence is the reason why we dis-
tinguish the abstract morpheme as a unit of meaning from its concrete realization,
the morph.

The selection of allomorphs is not fixed when a morpheme is added to a stem, but
the selected allomorph can change after that, when other morphemes are added. For
example, in the Czech pair okno (“window”) → okenní (“of the window”), the morph
okn is replaced with oken when the suffix -ní is added. An alternative description of
the same example is that the morph okn is modified with a phonological alternation
(phonological change), namely a vowel insertion. The first description fits with the
so-called item-and-arrangement theories, while the second one is in line with item-
and-process theories (Hockett, 1954). This thesis will focus on the item-and-process
style of describing morphology. Although linguistically, there are several sources of
these changes (morphological, orthographical or phonological ones), we will treat
them identically and thus denote them simply as MOP alternations.

Another issue is that the boundaries between morphs may not always be clear.
This point is connected to the previous one, as the fuzziness of the boundaries is, in
large part, due to MOP alternation. For example, pamětník (“witnessMasc.”) → pamět-
nice (“witnessFem.”) may be segmented as pamětní‧k → pamětni‧ce, with an MOP al-
ternation, or as pamětn‧ík → pamětn‧ice. Dokulil et al. (1986) calls the í or i from
this example a submorph – it is separable on the basis of repeatability, but it does not
have a sign nature, as it lacks a clearly defined meaning. They are therefore attached
to one of the neighboring morphs, forming an extended variant of that morph, and
do not stand on their own in segmentation (Dokulil et al., 1986, p. 177). In this case,
attaching it to the suffix is the more plausible solution, as there are very few examples
of -k → -ce binding to stems not ending in -í → i (one would be pavoučice (“female
spider”), whether it is derived from pavouk (“spider”) or pavouček (“little spider”)),
making -ík → -ice the usual form of the morphemes, and there are other words with
the stem pamětn, such as pamětný (“memorable”).

3Also called templatic morphology.
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Figure 2.1: The difference in views of selected linguists on derivation andmorphemes.
The top line shows words, the bottom line their segmentation into morphemes. Ar-
rows indicate the direction of information transfer.

Another prevalent reason for unclear boundaries is fusion of phonemes at morph
boundaries, which occurs e.g. in Rusko (“Russia”) → ruský (“russian”), where the -s-
in ruský is a fusion of double s from rus‧ský (Dokulil et al., 1986).

These problems imply that, in many languages, the detection of morphemes or
morphs is far from easy. In Czech, there are derivational pairs with many MOP al-
ternations occuring at once, such as ode‧jm‧ou‧t (“to confiscate”) → od‧ň‧a‧t‧ý (“con-
fiscated”), where only one morpheme retained its allomorph without changes. Even
knowledge of the segmentation of one of the words doesn’t necessarily imply we can
easily segment the other. This also illustrates that the changes are not local, but it is
possible for a change to occur e.g. in a prefix when a suffix is being added.

The significance of morphemes and their relation with derivation varies from au-
thor to author. For example, Slavíčková (1975) considers morphemes to be the hidden
elemental basis on which derivation is built. Meaning-text theory goes even a step
further, considering morph(eme)s4 to be the basic block – that is, words are not an-
alyzed into morphemes, they are actually built out of them (Mel’čuk, 2006, p. 388).
On the other hand, Aronoff (1985) claims that morphemes are secondary – words are
formed directly from other words and morphemes are just a secondary theoretical
explanation of the process. The difference between these views is seen in Figure 2.1.

This difference stems from the difference in general approaches to language, as
Mel’čuk (2006) takes a deductive approach, considering semantics to be primary and
the surface phonetical or orthographical form to be derived (Mel’čuk, 2006, p. 12).
The apparent reversal of this general deductive trend when considering morphemes
and morphs is due to him not considering morphemes to be signs, but a set of signs,
which the underlying morph manifests. The view of Dokulil et al. (1986) is largely
compatible with this approach.

Slavíčková (1975) takes a slightly different approach, as according to her, the mor-
phemic composition of a word is not given, but a word has to be analyzed to reveal
it first. It is possible that this difference is caused by the fact that she was, in fact,
trying to analyze Czech words and deduce their morphemic makeup.

The difference is best revealed on border cases, such as cranberry morphemes.
These morphemes violate the repeatability property by only appearing in a single
word (and optionally its handful of derivatives), and as such, it is difficult to assign
them any meaning other than the meaning of the word they are found in. They are
revealed as residuals after identifying the other morphemes in the word. A classic
example is the word cranberry, after which the whole group is named. Its morpheme
berry is easy to identify by analogy with blackberry or strawberry, but the residual
morpheme cran is not found elsewhere. Such morphemes present a greater obstacle

4Mel’čuk considers morphs to be primary and defines morphemes on top of them.
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for theories à la Mel’čuk (2006), which depend on morphemes being well defined,
than for theories of Slavíčková (1975) and Aronoff (1985).

2.1.5 Derivation vs. inflection

Derivation and inflection are bothmorphological processes that create new lexical
forms out of existing ones.

The textbook difference (paraphrased from Aronoff; Fudeman, 2011) between the
two is that the units created by derivation are new words, complete with their own
semantic and syntactic properties, while the units created by inflection are only forms
of the same word and their semantics is either identical, or non-idiosyncratically re-
lated, to the semantics of their lemma (the main word form of the word). Typical
properties of inflection include peripherality (usually occurs at the beginning or end
of a stem), obligatoriness (some inflectional marker must be always present) and non-
repeatability (there may be at most one inflectional marker), while for derivation, the
opposite properties may hold.

Therefore, the English word pairs window → windows is an example of inflection,
since the addition of the suffix -s causes a predictable change in meaning from “one of
a thing” to “multiple of that same thing”. And the word pair window → windowed is
an example of derivation, because the change from “a thing” to “covered in / contain-
ing / fitted with that thing” is specific to the word window and doesn’t occur e.g. in
the pair tape → taped, which may mean either “recorded on tape” or “attached with
tape”.

This definition, of course, depends very strongly on the definition of a word
(which will not be discussed further, as we work with existing dictionaries, thus leav-
ing the decision to others); and on the exact amount of idiosyncrasy a relation must
accumulate to step over the line from inflectional to derivational. As discussed by
ten Hacken (2014), the boundary between them is fuzzy with unclear corner cases.
For example, diminution is considered to be a part of inflection by some linguists and
a part of derivation by others (ten Hacken, 2014).

Another example is negation in Czech, which is traditionally considered to be
an inflectional process and is even listed in inflectional dictionaries (Hajič, 2004),
but negated words can e.g. form the basis for derivation, violating the prototypical
peripherality (zneplatnit (“to invalidate”) from neplatný (“not valid”)), and there are
negated words with a large semantic gap from the positive word (neřád (“brat”) from
řád (“order, law”)) or entirely without positive counterparts (nemotorný (“clumsy”);
the apparent base wordmotor (“engine”) is etymologically unrelated and semantically
distant). As reported by Blust (2014), in many Austronesian languages, the distinction
between inflection and derivation is even less clear than in Indo-European languages.

Other differences between inflection and derivation are related to this main se-
mantical difference. For example:

• Inflection is paradigmatic, i.e. any word sharing the same paradigm with win-
dow will also pluralize, and will do so in the same way. In this case, this
paradigm covers all count nouns. Derivation is less regular and words with
the same derivational patterns do not form easily identifiable groups. One rea-
son for this is that many derived words are lexicalized and the derivations used
to create them are no longer productive. Sometimes, the motivating word may
even no longer be a part of the active lexicon, e.g. the Czech word mnít (“to
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deem”), even though its derivatives like pomník (“a memorial”) or domněnka
(“a conjecture”) are very common.

• Inflection doesn’t cause a change in the part-of-speech, while derivation may
(Aronoff; Fudeman, 2011). This might, however, be a circular definition, since
parts-of-speech are usually distinguished on the grounds of common inflec-
tional behavior.

A second definition is considered by ten Hacken (2014) to be better than the one
above: “Inflectional morphology is what is relevant to the syntax.” However, as re-
ported by Stump (2005), while this definition holds clearly for contextual inflection,
such as agreement in adjectival number; it is not so clear for inherent inflection, e.g.
nominal inflection for number.

Despite this fuzziness, the distinction between derivation and inflection still has
its merit, as the difference shows up in psycholinguistic studies – see e.g. Feldman
(1994), who measured the time it takes subjects to perform simple textual tasks on
pairs of words, either related by inflection, by derivation or not related. The study
reports that the time is influenced by the type of relatedness and that there is a dif-
ference between inflection and derivation.

2.1.6 Derivation vs. other word-formation processes

Word-formation processes differ in the underlying morphological processes they
use to create new words. The exact repertoire of word-formation processes varies
by author, as does their classification. For example, Aronoff; Fudeman (2011) con-
sider derivation to be an all-encompassing term for all word-formation processes,
including compounding, conversion, and even ones that Mel’čuk (2006) considers
non-morphological, such as blending, clipping and acronymization. They call the
Dokulil’s derivation “affixation”. This is, however, mostly a terminological issue.

Some authors consider conversion to be a distinct word-formation process, others
view it as a special case of derivation using zero affix, some define and distinguish
both cases of conversion (Dokulil et al., 1986, p. 201) and yet others view it as a mor-
phological process that can be used in different word-formation processes as well as
in inflection (Mel’čuk, 2006). The latter view shows that the word “conversion” has
multiple meanings – one relates to derivation, the other one, used by Mel’čuk, relates
to affixation.

In our models and algorithms, we will not consider compounding at all, conver-
sion will be interpreted as zero affixation, and other processes, to the extent they
appear in our training data, will be ignored.

2.1.7 Derivation vs. etymology

Both derivational morphology and etymology study the origins of words. The
difference is in the type of origin they consider. Etymology is the study of how words
came to be; how they were first created and introduced into the language. Derivation
is the formation process that takes place in the speaker’s minds. This means that
etymology is diachronic, while derivation is synchronic. In basic cases, such as those
given in previous sections, these processes match.
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But there are many examples of differences. To give one of them, the word ham-
burger etymologically comes from Hamburg, the name of the city in northern Ger-
many – but after the shortened form burger was created alongwith beefburger, cheese-
burger etc., the original form was reinterpreted and in the minds of many modern
speakers, it is created via compounding from the words ham and burger (Trips, 2014).

Similar reinterpretation is not limited to compounding, but can be found in deriva-
tion as well. For example, the Czech words odér (“odor”) and deodorant (“deodorant”)
are etymologically loanwords from French. But they may be interpreted as being (in-
directly) derivationally related without the round-trip to and from French, by analogy
with words such as mutant (“mutant”), emigrant (“émigré”) or konzultant (“consul-
tant”).

It is also possible to reinterpret certain cases of back-formation (affix removal)
as standard affixation by flipping the direction of derivation. This approach further
disconnects derivation from etymology, but regularizes the language processes, and
thanks to this, it is taken by some creators of derivational databases (Ševčíková et al.,
2016). A good guiding principle to such direction reversal is one of frequency: it has
been reported (Furdík, 1978; Panocová, 2017) that derivational parents are generally
more common than their children.

2.2 String-wise view
In this section, we look at the technical application of linguistic terms introduced

in the previous section. Since our resources are all textual, we will focus on the writ-
ten side of language rather than on the phonological one. In Subsection 2.2.1, we
define a technical interpretation of the linguistic terms. In Subsection 2.2.2 and Sub-
section 2.2.3, we outline the concept of using derivational data for inferring segmen-
tational information.

2.2.1 Definitions

Alphabet, Word, Language

Language is built on top of an alphabet Σ, which is a finite nonempty set of char-
acters. Awordw is defined as a nonempty string (a nonempty sequence of characters)
from Σ, i.e. w = (l1, l2, ..., ln) ∈ Σ+. A language L is then a set of words: L ⊂ Σ+.
These definitions are mostly consistent with the standard formal grammars definition
(Barták, 2013), except that we do not allow the empty word to be in the language.

These definitions are a simplification, because in natural languages, the alphabet
is not well-defined. For example, texts in any given language may contain words
written in a foreign language using their native alphabet, and in the case of Czech,
there is the digraph ch, which is usually considered a single letter (e.g. pře‧chod‧n‧ý
(“transient”) is 8 letters long), but is hard to distinguish from the letter combination
c+h, found e.g. in na‧nic‧hod‧n‧ý (“not good for anything”). We consider ch to always
be two characters regardless of context.

Also, the definition of a language as a set of words is problematic, because it im-
plies that people with even slightly different vocabularies speak different languages,
and that language changes every time a neologism is introduced. This issue mani-
fests itself in our EM model, where any word not encountered during training (out of
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vocabulary word, OOV) has to be left unsegmented.

Substrings

To cut out parts of strings, we define the following three functions:

substrings(w) is a multiset of all contiguous substrings of w (including the empty
ones) generated by iterating over all possible positions,

prefixes(w) is a set of all contiguous substrings of w (including the empty one) that
start at the beginning of the string, and

suffixes(w) is a set of all contiguous substrings of w (including the empty one) that
terminate at the end of the string,

as given by the following definitions, where (lx, lx−1) denotes the empty string:

∀w = (l1, l2, ..., ln) :

substrings(w) = {(li, ..., lj) | i ∈ {1, ..., n+ 1}, j ∈ {i− 1, ..., n}} (2.1)
prefixes(w) = {(l1, ..., lj) | j ∈ {0, ..., n}} (2.2)
suffixes(w) = {(li, ..., ln) | i ∈ {1, ..., n+ 1}} (2.3)

Since substrings(w) is a multiset, substrings(“eye”) = {“eye”, “ey”, “ye”, “e”, “y”,
“e”, “”, “”, “”, “”}

We will also sometimes use λ as a symbol to denote the empty string.

Derivation

Words can be either unmotivated ormotivated. Motivatedwords have exactly one
derivational parent, with which they are related. Unmotivated words have no parent.
Either kind may have any number of derivational children. This means that words
can be ordered into directed derivational trees, with an unmotivated derivational root
and motivated branches and leaves.

Morphs

Each word is composed of one or several morphs, which are nonempty disjoint
(non-overlapping) contiguous substrings of characters, whose concatenation forms
the whole word. Therefore, a morph must be a nonempty substring of a word. Since
a morph must be contiguous, circumfixes are interpreted as a pair of morphs, one on
each end of the word. Zero morphs are not allowed.

The fact that a suffix or a prefix may be empty, while morphs must be nonempty,
seems to be contradictory at the first glance. It is better understood when looking at
morphs as strings obtained by splitting a word by segmentation points. Since the be-
ginning and end of a word already contain an implicit segmentation point, the discov-
ery of an empty affix does not change the list of segmentation points and therefore the
morph composition of the word. Prefixes and suffixes are understood as substrings
of the word, not necessarily as morphs in their own right – an affix may span several
morphs as well as none.
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Stems

This segmentation of a word into its morphs is created by a peripheral affixation
process, which means that the immediate composition of each word is a stem and an
optional single affix at each side of the stem. The stem must be nonempty (i.e. must
contain at least a single morph), while the affixes may be empty, signifying the lack of
an affix. Both may be multi-morph, must not overlap with one another, and together,
they must cover the entire word.

The stem of a motivated word is shared with its derivational parent, i.e. it is de-
scended from a contiguous subset of its derivational parent’s morphs. This sharing-
descendence relation doesn’t necessarily mean that the child’s stem is copied from the
parent verbatim, as it may be modified by morphological, orthographical and phono-
logical alternations (MOP alternations). Also, the corresponding subset of the par-
ent’s morphs need not be its stem as per the definition above, e.g. in jaro (“springNoun”)
→ jarní (“springAdj”) → jarně (“springAdv”), the stem of jarní is jar, but the mapped
part from jarně is jarn. We will call this parent’s subsequence mapped stem.

Due to the peripherality of affixation, given a particular word w ∈ L of length
|w| = n, a segmentation of w into its (optional) prefix, stem and (optional) suffix can
be expressed as finding two boundaries {b1, b2} ∈ N0, b1 < b2 ≤ n, which segment
the word into its prefix p = (l1, ..., lb1) (nonexistent if b1 = 0), stem r = (lb1+1, ..., lb2)
(always nonempty) and suffix s = (lb2+1, ..., ln) (nonexistent if b2 = n).

2.2.2 Stemming using derivations

The definition of a stem given above contains the base of a possible stemming
algorithm. If we could find the contiguous set of morphs descended from the deriva-
tional parent, we would obtain the stem. The rest of the word’s morphs then belong
to the affixes. An algorithm that performs exactly this search for common stems and
changed affixes is presented in Chapter 4.

2.2.3 Segmentation using stemming

With a working stemming algorithm, we can to transform information about
stems into information about morphs. This is done using a secondary resegmen-
tation algorithm. After stemming a word, one or two morph boundaries are usually
already present and correct5. However, the stem itself is often a multi-morph string,
and sometimes even the affixes can be multi-morph, as in z‧vrát‧i‧t (“to overturn”) →
z‧vrác‧e‧n‧ý (“perverse”), where the suffixes it and ený contain two and three morphs,
respectively, and the stem zvrác is composed of two. We can, however, subdivide
stems by repeated stemming, i.e. by looking at the segmentation of a stem in theword’s
derivational parent or children and transferring the boundary. See Figure 2.2 for an
example.

