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Abstract

UDPipe is a trainable pipeline which per-
forms sentence segmentation, tokeniza-
tion, POS tagging, lemmatization and de-
pendency parsing (Straka et al., 2016). We
present a prototype for UDPipe 2.0 and
evaluate it in the CoNLL 2018 UD Shared
Task: Multilingual Parsing from Raw Text
to Universal Dependencies, which em-
ploys three metrics for submission rank-
ing. Out of 26 participants, the proto-
type placed first in the MLAS ranking,
third in the LAS ranking and third in the
BLEX ranking. In extrinsic parser evalua-
tion EPE 2018, the system ranked first in
the overall score.

The prototype utilizes an artificial neu-
ral network with a single joint model for
POS tagging, lemmatization and depen-
dency parsing, and is trained only using
the CoNLL-U training data and pretrained
word embeddings, contrary to both sys-
tems surpassing the prototype in the LAS
and BLEX ranking in the shared task.

The open-source code of the proto-
type is available at http://github.com/
CoNLL-UD-2018/UDPipe-Future.

After the shared task, we slightly refined
the model architecture, resulting in better
performance both in the intrinsic evalu-
ation (corresponding to first, second and
second rank in MLAS, LAS and BLEX
shared task metrics) and the extrinsic eval-
uation. The improved models will be
available shortly in UDPipe at http://

ufal.mff.cuni.cz/udpipe.

1 Introduction

The Universal Dependencies project (Nivre et al.,
2016) seeks to develop cross-linguistically consis-
tent treebank annotation of morphology and syn-
tax for many languages. The latest version of
UD 2.2 (Nivre et al., 2018) consists of 122 de-
pendency treebanks in 71 languages. As such,
the UD project represents an excellent data source
for developing multi-lingual NLP tools which per-
form sentence segmentation, tokenization, POS
tagging, lemmatization and dependency tree pars-
ing.

The goal of the CoNLL 2018 Shared Tasks:
Multilingual Parsing from Raw Text to Universal
Dependencies (CoNLL 2018 UD Shared Task) is
to stimulate research in multi-lingual dependency
parsers which process raw text only. The overview
of the task and the results are presented in Zeman
et al. (2018). The current shared task is a reiter-
ation of previous year’s CoNLL 2017 UD Shared
Task (Zeman et al., 2017).

This paper describes our contribution to CoNLL
2018 UD Shared Task, a prototype of UDPipe 2.0.
UDPipe (Straka et al., 2016)1 is an open-source
tool which automatically generates sentence seg-
mentation, tokenization, POS tagging, lemmati-
zation and dependency trees, using UD treebanks
as training data. The current version UDPipe 1.2
(Straka and Straková, 2017) is used as a base-
line in CoNLL 2018 UD Shared Task. UDPipe
1.2 achieves low running times and moderately
sized models, however, its performance is behind
the current state-of-the-art, placing 13th, 17th and
18th in the three metrics (MLAS, LAS and BLEX,
respectively). As a participation system in the
shared task, we therefore propose a prototype for
UDPipe 2.0, with the goal of reaching state-of-the-
art performance.

1http://ufal.mff.cuni.cz/udpipe
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The contributions of this paper are:

• Description of UDPipe 2.0 prototype, which
placed 1st in MLAS, 3rd in LAS and 3rd in
BLEX, the three metrics of CoNLL 2018 UD
Shared Task. In extrinsic parser evaluation
EPE 2018, the prototype ranked first in over-
all score.
The prototype employs an artificial neural
network with a single joint model for POS
tagging, lemmatization, and parsing. It uti-
lizes solely CoNLL-U training data and word
embeddings, and does not require treebank-
specific hyperparameter tuning.

• Runtime performance measurements of the
prototype, using both CPU-only and GPU en-
vironments.

• Ablation experiments showing the effect of
word embeddings, regularization techniques
and various joint model architectures.

• Post-shared-task model refinement, improv-
ing both the intrinsic evaluation (correspond-
ing to 1st, 2nd and 2nd rank in MLAS, LAS
and BLEX shared task metrics) and the ex-
trinsic evaluation. The improved models will
be available soon in UDPipe.2

2 Related Work

Deep neural networks have recently achieved re-
markable results in many areas of machine learn-
ing. In NLP, end-to-end approaches were ini-
tially explored by Collobert et al. (2011). With
a practical method for pretraining word embed-
dings (Mikolov et al., 2013) and routine utiliza-
tion of recurrent neural networks (Hochreiter and
Schmidhuber, 1997; Cho et al., 2014), deep neural
networks achieved state-of-the-art results in many
NLP areas like POS tagging (Ling et al., 2015),
named entity recognition (Yang et al., 2016) or
machine translation (Vaswani et al., 2017).

The wave of neural network parsers was started
recently by Chen and Manning (2014) who pre-
sented fast and accurate transition-based parser.
Many other parser models followed, employing
various techniques like stack LSTM (Dyer et al.,
2015), global normalization (Andor et al., 2016),
biaffine attention (Dozat and Manning, 2016)
or recurrent neural network grammars (Kuncoro
et al., 2016), improving LAS score in English and
Chinese dependency parsing by more than 2 points

2http://ufal.mff.cuni.cz/udpipe

in 2016. The neural graph-based parser of Dozat
et al. (2017) won the last year’s CoNLL 2017 UD
Shared Task by a wide margin.

3 Model Overview

The objective of the shared task is to parse raw
texts. In accordance with the CoNLL-U format,
the participant systems are required to:

• tokenize the given text and segment it into
sentences;

• split multi-word tokens into individual words
(CoNLL-U format distinguishes between the
surface tokens, e.g., won’t, and words, e.g.,
will and not);

• perform POS tagging, producing UPOS (uni-
versal POS) tags, XPOS (language-specific
POS) tags and UFeats (universal morpholog-
ical features);

• perform lemmatization;
• finally perform dependency parsing, includ-

ing universal dependency relation labels.