2.2.4 Type and token frequencies

Both our models utilize information about frequencies of observed phenomena,
such as morphs, affixes, stems, individual characters or character substitutions. The

5An exception would be e.g. conversion, such as strážný (“tutelary”) → strážný (“a guardian”),
where the stem forms the whole of both words and thus no boundary is discovered.
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hrob (grave)

hrobník (gravedigger)

hrobníkův (gravedigger’s)

Figure 2.2: An illustration of how repeated stemming yields a morphological segmen-
tation. Stems are indicated by gray background, morph boundaries between stems
and affixes by a solid vertical line. Pairs of connected braces indicate how a stem of
the word belowmaps to a part of the word above. A dashed vertical line in the bottom
word indicates how its stem can be subdivided using a morph boundary information
from the middle word.

probabilistic model directly, in the form of internal count tables, the neural model in-
directly, as phenomena frequently encountered during training have a greater chance
of influencing its parameters than infrequent ones.

We have an option of changing the frequencies of inputs our models encounter
by training on different datasets or by changing the dataset. One decision that is
often done is training on word type frequencies or on word token frequencies. A
type frequency is 1 for each word that exists in a dictionary (except for homonyms,
which share one word form among several conceptually different lexemes) and 0 for
unseen words, while a token frequency of each type is given by its frequency in a
corpus.

The distribution of type frequencies is therefore uniform – as if we had a corpus
where every plausible word type was encountered equally often. Such a corpus is ab-
solutely unrealistic, because token frequencies in real world corpora generally follow
a power law distribution: several word types are encountered very frequently and
most types are rare (Zipf, 1932).

The chosen mode of training influences the results. As shown by previous studies
(Creutz; Lagus, 2005) for similar algorithms, training on type frequencies increases
the recall of the algorithm by a large margin, while simultaneously decreasing preci-
sion by a little bit, when compared to training on token frequencies. Overall, using
type frequencies in training seems to be a better fit for our model.

An even better mode of operation is to interpolate between type and token fre-
quencies, as reported e.g. by Goldwater et al. (2005), who justifies the better re-
sults obtained by such interpolation by comparing the algorithm with the Kneser-
Ney smoothing method for interpolating between frequencies of n-grams of varying
lengths (Kneser et al., 1995).

However, as both our models train on derivational pairs of words, there is the
question of how to estimate the frequency of the pair. As explained in Subsection 2.1.7,
the direction of derivation generally goes from the more common to the rarer word,
but there are exceptions to this rule. Such exceptions may point to a higher degree
of lexicalization of the derivational child, and therefore to lesser productivity of the
process used to derive the child from its parent. It may be undesirable to increase the
frequency of such examples.
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3. Related work
In this chapter, we will first introduce derivational and segmentational data re-

sources usable for training and evaluating our algorithms, and then related segmen-
tation systems of other authors.

As the aim of this thesis is to segment Czech words, the focus of the first part
of this chapter is to introduce the resources necessary for that, namely the DeriNet
network (Žabokrtský et al., 2016) in Subsection 3.1.1, and the evaluation data set from
the Retrograde morphemic dictionary of Czech language (Slavíčková, 1975) in Sub-
section 3.2.3.

However, as our algorithm is not specific to Czech and should have some degree
of language independency, we also list foreign-language datasets that may be of use.
As we haven’t found another language with the necessary combination of large deri-
vational data and segmentational data in a compatible format, the list is mostly meant
as an overview of related work.

3.1 Derivational data
Since derivational data primarily expresses links betweenwords, it typically comes

in the form of graph databases with various levels of complexity. In the recent years,
several projects aiming to gather such data were started for different languages. These
projects differ in format, size, scope, complexity and completeness of their annota-
tion, see Kyjánek (2018) for a list.

We can identify four major formats of the data (Kyjánek, 2018):

1. Directed trees. This is the format of the DeriNet database, which lists a single
derivational parent for each motivated lexeme and no parent for unmotivated
ones, thus forming a directed tree structure (Žabokrtský et al., 2016). This is
the format most suitable for our algorithms.

2. General graphs. This format is used in DErivBase (Zeller et al., 2014), in which
nodes are connected by edges without a restriction on the structure.

3. Family listing. This format, used in DErivCELEX (Shafaei et al., 2017) and De-
rivBase.hr (Šnajder, 2014) is technically not graph-based, because databases in
this format merely groups derivationally related words from a single derivatio-
nal family (what would be a single tree in DeriNet) into a flat list. Therefore,
it is unsuitable for our purposes, as our algorithms require overt derivational
links.

3.1.1 DeriNet

DeriNet is a network of derivational relations between Czech words, structured
into directed trees (Žabokrtský et al., 2016). The newest version (as of June 2018), 1.5.1,
contains 1 011 965 words connected with 785 525 derivational relations, it is therefore
by far the largest derivational resource known to us (Kyjánek, 2018).

The database has a high quality of annotation. In version 1.0, it had a precision
of 99% and recall of 88% as measured on the derivational relations (Vidra, 2015). The
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recall has grown since then and the latest estimates are 99% for precision and 91% for
recall.

The annotation is synchronic and attempts to be regular, i.e. whenever there is a
choice of multiple parents, DeriNet tends to choose the one that follows the choices
done for similar derivational pairs, even when another parent could be a more nat-
ural choice in the particular case. This means that e.g. etymological back-formation
is systematically reversed. Such annotation is in line with e.g. the view of Mel’čuk
(2006), who argues that back-formation is not a morphological process due to its in-
herent diachrony, while its reverse may be morphologically more sound (Mel’čuk,
2006, p. 310).

3.1.2 DErivBase

DErivBase (Zeller et al., 2014) is a database that covers 280 336 German words, out
of which 65 420 words have some derivational links listed, and they are grouped into
20 371 families.

The families are not trees, but general graphs – a pair of nodes from a single
connected subgraph may have more than one path connecting them, and there may
be directed cycles. The edges are scored to indicate their probability, since they are
autogenerated by a machine learning algorithm based on manually-specified rules.

It is theoretically possible to approximate derivational tree extraction from the
database by using the supplied edge-wise quality scores with an algorithm for find-
ing optimal spanning arborescences (the directed analog of the minimum spanning
tree), e.g. the Chu-Liu-Edmonds’ algorithm (Chu et al., 1965), but this was, to our
knowledge, not attempted.

DErivBase.hr is a variant of DErivBase for Croatian (Šnajder, 2014), containing
100 000 words grouped into 56 000 families. It also does not contain trees, as it anno-
tation consists of clustering of words into derivational families. The reported quality
of the resource is quite low, with 81.2% precision and 76.5% recall.

3.1.3 Sloleks

Sloleks (Dobrovoljc et al., 2015) is a tree-structured database of Slovenian deriva-
tions, listing, in its version 1.2, 100 784 words with 65 951 derivational relations. There
is a compatible lemmatizer available, Obeliks (Grčar et al., 2012), but no segmentation
data are available for Slovene.

3.2 Segmentation data
Segmentation data also comes in different flavors, differing in the richness of their

annotation. Some datasets annotate only themorph boundaries, other addmorpheme
information on top of that, some only annotate the morpheme composition without
presenting the immediate morph segmentation.

3.2.1 Morpho Challenge datasets

The data most widely used by projects with aims similar to ours is part of the
Morpho Challenge, an unsupervisedmorpheme analysis competition held in 2005 and
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annually from 2007 to 2010 (Kurimo et al., 2010). The main task in the competition
is morpheme analysis, not segmentation, but they also publish segmentation data for
three languages: English, Finnish and Turkish, together with morpheme annotation.

3.2.2 Bázový morfematický slovník češtiny

Limited information about Czech segmentation is available in Šiška (1998): It lists
selected root morphemes grouped by their semantics, putting root allomorphs togeth-
er. For each such list of morphs, a list of exemplar lexemes is given. However, as the
the book is intended for human audience, not for machine learning, these lists are
short, exhaustive segmentations are not present and the dictionary is not machine
tractable.

3.2.3 Retrograde morphemic dictionary of Czech language

The dictionary by Slavíčková (1975) is more relevant, as it directly lists segmenta-
tions of words into morphs and the segmentations given there correspond to the de-
sired output of our tool. The dictionary is not available in machine-tractable electron-
ic form, but the book was recently scanned by Jaroslava Hlaváčová (Slavíčková, 2018),
who also rewrote the full complement of 14 581 verbs listed therein into a machine-
readable text file (Slavíčková et al., 2017).

We have further processed this text file tomake it compatible with the set of words
used in DeriNet by:

• Removing the reflexive se found with some words. We do not consider it to be
a part of the verb, but a standalone pronoun.

• Treating slash-markings the same way as standard segmentation point mark-
ings. These are used for several different purposes in the dictionary, mostly to
mark and distinguish homonymous morphs with complementary distributions
– if the same string may denote both an affix and root morph, the affix morph
is marked with slashes at both sides.

• Removing the word-final -i, which is no longer used to mark infinitives in mod-
ern Czech and the vocabulary of DeriNet does not contain it.

For an excerpt of the dictionary, see Figure A.1 in Attachment A.1.

3.2.4 Hutmegs

Hutmegs (Creutz; Lindén, 2004) is a segmentational resource for Finnish and En-
glish. It lists segmentations for 1 400 000 Finnish words and 120 000 English ones. It
is not freely available and a license must be purchased for non-academic use. This is
one reason not to use it in our project, as it could influence the licensing of DeriNet.
Excerpts from Hutmegs are available in the Morpho Challenge data. As we do not
have a large enough Finnish nor English derivational resource, we did not attempt to
obtain this dataset.
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3.2.5 CELEX

The CELEX database (Baayen et al., 1995), available for English, German and
Dutch, contains morphological segmentation data, but it doesn’t list surface segmen-
tations into morphs, only segmentations into derivational morphemes. This means
that inflectional morphs are omitted altogether and derivational morphs are convert-
ed to a canonical form; e.g. blockieren is segmented as Block‧ier and blenden as blind.

Also, for some words, the segmentational field is filled, but the segmentation is
incomplete or the word is left unsegmented: e.g. abgesagt is listed as a single segment,
although it can be (as far as my German skills can tell) segmented as ab‧ge‧sag‧t.

It does list surface stem information, but that is for the standard, inflectional
meaning of “stem”: The word without its inflectional affixes. If there is no inflec-
tional affix, the stem is equal to the lemma, even when there are derivational affixes
left.

Therefore, is not usable as gold-standard segmentation data source for ourmodels.

3.3 Corpora
We use the Morfessor FlatCat model (Grönroos et al., 2014) as a state-of-the-art

comparison target for evaluation. This model is optionally trained on token fre-
quencies (see Subsection 2.2.4 for an explanation) obtained from a corpus. We chose
SYN2010 (Křen et al., 2010) as the corpus to train on. It is a corpus of contemporary
written Czech, based in roughly equal amounts on broadsheet newspaper articles
from the years 2005-2010, scientific literature and literary fiction. The corpus should
be representative of the Czech language (Křen et al., 2010).

For training, we stripped punctuation and words containing non-letters from the
corpus. This filtering was performed by keeping only words that satisfy the following
Python3 regular expression: ^[^\W\d_]*$.

The filtered corpus contains 8 182 869 sentences with 99 604 643 word tokens be-
longing to 1 580 543 word types. The number is higher than for DeriNet, because it
counts inflected word forms, while DeriNet only contains lemmas. This discrepancy
is intentional, as we want to test Morfessor both on lemmas from DeriNet and on
inflected forms from a corpus and compare both scores.

3.4 Segmentation methods
Since our task is to create an automatic system for morphological segmentation,

it is important to look at other segmentation systems. This section is meant to give
an inexhaustive overview of the method types similar to our systems, to allow for a
comparison with current and previous state of the art.

For a long time, the focus of the field was on unsupervised systems (Ruokolainen
et al., 2016). The reasons usually given are cheap applicability to multiple languages,
including underresourced ones, closeness to other similar problems such as word seg-
mentation (tokenization of text or recorded speech into words) and independence
from linguistic theories (Creutz; Lagus, 2002). The latter reason is, in fact, surprising-
ly important, because as we explain in Section 2.1, many theories are very vague on
how to recognize morphemes and morphs.
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3.4.1 Character successor frequency

An early unsupervised method of segmentation is based on character-based n-
gram successor frequency (Harris, 1955; Déjean, 1998) or entropy (Hafer et al., 1974).
The theory behind this approach is, that morphs are common clusters of characters.
When sequentially scanning a word, the next character inside a cluster is easily pre-
dictable from the preceding context, while the first character of the next cluster is
not, because the vocabulary of morphs is relatively limited, while the possible morph
bigram combinations are numerous. Therefore, when the entropy (or nearly equiva-
lently, the successor frequency) of the next character as predicted by an n-grammodel
raises above a certain absolute or relative threshold, or peaks, a morph boundary sep-
arates the next character from its predecessor. This technique is also used in the more
recent system Affisix (Hrušecký et al., 2010).

3.4.2 Minimum description length models

Several newer methods are based on the minimum description length principle
(Rissanen, 1996; Goldsmith, 2001), which states that the best description (the best
model) of some data is the description that best compresses the data. The principle
balances exhaustiveness with complexity, minimizing the sum of description size and
residual unexplained data size – i.e. the principle minimizes the number of bits needed
to store the trainedmodel and the training corpus processed by themodel. In this way,
the minimum description length principle is related to Occam’s razor or Maximum
entropy models.

One popular unsupervised system using this principle is Morfessor (Creutz; La-
gus, 2005) and its derivatives, which used it directly in its first implementation, Mor-
fessor Baseline (Creutz; Lagus, 2002). The algorithm works by taking input words
one by one, trying different splits of the word into two segments and selecting the
one with the minimum cost (the cost being measured as the complexity of the morph
lexicon plus of the recorded decisions splits), or leaving the word unsegmented if
the division would increase the total description length. If a split was made, the two
segments are then segmented recursively using the same algorithm.

Since this incremental model could produce suboptimal segmentations for words
seen early in the training phase, when the morph lexicon is nearly empty, a word
is resegmented each time it is encountered, even if it was previously seen, and the
whole dictionary is reread periodically.

An updated version of the Morfessor algorithm, called Morfessor FlatCat (Grön-
roos et al., 2014), is a modern state-of-the-art segmentation method and as such, we
will use it as the target to compare our system against. It uses semi-supervised learn-
ing (e.g. utilizes a small amount of hand-annotated data in addition to an unannotated
corpus) to return a segmentation closer to the linguistically appropriate one. Over the
Morfessor Baseline system, it categorizes morphs into prefixes, stems and suffixes and
adds an n-grammorphotactics model for a better estimation of which morphemes may
follow which ones.

3.4.3 Bayesian inference

Another popular principle for unsupervised segmentation systems is Bayesian in-
ference. Although other methods also use some principles of statistical inference, in-
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cluding our EM model and the Minimum description length models described above,
there is a group of systems based directly on Bayesian inference and the associated
set of algorithms, such as Gibbs sampling (Geman et al., 1984). These methods work
by looking at the data D as on a set of statistical variables with the observable val-
ues (e.g. the values of individual characters) fixed to the values of the individual data
items, specifying a generative probabilistic model of the data (including the hidden
variables H , e.g. the segmentation points), and then estimating the hidden variables
by repeatedly sampling individual data points from the model, taking the current set-
ting of all other variables in themodel as fixed. The sampling ismade possible through
decomposition using the Bayes rule as follows, making the posterior p(H | D) easier
to compute using the easily-computed (if taking one variable at a time) likelihood
p(D | H) and estimatable prior p(H):

p(H | D) =
p(D | H) p(H)

∑

H′ p(D | H ′) p(H ′)
∝ p(D | H) p(H) (3.1)

Because the variables are sampled one at a time, the individual successive sam-
ples are not independent of one another, but this issue can be sidestepped by only
recording every nth sample (e.g. for n = 1000), not remembering samples in between,
decreasing the interference between successive recorded samples.

Models in this class include newer versions of Morfessor (since one formulation of
its Minimum description length model has been proven to be equivalent to a Bayesian
Maximum a posteriori model (Creutz; Lagus, 2005)) and models of Goldwater et al.
(2005), Kurfalı et al. (2017) and Can et al. (2018).

3.4.4 MorphoChains

The method which is perhaps the closest to our systems is the MorphoChains
model (Narasimhan et al., 2015) and its derivatives (Bergmanis et al., 2017). The mor-
phological chains used by these models are approximations of derivational relations
discovered by an unsupervised, orthography-based model. Each chain is an ordered
list of morphologically related words which starts from the one with the fewest mor-
phemes, adding affixes or compound parts at each step. One word may belong to
multiple chains, effectively creating graphs which should be similar to the trees found
in DeriNet, since there is usually at most one linguistically plausible preceding word
in the chain.

Narasimhan et al. (2015) build the chains using several features, including the affix
change from the preceding word (including some model of MOP alternations) and
semantic similarity measured by word embedding vectors (Mikolov et al., 2013). An
example chain given in Narasimhan et al. (2015) is nation→ national → international
→ internationally, which shows very large similarity with our derivational trees. The
individual chain steps need not be substrings of one another, as the model can predict
more complex changes including reduplication and other alternations.

The papers do not contain an analysis of the predicted chains, so it is hard to say
how they compare with a manually annotated derivational network such as DeriNet.
Given the experience of Lango et al. (2018), who attempted semi-supervised construc-
tion of derivational networks for Polish and Spanish, we know this task is possible,
but the quality of the chains will probably not be as high as the quality of manual-
ly annotated data. On the other hand, the general graph formulation of the chains
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Narasimhan et al. (2015) use is more general than the directed trees used in DeriNet,
making it possible for them to cover phenomena not captured in DeriNet, such as
compounding. They report that the model “tends to prefer a single parent for every
word”, but it is hard to tell what exactly “tends to” means and to what extent the
model learns to identify compounds.