We decided to reuse the tokenization, sentence
segmentation and multi-word token splitting avail-
able in UDPipe 1.2, i.e., the baseline solution, and
focus on POS tagging, lemmatization, and pars-
ing, utilizing a deep neural network architecture.

For practical reasons, we decided to devise a
joint model for POS tagging, lemmatization, and
parsing, with the goal of sharing at least the trained
word embeddings, which are usually the largest
part of a trained neural network model.

For POS tagging, we applied a straightforward
model in the lines of Ling et al. (2015) – first rep-
resenting each word with its embedding, contextu-
alizing them with bidirectional RNNs (Graves and
Schmidhuber, 2005), and finally using a softmax
classifier to predict the tags. To predict all three
kinds of tags (UPOS, XPOS and UFeats), we reuse
the embeddings and the RNNs, and only employ
three different classifiers, each for one kind of the
tags.

To accomplish lemmatization, we convert each
lemma to a rule generating it from the word form,
and then classify each input word into one of such
rules. Assuming that lemmatization and POS tag-
ging could benefit one another, we reuse the con-
textualized embeddings of the tagger, and lemma-
tize through the means of a fourth classifier (in
addition to the three classifiers producing UPOS,
XPOS and UFeats tags).

http://ufal.mff.cuni.cz/udpipe


Regarding the dependency parsing, we reimple-
mented a biaffine attention parser of (Dozat et al.,
2017), which won the previous year’s shared task.
The parser also processes contextualized embed-
dings, followed by additional attention and classi-
fication layers. We considered two levels of shar-
ing:

• loosely joint model, where only the word em-
beddings are shared;

• tightly joint model, where the contextualized
embeddings are shared by the tagger and the
parser.

4 Model Implementation

We now describe each model component in a
greater detail.

4.1 Tokenization and Sentence Segmentation
We perform tokenization, sentence segmentation
and multi-word token splitting with the baseline
UDPipe 1.2 approach. In a nutshell, input charac-
ters are first embedded using trained embeddings,
then fixed size input segments (of 50 characters)
are processed by a bidirectional GRU (Cho et al.,
2014), and each character is classified into three
classes – a) there is a sentence break after this
character, b) there is a token break after this char-
acter, and c) there is no break after this character.
For detailed description, see Straka and Straková
(2017).

We only slightly modified the baseline models
in the following way: in addition to the segments
of size 50 we also consider longer segments of
200 characters during training (and choose the best
model for each language according to the develop-
ment set performance). Longer segments improve
sentence segmentation performance for treebanks
with nontrivial sentence breaks – such sentence
breaks are caused either by the fact that a treebank
does not contain punctuation, or that semantic sen-
tence breaks (e.g., end of heading and start of a
text paragraph) are not annotated in the treebank.
The evaluation of longer segments models is pre-
sented later in Section 6.1.

4.2 Embedding Input Words
We represent each input word using three kinds of
embeddings, as illustrated in Figure 1.

• pretrained word embeddings: pretrained
word embeddings are computed using large
plain texts and are constant throughout the

Input word cat

Pretrained
embeddings.

Trained
embeddings.

c a t

GRU GRU GRU

Character-level
word embeddings.

Figure 1: Word embeddings used in the model.

training. We utilize either word embed-
dings provided by the CoNLL 2017 UD
Shared Task organizers (of dimension 100),
Wikipedia fastText embeddings3 (of dimen-
sion 300), or no pretrained word embeddings,
choosing the alternative resulting in highest
development accuracy. To limit the size of
the pretrained embeddings, we keep at most
1M most frequent words of fastText embed-
dings, or at most 3M most frequent words of
the shared task embeddings.

• trained word embeddings: trained word em-
beddings are created for every training word,
initialized randomly, and trained with the rest
of the network.

• character-level word embeddings: character-
level word embeddings are computed simi-
larly as in Ling et al. (2015), utilizing a bidi-
rectional GRU.

4.3 POS Tagging

We process the embedded words through a
multi-layer bidirectional LSTM (Hochreiter and
Schmidhuber, 1997) to obtain contextualized em-
beddings. In case multiple RNN layers are em-
ployed, we utilize residual connections on all but
the first layer (Wu et al., 2016).

For each of the three kinds of tags (UPOS,
XPOS and UFeats), we construct a dictionary con-
taining all unique tags from the training data.
Then, we employ a softmax classifier for each tag
kind processing contextualized embeddings and
generating a class from the corresponding tag dic-
tionary.

However, a single-layer softmax classifier has
only a limited capacity. To allow more non-linear
processing for each tag kind, we prepend a dense
layer with tanh non-linearity and a residual con-
nection before each softmax classifier.

3
http://github.com/facebookresearch/fastText/

blob/master/pretrained-vectors.md

http://github.com/facebookresearch/fastText/blob/master/pretrained-vectors.md
http://github.com/facebookresearch/fastText/blob/master/pretrained-vectors.md
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Figure 2: Tagger and lemmatizer model.

The illustration of the tagger and the lemmatizer
is illustrated in Figure 2.

4.4 Lemmatization

We lemmatize input words by classifying them
into lemma generation rules. We consider these
rules as a fourth tag kind (in addition to UPOS,
XPOS and UFeats) and use analogous architec-
ture.

To construct the lemma generation rule from a
given form and lemma, we proceed as follows:

• We start by finding the longest continuous
substring of the form and the lemma. If it is
empty, we use the lemma itself as the class.

• If there is a common substring of the form
and the lemma, we compute the shortest edit
script converting the prefix of the form into
the prefix of the lemma, and the shortest edit
script converting the suffix of the form to the
suffix of the lemma.
We consider two variants of the edit
scripts. The first one permits only char-
acter operations delete_current_char and
insert_char(c). The second variant addi-
tionally allows copy_current_char opera-
tion. For each treebank, we choose the vari-
ant producing less unique classes for all train-
ing data.

• All above operations are performed case in-
sensitively. To indicate correct casing of the
lemma, we consider the lemma to be a con-
catenation of segments, where each segment
is composed of either a sequence of lower-
case characters, or a sequence of uppercase
characters. We represent the lemma casing
by encoding the beginning of every such seg-
ment, where the offsets in the first half of the
lemma are computed relatively to the start of
the lemma, and the offsets in the second half
of the lemma are computed relatively to the
end of the lemma.

Lemma generation rules
Minimum 6
Q1 199
Median 490
Mean 877
Q3 831
Maximum 8475

Table 1: Statistics of number of lemma generation
rules for 73 treebank training sets of the CoNLL
2018 UD Shared Task.

Considering all 73 treebank training sets of the
CoNLL 2018 UD Shared Task, the number of
created lemma generation rules according to the
above procedure is detailed in Table 1.

4.5 Dependency Parsing

We base our parsing model on a graph-based
biaffine attention parser architecture of the last
year’s shared task winner (Dozat et al., 2017).

The model starts again with contextualized em-
beddings produced by bidirectional RNNs, with
an artificial ROOT word prepended before the be-
ginning of the sentence. The contextualized em-
beddings are non-linearly mapped into arc-head
and arc-dep representation, which are combined
using biaffine attention to produce for each word a
distribution indicating the probability of all other
words being its dependency head. Finally, we pro-
duce an arborescence (i.e., directed spanning tree)
with maximum probability by utilizing the Chu-
Liu/Edmonds algorithm (Chu and Liu, 1965; Ed-
monds, 1967).

To generate labels for dependency arcs, we pro-
ceed analogously – we non-linearly map the con-
textualized embeddings into rel-head and rel-dep
and combine them using biaffine attention, pro-
ducing for every possible dependency edge a prob-
ability distribution over dependency labels.

4.6 Joint Model Variants

We consider two variants of a joint tagging and
parsing model, illustrated in Figure 3.

• The tightly joint model shares the contextu-
alized embeddings between the tagger and
the parser. Notably, the shared contextual-
ized embeddings are computed using 2 layers
of bidirectional LSTM. Then, both the tag-
ger and the parser employ an additional layer
of bidirectional LSTM, resulting in 4 bidirec-
tional RNN layers.



Words embeddings

Bidirectional LSTM

Bidirectional LSTM

Tagger LSTM Parser LSTM

Words embeddings

Tagger LSTM Parser LSTM

Tagger LSTM Parser LSTM

Figure 3: The tightly joint model (on the left) and
the loosely joint model (on the right).

• The loosely joint model shares only the
word embeddings between the tagger and the
parser, which both compute contextualized
embeddings using 2 layers of bidirectional
LSTM, resulting again in 4 RNN layers.

There is one additional difference between the
tightly and loosely joint model. While in the
tightly joint model the generated POS tags influ-
ence the parser model only independently through
the shared contextualized embeddings (i.e., the
POS tags can be considered regularization of the
parser model), the loosely joint model extends the
parser word embeddings by the embeddings of the
predicted UPOS, XPOS and UFeats tags. Note
that we utilize the predicted tags even during train-
ing (instead of the gold ones).

4.7 Model Hyperparameters
Considering the 73 treebank training sets of the
CoNLL 2018 UD Shared Task, we do not em-
ploy any treebank-specific hyperparameter search.
Most of the hyperparameters were set according
to a single Czech-PDT treebank (the largest one),
and no effort has been made to adjust them to the
other treebanks.

To compute the character-level word embed-
dings, we utilize character embeddings and GRUs
with dimension of 256. The trained word embed-
dings and the sentence-level LSTMs have a di-
mension of 512. The UPOS, XPOS and UFeats
embeddings, if used, have a dimension of 128.
The parser arc-head, arc-dep, rel-head and rel-dep
representations have dimensions of 512, 512, 128
and 128, respectively.

4.8 Neural Network Training
For each of the 73 treebanks with a training
set we train one model, utilizing only the train-
ing treebank and pretrained word embeddings.
Each model was trained using the Adam algo-
rithm (Kingma and Ba, 2014) on a GeForce GTX
1080 GPU with a batch size of 32 randomly cho-
sen sentences (for batch size of 64 sentences train-

ing ended with out-of-memory error for some tree-
banks). The training consists of 60 epochs, with
the learning rate being 0.001 for the first 40 epochs
and 0.0001 for the last 20 epochs. To sufficiently
train smaller treebanks, each epoch consists of one
pass over the training data or 300 batches, what-
ever is larger.

Following Dozat and Manning (2016); Vaswani
et al. (2017), we modify the default value of β2
hyperparameter of Adam, but to a different value
than both of the above papers – to 0.99, which re-
sulted in best performance on the largest treebank.
We also make sure Adam algorithm does not up-
date first and second moment estimates for embed-
dings not present in a batch.

We regularize the training by several ways:

• We employ dropout with dropout probabil-
ity 50% on all embeddings and hidden layers,
with the exception of RNN states and resid-
ual connections.

• We utilize label smoothing of 0.03 in all soft-
max classifications.

• With a probability of 20%, we replace trained
word embedding by an embedding of an un-
known word.

With the described training method and regular-
ization techniques, the model does not seem to
overfit at all, or very little. Consequently, we do
not perform early stopping and always utilize the
model after full 60 epochs of training.

The training took 2-4 hours for most of the tree-
banks, with the two largest Russian-SynTagRus
and Czech-PDT taking 15 and 20 hours, respec-
tively.

5 CoNLL 2018 UD Shared Task

The official CoNLL 2018 UD Shared Task evalua-
tion was performed using a TIRA platform (Pot-
thast et al., 2014), which provided virtual ma-
chines for every participants’ systems. During test
data evaluation, the machines were disconnected
from the internet, and reset after the evaluation
finished – this way, the entire test sets were kept
private even during the evaluation.