A similar but simpler system was created by Üstün et al. (2016), who also use
word embeddings to find semantically similar parents, but do away with the complex
chains and only look for possible parents among substrings of the word.

23



4. EM-based segmentation model
In this chapter, we will introduce three algorithms for stemming Czech words and

an algorithm for morphological segmentation that uses stemming and derivational
links to segment words into morphemes.

The theory from Section 2.1 tells us that a pair of Czech words connected by a
derivational link should usually1 share a common stem and only differ in its affixes.

Since we have a database of such derivational links, we can use it to look for the
common parts of a word pair, which we will consider to be a stem of the derivational
child, and the differing parts, which we will consider to be (potentially multi-morph)
affixes. Three concrete algorithms for such stemming, one simple and two more ad-
vanced, are explained below.

4.1 Common substring stemming algorithm
The simplest algorithm for identifying a stem is string equality comparison. We

can find the longest common contiguous substring of a derivational pair without at-
tempting to identify or model any morphological, orthographical and phonological
(MOP) alternations occuring inside themorphs or at their boundaries. Such algorithm
is obviously deficient, but since alternations are relatively rare, it should identify the
correct stem in the majority of cases. See Figure 4.1 for examples of correct and in-
correct stemming using this technique.

4.2 Stemming using a MOP alternation model
Because of the deficiencies of the previous algorithm in handling morphological,

orthographical and phonological alternations, we have devised a more complex algo-
rithm to cover them. It is a probabilistic algorithm that explicitly models derivation
by modelling both the process of affixation and of stem alternations. It therefore
models the fact that the morphological composition of a motivated word is strongly
dependent on the composition of its derivational parent.

1Suppletion is an uncommon exception.

květ (blossom)

květ‧in‧a (flower)

real‧ist‧a (realist)

real‧ist‧ic‧k‧ý (realistic)

válec (cylinder)

válc‧ov‧ý (cylindrical)

vej‧c‧e (egg)

vaj‧íč‧k‧o (small egg)

Figure 4.1: Four examples of stemming using the common substring algorithm, the
top two being correct, the bottom two incorrect. The segmentation point marks (‧)
indicate the gold standard segmentation. The grey background and braces indicate
the common (mapped) stems between the two words.
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The affixation and alternation processes are, as a simplification, considered to be
independent of each other. The selection of prefixes and suffixes is, however, modelled
jointly, thus explicitly modelling complex processes such as circumfixation.

We can therefore model stemming as a segmentation of a word w into its stem
and affixes as follows:

segmentation of w =r ∈ Σ+; p, s ∈ Σ∗ :

(prs = w ∧ p is a prefix ∧ r is a stem ∧ s is a suffix) (4.1)
= argmax
p,r,s : prs=w

p(w has prefix p ∧ w has stem r ∧ w has suffix s)

(4.2)
= argmax
p,r,s : prs=w

p(w has prefix p ∧ w has suffix s) · p(w has stem r)

(4.3)

The individual models for affixes and stems are described in the next two subsec-
tions.

4.2.1 Modelling affixation

Affixation is modelled differently for motivated and unmotivated words. Unmoti-
vated words are considered to be unaffixed and their stem-internal morphemic struc-
ture is discovered by secondary resegmentation only.

For motivated words, affixation is modelled using joint probabilities of the affixes
of the child and the residual affixes of the parent, which can be derived from affix
probabilities of the child using the law of total probability (LTP).

LTP states that given a countable set of measurable events Bi : i ∈ {1, 2, . . .},
that form a partition of a sample space, the following equation holds for any eventA:
p(A) =

∑

i p(A ∩ Bi). In other words, the probability of an event can be measured
piecewise, as long as we make sure to count all the pieces and not count any piece
more than once.

Using LTP, the following decomposition is possible:

∀w ∈ Σ+, w has a parent, w′ = parent(w), ∀p ∈ prefixes(w), ∀s ∈ suffixes(w) :

p(w has prefix p ∧ w has suffix s)
LTP
=
∑

p′∈prefixes(w′)
s′∈suffixes(w′)

p
(

w has prefix p∧w has suffix s∧
w′ has prefix p′∧w′ has suffix s′

)

(4.4)

=
∑

p′∈prefixes(w′)
s′∈suffixes(w′)

p((p′, s′) → (p, s)) (4.5)
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okno (window)

okénko (small window)
+

Figure 4.2: An example of a stem mapping. The gray areas contain the characters
which are mapped from the derivational parent’s mapped stem (top) to its child’s
stem (bottom). The -o and -ko are suffixes of the parent and child, respectively, and
thus play no role in the mapping. Arrows from letter to letter indicate substitutions,
the plus sign indicates insertion of the vowel é.

4.2.2 Modelling MOP alternations

For stems, an equation analogous to Equation (4.5) holds:

∀w ∈ Σ+, w has a parent, w′ = parent(w), ∀r ∈ substrings(w), |r| > 0:

p(w has stem r)
LTP
=
∑

r′∈substrings(w′)
|r′|>0

p(w has stem r ∧ w′ has mapped stem r′) (4.6)

=
∑

r′∈substrings(w′)
|r′|>0

p(r′ → r) (4.7)

But it is necessary to decompose the probabilities further, because the value of
this formula cannot be directly estimated in a real-world segmentation system due
to data sparsity. Affixes are broadly shared by many different words, making their
counts in the data reliable indicators of their probability, but a particular stem is seen
at most a couple of times – in fact, many stems are only found in a single word. Due
to this, we will estimate the stem probability using a character-wise string mapping
algorithm from the parent mapped stem to the child stem.

The algorithm works by scoring pairwise alignments between the mapped stem
of the parent and the stem of the child. An alignment between two strings s =
(s1, s2, . . . , sn) and t = (t1, t2, . . . , tm) is a sequence c1, c2, . . . , ck of single-character
changes, where each change is either a substitution si → tj , insertion λ → tj or dele-
tion si → λ, and the indices i and j in the list of changes form contiguous sequences
1 . . . n and 1 . . .m respectively (i.e. transpositions are not allowed). See Figure 4.2 for
an example of such stem mapping. Additionally, it is not allowed for an insertion to
immediately (without an interleaving substitution) follow a deletion, since the align-
ments (x → λ, λ → y) and (λ → y, x → λ) represent an identical process and this
duplication would make it harder to enumerate the different unique aligments. By
fixing the canonical order as (λ → y, x → λ), each possible stem mapping process
has a single unique alignment.

How many alignments are there between strings s and t? If we consider a model
with only insertions and deletions, without substitutions, there is only one – insert
all, then delete all. If we introduce substitutions, the count can be decomposed as
follows: First, we choose k ∈ N indicating how many substitutions there will be in
the alignment – there are min(|s|, |t|)+1 possible choices. Second, we choose k char-
acters from s and k characters from t to be substituted. This fully determines which
gets substituted for which, because they may only be mapped in order, as there is
no way our algorithm can produce a transposition. The order of (optional) insertions
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and deletions between each pair of substitutions is also determined by the substitu-
tions and there is only one way of placing them (see the model without substitutions
above). The final equation for the alignment count is:

|alignments(s, t)| =
min(|s|,|t|)
∑

k=0

(

|s|

k

)

·

(

|t|

k

)

(4.8)

Since different alignments are mutually exclusive (the stem and its corresponding
mapped stem cannot be aligned in more than one way), we can calculate the proba-
bility of a mapping between the mapped stem and stem by summing the probabilities
of all possible alignments. The probability of a word’s stem candidate is therefore:

∀w ∈ Σ+, w has a parent, w′ = parent(w), ∀r ∈ substrings(w), |r| > 0:

p(w has stem (t1, t2, . . . , tm))
LTP
=
∑

r′∈substrings(w′)
|r′|>0

r′=(s1,s2,...,sn)

p((s1, s2, . . . , sn) maps to (t1, t2, . . . , tm))

(4.9)

An alignment is scored by calculating its probability, which we define as a product
of the probabilities of the individual changes, i.e. we simplify calculations by assuming
independence between the characters in the stem.

p(c1, c2, . . . , ck) = p(c1 ∩ c2 ∩ . . . ∩ ck) (4.10)
= p(c1) · p(c2) · . . . · p(ck) (4.11)

=
∏

i∈{1...k}

p(ci) (4.12)

The final probability is given by the following recurrent algorithm obtained by
repeatedly taking all the possible first changes out of the sum and product. There
are two equations, one for the case where an insertion can follow, the other (pD) for
the case where a deletion has occured and thus no insertions are allowed up to the
nearest substitution.

pD((s1, s2, . . . , sn) maps to (t1, t2, . . . , tm))

= p(s1 → t1) ·
∑

(c2,...,ck) are changes of (s2,...,sn) to (t2,...,tm)

∏

i∈{2...k}

p(ci)

+ p(s1 → λ) ·
∑

(c2,...,ck) are changes of (s2,...,sn) to (t1,t2,...,tm)

∏

i∈{2...k}

pD(ci) (4.13)

= p(s1 → t1) · p ((s2, . . . , sn) maps to (t2, . . . , tm))

+ p(s1 → λ) · pD ((s2, . . . , sn) maps to (t1, t2, . . . , tm)) (4.14)
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p((s1, s2, . . . , sn) maps to (t1, t2, . . . , tm))

=
∑

(c1,c2,...,ck) are changes of (s1,s2,...,sn) to (t1,t2,...,tm)

∏

i∈{1...k}

p(ci) (4.15)

= p(s1 → t1) ·
∑

(c2,...,ck) are changes of (s2,...,sn) to (t2,...,tm)

∏

i∈{2...k}

p(ci)

+ p(λ → t1) ·
∑

(c2,...,ck) are changes of (s1,s2,...,sn) to (t2,...,tm)

∏

i∈{2...k}

p(ci)

+ p(s1 → λ) ·
∑

(c2,...,ck) are changes of (s2,...,sn) to (t1,t2,...,tm)

∏

i∈{2...k}

pD(ci) (4.16)

= p(s1 → t1) · p ((s2, . . . , sn) maps to (t2, . . . , tm))

+ p(λ → t1) · p ((s1, s2, . . . , sn) maps to (t2, . . . , tm))

+ p(s1 → λ) · pD ((s2, . . . , sn) maps to (t1, t2, . . . , tm)) (4.17)

With the recursion stopping conditions for when either or both strings are exhausted
defined as follows:

p((sx, sx+1 . . . , sy) maps to ()) =
∏

i∈{x...y}

p(si → λ) (4.18)

p(() maps to (tx, tx+1 . . . , ty)) =
∏

i∈{x...y}

p(λ → ti) (4.19)

p(() maps to ()) = 1 (4.20)

pD((sx, sx+1 . . . , sy) maps to ()) =
∏

i∈{x...y}

p(si → λ) (4.21)

pD(() maps to (tx, tx+1 . . . , ty)) = 0 (4.22)
pD(() maps to ()) = 1 (4.23)

4.2.3 Joint modelling of affixation and alternation

Since both models defined above use the law of total probability to introduce a de-
pendency on the derivational parent, it is possible to model the parent’s segmentation
jointly in the combined model. This gets rid of some of the independence assump-
tions made in Equation (4.3) and prevents each part of the model from segmenting
the parent in a different way. The combined model therefore is:

∀w ∈ Σ+, w has a parent, w′ = parent(w) :
segmentation of w = argmax

r∈Σ+;
p,s∈Σ∗ :
prs=w

p(w has prefix p ∧ w has stem r ∧ w has suffix s)

= argmax
r∈Σ+;

p,s∈Σ∗ :
prs=w

∑

r′∈Σ+;
p′,s′∈Σ∗ :
p′r′s′=w′

p((p′, s′) → (p, s)) · p(r′ → r) (4.24)
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4.3 Model inferrence algorithms
After designing our model in the previous section, we have to train it by finding

the best configuration of its parameters, i.e. estimating the probabilities of affixes and
MOP alternations.

In Subsection 4.3.1, we will define how to estimate model parameters from anno-
tated data. Since we do not have such data for supervised learning, an Expectation-
Maximization loop described in Subsection 4.3.2 will be used to bootstrap our model
without requiring it.

4.3.1 Estimating maximally likely parameters

Let’s assume that we have annotated data, which lists the following information:

• For each derivational pair, all possible (stringwise, not linguistic) segmentations
of the child into its potential stem and affix combinations.

• For each such segmentation, all possible alignments of the stem and affixes to
the corresponding substrings of the parent word.

• For each such alignment of the stem, the per-character mapping of the stem to
the parent’s mapped stem.

• For each such affix alignment and stem mapping, the probability that the deri-
vational pair is segmented and has stems mapped this way.

We assume that for each derivational pair, there is exactly one correct segmen-
tation, therefore all the probabilities of all alignments and mappings of any given
derivational pair should sum up to 1. Our model doesn’t guarantee this, requiring
normalization when predicting by dividing the probability of each alignment and
mapping by the sum of probabilities of all alignments and mappings present for that
derivational pair.

We can then estimate the parameters of our model by accumulating the individu-
al probabilities from these annotated data by using the maximally likely estimate. If
c(s → t) denotes the sum of word segmentation probabilities of alignments in which
each occurence of the s → t MOP alternation was found, the probability of an alter-
nation is estimated by normalizing this sum by the total sum of probabilities of all
possible alternations in the data as follows:

∀s, t ∈ (Σ ∪ {λ}) : p(s → t) =
c(s → t)

∑

u,v∈(Σ∪{λ}) c(u → v)
(4.25)

Similarly, if c(p′, s′ → p, s) denotes the sum of word segmentation probabilities
of alignments which contain the p′, s′ → p, s affix change (e.g. alignments where the
parent has prefix p′ and suffix s′ and the child has prefix p and suffix s), the probability
of an affix change can be estimated by normalizing over all possible affix changes:

∀p′, s′, p, s ∈ Σ+ : p((p′, s′) → (p, s)) =
c((p′, s′) → (p, s))

∑

u′,v′,u,v∈Σ+ c((u′, v′) → (u, v))
(4.26)
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In the real model, we use Laplace smoothing with a smoothing term α2 tunable by
a hyperparameter of the model to improve training stability in the early iterations.
Smoothing redistributes probability mass from the more probable cases to the less
probable and helps to avoid degenerate cases where some probability collapses to
0. This requires us to only process changes which were already encountered in the
data (the sets “mop-changes” and “affix-changes”) instead of all possible strings, since
otherwise the denominator of the affix change equation would not be finite for α > 0.
Therefore, the model with smoothing looks as follows:

∀s, t ∈ mop-changes : p(s → t) =
c(s → t) + α

∑

u,v∈mop-changes
(c(u → v) + α) + α

(4.27)

∀p′, s′, p, s ∈ affix-changes : p((p′, s′) → (p, s)) =
c((p′, s′) → (p, s)) + α

∑

u′,v′,u,v∈affix-changes
(c((u′, v′) → (u, v)) + α) + α

(4.28)

Notice that the stem mapping counts are calculated over individual mappings,
while affix change counts are calculated over affix alignments to avoid giving greater
weight to affixes of longer words.

4.3.2 Expectation-Maximization inferrence loop

If we had manually annotated gold-standard data, we could calculate the maxi-
mally likely estimates of these probabilities directly, using frequencies of occurences
in the data. However, we do not have such data available, as even segmentation
datasets such as the one by Slavíčková et al. (2017) do not list stems and their align-
ment to the mapped stem of the derivational parent, only full segmentations with no
derivational relations.

Due to the lack of data, we train the algorithm by an unsupervised Expectation-
Maximization (EM) loop (Dempster et al., 1977) on derivational data only, without
using the gold-standard segmentation at all. EM is a well known technique for boot-
strapping a full model from a trivial one. It works by alternating an Expectation
phase, where an existing model (a trivial one in the first iteration, the one from the
last iteration in subsequent ones) is used to annotate a dataset, with a Maximization
phase, in which the annotated data is used to infer the parameters of a new, hopefully
better, model. In our case, this estimation is done by maximum likelihood as per the
previous subsection. The phases are alternated until the model converges, i.e. stops
changing.

Of course, such an arrangement only works under specific circumstances. The
model can easily converge to a local optimum, or even start diverging and wors-
ening its performance. In our case, divergence is common and had to be avoided
through careful model reformulation. Divergence happens, because there are two
driving forces – the stem mapping and the affixes – which have to be well-balanced
at each iteration. If they are not, themodel converges on awrong, degenerate solution
determined by the stronger force.

If the stem mapping probabilities are too low, the model will compensate by se-
lecting longer affixes and shortening the stems to increase the overall word proba-

2Often denoted by λ, but we chose α to differentiate it from the empty string.

30



bility, thus converging to a model equivalent to the Common substring stemming
algorithm from Section 4.1, or, in case the probabilities are really extreme, to a model
where each stem is just a single character and the rest of the word is considered an
affix.

If, on the other hand, the stem mapping probabilities are too high, the model will
be able to select shorter (thus presumably with more occurences and more probable)
affixes, eventually converging to a state where the whole word is considered to be a
stem and the affixes are empty.

4.4 Alternative model
A problematic part of this model is the competition between a substitution from

s to t and the equivalent pair of a deletion of s and an insertion of t. If we calculate
the probabilities as joint probabilities, the deletions and insertions will overpower
the substitutions, because substitutions are normalized over both s and t, while dele-
tions and insertions are only normalized over one of them, the other character is λ –
and a λ is effectively found between any pair of characters in the data, so a deletion
or insertion is seen much more often. Consequently, the affix probabilities will be
off, because the model will favor shortening the stem and deleting the superfluous
characters over using a longer stem with a change in it.