The shared task contains test sets of three kinds:

• For most treebanks large training and devel-
opment sets were available, in which case
we trained the model on the training set and
choose among the pretrained word embed-
dings and tightly or loosely joint model ac-



cording to performance on the development
set.

• For several treebanks very small training sets
and no development sets were available. In
these cases we manually split 10% of the
training set to act as a development set and
proceed as in the above case.

• Nine test treebanks contained no training data
at all. For these treebanks we adopted the
baseline model strategy:
For Czech-PUD, English-PUD, Finnish-
PUD, Japanese-Modern, and Swedish-PUD
there were other treebank variants of the
same language available in the training set.
Consequently, we processed these treebanks
using models trained for Czech PDT, En-
glish EWT, Finnish TDT, Japanese GSD, and
Swedish Talbanken, respectively.
For Breton-KEB, Faroese-OFT, Naija-NSC,
and Thai-PUD, we trained a universal mixed
model, by using first 200 sentences of each
training set (or less in case of very small
treebanks) as training data and first 20 sen-
tences of each development treebank as de-
velopment data.

5.1 Shared Task Evaluation

The official CoNLL 2018 UD Shared Task results
are presented in Table 4. In addition to F1 scores,
we also include rank of our submission (out of the
26 participant systems).

In the three official metrics (LAS, MLAS and
BLEX) our system reached third, first and third
average performance. Additionally, our system
achieved best average performance in XPOS and
AllTags metrics. Furthermore, the lemmatization
F1 score was the second best.

Interestingly, although our system achieves
highest average score in MLAS (which is a combi-
nation of dependency parsing and morphological
features), it reaches only third best average LAS
and fourth best average UFeats. Furthermore, the
TurkuNLP participation system surpasses our sys-
tem in both LAS and UFeats. We hypothesise that
the high performance of our system in MLAS met-
ric is caused by the fact that the tagger and parser
models are joined, thus producing consistent an-
notations.

Finally, we note that the segmentation improve-
ments outlined in Section 4.1 resulted in third av-
erage F1 score of our system.

Event Negation Opinion Overall
Extraction Resolution Analysis Score

49.66 3 58.45 3 60.46 7 56.19 1

Table 2: UDPipe 2.0 prototype results in EPE
2018. For each metric we present F1 score per-
centage and also rank.

Model size
Average 139.2MB
Minimum 90.5MB
Q1 110.0MB
Median 132.0MB
Q3 145.1MB
Maximum 347.1MB
UDPipe 1.2 13.2MB

Table 3: Statistics of the model sizes.

5.2 Extrinsic Parser Evaluation

Following the First Shared Task on Extrinsic
Parser Evaluation (Oepen et al., 2017), the 2018
edition of Extrinsic Parser Evaluation Initiative
(EPE 2018) ran in collaboration with the CoNLL
2018 UD Shared Task. The initiative allowed
to evaluate the English systems submitted to the
CoNLL shared task against three EPE downstream
systems – biological event extraction, negation
resolution, and fine-grained opinion analysis.

The results of our system are displayed in Ta-
ble 2. Even though our system ranked only 3rd,
3rd, and 7th in the downstream task F1 scores, it
was the best system in the overall score (and aver-
age of the three F1 scores).

5.3 Model Size

The statistics of the model sizes is listed in Table 3.
Average model size is approximately 140MB,
which is more than 10 times larger than baseline
UDPipe 1.2 models. Note however that we do not
perform any model quantization (which should re-
sult in almost four times smaller models, follow-
ing for example approach of Wu et al. (2016)), and
we did not consider the model size during hyper-
parameter selection. Taking into account that the
largest part of the models are the trained word em-
beddings, the model size could be reduced sub-
stantially by reducing trained word embeddings
dimension.

5.4 Runtime Performance

The runtime performance of our system is pre-
sented in Table 6. Compared to the baseline UD-
Pipe 1.2, tagging and parsing on a single CPU



Language Tokens Words Sentences UPOS XPOS UFeats AllTags Lemmas UAS LAS MLAS BLEX
Afrikaans-AfriBooms 99.75 4 99.75 4 98.25 4 97.82 1 94.23 1 97.45 1 94.08 2 97.11 2 87.74 6 84.99 4 75.67 1 75.74 3
Ancient Greek-PROIEL 100.00 1 100.00 1 49.15 4 97.34 3 97.74 2 91.98 1 90.53 1 91.08 19 79.50 6 75.78 5 59.82 5 62.62 7
Ancient Greek-Perseus 99.96 4 99.96 4 98.73 3 92.10 4 84.27 2 90.30 2 83.18 2 81.78 20 77.94 7 72.49 6 51.55 6 49.46 7
Arabic-PADT 99.98 1 93.71 4 80.89 1 90.64 3 87.81 3 88.05 3 87.38 2 88.94 3 76.30 7 72.34 6 63.77 2 65.66 3
Armenian-ArmTDP 97.21 3 96.47 3 92.41 2 65.29 21 — 40.09 23 33.14 21 57.46 20 49.60 3 36.42 2 4.14 20 13.03 8
Basque-BDT 99.97 3 99.97 3 99.83 3 96.08 2 — 92.21 2 90.13 1 95.19 4 86.03 5 82.65 5 71.73 1 77.25 3
Breton-KEB 91.03 22 90.62 20 90.36 20 36.58 7 0.01 1 36.84 4 0.00 1 54.99 4 36.54 7 13.87 7 1.24 5 5.78 6
Bulgarian-BTB 99.91 25 99.91 25 95.56 3 98.83 3 97.01 1 97.69 1 96.37 1 97.41 3 92.82 4 89.70 3 83.12 1 83.17 2
Buryat-BDT 97.07 3 97.07 3 90.90 3 41.66 8 — 38.34 3 30.00 2 56.83 2 29.20 11 12.61 10 2.09 4 4.41 6
Catalan-AnCora 99.98 1 99.98 1 99.68 1 98.85 1 98.85 1 98.36 1 97.81 1 98.90 1 92.97 3 90.79 3 84.07 1 85.47 1
Chinese-GSD 90.04 6 90.04 6 96.25 24 85.83 7 85.64 4 89.13 5 84.61 5 90.01 6 68.73 9 65.67 8 55.97 7 61.38 7
Croatian-SET 99.93 1 99.93 1 94.64 24 98.02 3 — 92.12 1 91.44 1 96.69 2 90.33 7 85.93 6 72.85 2 79.84 2
Czech-CAC 100.00 1 99.99 1 100.00 1 99.33 2 96.36 1 96.08 1 95.66 1 98.14 3 92.62 6 90.32 7 83.42 1 86.24 4
Czech-FicTree 100.00 1 100.00 1 98.84 2 98.49 4 94.94 3 95.74 3 94.53 2 97.80 3 93.05 8 90.06 8 81.11 5 84.76 6
Czech-PDT 99.93 4 99.93 3 93.41 2 99.01 3 96.93 2 96.85 2 96.38 1 98.71 1 92.32 6 90.32 5 85.10 1 87.47 3
Czech-PUD 99.25 22 99.25 22 94.95 22 96.84 6 93.64 2 93.55 2 92.09 1 96.44 1 89.66 5 84.86 4 75.81 1 80.32 2
Danish-DDT 99.90 1 99.90 1 91.41 4 97.72 2 — 97.09 2 96.03 2 96.66 3 85.67 6 83.33 5 75.29 3 76.83 4
Dutch-Alpino 99.93 2 99.93 2 90.97 1 96.90 1 94.93 1 96.51 1 94.36 1 96.76 1 90.11 5 87.09 4 76.09 2 77.76 2
Dutch-LassySmall 99.83 5 99.83 5 76.54 4 95.98 5 94.51 3 95.65 4 93.58 3 95.78 4 86.80 5 83.15 5 72.10 4 72.63 6
English-EWT 99.02 24 99.02 24 77.05 2 95.43 4 95.05 3 95.99 3 93.68 2 97.23 1 85.01 8 82.51 7 74.71 3 77.64 4
English-GUM 99.75 2 99.75 2 78.79 4 95.55 5 95.42 2 96.39 3 94.26 2 96.18 1 84.60 8 81.35 7 70.74 4 71.67 5
English-LinES 99.93 23 99.93 23 87.21 24 96.77 4 95.72 2 96.67 3 93.26 2 96.44 2 82.73 9 78.26 10 70.66 6 71.73 7
English-PUD 99.67 21 99.67 21 96.19 4 95.68 3 94.59 2 95.32 2 91.78 1 95.87 2 87.80 7 85.02 7 74.45 5 78.20 5
Estonian-EDT 99.93 3 99.93 3 91.55 5 97.31 2 98.08 2 95.81 1 94.47 1 94.88 2 86.29 6 83.26 6 76.62 2 76.29 2
Faroese-OFT 99.50 15 97.40 23 96.25 1 62.00 3 4.23 1 32.19 7 1.04 1 51.31 6 54.95 5 41.99 5 0.74 3 13.49 3
Finnish-FTB 100.00 1 99.99 1 87.83 3 96.28 3 95.27 1 96.89 1 93.95 2 94.74 3 88.77 7 86.13 7 78.77 3 78.46 4
Finnish-PUD 99.63 3 99.63 3 90.70 23 97.61 2 — 96.87 1 0.00 4 90.64 3 89.69 8 87.69 7 82.17 5 76.00 3
Finnish-TDT 99.68 23 99.68 23 90.32 4 96.75 5 97.52 4 95.43 3 94.17 2 90.18 3 88.10 7 85.72 6 79.25 3 73.99 3
French-GSD 99.69 3 98.81 4 94.29 3 96.32 5 — 96.07 3 95.13 2 96.75 3 88.74 4 85.74 4 77.29 3 79.88 4
French-Sequoia 99.85 2 99.14 4 86.99 4 97.56 6 — 97.00 4 96.25 3 97.36 3 90.07 5 88.04 6 81.45 3 83.04 5
French-Spoken 100.00 1 100.00 1 21.63 3 95.47 8 97.37 3 — 93.00 7 95.98 3 76.20 7 71.16 7 60.17 6 60.87 6
Galician-CTG 99.89 2 99.21 2 97.23 2 96.98 3 96.62 3 99.05 2 96.24 3 97.53 4 84.42 3 81.88 3 69.75 3 74.46 3
Galician-TreeGal 99.69 1 98.73 1 83.90 2 94.44 2 91.64 1 93.08 1 90.49 1 95.05 2 78.66 3 74.25 1 60.63 1 64.29 1
German-GSD 99.60 2 99.61 2 82.32 2 94.04 2 96.93 2 89.96 2 84.47 2 96.14 2 82.76 4 78.17 5 56.84 3 69.79 4
Gothic-PROIEL 100.00 1 100.00 1 29.88 4 95.75 2 96.38 2 90.05 1 87.64 1 92.39 18 74.92 3 69.39 2 56.45 1 61.92 3
Greek-GDT 99.87 2 99.86 3 90.71 4 97.73 3 97.71 3 94.27 3 93.45 2 94.74 4 91.27 3 89.05 3 77.43 2 77.18 5
Hebrew-HTB 99.96 24 85.15 25 99.69 24 82.53 6 82.54 4 81.29 2 80.36 2 82.88 3 67.22 8 63.65 7 51.36 4 54.13 4
Hindi-HDTB 100.00 1 100.00 1 98.63 24 97.56 2 97.09 2 94.10 1 92.06 1 98.45 3 94.85 3 91.75 2 78.30 1 86.42 3
Hungarian-Szeged 99.79 24 99.79 24 96.12 2 95.48 2 — 92.41 3 91.28 2 92.99 3 83.08 4 78.51 4 67.13 1 70.39 4
Indonesian-GSD 100.00 1 100.00 1 93.53 3 93.55 6 94.45 4 95.77 3 88.78 2 99.60 3 84.91 8 78.58 4 67.58 4 75.94 2
Irish-IDT 99.30 4 99.30 4 92.60 3 91.58 2 90.41 2 82.40 2 78.46 2 87.52 2 78.50 4 70.22 2 45.53 2 51.29 2