We attempted to fix this shortcoming by introducing a single-character context
into the deletions and insertions, i.e. modelling them as “delete character si from the
parent if the next character of the child is tj” and “insert character tj to the child
if the next character in the parent is si”, but this model suffered from data sparsity,
as the deletions and insertions are quite rare and usually occur just before or after
a morpheme boundary, where (in line with the observations of Harris, 1955) there
are many possible successor or predecessor characters. Basing them on the previous
character instead of the next one improves the quality only a bit.

We finally solved this problem by modifying the probabilistic formulation of the
model. Instead of modelling substitutions using joint probabilities p(s, t), we mod-
el them as conditional probabilities p(t | s). Insertions and deletions are still mod-
elled the old way. The only change required to implement this new model is in the
maximum likelihood estimation, where the estimation of substitution probability is
calculated as follows:

∀s, t ∈ mop-changes : p(s → t) =
c(s → t) + α

∑

v∈mop-changes
(c(s → v) + α) + α

(4.29)

A possible interpretation of this model is, that we calculate p(s, t) as p(t | s) · p(s),
with p(s) = 1∀s. But ultimately, there is not mathematical reasoning or probabilistic
interpretation behind this model, it was simply empirically found to perform better
than the original one.

4.5 Implementation
We have implemented the algorithm in Python3, the code is available from https:

//github.com/vidraj/segmentace.
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Several implementation tricks were necessary to obtain a realistically short run
time and reasonably small memory profile. These are described in this section.

4.5.1 Limiting MOP alternation search space

As the size of the search space of stem mappings is exponential to the lengths of
the stems, it is necessary to search only the reasonably viable areas. Similar classes
of string matching algorithms, such as Levenshtein distance calculation (Levenshtein,
1966), or sequence alignment algorithms such as the Needleman-Wunsch algorithm
(Needleman et al., 1970), Smith-Waterman algorithm (Smith et al., 1981), Dynam-
ic time warping techniques (Sakoe et al., 1978) or Viterbi decoding of pair hidden
Markov models (Viterbi, 1967) avoid this high cost, because they only calculate the
best result. We have to score all possible alignments in order to update the count
tables during the Expectation phase of the EM loop.

We have, however, experimentally confirmed that the probability distribution
among the alignments is far from uniform. Most of the probability mass is concen-
trated on the several best alignments and the probabilities fall off quickly even with
untrained or highly smoothed probability tables. This is because the best alignments
are those that prefer substitutions over a pair of insertion and deletion, and even if
the probabilities of those are close to uniform, a pair of insertion and deletion intro-
duces one extra multiplicand strictly less than one (in fact, on the order of 1

|Σ|
) over

the equivalent substitution, lowering the overall probability.
Empirically, the 100th best alignment’s score is often already on the order of 1010

lower than the 1st best one. Such low scores can’t meaningfully impact the outcomes,
since the data is only 106 items large. The 1000th best alignment’s score is effectively
zero.

We implemented a beam search algorithm which discards the lowest scoring hy-
potheses during computation. When filling in the transition table during stem map-
ping, at each step, only the top scoring k hypotheses are kept. The top scoring k hy-
potheses selected at the end of the procedure are guaranteed to be identical to the top
scoring k hypotheses produced by an unrestricted search by analogy with the Viterbi
HMM decoding algorithm (Viterbi, 1967), to which is our algorithm analogous when
k = 1.

We have empirically observed that on a subsampled DeriNet dataset, the algo-
rithmwith a beamwidth of 100 converges to a result nearly identical to an unrestrict-
ed algorithm. Any difference seems to be due to rounding errors on floating-point
numbers. The processing speed increased from approximately 5 words per minute to
approximately 750words perminute, asmeasured on an Intel Xeon E5-2690 processor
running at 2.90GHz.

There are other possibilities of speeding the algorithm up: The simplest would
be to only calculate alignments that are mostly 1:1, without many deletions and in-
sertions, i.e. only calculate alignments in a band near the diagonal of the scoring
matrix, similarly to the Dynamic time warping optimization of Sakoe et al. (1978).
This method, however, can not be guaranteed to be globally optimal for all edge cas-
es and since we also need to compare string of widely unequal lengths, the window
size would have to be dynamic, otherwise it could happen that no path exists due to
the window being too small for the step size.

Other optimizations used with Dynamic time warping techniques could also be
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applicable – see Salvador et al. (2007) for an overview. In our case, the beam search
sped the program up enough.

4.5.2 Joint Expectation and Maximization

The EM loop has two distinct phases: Expectation, where a model is applied on
a dataset to obtain tagged data, and Maximization, where the tagged data is used
to estimate new model parameters. Normally, these would be implemented as two
distinct phases in the code as well.

In our case, this is not feasible. Even with the reduction of alternation search
space from exponential to O(k2) for a single stem, the algorithm would still require
Ω(
∑

w∈W|w|
3|parent(w)|3) memory to store the intermediate results. The algorithm

can bemade to runwithout globally storing any segmentational info outside the count
tables by counting the results as soon as a hypothesis is created. Local intermediate
storage is still needed, because the word segmentation probabilities have to be nor-
malized to 1 before updating the count tables.

4.5.3 Affix probabilities preinitialization

Another necessary optimization to lower memory requirements is limiting the
affix table size. If the algorithm ran unguided, the affix tables would gradually fill
up with all combinations of string prefixes and affixes of every derivational pair, ex-
hausting all available memory, as there is

∑

w∈W|w|
2|parent(w)|2 many of them3.

We do this by exploiting the Common substring stemming algorithm given in
Section 4.1. There are two reasons why we hope this is an adequate solution:

1. We expect that every linguistically plausible affix combination occurs at least
once without any MOP alternation.

2. The algorithm wouldn’t be able to learn the affixes undiscovered by the Com-
mon substring algorithm anyway.

The first expectation may not be entirely correct, mostly because of backforma-
tion. For example, the pairs anektovat → anexe and reflektovat → reflexe require an
affix pair of -ovat → -e, which is not found anywhere without an MOP alternation
– there are similar pairs, e.g. hypertrofovat → hypertrofie, transmitovat → transmise
and many different examples like insinuovat → insinuace, abstrahovat → abstrakce
or expedovat → expedice, but the pair -ovat → -e will not be recognized in any of
them by the Common substring algorithm.

The second expectationwas not rejected by our experiments on small hand-crafted
datasets. As such, these results may not be entirely representative of the algorithm’s
behavior on large data, but the hypothesis is difficult to test otherwise.

By preinitializing the affix tables with affixes found by the Common substring
algorithm, disabling smoothing of affix counts and not recording zero-count updates
in the probability tables, we can avoid recording information about most implausible
affixes.

3Back of the envelope calculation: If we assume 8 characters per word on average, there are ap-
proximately 106 · 82 · 82 substrings, each pointed to by an 8B pointer. Just these pointers will occupy
over 30 GiB of space.
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When using the preinitialization, it is necessary to also pretrain the MOP alterna-
tion probabilities – otherwise the untrained MOP probabilities would drag the affix
probabilities far away from their pretrained values, partially offsetting the effect of
pretraining. To do this, we perform several iterations over the data, updating only
the MOP probability tables while holding the affix ones fixed.

A side effect of this preinitializationis speeding up the convergence rate. Testing
on a mid-size dataset subsampled from DeriNet indicates that the algorithm needs 20
iterations to converge without initialization, but only 5 iterations for full convergence
after preinitializing the tables.

4.5.4 Handling inflected words

Since we have both a derivational database and segmented data for Finnish, we
wanted to evaluate our algorithm on that language. To do that, we needed to process
inflected word forms, since the segmented data from MorphoChallenge is not com-
posed of lemmas only. We have therefore added the ability to use the lemmatizers
MorphoDiTa (Straková et al., 2014) for Czech and UDPipe (Straka et al., 2017) for all
languages from the Universal Dependencies set of corpora (McDonald et al., 2013).

When using the lemmatizer, the input is interpreted as sentences in the selected
format and is first lemmatized. Both the form and the output lemma (or lemmas in
case of MorphoDiTa, which is able to give multiple candidates) are searched for in
the database of segmentations. If the form is found, its segmentation is given as-is.
If the form is not found, but the lemma is, the difference between the form and its
lemma is analyzed first, segmentation of the lemma is transferred to the form using
the secondary resegmentation algorithm, and the output is produced based on this
segmentation.
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5. Neural networks
Artificial neural networks (NNs) are, as the name suggests, collections of inter-

connected artificial neurons. They can be, among other uses, used as a supervised
machine learning model for approximating unknown real-valued functions.

In this thesis, we construct a neural network for joint prediction of derivational
relations and morphemic structure of words and discuss its performance in compari-
son to an equivalent network trained to solve either the former or the latter task only.
The basics of neural networks and their training procedures are explained below and
the structure of our neural-network-based predictor is described in Section 5.9.

Although NNs were conceived as an analogue of the biological neural tissue (Mc-
Culloch et al., 1943), they are defined as mathematical models and can be explained
without referencing the complex field of neurology. Because of this, we will omit the
modifier artificial in the following sections and the rest of this thesis, as we will not
talk about animal neural systems at all.

Wewill start the explanation of artificial neural network’s function by introducing
the artificial neuron.

5.1 Basic neurons
A basic neural cell is a unit with n inputs x1, ..., xn ∈ R, n + 1 internal (hidden)

variables w0, ..., wn ∈ R defining its response profile, an activation function f ∈ R →
R, and a single output h ∈ R. The output is a sum of the inputs weighted by the
hidden variables w1, ..., wn, to which a biasing term w0 is added and f is applied. The
cell therefore computes the following function:

h = f

(

w0 +
n
∑

i=1

wi · xi

)

(5.1)

If we define x as (1, x1, ..., xn) and w as (w0, ..., wn), we can do without an explicit
biasing operation and the output of a neuron becomes simply

h = f(w · x) (5.2)

In practice, many different functions are used as the activation function and the
chosen one may be determined through experimentation or simply picked arbitrarily.
The main restrictions are that the function should be continuous and non-linear to
take advantage of multiple successive neurons (see the next section for the basic rea-
son and Hornik (1991) for more details) and that it must be differentiable and smooth
for training (see section 5.7 for details). Common ones include the hyperbolic tangent
function (tanh), the logistic function (σ) and the rectified linear unit (ReLU, defined
as ReLU(x) = max(0, x) with the derivative defined as 0 for x = 0). See Figure 5.1
for a comparison of their plots.

5.2 Interconnected neurons
Although even a single neuron may be used as a classifier on its own, in practice,

neural networks are built out of many interconnected neurons. Historically, different
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Figure 5.1: Plots of three common activation functions for neural networks.

wirings of individual units were used, but today, the most common practice is to
build networks out of layers. One layer contains many instances of a single neuron
type, all wired identically. While a single neuron computes a function with signature
R

n → R, a layer computes a function R
n → R

m, allowing for easier processing of
vectors. If n = m, other optimizations are possible, such as residual connections –
these allow the network to bypass the layer, making training quicker and allowing
practical training of networks with many consecutive layers (Srivastava et al., 2015).

The layering of neurons is the reason for the non-linearity requirement for acti-
vation functions. If the activation function were linear, putting multiple neurons in
a sequence would not inrease the predictive power over a single layer. See the fol-
lowing derivation for two neurons, one with inputs x1, ..., xn, weights w0, ..., wn and
activation function f(x) = a · x + b, the second one connected to its output with
weights v0 and v1 and activation function g:

h = f

(

w0 +
n
∑

i=1

xi · wi

)

= a

(

w0 +
n
∑

i=1

xi · wi

)

+ b

o = g(v0 + v1 · h) (5.3)

o = g

(

v0 + v1

(

a

(

w0 +
n
∑

i=1

xi · wi

)

+ b

))

(5.4)

o = g

(

v0 + v1 · a · w0 + v1 · a ·
n
∑

i=1

(xi · wi) + v1 · b

)

(5.5)

o = g

(

v0 + v1 · a · w0 + v1 · b+
n
∑

i=1

xi · v1 · a · wi

)

(5.6)

If we define w′
0 = v0 + v1 · a · w0 + v1 · b and ∀i ∈ 1...n : w′

i = v1 · a · wi, we get:

o = g

(

w′
0 +

n
∑

i=1

xi · w
′
i

)

(5.7)
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Which is a single neuron calculating a function equal to the two neurons defined
previously. Therefore, multiple layers of neurons with a linear activation function
cannot compute functions different from a single layer.

The same derivation cannot be generally done when the activation functions are
non-linear, and it has been both theoretically and empirically confirmed that net-
works with multiple layers can approximate more general functions than single-layer
ones (Cybenko, 1989; Barron, 1993).

5.3 Processing sequences
When we need to model sequences with interdependent steps, as is common in

natural language processing, recurrent neural network cells (RNN cells) are often
used.

These cells process input as a series of timesteps by having an internal state, which
is updated at each timestep and copied over to the next one and which is used in
addition to the cell input to produce output.

RNNs were possibly first used in practice by Hopfield (1982), but emerged in
their modern form with the invention of Long-Short Term Memory (LSTM) cells by
Hochreiter et al. (1997), which addressed problems with training the older models.
An even newer type of RNN cell, slightly simpler in its internal structure than the
LSTM, is the Gated Recurrent Unit (GRU) cell (Cho et al., 2014), used in this project.

The GRU cell has two inner gates, the reset gate r and the update gate z, that mod-
ify its memory storage, allowing the cell to select what is kept and what is updated.
Otherwise, it contains a basic neuron, which differs from a non-RNN neuron only in
the fact that it computes its output based on the memory as well as the input. See
Figure 5.2 for a diagram of the unit.

The reset gate r produces a single number between 0 and 1 based on the current
input andmemory, which multiplies the previous memory state coming into the basic
neuron. It therefore modifies the strength of the memory’s influence. The update gate
z mixes the output o of the basic neuron with the previous memory using a convex
combination, thus selecting whether the memory will be kept as is or overwritten
with the basic neuron’s output. The output of the update gate h serves as the GRU
output. Unlike LSTM cells, which can use different values for output and memory
transfer, the GRU cell outputs just a single value, which is used both as the cell output
and as the memory to be read in the next step.

The GRU cell produces its output based on the following equations:

r = σ(wr · x+ ur · ht−1) (5.8)
z = σ(wz · x+ uz · ht−1) (5.9)
o = f(wo · x+ uo · r · ht−1) (5.10)
ht = z · ht−1 + (1− z) · o (5.11)

5.4 Classification
Since neural networks have real-valued output, the usual way of using neural

networks for classification is to predict a probability distribution over the possible
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Figure 5.2: Diagram of the Gated Recurrent Unit (Cho et al., 2014). Image cour-
tesy of Jeblad at Wikimedia Commons, licensed under the CC BY-SA 4.0 (https:
//creativecommons.org/licenses/by-sa/4.0)

classes. For each class, a single neuron on the output layer with identity activation
function predicts its score, interpreted as an unnormalized log probability of the class.
Therefore, to predict one of k classes, an output layer with k neurons is used. The
scores of all classes are then normalized to form a probability distribution by the
softmax R

n → R
n function, defined as follows:

∀i ∈ {1...n} : softmax(x)i
def
=

exi

∑

j∈{1...n} e
xj

(5.12)

The softmax function ensures that each output is between 0 and 1 and that they
sum up to 1, which are the necessary and sufficient requirements for a probability
distribution. To perform classification of a single example, it is possible to simply
pick the class corresponding to the maximum value – which is equivalent to picking
themaximumvalued class before softmax – but softmax is useful in training, where its
properties allow for easy comparison of the predicted output to the true distribution.

5.5 Structured prediction
Prediction of structured output, in our case segmentation into morphs, can be

done by predicting the boundaries between morphs. For each character position in
a word, the model can output true or false depending on whether there is a morph
boudary before that character. Since the sequences we are predicting are quite short
and the boundaries are relatively well-defined, there is no need for using e.g. CRF-
based prediction (Yao et al., 2014).

5.6 Sequence prediction
With RNNs, it is possible to process sequences by decomposing the input sequence

to individual timesteps (in our case, invariably, characters) and feeding the charac-
ters to the RNN one by one. The output of such a model is a sequence of individual
responses. This is fine in the case of the morph structure prediction described above,
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but for our auxiliary task of derivational parent prediction, this model is limiting,
because it only allows generating outputs of length equal to the input.

When the expected output is shorter than the input, this is not a problem, because
we can introduce a special padding character which will bring the two sequences to
the same length and will be deleted from the output in a post-processing step.But
there are cases where the derivational parent is longer than its child, e.g. anektovat
(“to annex”) → anexe (“annexation”). Therefore, we need a way to predict sequences
of arbitrary length.

5.6.1 Encoder-decoder model

One way of solving this sequence transduction problem (also called sequence-
to-sequence, seq2seq) is the encoder-decoder model (Sutskever et al., 2014; Cho et
al., 2014). In it, the network is internally divided into two parts, both composed of
an RNN: The encoder, which reads the input, processes it and distills the informa-
tion found therein to a single data point (usually a real-valued vector of fixed length,
obtained as the last hidden state of the last layer of the encoder); and the dynam-
ic decoder, which is seeded by this data (usually its first hidden state is set to it) and
generates the output character-by-character until it generates an end-of-sequence to-
ken, in a manner similar to the text generation model of Graves (2013). This way, the
length of output is disconnected from the length of input.

The prediction the dynamic decoder makes in timestep t is fed back to it as the
input of timestep t + 1. This backfeed was necessary in the model of Graves (2013),
which workedwith text directly andwas not primed by an encoder, and was inherited
by the later encoder-decoder models as an optimization that allows the model to both
train and predict better.