Italian-ISDT 99.79 3 99.71 2 99.38 1 98.09 2 97.94 2 97.83 1 97.16 1 98.21 1 92.66 4 90.75 4 83.46 3 84.48 3
Italian-PoSTWITA 99.75 2 99.47 1 28.95 5 95.99 2 95.77 2 96.24 1 94.48 2 94.91 4 77.34 7 73.23 6 61.29 4 61.71 5
Japanese-GSD 90.46 6 90.46 6 95.01 1 88.88 7 — 90.45 6 88.88 6 90.01 4 76.13 11 74.54 9 61.99 6 63.48 5
Japanese-Modern 65.98 5 65.98 5 0.00 2 48.51 7 0.00 1 64.14 7 0.00 1 54.76 6 28.41 16 22.39 15 7.33 15 9.06 15
Kazakh-KTB 93.11 5 92.74 6 81.56 2 48.94 11 49.16 5 46.86 4 38.92 2 57.36 4 39.45 10 24.21 3 7.62 4 9.79 3
Korean-GSD 99.86 4 99.86 4 93.26 3 96.13 3 89.81 4 99.63 3 87.44 4 91.37 3 86.58 6 83.12 6 78.56 6 73.85 3
Korean-Kaist 100.00 1 100.00 1 100.00 1 95.65 2 86.73 3 — 86.62 3 93.53 2 88.13 6 86.16 6 80.46 4 78.15 2
Kurmanji-MG 94.33 3 94.01 3 69.14 3 52.50 22 50.21 20 41.05 21 28.34 18 52.44 21 37.29 5 29.09 3 2.40 19 9.51 12
Latin-ITTB 99.94 4 99.94 4 82.49 3 98.28 5 95.29 1 96.36 2 94.30 1 98.56 3 88.00 6 85.22 6 79.73 2 82.86 5
Latin-PROIEL 100.00 1 100.00 1 35.36 5 96.75 2 96.93 1 91.26 2 90.06 1 95.54 4 73.96 7 69.79 6 58.03 4 64.54 5
Latin-Perseus 99.99 22 99.99 22 99.15 1 87.64 7 73.25 2 78.02 4 71.22 2 75.44 20 70.33 6 60.08 7 40.75 4 39.86 7
Latvian-LVTB 99.37 24 99.37 24 98.66 1 94.63 6 87.10 1 91.48 2 85.67 1 93.33 3 83.52 6 79.32 6 67.24 3 70.92 4
Naija-NSC 96.63 7 93.27 6 0.00 4 41.52 21 — — 5.83 17 89.72 6 26.89 11 12.60 13 3.72 11 11.06 14
North Sami-Giella 99.84 2 99.84 2 98.33 2 90.65 4 91.95 3 86.82 2 81.88 2 78.43 20 74.40 4 68.95 4 54.07 2 48.25 5
Norwegian-Bokmaal 99.81 4 99.81 4 97.13 2 98.14 2 — 96.95 2 96.20 1 98.20 1 91.81 3 89.98 3 83.68 1 85.82 1
Norwegian-Nynorsk 99.92 23 99.92 23 93.49 3 97.88 2 — 96.85 2 95.98 1 97.80 1 91.12 4 88.97 4 81.86 1 84.05 3
Norwegian-NynorskLIA 99.99 1 99.99 1 99.86 1 89.74 7 — 89.52 3 84.32 2 92.65 18 67.49 6 59.35 7 46.57 6 49.97 6
Old Church Slavonic-PROIEL 100.00 1 100.00 1 40.54 4 96.34 2 96.62 2 89.65 2 88.12 1 88.93 20 79.06 3 74.84 2 62.60 2 65.71 5
Old French-SRCMF 100.00 1 100.00 1 100.00 1 96.22 1 96.15 1 97.79 1 95.52 1 — 91.72 1 87.12 1 80.28 1 84.11 1
Persian-Seraji 100.00 1 99.65 2 98.75 4 97.32 2 97.33 2 97.45 1 96.90 1 97.05 2 89.48 4 86.14 3 80.83 1 80.28 3
Polish-LFG 99.90 4 99.90 4 99.65 24 98.56 3 94.18 1 95.28 1 93.23 1 96.73 3 96.21 6 94.53 5 86.93 1 89.07 3
Polish-SZ 99.99 2 99.88 3 99.00 3 98.20 1 92.55 2 92.40 3 91.36 1 95.31 3 92.78 6 90.59 6 79.76 5 82.89 3
Portuguese-Bosque 99.64 23 99.51 21 88.47 23 96.37 5 — 95.77 3 93.43 3 97.38 3 89.48 7 87.04 6 74.16 5 80.01 4
Romanian-RRT 99.64 24 99.64 24 95.57 4 97.56 3 96.92 4 97.14 4 96.69 3 97.61 3 90.16 7 85.65 5 77.94 3 79.35 4
Russian-SynTagRus 99.63 3 99.63 3 98.64 4 98.71 1 — 97.17 1 96.90 1 97.94 2 92.96 5 91.46 4 86.76 1 87.90 2
Russian-Taiga 98.14 1 98.14 1 87.38 1 90.42 5 98.12 1 80.89 4 78.02 4 83.55 4 70.54 8 63.80 8 44.93 5 48.51 6
Serbian-SET 99.97 1 99.97 1 93.26 2 98.18 1 — 94.26 1 93.77 1 96.56 2 91.68 5 88.15 4 77.73 1 81.75 2
Slovak-SNK 100.00 1 100.00 1 84.96 4 96.65 3 85.98 2 90.33 3 84.60 2 95.66 2 87.96 7 85.06 7 72.08 3 78.44 2
Slovenian-SSJ 98.26 24 98.26 24 76.74 5 96.83 6 93.26 3 93.48 3 92.67 2 96.22 2 87.43 8 85.59 8 77.95 3 81.22 4
Slovenian-SST 100.00 1 100.00 1 22.90 3 92.58 8 84.68 3 84.65 5 81.57 3 92.56 3 58.32 8 52.84 8 40.24 5 44.57 6
Spanish-AnCora 99.96 24 99.94 22 98.96 1 98.80 1 98.80 1 98.43 1 97.82 1 99.02 1 91.64 7 89.55 6 83.16 3 84.44 3
Swedish-LinES 99.96 2 99.96 2 85.25 3 96.66 4 94.60 4 89.42 4 86.39 3 96.61 2 84.82 8 80.68 8 65.77 6 75.67 4
Swedish-PUD 98.26 24 98.26 24 88.89 23 93.31 6 91.66 3 77.80 5 75.61 3 86.23 6 81.62 8 77.90 8 49.90 4 64.04 4
Swedish-Talbanken 99.88 5 99.88 5 95.79 3 97.79 2 96.43 3 96.59 4 95.43 2 97.08 3 89.32 3 86.36 3 79.08 2 80.73 4
Thai-PUD 8.53 20 8.53 20 0.20 21 5.67 18 0.12 2 6.59 6 0.12 2 — 0.88 9 0.65 13 0.04 7 0.23 17
Turkish-IMST 99.86 2 97.92 1 97.09 2 93.58 4 92.82 3 91.25 3 89.00 3 92.74 4 69.34 6 63.07 6 54.02 4 56.69 5
Ukrainian-IU 99.76 2 99.76 2 96.86 2 97.17 3 91.52 1 91.45 1 90.12 1 95.94 3 87.11 5 84.06 5 72.27 1 77.11 4
Upper Sorbian-UFAL 98.64 1 98.64 1 67.24 22 65.51 21 — 49.63 18 43.46 15 63.54 17 35.72 15 24.29 15 3.41 19 11.88 12
Urdu-UDTB 100.00 1 100.00 1 98.59 24 93.68 6 91.69 5 81.97 6 77.27 4 97.33 2 87.17 8 81.32 7 54.72 6 72.58 4
Uyghur-UDT 99.58 5 99.58 5 82.82 4 88.92 6 91.47 4 86.80 4 78.33 3 92.86 4 76.61 2 65.23 2 45.78 1 54.17 2
Vietnamese-VTB 85.05 5 85.05 5 93.31 2 77.61 5 75.91 4 84.83 5 75.80 4 84.76 2 50.98 5 46.45 3 40.26 3 42.88 2
Total 97.46 7 97.04 7 83.64 3 89.37 6 86.67 1 86.67 4 80.30 1 89.32 2 77.90 5 73.11 3 61.25 1 64.49 3