Also, the backfeed makes it possible to optimize the selection of a sequence of
values by using e.g. beamsearch for finding the optimal sequence, which does not
have to be the sequence with the optimal beginning, found by greedily picking the
most probable value at each timestep. We can try picking a different one instead,
feeding it to the next timestep of the dynamic decoder to inform the model of our
choice, and see if the final sequence gets higher overall probability.

5.6.2 Attention-based model

Aweakness of the basic encoder-decodermodel described above lies in the limited
interface between the encoder and the decoder. Because the network is forced to
compress all necessary information into a fixed-size representation, it is clear that
above a certain length and complexity of the input sequence, the representation can
not be lossless and the interface becomes a bottleneck.

One solution was offered by Bahdanau et al. (2014), who introduced an attention
mechanism that allows the decoder to utilize not only the hidden state of the encoder,
but also its outputs, while keeping the lengths of the input and output sequences
unrelated.

The attention mechanism is an extra piece of a non-recurrent neural network,
which accepts the decoder hidden state and a single timestep of the encoder outputs as
input, and produces a single number which acts as the weight of this encoder output
timestep. The network is independently applied to each timestep of the encoder, the
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output weights are normalized using softmax and the results are used as weights for
a weighted sum of encoder outputs. This sum is then presented to the decoder as part
of its input, together with the decoder output from the previous timestep.

This arrangement allows the network to look at the relevant parts of the encoded
sequence and is especially beneficial if there is some kind of correspondence between
the input and output sequences. This is the case for the derivational parent prediction
task, where the stem of the derivational child can be viewed as being copied from the
derivational parent and changed by MOP alternations; see Figure 4.2 for an example
of this process.

5.7 Training the networks
Unlike the aforementioned EM algorithm, which is trained directly by collect-

ing statistics from the training dataset and using them as hidden variables, neural
networks are nowadays trained by gradient descent with backpropagation, i.e. by
presenting them examples of input together with the expected output values, quanti-
fying the errors the network makes and compensating for the error by modifying the
hidden variables to cancel it out (Werbos, 1982).

The process of backpropagation is similar to a debugging technique used by pro-
grammers to pinpoint the source of error in a program – start at the place where the
fault manifests itself and notice the source must lie either at the point of manifesta-
tion, or before it. That is, the problem is either in the code currently being examined,
or the code is correct, but was fed wrong inputs from an erroneous code executed
before. If the examined code is found to be correct, look at all its inputs and examine
the code that produced those inputs for errors. Continue backtracking until the error
is found.

The main difference between debugging and training NNs is that we cannot gen-
erally identify “correct” and “erroneous” parts of the network, so instead of finding a
part of the network to blame and amending that, we spread the blame across all parts
of the network that can be held responsible, in proportion to how they contributed
to the difference between the actual and expected result. The proportion of blame
can be determined by differentiating the difference between the output values of the
individual neurons and the expected values, and the necessary amendment is given
by the gradient descent process.

Technically, this process is implemented by first defining and calculating a loss
function, which measures the error the network makes when predicting output. The
loss function we use with our categorical prediction model is cross entropy between
the correct and predicted outputs, defined as follows:

H(y′, y)
def
= −

|y|
∑

i=1

y′i · log2 yi (5.13)

5.8 Preventing overfitting
A common problem of neural networks, and machine learning in general, is over-

fitting. Overfitting occurs when the model learns to predict the training set based on
non-generalizable clues – the performance on the training set rises, but performance
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during prediction decreases. To alleviate overfitting, several techniques are used, two
of which are described below.

5.8.1 Dropout

Dropout is simply turning off some connections in a neural network, typically
half of them at each timestep (Hinton et al., 2012). According to its original authors,
it works by preventing coadaptation of neurons in the network – dropout ensures
that each neuron keeps a number of sources for its information instead of relying on
just a handful of signals.

5.8.2 Residual connections

Residual connections are connections across a neuron, that allow information to
pass through without being processed (He et al., 2015). The information bypassing
the neuron is simply summed with its output. Because of this piecewise summation,
it requires that the input and output sizes of the layer be equal. It helps training
by allowing the loss to backpropagate more easily, without it tending to zero or to
infinity as it crosses more an more layers (known as the problem of vanishing or
exploding gradients).

Although it helps the most on very deep neural networks, we have found it to be
useful even on our, rather small, model.

5.9 Our model
The main aim of this thesis is to build a model for supervised morphological seg-

mentation of Czech words. The two variants of the EM algorithm described in Sec-
tion 4.2 and Section 4.4 are able to segment only words present in the DeriNet dic-
tionary or recognizable by the MorphoDiTa or UDPipe lemmatizers. A more general
solution, capable of segmenting arbitrary words, was desired. The chosen solution is
a neural network, trained on data obtained from the EM algorithm.

In alignment with the overarching theme of this thesis, we attempted to utilize
derivational information when predicting morphemic segmentation, hoping it would
help the network learn the proper boundaries. The way we do this is by constructing
a network that learns to jointly predict morphemic structure and derivational parents
of words. We prepared several variants of the architecture to compare their relative
qualities. The basic network is similar in all cases and consists of an encoder com-
posed of several layers of RNNs, and decoders for predicting either the derivational
parent, segmentation, or both. The architecture of the individual pieces is described
in the next subsections and a diagram of it is in Figure 5.3.

The encoder is shared and its architecture is static across all our experiments. It is
composed of one layer of bidirectional GRU RNN, followed by a configurable number
of unidirectional GRU RNNs. The last state of the last layer is transferred to the parent
decoder described below. The input of the encoder consists of individual characters,
embedded using a character embedding matrix.

The segment prediction is done using an architecture identical to the encoder, with
a bidirectional GRU RNN followed by several optional unidirectional layers. In our
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Figure 5.3: A diagram of our neural network model. It is composed of three inter-
connected parts: The encoder (bottom), the segment decoder (top left) and the parent
dynamic decoder (top right). The segment decoder predicts Beginning of a morph or
Continuation of the previous morph, while the parent decoder keeps predicting the
parent word, until it generates a stop symbol.

evaluation, we only use one. The inputs of the segment prediction are taken directly
from the outputs of the encoder.

The parent prediction is done using a dynamic decoder with optionally multiple
layers of GRU RNN layers. In our evaluation, we only use one. The initial state of
the first layer of the parent decoder is copied from the last layer of the encoder and
the inputs of the decoder are input from the previous state summed with an attention
over encoder outputs.

Each inter-layer transfer has optional dropout and each internal layer has residual
connections.

When training, it is possible to disable a part of the network both for the forward
pass and for backpropagation. We use this to disable the parent decoderwhen training
a pure segmentation model.
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6. Experiments and evaluation

6.1 Evaluation measures
Thequality of segmentation can bemeasured on three levels: Segmentation points

(e.g. the proportion of correctly recognized boundaries between morphs), morphs
themselves (e.g. the proportion of correctly recognized segments) and words (e.g. the
proportion of words that were fully correctly segmented).

The first two levels don’t have a predefined answer size, we can guess more or
fewer than the truth. Therefore, it makes sense to measure not only the accuracy of
our predictor, but also its precision and recall.

Accuracy is the ratio of correct decisions to all test cases. In the case of segmen-
tation points, the ratio of correctly predicted boundaries and non-boundaries to all
possible inter-character boundaries. In the case of words, the ratio of correctly seg-
mented words to all words. It makes little sense to measure accuracy on morphs,
because the space of correctly non-recognized non-morphs is too large.

Precision is the ratio of correct predictions to all predictions. In the case of seg-
mentation points, it is the ratio of correctly predicted boundaries to all predicted
boundaries. In the case of morphs, it is the ratio of correctly predicted morphs to
all predicted morphs. A high precision means that when the system makes a predic-
tion, it is usually correct – but it doesn’t say what happens when the system refrains
from predicting.

Recall is the ratio of correct predictions to true test cases. In the case of segmenta-
tion points, it is the ratio of correctly predicted boundaries to all actual boundaries. In
the case of morphs, it is the ratio of correctly predicted morphs to all actual morphs.
A high recall means that when the system recognizes most of what there is to predict,
but it doesn’t say how many of the predictions are correct.

It is also possible to combine precision and recall into a single score by calculating
the F1-measure (also called F1-score or simply F-score1), which is a harmonic mean
of the precision and recall (van Rijsbergen, 1979; Chinchor, 1992).

6.1.1 Other surveyed measures

The measures defined above are the ones that are most commonly used in the
literature, but there is a number of other measures.

Creutz; Lindén (2004), authors of the Hutmegs corpus of Finnish and English seg-
mentations, observe that the segmentation point placement may be ambiguous. For
example, the word flies may be segmented either as fli‧es or as flie‧s, depending on
whether we consider the inserted -e- as part of the root or the ending. If we have no
way of distinguishing homonyms, as is the case with both Hutmegs and the data by
Slavíčková (1975), there is also another cause of ambiguities, which cannot be solved
by introducing a more detailed theory to specify the unclear cases: words that have
the same surface form, but different segmentation, e.g. sladit as in slad‧k‧ý (“sweet”)
→ slad‧i‧t (“to sweeten”) and lad‧i‧t (“to tune”) → s‧lad‧i‧t (“to match”). The Hutmegs
corpus has such ambiguous segmentation points marked and their evaluation metric

1The “1” signifies the beta weighting factor, which can be set to other values in order to put higher
weight on the recall or the precision. We will only use the equally-weighted formulation.
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takes them into account, by considering a boundary correctly marked if any of the
fuzzy possibilities are marked.

A similar, but more refined algorithm is given in Nouri et al. (2016). It compares
the segmentation decisions globally and penalizes inconsistent handling of ambigui-
ties across examples.

A measure with a different aim is the EMMA evaluation metric (Spiegler et al.,
2010), which is designed for segmentation of words into morphemes, i.e. disambiguat-
ed segmentation. It is supposed to overcome the labelling isomorphism problem: Un-
supervised systems don’t have access to linguistic labels and so they usually produce
“anonymous labels”, they group items into unnamed clusters. In addition to that, they
may produce more or fewer clusters than linguists would. EMMA finds a suitable 1:1
mapping and analyses the similarity of the labellings based on that. It is, however,
unsuitable for our purposes, because we do not group morphs into morphemes.

Another is the Morpho Challenge metric, used in the eponymous competition
(Kurimo et al., 2010), which addresses the same issue in a simpler way: They sample
pairs of words containing the same morpheme. The evaluated system gets a point if
its analysis of those words also contains an identical label. The final score is calculated
as a precision and recall of those points vs. all samples.

6.2 Experiments
In this section, we evaluate all our test systems and report on the results. The

systems are:

LCCS the longest contiguous common substring model, defined in Section 4.1

EMo the original, probability-based EMmodelwith joint probability for substitutions
as per Subsection 4.3.1

EMm the modified EM model with conditional probability for substitutions as per
Section 4.4

EMmh the previous EM model with hand-crafted probability tables, as explained be-
low in Subsection 6.2.1

NNs the neural network based model trained purely on segmentation data, intro-
duced in Section 5.9

NNp the same neural network based model trained jointly on segmentation and
parent-prediction data

FlatCat the Morfessor FlatCat model as per Grönroos et al. (2014), in both unsuper-
vised and supervised setting

The neural network models need segmentation data for training and the FlatCat
model can optionally use them as well. There are two possible sources of such data:
The gold standard (Slavíčková, 1975) and the output of another model, e.g. the LCCS
or EM models. We use the latter source, because the gold standard only contains
verbs and therefore is not representative of the Czech language as a whole, and it is
too small for training our neural network model.
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The representativeness of our gold standard data is a large issue. Since the mor-
phology and derivation patterns of Czech verbs differ from those of other categories
(Dokulil et al., 1986, p. 387), when we trained the FlatCat model on a heldout por-
tion of the gold standard data, it easily reached 77% morph F1-measure, 92% bounds
F1-measure and 60% word accuracy (trained on a 10000-lemmas large excerpt from
DeriNet with perplexity parameter set to 10 and word weight of 1.0), but completely
failed to segment any nouns, adjectives and adverbs outside the most common adjec-
tival suffix -ý and nominal -ost.

Because of this problem, apart from using the gold standard data to measure the
precision, recall and F1-measure on morphs and boundaries, and accuracy on whole
words, we also performed manual comparison of the output of the systems that per-
form the best on the gold standard data. It shows that apart from the overfitted system
mentioned in the previous paragraph, all systems perform on non-verbs comparably
with their performance on verbs.

6.2.1 Setting

The data used for evaluating the segmentation models (Slavíčková, 1975) contains
14 581 Czech verbs, split into 59 231 morphs. The parent prediction models were eval-
uated against a randomly sampled heldout portion of DeriNet 80 000 words large.

We evaluated the EM systems with a beamsearch beam width of 1000, which was
experimentally determined to be more than enough to not influence the results.

The EMomodel was pretrained for two iterations withMOP alternation probabili-
ty smoothing parameterα = 10000 and 100, respectively, and then trained for further
8 iterations with exponentially decaying α = (1, 0.1, 0.01, 0.001, 0.0001, 0.00001,
0.000001, 0.0000001). After these 10 iterations, the model converged and showed
the best results. No smoothing was performed on affixes.

The EMm model was pretrained (see Subsection 4.5.3) for two iterations with
MOP alternation α = (100000, 1000) and trained for further two iterations with
α = (10, 0.1). Again, smoothing was turned off for affixes.

In either case, the smoothing parameter was found to have minimal influence on
the result. One pretraining and two training iterations, or two pretraining and one
training iteration, were found to be sufficient for the best results, but in both cases
the training was let to continue for one more iteration to ensure this. With more
iterations, the model started converging towards a worse solution.

Another variant of the EM model, EMmh, was created by hand-crafting the affix
tables. The affix tables were first pretrained on the LCCS algorithm as usual (see Sub-
section 4.5.3) and then they were printed out and edited by manually deleting affix
combinations deemed illegal in Czech. We manually cropped affixes that included
MOP alternations belonging to stems. The process took approximately one hour of
editing. The resulting tables were then loaded back into the model and training con-
tinued as usual.

The neural network models were all trained with identical hyperparameter set-
tings, that is batch size of 500, character embeddings of size 64, 2 encoder layers of
width 128, 1 parent decoder layer of width 128, 1 segment decoder layer of width
128, dropout strength of 0.5 and learning rate of 0.001 with no decay. The networks
were trained for 30 epochs, but some were stopped earlier, when convergence was
achieved.
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Table 6.1: Table with results measured on the gold-standard data.

Model
Morph Bounds Word

prec. rec. F1 prec. rec. F1 acc.
LCCS 47.09% 61.28% 53.26% 81.92% 89.96% 85.75% 18.80%
EMo, i10 52.17% 47.91% 49.95% 87.34% 77.87% 82.33% 18.98%
EMm, i0 48.84% 61.94% 54.62% 83.05% 89.98% 86.38% 20.23%
EMm, i1 50.28% 62.48% 55.72% 83.87% 89.83% 86.75% 21.89%
EMm, i2 49.26% 62.14% 54.96% 83.32% 89.96% 86.51% 20.58%
EMm, i3 48.68% 61.87% 54.49% 83.01% 90.00% 86.36% 19.95%
EMmh, i1 64.82% 66.54% 65.67% 91.38% 87.42% 89.36% 35.45%
EMmh, i4 63.55% 66.89% 65.18% 90.83% 87.94% 89.36% 34.65%
NNs on LCCS 31.89% 20.07% 24.64% 82.73% 57.28% 67.69% 0.55%
NNp on LCCS 45.41% 27.69% 34.40% 89.30% 60.94% 72.44% 11.57%
NNs on EMmh 44.60% 48.16% 46.31% 78.91% 76.88% 77.88% 18.07%
NNp on EMmh 45.01% 39.50% 42.08% 79.67% 70.23% 74.65% 21.57%
FlatCat unsup 37.19% 21.57% 27.31% 97.98% 64.92% 78.10% 1.17%
FlatCat sup 66.20% 57.72% 61.67% 92.59% 81.15% 86.49% 31.10%

This setting produced the best results across the experiments. The widths of the
layers and the embeddings are slightly larger than necessary and increasing them
does not change the results. Similarly, adding another layer to any part of the network
does not make the model improve. The model is not very sensitive to changes in
learning rate, and the rate we used is optimal or very close to optimal for every run
that we report on.

The Morfessor FlatCat model was tried in two scenarios – one without any su-
pervised data, and another with 2 000 examples from the EMmh system (the same
data the neural networks use, but smaller). The authors claim that a small amount of
supervised data is sufficient (Grönroos et al., 2014) and our experiments confirm that
the model does not get meaningfully better with more examples.

6.2.2 Evaluation

The results of evaluation on the gold-standard data are listed in Table 6.1 and
sample outputs are to be found in Attachment A.2. They show that the unsupervised
Morfessor FlatCat system performs the worst, followed by the neural networks. Our
baseline, LCCS, performs better than any of them. The EM system in unsupervised
setting can outperform the baseline, especially with the modified MOP alternations
probability calculation, but it is in turn outperformed by the supervised FlatCatmodel.
However, even this state of the art is outperformed by the guided EM model with
hand-crafted probability tables.

EM model

The final scores of the model are listed in Table 6.1, and an alternative evaluation
that does not count out-of-vocabulary words as errors is listed in Table 6.2. The first
table is meant for comparison of the algorithm with its competitors, while the second
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Table 6.2: Table with results when not measuring on out-of-vocabulary words.

Model
Morph Bounds Word

prec. rec. F1 prec. rec. F1 acc.
LCCS 48.49% 61.43% 54.20% 82.79% 89.72% 86.12% 19.24%
EMmh, i1 67.76% 66.79% 67.27% 92.79% 87.11% 89.86% 36.23%
EMmh, i4 66.33% 67.15% 66.74% 92.20% 87.64% 89.86% 35.41%
EMm, i0 50.37% 62.11% 55.63% 83.98% 89.74% 86.76% 20.70%
EMm, i1 51.92% 62.65% 56.78% 84.85% 89.59% 87.15% 22.39%
EMm, i2 50.83% 62.30% 55.98% 84.26% 89.72% 86.90% 21.05%
EMm, i3 50.20% 62.04% 55.50% 83.94% 89.76% 86.75% 20.42%

table is of interest to DeriNet, because since the model was trained on the DeriNet
dictionary, there are no out-of-vocabulary words in it.

Since the model has two distinct parts – the stemmer and the boundary transfer
– we have also performed a detailed error analysis to find out, in which proportion
do they contribute to the final error rate. The analysis was performed by manually
inspecting the output of the model at various stages. We looked for recurring errors
both in the final output (in the annotated verbs by Slavíčková (1975)), and in the stem-
mer output. The stemmer output was further divided into two parts – one where any
MOP alternations were detected in the stem, and one where none were. This allowed
us to distinguish error caused by over- and undergeneration of MOP alternations.

The part with MOP alternations was found to contain 77 stemming errors out
of 5 537 cases, suggesting a very high precision. Out of these, 23 have an identical
pattern of the -t → -vka suffix change incorrectly interpreted as λ → -ka with an
MOP alternation t → v, e.g. spojit (“to connect”)→ spojiv‧ka (“conjunctiva”) or kulhat
(“to limp”) → kulhav‧ka (“foot-and-mouth disease”). The rest of the erros shows no
discernible pattern, but we can group them by their causes as follows:

• Competition between infrequent MOP alternation patterns and frequent affix
patterns, caused by irregularities and rare cases in the language, such as in ok‧o
(“eye”) → oč‧ko (“little eye”), which is incorrectly segmented as the prefixation
oko → o‧čko with čko being the stem. This is because DeriNet has 167 examples
of string suffix pair -o→ -ko, but 18 639 examples of λ→ o-. The correct pattern
is thus composed of the medium-frequency alternation k → č and the rare affix
combination, while the incorrect one has the very infrequent MOP alternation
o → č and a common affix pair. Apparently, the latter overpowers the former
in this case. A similar case is the derivation pair estébé (“StB, communist secret
police”) → estéb‧ák (“an officer of StB”), where the model incorrectly uses the
final é in the parent as a suffix, because the correct MOP alternation – deletion
of é – is too infrequent in the data.

• Irregularities and errors in DeriNet. We have identified 62 errors in DeriNet,
some of which cause missegmentation. In addition to these, there are many
cases where the choices made in DeriNet are not wrong, but a different as-
signment of derivational relations would help our models perform better. For
example, in the tree around the word scanovat (“to scan”), there are many
words with MOP alternations: scanující (“scanning”), as well as its alterna-
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tive forms scannující, skanující, skannující, skenující and skennující. They are
connected such that the alternatives are always siblings. For our models, it
would be better if each alternative had its own subtree; we would rather see
e.g. naskennovaně (“scannedAdv”) derived from naskennovaný (“scannedAdj”) in-
stead of nascanovaný (“scannedAdj”), as fewer requiredMOP alternations would
make stemming easier.

The boundary transfer works well, we were unable to identify any wrong bound-
aries created by the transfer, i.e. boundaries that would be correct in the parent or
child, but became wrong after being transferred across a correctly identified stem.

Themain issue is therefore the fact, that manyMOP alternations are unrecognized
by the algorithm. Their rate is difficult to estimate, but from annotating a random
sample of 1 000 words, which contained 21 words with alternations, we expect there
to be about 16 000 MOP alternations in total, making for a roughly 1

3
recall. Each

unrecognized alternation while stemming penalizes the model both on recall and on
precision, as the wrong stemming causes a wrong morph boundary to be inserted,
typically somewhere into the stem, which is then propagated through a large portion
of the derivational tree, affecting potentially hundreds of words.

The results of intermediate iterations, which show the progression of the train-
ing, do not point to an easily interpretable hierarchy of MOP alternation productivity
or predictability. In general, from what we can see, the model correctly recognizes
most alternations found deep inside the stems even after the first iteration, as well
as many iterations lying near the boundary between the stem and the affixes. Some
of those border alternations are only identified in later iterations. For example, the
change e → í is found in the first iteration in cases of both pleskav‧ý (“to patter”) →
plískav‧ice (“heavy rain”) and běže‧t (“run”)→ běží‧cí (“running”), but the change z →
s is found in the first iteration when in neorenezance (“NeorenaissanceNoun”)→ neore-
nesanční (“NeorenaissanceAdj”), but in the second iteration in the case of aktualizovat
(“to update”) → aktualisující (“updating”)

The only interpretation of which alternations are found in early iterations and
which are only recognized later lies in the frequency of the change patterns. For
example, -g → -žka (as in filolog (“philologistMasc”) → filoložka (“philologistFem”)) is
a frequent pattern, thus the change in it gets discovered later, because its probability
as an affix with the change in it is high enough to overpower it initially.

Surprisingly, the algorithm also correctly segments some words with complex
suppletive changes, such as bý‧t (“to be”) → jsou‧cí (“existent”), although this is prob-
ably more due to chance than to the inherent qualities of the algorithm, as e.g. jí‧t (“to
go”) → chod‧it (“to be going”) is segmented incorrectly as jí‧t → chodi‧t, with the t
being the root.

Testing on inflected forms was not performed due to a lack of gold-standard data
to evaluate against and because it has little utility for the main aim of this thesis,
i.e. segmenting the DeriNet dictionary. Preliminary experiments have verified that
the method works on inflectional relations the same it does on derivational ones, so
an extension in this direction is possible and should be easy to do whenever a use
case is found. Code that uses the longest-common-substring model to perform the
segmentation is already in place and working, code to perform this task using the EM
model with separate tables for inflection and derivation should be trivial to add.

48



Neural segmentation models

Our neural network architecture has two modes of training and prediction: seg-
mentation only and joint segmentation and derivational parent prediction. Therefore,
the dataset used for training and development evaluation has two parts: for each
word, it lists its segmentation as well as its parent. The parent is taken directly from
DeriNet, while the segmentation data has to be created by another machine learning
model, since the gold-standard segmentation dataset used for evaluation is too small
and too skewed for training.

We tried training the model on two different sources of segmentation data, as
we found that depending on the exact source, the segmentation performance differs
significantly on both the development and the evaluation dataset. One source is the
EMmh model (with hand-crafted probability tables), the other one is the basic LCCS
model. In both cases, we trained and evaluated the performance of both joint and
segment-only prediction.

The development set was always created as an 80 000 word large heldout portion
of the training data, leaving 605 591 words to train on. The final evaluation dataset
was the same as for the other models, based on verbs from Slavíčková (1975).

Results of evaluation on the development dataset can be found in Figure 6.1 for
the parent prediction and in Figure 6.2 for the segmentation prediction.

The segmentation evaluation results on the development set show an interesting
result: when training on the lower-quality data created by LCCS, joint training with
parent prediction gives better segmentations than only training to segment. In fact,
the pure segmentation model did not appear to train at all for the first few epochs,
and changing its learning rate or other hyperparameters did not help. But with the
higher-quality data from EMmh, the pure segmentation model performs better on the
development set than the joint one. Moreover, the joint model on the better dataset
performs worse than the joint model on the worse dataset.

Of course, these data may be misleading, as the four runs are evaluated on two
different datasets, which both contain errors. The evaluation on the actual final test
set, which was performed last, shows a different pattern of results. There, the low-
quality-data pure-segmentation still performs worse than the other models, but the
two models trained on better data both perform better than the joint model trained
on LCCS output, except for having lower precision on morph boundaries. Also, the
difference between the two EMmh-trained models is markedly lower and the joint
one even has a higher word accuracy.

A final verdict on the hypothesis that joint training with parent prediction may
help the segmentation prediction is therefore inconclusive, but it probably does not
help if the training data is good enough.

More detailed error analysis uncovers obvious differences between the results of
the joint and segments-only models on the better data. The segments-only algorithm
often splits suffixes into individual letters, while the joint algorithm clumps larger
sections together. Therefore, they make complementary errors.

Morfessor

We used the SYN2010 corpus of the Czech language (Křen et al., 2010) for the
token-frequency-based training and the DeriNet dictionary for the type-frequency-
based training. The results in Table 6.3 show that the type-frequency-based model
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Figure 6.1: Word accuracy of parent prediction on the development set. Since the
LCCS/EMmh distinction is only relevant for segmentation, parent only training pro-
duces identical results on both datasets.
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Figure 6.2: Word accuracy of segment prediction on the development set. The de-
velopment set is a heldout portion of the same dataset the network was trained on,
created by another machine learning model, so it contains errors with respect to the
gold-standard data. This is why the word accuracy on development set is so much
higher than the accuracy on the gold-standard. For the LCCS runs, only the first 12
iterations are shown, but the models did not improve with further training.
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Table 6.3: Table with results of Morfessor FlatCat when trained on different data
sources (SYNmeans the SYN2010 corpus and DNmeans lemmas extracted from Deri-
Net, the -u suffix annotates fully unsupervised training) and sizes. The corpus data
were selected as samples of size 100, 1000, 10000 etc. sentences, which is why their
word type counts do not match the counts of data from DeriNet. All models were
trained with parameters -w 1.0 -p 38, which were found by a grid search to be op-
timal or near-optimal across a large scale of data sizes. The supervised segmentation
data for finetuning FlatCat were obtained from the best EM model with handcrafted
tables.
Data Type Morph Bounds Word
src. count prec. rec. F1 prec. rec. F1 acc.
SYN 700 46.71% 36.52% 40.99% 86.90% 67.03% 75.68% 14.25%
SYN 5012 54.40% 45.25% 49.40% 88.69% 73.57% 80.42% 17.44%
SYN 24411 56.57% 53.46% 54.97% 88.39% 80.47% 84.25% 21.35%
SYN 96391 58.61% 48.22% 52.91% 92.41% 77.34% 84.20% 18.06%
SYN 368958 58.75% 45.09% 51.02% 94.39% 75.48% 83.88% 15.30%
SYN 1580543 57.66% 43.49% 49.58% 94.39% 74.43% 83.23% 14.38%
DN 100 47.32% 51.32% 49.24% 83.48% 80.46% 81.95% 16.54%
DN 1000 44.54% 32.83% 37.80% 88.64% 66.08% 75.72% 14.49%
DN 10000 66.20% 57.72% 61.67% 92.59% 81.15% 86.49% 31.10%
DN 100000 62.14% 47.01% 53.53% 96.57% 77.13% 85.76% 16.72%
DN 1011965 51.37% 30.86% 38.56% 98.19% 66.49% 79.29% 8.27%
DNu 100 0.10% 0.03% 0.04% 100.00% 39.51% 56.64% 0.10%
DNu 1000 0.10% 0.03% 0.04% 100.00% 39.51% 56.64% 0.10%
DNu 10000 33.96% 17.46% 23.06% 95.52% 58.26% 72.38% 0.43%
DNu 100000 37.19% 21.57% 27.31% 97.98% 64.92% 78.10% 1.17%
DNu 1011965 17.01% 7.77% 10.67% 99.03% 55.86% 71.43% 0.71%

generally performs comparably to the one trained on a corpus, even though it was
trained on word forms instead of lemmas. A second interesting point is that the
models trained on the whole dataset do not perform as well as models trained on
just a small sample, despite our best effort at determining the best combination of
hyperparameters for each training run. Obviously, the unsupervised training runs
perform much worse than the semi-supervised ones.

6.2.3 Discussion

Limitations of the algorithms

The EM model is limited to segmenting along derivational relations. As such, it
can not – even theoretically, under the best conditions – recognize morph boundaries
created by analogy. An example of these is the analysis of cranberry morphemes
mentioned in Subsection 2.1.4, such as the word malina (“raspberry”). Because a
crucial component of the algorithm is the stem mapping mechanism, it also lacks the
capability of reliably segmenting words created by (partial) suppletion, such as jí‧t
(“to go”) → chod‧it (“to be going”), where the stems have no morphological relation
with each other.
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The neural segmentation model doesn’t have these limitations, but in the state
reported in this thesis, it is held back by the lack of reliable training data. Because
the only source of gold standard data, Slavíčková (1975), is too small for training, we
have trained our neural models on data produced by the EM model, which causes a
stacking of errors of the two algorithms. When we compare the output of the neural
system to the gold standard data, it performsworse than the EMmodel, but we believe
that training on higher quality data would reverse this.

Neither model was explicitly trained to recognize segmentations of unmotivated
words (words without derivational parent). The EM model is able to segment them
with sufficient accuracy via the boundary tranfer algorithm, the NN model does not
handle them in any special way and is able to segment them well without seeing any
examples of them during training.

The fact that the EM model performs significantly better with hand-crafted tables
than with automatically learned ones indicates that training the model by maximum
likelihood may not be the best choice. Perhaps a variant of the gradient descent
algorithm would perform better, although it would require at least some amount of
gold-standard data for training. It would also allow us to introduce more features into
the model. This is corroborated by the slow divergence of the EMm model after the
first iteration. A better training procedure could perhaps prevent this performance
decay.
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7. Conclusion
It is a well known fact that derivations are closely related to morphological seg-

mentation. However, as far as we know, this fact was never used in an supervised
NLP system to infer the morphematic makeup of words from their derivational neigh-
bors. We have devised several novel methods, ranging from simple to complex, that
utilize derivational data in predicting morphological segmentation of Czech words.
Our experiments confirm that this is a feasible way of segmenting words and that
even a simple baseline method based on derivations is able to outperform state of the
art (SOTA) unsupervised segmentation systems.

A more complex method then has the potential to outperform even supervised
state of the art segmenters, although in our case we only managed to beat SOTA after
sidestepping training issues by manually editing the internal variables of our model.
But even without this manual intervention, our systems outperform SOTA in recall
measured both on morphs and morph boundaries and get a respectable score in the
other categories.

We hope that in the future, large high-quality derivational databases will become
available for more languages and that we will be able to use our models to segment
languages other than Czech.

7.1 Future work
The first steps taken in the nearest future will be adding the segmentation infor-

mation into DeriNet. The data format of the current version does not allow storing
morphemic composition of words, so the task has to wait until version 2.0 is ready. In
this version, the annotation possibilities will be greatly enriched with not only morph
segmentation, but also annotation of compounds.

Another rather obvious use of the data would be to predict new derivational re-
lations in DeriNet. With the parent predictor of the neural network, this can be done
directly, but the segmentation itself can also be used for this purpose, by looking for
words with similar morphemic composition and proposing these as derivational rel-
atives. The algorithms also give us an implicit way of scoring derivations according
to their quality, using the probability tables or the loss of the neural network when
predicting a given parent.

Another, more tenative use of the data, would be to label edges in DeriNet with
the morph change occurring along them. This would likely require some level of mor-
pheme annotation of the morph segmentation, for example by clustering the morphs
according to their orthography and distribution.

We have also discovered many errors in DeriNet as a byproduct of working on the
segmentation algorithm, and many of the corresponding fixes have not been merged
yet. These do not have to wait until the next major release and some of them will be
already incorporated in DeriNet 1.6, to be released in the nearest future.

After DeriNet 2.0 is released with annotated compounding, the algorithm could
be extended to handle compounds. With the neural network, the extension could
be straightforward, simply predicting two parents back-to-back, separated by a spe-
cial symbol. With the EM-based model, the modifications would have to be more
involved.
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It is possible to use the tool in multilingual scenarios. We have attempted to eval-
uate on Finnish, for which we have both a derivational database and gold-standard
segmentation data, but the two resources are not compatible with each other, as they
differ both in their vocabularies and lemmatization style, resulting in an OOV rate
too high for practical evaluation. Future work could include obtaining a good-enough
pair of datasets for another language and evaluating on that.

We believe that the model should perform reasonably well at least on European
languages, as the model makes only the following general assumptions:

• There is a small and fixed alphabet, from which words are constructed.

• Words can be identified as a separate construct (possibly not applicable to e.g.
Mandarin Chinese) and are composed of morphs.

• Derivations exist (probably more-or-less universal) and the derivational rela-
tions form trees, or can be expressed as trees with little loss of information.
This should not be a problem, but it may not apply to languages with very
common compounding.

• Each word has a root to which affixes are attached from the inside out. Each
additional affix changes the so-far-created stem just a little bit, if at all (if affix-
es change the stem heavily, e.g. by suppletion, the models might break). That
means the affixes our model can handle come in three flavors: prefixes, suf-
fixes and circumfixes (which are analyzed as a combination of a prefix and a
suffix). No infixes (mal‧il‧inký (“tiny”)) or interfixes (bíl‧o‧modrý (“whiteblue”))
are allowed, they would be recognized as some combination of phonological
changes and pre/suffixes.

54



Bibliography
Arcodia, Giorgio Francesco, 2013. Lexical Derivation in Mandarin Chinese. Ed. by

Her, One-Soon; Chui, Kawai. Taiwan Journal of Linguistics. Chinese
Linguistics, no. 03.

Aronoff, Mark, 1985. Word Formation in Generative Grammar. 3rd ed. Ed. by
Keyser, Samuel Jay. Cambridge, Massachusetts, USA: MIT Press. Linguistic
Inquiry Monographs, no. 1. ISBN 0-262-51017-0. ISSN 1049-7501.