Table 4: Official CoNLL 2018 UD Shared Task results of the UDPipe 2.0 prototype. For each metric we
present F1 score percentage and also rank (out of the 26 participant systems).



Experiment UPOS XPOS UFeats AllTags Lemmas UAS LAS MLAS BLEX
Shared task submission 95.73 94.79 94.11 91.45 95.12 85.28 81.83 71.71 74.67
Baseline tokenization&segmentation 95.69 94.75 94.07 91.41 95.09 85.10 81.65 71.53 74.48
No precomputed word embeddings 95.23 94.19 93.45 90.52 94.82 84.52 80.88 69.98 73.30
Best model on development set 95.74 94.80 94.12 91.47 95.16 85.28 81.83 71.76 74.69
Checkpoint average of 5 last epochs 95.74 94.81 94.12 91.48 95.14 85.30 81.84 71.80 74.69
No label smoothing 95.66 94.70 94.01 91.26 94.98 85.16 81.68 71.31 74.32
Loosely joint model for all treebanks 95.71 94.82 94.13 91.49 95.29 85.14 81.68 71.71 74.72
Tightly joint model for all treebanks 95.75 94.76 94.06 91.40 94.79 85.34 81.88 71.61 74.33
Tagging each class independently 95.56 94.71 94.04 — 95.47 — — — —

Adding connection between character-level embeddings and the lemma classifier.
Loosely joint model for all treebanks 95.74 94.85 94.21 91.60 95.86 85.17 81.73 71.89 75.37
Tightly joint model for all treebanks 95.80 94.83 94.17 91.57 95.80 85.44 81.99 71.90 75.54
Best joint model for all treebanks 95.78 94.83 94.19 91.57 95.83 85.38 81.95 71.94 75.55

Table 5: Average score of different variants of our system.

Configuration Tagging&parsing Speedup to 1
speed thread CPU

PyPI Tensorflow 1.5.1, CPU version
1 thread 111 w/s 1
2 threads 191 w/s 1.7
4 threads 326 w/s 2.9
8 threads 517 w/s 4.7
16 threads 624 w/s 5.6

PyPI Tensorflow 1.5.1, GPU version
GeForce GTX 1080

1 thread 2320 w/s 20.9
2 threads 2522 w/s 22.7
4 threads 2790 w/s 25.1

UDPipe 1.2, no parallelism available
1 thread 1907 w/s 17.2

Table 6: Average runtime performance of our sys-
tem.

thread is more than 17 times slower. Utilizing
8 CPU threads speeds up the performance of the
prototype by a factor of 4.7, which is still more
than 3 times slower than the baseline models. Nev-
ertheless, when GPU is employed during tagging
and parsing, the runtime speed of our system sur-
passes baseline models.