Aronoff, Mark; Fudeman, Kirsten, 2011. What is Morphology? 2nd ed. West Sussex,
United Kingdom: Wiley-Blackwell. ISBN 978-1-4051-9467-9.

Baayen, R. Harald; Piepenbrock, Richard; Gulikers, Leon, 1995. The CELEX Lexical
Database (CD-ROM). Philadelphia, Pennsylvania, USA: Linguistic Data
Consortium.

Bahdanau, Dzmitry; Cho, Kyunghyun; Bengio, Yoshua, 2014. Neural Machine
Translation by Jointly Learning to Align and Translate. CoRR. Vol. abs/1409.0473.

Barron, Andrew R., 1993. Universal approximation bounds for superpositions of a
sigmoidal function. IEEE Transactions on Information Theory. Vol. 39, no. 3, pp.
930–945. ISSN 0018-9448.

Barták, Roman, 2013. Automata and Grammars [online] [visited on 2018-06-06].
Available from: https://ktiml.mff.cuni.cz/~bartak/automaty/.

Bauer, Laurie, 2014. In: The Oxford Handbook of Derivational Morphology. Ed. by
Lieber, Rochelle; Štekauer, Pavol. Oxford, United Kingdom: Oxford University
Press, chap. Concatenative Derivation, pp. 118–135. Oxford Handbooks in
Linguistics. ISBN 978-0-19-964164-2.

Bergmanis, Toms; Goldwater, Sharon, 2017. From Segmentation to Analyses: a
Probabilistic Model for Unsupervised Morphology Induction. In: From
Segmentation to Analyses: a Probabilistic Model for Unsupervised Morphology
Induction. Proceedings of the 15th Conference of the European Chapter of the
Association for Computational Linguistics: Volume 1, Long Papers. Valencia, Spain:
Association for Computational Linguistics, pp. 337–346.

Blust, Robert, 2014. In: The Oxford Handbook of Derivational Morphology. Ed. by
Lieber, Rochelle; Štekauer, Pavol. Oxford, United Kingdom: Oxford University
Press, chap. Austronesian, pp. 545–557. Oxford Handbooks in Linguistics. ISBN
978-0-19-964164-2.

Bybee, Joan L., 2013. Usage-based theory and exemplar representation. In: The
Oxford Handbook of Construction Grammar. Ed. by Hoffman, Thomas;
Trousdale, Graeme. Oxford, United Kingdom: Oxford University Press,
pp. 49–69.

Calzolari, Nicoletta (Conference Chair) et al. (eds.), 2016. Proceedings of the 10th
International Conference on Language Resources and Evaluation (LREC 2016).
Portorož, Slovenia: European Language Resources Association. ISBN
978-2-9517408-9-1.

55

https://ktiml.mff.cuni.cz/~bartak/automaty/


Can, Burcu; Manandhar, Suresh, 2018. Tree Structured Dirichlet Processes for
Hierarchical Morphological Segmentation. Computational Linguistics [online].
Vol. 44, no. 2 [visited on 2018-06-06]. ISSN 0891-2017. Available from:
https://www.mitpressjournals.org/doi/abs/10.1162/coli_a_00318. To be
published.

Carstairs-McCarthy, Andrew, 2005. In: Handbook of Word-Formation. Ed. by
Štekauer, Pavol; Lieber, Rochelle. Dordrecht, The Netherlands: Springer,
chap. Basic Terminology, pp. 5–23. Studies in Natural Language and Linguistic
Theory, no. 64. ISBN 978-1-4020-3597-5.

Chinchor, Nancy, 1992. MUC-4 Evaluation Metrics. In: MUC-4 Evaluation Metrics.
Proceedings of the Fourth Message Understanding Conference, pp. 22–29.

Cho, Kyunghyun; van Merrienboer, Bart; Gulcehre, Caglar; Bahdanau, Dzmitry;
Bougares, Fethi; Schwenk, Holger; Bengio, Yoshua, 2014. Learning Phrase
Representations using RNN Encoder–Decoder for Statistical Machine
Translation. In: Learning Phrase Representations using RNN Encoder–Decoder for
Statistical Machine Translation. Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP). Doha, Qatar: Association for
Computational Linguistics, pp. 1724–1734.

Chu, Yoeng-Jin; Liu, Tseng-Hong, 1965. On the Shortest Arborescence of a Directed
Graph. Science Sinica. Vol. 14, pp. 1396–1400.

Creutz, Mathias, 2003. Unsupervised Segmentation of Words Using Prior
Distributions of Morph Length and Frequency. In: Unsupervised Segmentation of
Words Using Prior Distributions of Morph Length and Frequency. Proceedings of the
41st Annual Meeting of the Association for Computational Linguistics.

Creutz, Mathias; Lagus, Krista, 2002. Unsupervised Discovery of Morphemes. In:
Unsupervised Discovery of Morphemes. Proceedings of the ACL-02 Workshop on
Morphological and Phonological Learning. Stroudsburg, Pennsylvania, USA:
Association for Computational Linguistics, vol. 6, pp. 21–30.

Creutz, Mathias; Lagus, Krista, 2005. Unsupervised morpheme segmentation and
morphology induction from text corpora using Morfessor 1.0. In: Unsupervised
morpheme segmentation and morphology induction from text corpora using
Morfessor 1.0. Technical Report A81, Publications in Computer and Information
Science. Helsinki University of Technology.

Creutz, Mathias; Lindén, Krister, 2004. Morpheme Segmentation Gold Standards
for Finnish and English. In: Morpheme Segmentation Gold Standards for Finnish
and English. Technical Report A77, Publications in Computer and Information
Science. Helsinki University of Technology.

Cybenko, George, 1989. Approximation by superpositions of a sigmoidal function.
Mathematics of Control, Signals and Systems. Vol. 2, no. 4, pp. 303–314. ISSN
0932-4194.

Davis, Stuart; Tsujimura, Natsuko, 2014. In: The Oxford Handbook of Derivational
Morphology. Ed. by Lieber, Rochelle; Štekauer, Pavol. Oxford, United Kingdom:
Oxford University Press, chap. Non-concatenative Derivation, pp. 190–218.
Oxford Handbooks in Linguistics. ISBN 978-0-19-964164-2.

56

https://www.mitpressjournals.org/doi/abs/10.1162/coli_a_00318


Déjean, Hervé, 1998. Morphemes As Necessary Concept for Structures Discovery
from Untagged Corpora. In: Morphemes As Necessary Concept for Structures
Discovery from Untagged Corpora. Proceedings of the Joint Conferences on New
Methods in Language Processing and Computational Natural Language Learning.
Sydney, Australia: Association for Computational Linguistics, pp. 295–298.
NeMLaP3/CoNLL ’98. ISBN 0-7258-0634-6.

Dempster, Arthur P.; Laird, Nan M.; Rubin, Donald B., 1977. Maximum Likelihood
from Incomplete Data via the EM Algorithm. Journal of the Royal Statistical
Society. Series B (Methodological). Vol. 39, no. 1, pp. 1–38. ISSN 0035-9246.

Dobrovoljc, Kaja; Krek, Simon; Holozan, Peter; Erjavec, Tomaž; Romih, Miro,
2015. Morphological lexicon Sloleks 1.2. Available also from:
http://hdl.handle.net/11356/1039. Slovenian language resource repository
CLARIN.SI.

Dobrovský, Josef, 1791. Über den Ursprung und die Bildung der slawischen und
insbesonder der böhmischen Sprache. In: Tomsa, František Jan. Vollständiges
Wörterbuch der böhmisch-, deutsch-, und lateinischen Sprache.

Dokulil, Miloš; Horálek, Karel; Hůrková, Jiřina; Knappová, Miloslava; Petr, Jan,
et al., 1986. Mluvnice češtiny (1). 1st ed. Prague, Czech Republic: Academia.

Feldman, Laurie Beth, 1994. Beyond Orthography and Phonology: Differences
between Inflections and Derivations. Journal of Memory and Language. Vol. 33,
no. 4, pp. 442–470.

Furdík, Juraj, 1978. Slovotvorná motivovanosť slovnej zásoby v slovenčine. Studia
Academica Slovaca. 7. Prednášky XIV. letného seminára slovenského jazyka a
kultúry, pp. 103–115.

Geman, Stuart Alan; Geman, Donald Jay, 1984. Stochastic Relaxation, Gibbs
Distributions, and the Bayesian Restoration of Images. IEEE Transactions on
Pattern Analysis and Machine Intelligence. Vol. PAMI-6, no. 6, pp. 721–741. ISSN
0162-8828.

Goldsmith, John, 2001. Unsupervised Learning of the Morphology of a Natural
Language. Computational Linguistics. Vol. 27, no. 2, pp. 153–198. ISSN 0891-2017.

Goldwater, Sharon; Griffiths, Thomas L.; Johnson, Mark, 2005. Interpolating
Between Types and Tokens by Estimating Power-law Generators. In: Weiss, Y.;
Schölkopf, B.; Platt, J. C. (eds.). Proceedings of the 18th International Conference
on Neural Information Processing Systems. Vancouver, British Columbia, Canada:
MIT Press, pp. 459–466. NIPS’05.

Graves, Alex, 2013. Generating Sequences With Recurrent Neural Networks
[online] [visited on 2018-06-06]. Available from:
https://arxiv.org/abs/1308.0850.

Grčar, Miha; Krek, Simon; Dobrovoljc, Kaja, 2012. Obeliks: statistični
oblikoskladenjski označevalnik in lematizator za slovenski jezik. In: Erjavec, T.;
Žganec Gros, J. (eds.). Proceedings of the 8th Language Technologies Conference.
Ljubljana, Slovenia: Institut Jožef Stefan, pp. 89–94.

57

http://hdl.handle.net/11356/1039
https://arxiv.org/abs/1308.0850


Grönroos, Stig-Arne; Virpioja, Sami; Smit, Peter; Kurimo, Mikko, 2014. Morfessor
FlatCat: An HMM-Based Method for Unsupervised and Semi-Supervised
Learning of Morphology. In: Morfessor FlatCat: An HMM-Based Method for
Unsupervised and Semi-Supervised Learning of Morphology. Proceedings of
COLING 2014, the 25th International Conference on Computational Linguistics:
Technical Papers. Dublin, Ireland: Dublin City University and Association for
Computational Linguistics, pp. 1177–1185.

Ten Hacken, Pius, 2014. In: The Oxford Handbook of Derivational Morphology. Ed. by
Lieber, Rochelle; Štekauer, Pavol. Oxford, United Kingdom: Oxford University
Press, chap. Delineating Derivation and Inflection, pp. 10–25. Oxford Handbooks
in Linguistics. ISBN 978-0-19-964164-2.

Hafer, Margaret A.; Weiss, Stephen F., 1974. Word Segmentation by Letter
Successor Varieties. Information Storage and Retrieval. Vol. 10, no. 11, pp.
371–385. ISSN 0020-0271.

Hajič, Jan, 2004. Disambiguation of Rich Inflection (Computational Morphology of
Czech). Prague, Czech Republic: Karolinum. ISBN 80-246-0282-2.

Harris, Zellig Sabbettai, 1955. From Phoneme to Morpheme. Language. Vol. 31, no.
2, pp. 190–222.

Haspelmath, Martin; Sims, Andrea D., 2015. O čem je morfologie. 1st ed. Trans. by
Klégr, Aleš; Vašků, Kateřina. Prague, Czech Republic: Karolinum. ISBN
978-80-246-2504-1.

He, Kaiming; Zhang, Xiangyu; Ren, Shaoqing; Sun, Jian, 2015. Deep Residual
Learning for Image Recognition. CoRR.

Hinton, Geoffrey E.; Srivastava, Nitish; Krizhevsky, Alex; Sutskever, Ilya;
Salakhutdinov, Ruslan, 2012. Improving neural networks by preventing
co-adaptation of feature detectors. CoRR.

Hladký, Josef, 1987. Word division and syllabification in English. Brno studies in
English. Vol. 17, no. K9, pp. 123–130. ISSN 0231-5351.

Hochreiter, Sepp; Schmidhuber, Jürgen, 1997. Long Short-term Memory. Vol. 9,
no. 8, pp. 1735–1780.

Hockett, Charles Francis, 1954. Two Models of Grammatical Description. Word.
Vol. 10, no. 2-3, pp. 210–234.

Hopfield, John Joseph, 1982. Neural networks and physical systems with emergent
collective computational abilities. Proceedings of the National Academy of
Sciences. Vol. 79, no. 8, pp. 2554–2558. ISSN 0027-8424.

Hornik, Kurt, 1991. Approximation capabilities of multilayer feedforward
networks. Neural Networks. Vol. 4, no. 2, pp. 251–257. ISSN 0893-6080.

Hrušecký, Michal; Hlaváčová, Jaroslava, 2010. Automatické rozpoznávání předpon
a přípon s pomocí nástroje Affisix. In: Pardubská, Dana (ed.). Informačné
technológie – Aplikácie a Teória, Zborník príspevkov prezentovaných na
konferencii ITAT. Seňa, Slovakia, pp. 63–67. ISBN 978-80-970179-3-4.

Karttunen, Lauri; Beesley, Kenneth R., 2001. A Short History of Two-Level
Morphology. In: A Short History of Two-Level Morphology. Twenty Years of
Two-Level Morphology, an ESSLLI 2001 Special Event. Helsinki, Finland.

58



Kneser, Reinhard; Ney, Hermann, 1995. Improved Backing-off for n-gram Language
Modeling. In: Improved Backing-off for n-gram Language Modeling. Proceedings of
the 1995 IEEE International Conference on Acoustics, Speech, and Signal Processing.
Vol. 1, pp. 181–184. ISBN 0-7803-2431-5. ISSN 1520-6149.

Křen, Michal et al., 2010. SYN2010: balanced corpus of written Czech. Prague, Czech
Republic: Institute of the Czech National Corpus, Charles University. Available
also from: http://www.korpus.cz.

Kurfali, Murathan; Üstün, Ahmet; Can, Burcu, 2017. A Trie-Structured Bayesian
Model for Unsupervised Morphological Segmentation.

Kurimo, Mikko; Virpioja, Sami; Turunen, Ville T. (eds.), 2010. Proceedings of the
Morpho Challenge 2010 workshop. Technical Report TKK-ICS-R37. Espoo,
Finland.

Kyjánek, Lukáš, 2018. Morphological Resources of Derivational Word-Formation
Relations. Praha, Czech Republic: ÚFAL MFF UK. ISSN 1214-5521. Available also
from: http://ufal.mff.cuni.cz/techrep/tr61.pdf. Technical report. To be
published.

Lango, Mateusz; Ševčíková, Magda; Žabokrtský, Zdeněk, 2018. Semi-Automatic
Construction of Word-Formation Networks (for Polish and Spanish). In:
Calzolari, Nicoletta et al. (eds.). Proceedings of the Eleventh International
Conference on Language Resources and Evaluation, LREC 2018. Miyazaki, Japan:
European Language Resources Association (ELRA).

Lehtonen, Minna; Monahan, Philip J.; Poeppel, David, 2011. Evidence for Early
Morphological Decomposition: Combining Masked Priming with
Magnetoencephalography. Journal of Cognitive Neuroscience. Vol. 23, no. 11, pp.
3366–3379.

Levenshtein, Vladimir Iosifovich, 1966. Binary Codes Capable of Correcting
Deletions, Insertions and Reversals. Soviet Physics Doklady. Vol. 10, pp. 707.

Lieber, Rochelle; Štekauer, Pavol (eds.), 2014. The Oxford Handbook of Derivational
Morphology. Oxford, United Kingdom: Oxford University Press. Oxford
Handbooks in Linguistics. ISBN 978-0-19-964164-2.

Macháček, Dominik; Vidra, Jonáš; Bojar, Ondřej, 2018. Morphological and
Language-Agnostic Word Segmentation for NMT. In: Morphological and
Language-Agnostic Word Segmentation for NMT. Proceedings of the 21st
International Conference on Text, Speech and Dialogue (TSD 2018). Brno, Czech
Republic. Available also from: https://arxiv.org/abs/1806.05482. To be
published.

Marchand, Hans, 1969. The categories and types of present-day English
word-formation: a synchronic-diachronic approach. 2nd ed. Munich, Germany: C.
H. Beck.

Martincová, Olga; Hlavsa, Zdeněk; Hrušková, Zdenka, 1993. Pravidla českého
pravopisu. 3rd ed. Prague, Czech Republic: Pansofia. ISBN 80-901373-6-9.

McCulloch, Warren Sturgis; Pitts, Walter, 1943. A logical calculus of the ideas
immanent in nervous activity. The Bulletin of Mathematical Biophysics. Vol. 5, no.
4, pp. 115–133. ISSN 1522-9602.

59

http://www.korpus.cz
http://ufal.mff.cuni.cz/techrep/tr61.pdf
https://arxiv.org/abs/1806.05482


McDonald, Ryan et al., 2013. Universal Dependency Annotation for Multilingual
Parsing. In: Universal Dependency Annotation for Multilingual Parsing.
Proceedings of the 51st Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers). Sofia, Bulgaria: Association for
Computational Linguistics, pp. 92–97.

Mel’čuk, Igor, 2006. Aspects of the Theory of Morphology. Ed. by Beck, David. Berlin,
Germany: Mouton de Gruyter. Trends in Linguistics. Studies and monographs,
no. 146. ISBN 978-3-11-017711-4. ISSN 1861-4302.

Mikolov, Tomas; Yih, Wen-tau; Zweig, Geoffrey, 2013. Linguistic Regularities in
Continuous Space Word Representations. In: Linguistic Regularities in
Continuous Space Word Representations. Proceedings of the 2013 Conference of the
North American Chapter of the Association for Computational Linguistics: Human
Language Technologies. Atlanta, Georgia: Association for Computational
Linguistics, pp. 746–751.

Narasimhan, Karthik; Barzilay, Regina; Jaakkola, Tommi, 2015. An Unsupervised
Method for Uncovering Morphological Chains. Transactions of the Association for
Computational Linguistics. Vol. 3, pp. 157–167.

Needleman, Saul B.; Wunsch, Christian D., 1970. A general method applicable to
the search for similarities in the amino acid sequence of two proteins. Journal of
Molecular Biology. Vol. 48, no. 3, pp. 443–453. ISSN 0022-2836.

Neuvel, Sylvain; Fulop, Sean A., 2002. Unsupervised Learning of Morphology
Without Morphemes. In: Unsupervised Learning of Morphology Without
Morphemes. Proceedings of the ACL-02 Workshop on Morphological and
Phonological Learning.

Nouri, Javad; Yangarber, Roman, 2016. A Novel Evaluation Method for
Morphological Segmentation. In: Calzolari, Nicoletta (Conference Chair) et al.
(eds.). Proceedings of the 10th International Conference on Language Resources and
Evaluation (LREC 2016). Portorož, Slovenia: European Language Resources
Association. ISBN 978-2-9517408-9-1.

Olsen, Susan, 2014. In: The Oxford Handbook of Derivational Morphology. Ed. by
Lieber, Rochelle; Štekauer, Pavol. Oxford, United Kingdom: Oxford University
Press, chap. Delineating Derivation and Compounding, pp. 26–49. Oxford
Handbooks in Linguistics. ISBN 978-0-19-964164-2.

Panocová, Renáta, 2017. Internationalisms with the Suffix -ácia and their
Adaptation in Slovak. In: Internationalisms with the Suffix -ácia and their
Adaptation in Slovak. Proceedings of the DeriMo workshop. Milan, Italy.

Van Rijsbergen, C. J., 1979. Information Retrieval. 2nd ed. London, United Kingdom:
Butterworth & Co. Available also from:
http://www.dcs.gla.ac.uk/Keith/Preface.html.

Rissanen, Jorma J., 1996. Fisher Information and Stochastic Complexity. IEEE
Transactions on Information Theory. Vol. 42, no. 1, pp. 40–47. ISSN 0018-9448.

Ruokolainen, Teemu; Kohonen, Oskar; Sirts, Kairit; Grönroos, Stig-Arne;
Kurimo, Mikko; Virpioja, Sami, 2016. A Comparative Study of Minimally
Supervised Morphological Segmentation. Computational Linguistics. Vol. 42, no.
1, pp. 91–120.

60

http://www.dcs.gla.ac.uk/Keith/Preface.html


Sakoe, H.; Chiba, S., 1978. Dynamic programming algorithm optimization for
spoken word recognition. IEEE Transactions on Acoustics, Speech, and Signal
Processing. Vol. 26, no. 1, pp. 43–49. ISSN 0096-3518.

Salvador, Stan; Chan, Philip, 2007. Toward Accurate Dynamic Time Warping in
Linear Time and Space. Intelligent Data Analysis. Vol. 11, no. 5, pp. 561–580. ISSN
1088-467X.

De Saussure, Ferdinand, 1961. Course in General Linguistics. 3rd ed. Ed. by
Bally, Charles; Sechehaye, Albert. Trans. from the French by Baskin, Wade.
New York, New York, USA: McGraw-Hill Book Company.

Sennrich, Rico; Haddow, Barry; Birch, Alexandra, 2016. Neural Machine
Translation of Rare Words with Subword Units. In: Neural Machine Translation
of Rare Words with Subword Units. Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (ACL 2016). Berlin, Germany.

Ševčíková, Magda; Žabokrtský, Zdeněk; Vidra, Jonáš; Straka, Milan, 2016. The
DeriNet lexical network: a language data resource for research into derivation in
Czech. Časopis pro moderní filologii, pp. 62–76.

Shafaei, Elnaz; Frassinelli, Diego; Lapesa, Gabriella; Padó, Sebastian, 2017.
DErivCELEX: Development and Evaluation of a German Derivational
Morphology Lexicon based on CELEX. In: DErivCELEX: Development and
Evaluation of a German Derivational Morphology Lexicon based on CELEX.
Proceedings of the DeriMo workshop. Milan, Italy.

Shay, Erin, 2014. In: The Oxford Handbook of Derivational Morphology. Ed. by
Lieber, Rochelle; Štekauer, Pavol. Oxford, United Kingdom: Oxford University
Press, chap. Afroasiatic, pp. 573–590. Oxford Handbooks in Linguistics. ISBN
978-0-19-964164-2.

Šiška, Zbyněk, 1998. Bázový morfematický slovník češtiny. 1st ed. Olomouc, Czech
Republic: Palacký University. ISBN 80-7067-885-2.

Slavíčková, Eleonora, 1975. Retrograde morphemic dictionary of Czech language.
1st ed. Prague, Czech Republic: Academia.

Slavíčková, Eleonora, 2018. Retrograde Morphemic Dictionary of Czech. Available
also from: http://hdl.handle.net/11234/1-2838 LINDAT/CLARIN digital
library at the Institute of Formal and Applied Linguistics (ÚFAL), Faculty of
Mathematics and Physics, Charles University.

Slavíčková, Eleonora; Hlaváčová, Jaroslava; Pognan, Patrice, 2017. Retrograde
Morphemic Dictionary of Czech - verbs. Available also from:
http://hdl.handle.net/11234/1-2546 LINDAT/CLARIN digital library at the
Institute of Formal and Applied Linguistics (ÚFAL), Faculty of Mathematics and
Physics, Charles University.

Smith, Temple Ferris; Waterman, Michael Spencer, 1981. Identification of common
molecular subsequences. Journal of Molecular Biology. Vol. 147, no. 1, pp.
195–197. ISSN 0022-2836.

61

http://hdl.handle.net/11234/1-2838
http://hdl.handle.net/11234/1-2546


Šnajder, Jan, 2014. DerivBase.hr: A High-Coverage Derivational Morphology
Resource for Croatian. In: DerivBase.hr: A High-Coverage Derivational
Morphology Resource for Croatian. Proceedings of the Ninth International
Conference on Language Resources and Evaluation (LREC’14). Reykjavik, Iceland,
pp. 3371–3377.

Spencer, Andrew, 1994. Morphological theory and English. Links & Letters. No. 1,
pp. 71–84. ISSN 1133-7397.

Spiegler, Sebastian; Monson, Christian, 2010. EMMA: A novel Evaluation Metric
for Morphological Analysis. In: EMMA: A novel Evaluation Metric for
Morphological Analysis. Proceedings of COLING 2010, 23rd International
Conference on Computational Linguistics. Beijing, China, pp. 1029–1037.

Srivastava, Rupesh; Greff, Klaus; Schmidhuber, Jurgen, 2015. Highway
Networks. In: Highway Networks. International Conference on Machine Learning:
Workshop on Deep Learning. Lille, France.

Štekauer, Pavol; Lieber, Rochelle (eds.), 2005. Handbook of Word-Formation.
Dordrecht, The Netherlands: Springer. Studies in Natural Language and
Linguistic Theory, no. 64. ISBN 978-1-4020-3597-5.

Straka, Milan; Straková, Jana, 2017. Tokenizing, POS Tagging, Lemmatizing and
Parsing UD 2.0 with UDPipe. In: Tokenizing, POS Tagging, Lemmatizing and
Parsing UD 2.0 with UDPipe. Proceedings of the CoNLL 2017 Shared Task:
Multilingual Parsing from Raw Text to Universal Dependencies. Vancouver,
Canada: Association for Computational Linguistics, pp. 88–99.

Straková, Jana; Straka, Milan; Hajič, Jan, 2014. Open-Source Tools for
Morphology, Lemmatization, POS Tagging and Named Entity Recognition. In:
Open-Source Tools for Morphology, Lemmatization, POS Tagging and Named
Entity Recognition. Proceedings of 52nd Annual Meeting of the Association for
Computational Linguistics: System Demonstrations. Baltimore, Maryland, USA:
Association for Computational Linguistics, pp. 13–18.

Stump, Gregory, 2005. In: Handbook of Word-Formation. Ed. by Štekauer, Pavol;
Lieber, Rochelle. Dordrecht, The Netherlands: Springer, chap. Word-Formation
and Inflectional Morphology, pp. 49–71. Studies in Natural Language and
Linguistic Theory, no. 64. ISBN 978-1-4020-3597-5.

Sutskever, Ilya; Vinyals, Oriol; Le, Quoc V, 2014. Sequence to Sequence Learning
with Neural Networks. In: Ghahramani, Z.; Welling, M.; Cortes, C.;
Lawrence, N. D.; Weinberger, K. Q. (eds.). Advances in Neural Information
Processing Systems 27. Curran Associates, Inc., pp. 3104–3112.

Trips, Carola, 2014. In: The Oxford Handbook of Derivational Morphology. Ed. by
Lieber, Rochelle; Štekauer, Pavol. Oxford, United Kingdom: Oxford University
Press, chap. Derivation and Historical Change, pp. 384–406. Oxford Handbooks
in Linguistics. ISBN 978-0-19-964164-2.

Üstün, Ahmet; Can, Burcu, 2016. Unsupervised Morphological Segmentation Using
Neural Word Embeddings. In: Unsupervised Morphological Segmentation Using
Neural Word Embeddings. Statistical Language and Speech Processing: 4th
International Conference, SLSP 2016. Pilsen, Czech Republic, pp. 43–53. ISBN
978-3-319-45924-0.

62



Uyar, Ahmet, 2009. Google stemming mechanisms. Journal of Information Science.
Vol. 35, no. 5, pp. 499–514.

Vidra, Jonáš, 2015. Extending the Lexical Network DeriNet. Prague, Czech Republic.
Bachelor’s thesis. Charles University. Supervised by Zdeněk Žabokrtský.

Viterbi, Andrew J., 1967. Error Bounds for Convolutional Codes and an
Asymptotically Optimum Decoding Algorithm. IEEE Transactions on Information
Theory. Vol. 13, no. 2, pp. 260–269. ISSN 0018-9448.

Werbos, Paul John, 1982. Applications of advances in nonlinear sensitivity analysis.
In: Drenick, R. F.; Kozin, F. (eds.). System Modeling and Optimization. Berlin,
Heidelberg: Springer, pp. 762–770. ISBN 978-3-540-39459-4.

Yao, Kaisheng; Peng, Baolin; Zweig, Geoffrey; Yu, Dong; Li, Xiaolong; Gao, Feng,
2014. Recurrent conditional random field for language understanding. In:
Recurrent conditional random field for language understanding. 2014 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP),
pp. 4077–4081. ISSN 1520-6149.

Žabokrtský, Zdeněk; Ševčíková, Magda; Straka, Milan; Vidra, Jonáš;
Limburská, Adéla, 2016. Merging Data Resources for Inflectional and
Derivational Morphology in Czech. In: Calzolari, Nicoletta (Conference Chair)
et al. (eds.). Proceedings of the 10th International Conference on Language
Resources and Evaluation (LREC 2016). Portorož, Slovenia: European Language
Resources Association, pp. 1307–1314. ISBN 978-2-9517408-9-1.

Zeller, Britta; Padó, Sebastian; Šnajder, Jan, 2014. Towards Semantic Validation of
a Derivational Lexicon. In: Towards Semantic Validation of a Derivational Lexicon.
Proceedings of COLING 2014, the 25th International Conference on Computational
Linguistics: Technical Papers. Dublin, Ireland: Dublin City University and
Association for Computational Linguistics, pp. 1728–1739.

Zingler, Tim, 2017. Evidence against the morpheme: The history of English
phonaesthemes. Language Sciences. Vol. 62, pp. 76–90. ISSN 0388-0001.

Zipf, George Kingsley, 1932. Selective Studies and the Principle of Relative Frequency
in Language. Cambridge, Massachusetts, USA: Harvard University Press.

63



A. Attachments

A.1 An excerpted page from Slavíčková (1975)

Figure A.1: Scanned page 281 from the Retrograde morphemic dictionary of Czech
language (Slavíčková, 1975), showing the organization of the dictionary. The num-
bers in front of each segmented word indicate some of its properties and etymolog-
ical origin, e.g. 0 means autosemantic Slavic words, 3 means loanwords, 5 indicates
markedness and 6 indicates homonymy of the word or its root.
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A.2 Sample outputs from selected models

Table A.1: Table with sample outputs of various systems. The words were chosen
manually to showcase the differences.

LCCS EMm i1 EMmh i4
ambici‧ózn‧ě ambiciózn‧ě ambiciózn‧ě
and‧ěl anděl anděl
autoris‧ov‧áv‧a‧t‧eln‧ě autoris‧ov‧áv‧a‧t‧eln‧ě autoris‧ová‧va‧t‧eln‧ě
br‧u‧s‧i‧č br‧us‧i‧č brus‧i‧č
dat‧lův dat‧l‧ů‧v dat‧l‧ů‧v
dokt‧ůr‧ek doktů‧r‧ek dokt‧ůre‧k
drů‧žič‧čin drůžič‧čin drůžič‧čin
Hav‧lův Havl‧ů‧v Havl‧ů‧v
hrn‧íč‧ek hrn‧í‧č‧ek hrn‧íče‧k
ioni‧z‧ov‧a‧t ioniz‧ov‧a‧t ioniz‧ova‧t
k‧ů‧ž‧e kůž‧e kůž‧e
l‧et‧n‧í let‧n‧í let‧n‧í
lit‧ev‧sk‧ý lit‧ev‧sk‧ý litev‧sk‧ý
mali‧l‧in‧k‧at‧ý mal‧i‧link‧a‧t‧ý mal‧i‧link‧a‧t‧ý
m‧y‧s‧l‧i‧v‧e‧c m‧ysl‧i‧v‧e‧c mysl‧i‧v‧e‧c
na‧ch‧yl‧ov‧a‧t na‧chyl‧ov‧a‧t na‧chyl‧ova‧t
na‧kl‧adatel na‧kl‧a‧d‧a‧t‧el na‧kla‧d‧a‧t‧el
Narni‧e Narnie Narni‧e
no‧h‧a noh‧a noh‧a
od‧ch‧ov‧a‧t od‧ch‧ov‧a‧t od‧chov‧a‧t
odol‧n‧ý odol‧n‧ý odol‧n‧ý
odzn‧áček odzná‧ček odzná‧ček
pla‧zm‧a plazm‧a plazm‧a
po‧vypr‧áv‧ě‧t po‧vypráv‧ě‧t po‧vyprávě‧t
p‧r‧aní p‧r‧a‧ní pra‧ní
pro‧pleša‧t‧iteln‧ý pro‧pleša‧t‧i‧t‧eln‧ý pro‧plešat‧i‧t‧eln‧ý
prost‧or prostor prost‧or
překl‧adatel překlad‧a‧t‧el překlad‧a‧t‧el
st‧a‧ře‧c st‧ař‧e‧c stař‧e‧c
uz‧urp‧ov‧a‧t uzurp‧ov‧a‧t uzurp‧ova‧t
v‧olsk‧ý v‧ol‧sk‧ý vol‧sk‧ý
vy‧pr‧av‧ov‧a‧t vy‧pr‧av‧ov‧a‧t vy‧prav‧ova‧t
za‧rd‧ěn‧ý za‧rdě‧n‧ý za‧rd‧ě‧n‧ý
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Table A.2: Table with sample outputs of various systems, continued.
FlatCat DN 10000 NNs on EMmh NNp on EMmh
ambiciózně ambic‧i‧ó‧z‧n‧ě ambiciózně
a‧n‧děl anděl anděl
autoris‧ovávatelně autorisov‧ávat‧eln‧ě autorisov‧ávat‧eln‧ě
brusič brus‧ič brus‧ič
datl‧ův datl‧ův datl‧ův
do‧k‧t‧ůre‧k doktůr‧ek do‧ktůr‧ek
drůžič‧čin drůžič‧čin drůžič‧čin
Havl‧ův Havl‧ův Havl‧ův
hr‧ní‧ček hrn‧íč‧e‧k hrn‧íček
ionizova‧t ionizovat ionizovat
kůže kůže kůže
let‧ní letn‧í let‧n‧í
lit‧e‧v‧ský litev‧sk‧ý lit‧ev‧ský
mali‧link‧a‧t‧ý malilinkat‧ý malilinkat‧ý
myslivec mysli‧v‧ec mysliv‧ec
na‧chyl‧ova‧t na‧chyl‧ovat na‧chylovat
na‧klada‧tel na‧kladat‧el na‧kladat‧el
Narnie Narn‧ie Narn‧ie
od‧chov‧a‧t od‧chovat od‧chovat
o‧doln‧ý odol‧ný od‧ol‧ný
od‧zná‧ček odzná‧ček odzná‧ček
plazm‧a plazm‧a plazma
po‧vyprá‧vět po‧vyprávět po‧vy‧pr‧ávět
pra‧ní praní praní
proplešatitelný pro‧plešat‧it‧elný pro‧plešatit‧elný
pro‧stor prostor pro‧st‧or
pře‧klada‧tel překladat‧el pře‧kladat‧el
st‧ařec s‧t‧aře‧c stařec
u‧zurp‧ova‧t uzurpovat u‧zurpovat
vol‧ský vol‧sk‧ý vol‧sk‧ý
vy‧prav‧ova‧t vy‧prav‧ovat vy‧prav‧ovat
zardě‧n‧ý za‧rdě‧ný za‧rdě‧ný
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