We note that runtime performance has not been
a priority during hyperparameter model selection.
There are many possible trade-offs which would
make inference faster, and some of them will pre-
sumably decrease the system performance only
slightly.

6 Ablation Experiments

All ablation experiment results in this section are
performed using test sets of 61 so called “big tree-
banks”, which are treebanks with provided devel-
opment data, disregarding small treebanks and test
treebanks without training data.

6.1 Baseline Sentence Segmentation

The performance of our system using baseline to-
kenization and segmentation models (cf. Sec-
tion 4.1) is displayed in Table 5. The effect
of achieving better sentence segmentation influ-
ences parsing more than tagging, which can han-
dle wrong sentence segmentation more gracefully.

6.2 Pretrained Word Embeddings

Considering that pretrained word embeddings
have demonstrated effective similarity extraction
from large plain text (Mikolov et al., 2013), they
have a potential of substantially increasing tagging
and parsing performance. To quantify their effect,
we have evaluated models trained without pre-
trained embeddings, presenting results in Table 5.
Depending on the metric, the pretrained word
embeddings improve performance by 0.3-1.7 F1
points.

6.3 Regularization Methods

The effect of early stopping, checkpoint averag-
ing of last 5 epochs and label smoothing is shown
also in Table 5. While early stopping and check-
point averaging have little effect on performance,
early stopping demonstrate slight improvement of
0.1-0.4 F1 points.

6.4 Tightly vs Loosely Joint Model

The last model variants presented in Table 5 show
the effect of always using either the tightly or
loosely joint model for all treebanks. In present
implementation, loosely joint model accomplishes
better tagging accuracy, while deteriorating pars-
ing slightly. The tightly joint model performs
slightly worse during tagging and most notably
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Figure 4: Logarithmic regression of using tightly
joint models (+1) and loosely joint models (-1) de-
pending on treebank size in words.

during lemmatization, while improving depen-
dency parsing.

Finally, Figure 4 shows result of logarithmic re-
gression of using tightly or loosely joint model,
depending on treebank size in words. Accord-
ingly, the loosely joint model seems to be more
suited for smaller treebanks, while the tightly joint
model appear to be more suited for larger tree-
banks.

7 Post-competition Improved Models

Motivated by the decrease in lemmatization per-
formance of the tightly joint model architecture,
we refined the architecture of the models by
adding a direct connection from character-level
word embeddings to the lemma classifier. Our
hope was to improve lemmatization performance
in the tightly joint architecture by providing the
lemma classifier a direct access to the embeddings
of exact word composition.

As seen in Table 5, the improved models per-
form considerably better, and with only minor dif-
ferences between the tighty and loosely joint ar-
chitectures. We therefore consider only the tightly
joint improved models, removing a hyperparame-
ter choice (which joint architecture to use).

The improved models show a considerable in-
crease of 0.68 percentage points in lemmatization
performance and minor increase in other tagging
scores. The parsing performance also improves by
0.87, 0.19, and 0.16 points in BLEX, MLAS and
LAS F1 scores in the ablation experiments.

Encouraged by the results, we performed an
evaluation of the improved models in TIRA,
achieving 73.28, 61.25, and 65.53 F1 scores in
LAS, MLAS and BLEX metrics, which corre-

sponds to increases of 0.17, 0.00 and 1.04 percent-
age points. Such scores would rank 2nd, 1st, and
2nd in the shared task evaluation. We also sub-
mitted the improved models to extrinsic evaluation
EPE 2018, improving the F1 scores of the three
downstream tasks listed in Table 2 by 0.87, 0.00,
and 0.27 percentage points, corresponding to 1st,
3rd, and 4th rank. The overall score of the origi-
nal models, already the best achieved in EPE 2018,
further increased by 0.38 points with the improved
models.

8 Conclusions and Future Work

We described a prototype for UDPipe 2.0 and
its performance in the CoNLL 2018 UD Shared
Task, where it achieved 1st, 3rd and 3rd in
the three official metrics, MLAS, LAS and
BLEX, respectively. The source code of the
prototype is available at http://github.com/

CoNLL-UD-2018/UDPipe-Future.
We also described a minor modification of

the prototype architecture, which improves both
the intrinsic and the extrinsic evaluation. These
improved models will be released shortly in
UDPipe at http://ufal.mff.cuni.cz/udpipe,
utilizing quantization to decrease model size.
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Faculty of Mathematics and Physics, Charles Uni-
versity. http://hdl.handle.net/11234/1-2837.

Stephan Oepen, Lilja Øvrelid, Jari Björne, Richard Jo-
hansson, Emanuele Lapponi, Filip Ginter, and Erik
Velldal. 2017. The 2017 Shared Task on Extrinsic
Parser Evaluation. Towards a reusable community
infrastructure. In Proceedings of the 2017 Shared
Task on Extrinsic Parser Evaluation at the Fourth
International Conference on Dependency Linguis-
tics and the 15th International Conference on Pars-
ing Technologies. Pisa, Italy, pages 1 – 16.

Martin Potthast, Tim Gollub, Francisco Rangel, Paolo
Rosso, Efstathios Stamatatos, and Benno Stein.
2014. Improving the reproducibility of PAN’s
shared tasks: Plagiarism detection, author iden-
tification, and author profiling. In Evangelos
Kanoulas, Mihai Lupu, Paul Clough, Mark Sander-
son, Mark Hall, Allan Hanbury, and Elaine Toms,
editors, Information Access Evaluation meets Mul-
tilinguality, Multimodality, and Visualization. 5th
International Conference of the CLEF Initiative
(CLEF 14). Springer, Berlin Heidelberg New York,
pages 268–299. https://doi.org/10.1007/978-3-319-
11382-1 22.
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