
DOCTORAL THESIS

Rudolf Rosa

Discovering the structure of natural
language sentences by semi-supervised

methods

Institute of Formal and Applied Linguistics

Supervisor of the doctoral thesis: doc. Ing. Zdeněk Žabokrtský, Ph.D.
Study programme: Informatics

Study branch: Mathematical Linguistics

Beroun 2018

I declare that I carried out this doctoral thesis independently, and only with the
cited sources, literature and other professional sources.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of
this work as a school work pursuant to Section 60 subsection 1 of the Copyright
Act.

In date signature of the author

i

ii

Title: Discovering the structure of natural language sentences by semi-supervised
methods

Author: Rudolf Rosa

Institute: Institute of Formal and Applied Linguistics

Supervisor: doc. Ing. Zdeněk Žabokrtský, Ph.D., Institute of Formal and Applied
Linguistics

Abstract: In this thesis, we focus on the problem of automatically syntactically
analyzing a language for which there is no syntactically annotated training data.
We explore several methods for cross-lingual transfer of syntactic as well as mor-
phological annotation, ultimately based on utilization of bilingual or multilingual
sentence-aligned corpora and machine translation approaches. We pay particular
attention to automatic estimation of the appropriateness of a source language for
the analysis of a given target language, devising a novel measure based on the
similarity of part-of-speech sequences frequent in the languages. The effectiveness
of the presented methods has been confirmed by experiments conducted both by
us as well as independently by other respectable researchers.

Keywords: dependency parsing, part-of-speech tagging, cross-lingual processing,
multilingual processing

iii

iv

I dedicate this thesis to the Invisible Pink Unicorn goddess.
But really, I would like to thank religion, especially the Christian one, be-

cause no other force in the world has been capable of producing such massively
multiparallel texts as the Christians with the Bible. And the Watchtower texts
produced by Jehovah’s Witnesses are just great (at least for multilingual natural
language processing).

Cheers to the HamleDT group and the Universal Dependencies community
for creating such great resources, without which this work would be totally im-
possible.

Big thanks to Milan Straka and his team for developing a range of great NLP
tools, especially the Parsito parser and the UDPipe toolkit, with high-quality
documentation as well as a fast-responding support.

Thanks to my dear colleagues with whom I had the pleasure to cooperate on
my research, especially David Mareček, Dan Zeman, and Zdeněk Žabokrtský.

And thanks to my beloved ÚFAL, the Institute of Formal and Applied Lin-
guistics, for being such a friendly place, for being so flexible about everything,
and for allowing me to devote most of my time to this thesis in the last months,
which ultimately made it possible for me to finish this work.

v

vi

Contents

Introduction 5

1 Datasets for Parsing 7
1.1 Syntactically annotated corpora 7

1.1.1 The Penn treebanks family 8
1.1.2 The Prague treebanks family 9
1.1.3 CoNLL treebanks . 9

1.2 Treebank harmonization . 10
1.2.1 The beginnings . 11
1.2.2 Interset . 11
1.2.3 HamleDT 1.0 . 12
1.2.4 Universal Stanford Dependencies 13
1.2.5 Universal Dependencies . 14

1.3 Treebank datasets used in our experiments 15
1.3.1 HamleDT 2.0 dataset . 16
1.3.2 Universal Dependencies 1.4 subset 18

1.4 Parallel corpora . 21
1.4.1 OpenSubtitles . 22
1.4.2 Watchtower . 23
1.4.3 Bible . 24
1.4.4 Universal Declaration of Human Rights 24

1.5 Other data . 25
1.5.1 Monolingual plaintext data 25
1.5.2 Linguistic catalogues . 25

2 Dependency Parsing 27
2.1 Graph-based parsing . 27

2.1.1 First-order edge factorization 28
2.1.2 MSTParser model and training 28
2.1.3 The MST algorithms . 28
2.1.4 MSTperl . 29

2.2 Transition-based parsing . 31
2.2.1 Arc-standard transition-based parsing 31
2.2.2 Parsito/UDPipe . 32

2.3 Parser evaluation . 34
2.3.1 UAS and LAS . 34
2.3.2 UD specifics . 35
2.3.3 Other measures . 35
2.3.4 Evaluation on under-resourced languages 36

3 Delexicalized Parser Transfer 37
3.1 Delexicalized parsing . 37
3.2 Delexicalized parser transfer . 39

3.2.1 Using fine-grained morphological features 41
3.3 Case study of annotation style learnability 42

1

3.3.1 Prague versus Stanford . 43
3.3.2 Automatic conversions . 43
3.3.3 Experiment setup . 45
3.3.4 Full Universal Stanford Dependencies 45
3.3.5 Prague versus Stanford adpositions 46
3.3.6 Summary . 49

4 Using Multiple Sources 51
4.1 The problem, and previous approaches to it 51

4.1.1 Ignoring the problem . 52
4.1.2 Treebank concatenation 52
4.1.3 Using the World Atlas of Language Structures 53
4.1.4 Looking at part-of-speech tags 54
4.1.5 Looking at words and characters 54
4.1.6 Combining multiple sources 56

4.2 KLcpos3 language similarity measure 58
4.2.1 The formula . 58
4.2.2 KLcpos3 for source selection 61
4.2.3 KL−4

cpos3 for source weighting 62
4.2.4 The POS tags . 62
4.2.5 Tuning . 63

4.3 Multi-source combination methods 66
4.3.1 Parse tree combination . 67
4.3.2 Parser model interpolation 71
4.3.3 Parse tree projection . 76

4.4 Evaluation . 78
4.4.1 HamleDT 2.0 dataset . 78
4.4.2 UD 1.4 dataset . 80

4.5 Summary . 84

5 Cross-lingual Lexicalization 85
5.1 Overview of possible approaches 85

5.1.1 Projection over parallel data 85
5.1.2 Machine translation approaches 86
5.1.3 Using cross-lingual clusters 87
5.1.4 Using word embeddings 87
5.1.5 Translating the parser model internals 88
5.1.6 Using subword units . 89

5.2 Source-lexicalized parsing . 89
5.3 Monolingual word-embeddings . 90
5.4 Character-level transformations 91

5.4.1 Evaluation . 92
5.5 Machine translation . 94

5.5.1 Translation arity . 94
5.5.2 Word alignment . 96
5.5.3 Word reordering . 98
5.5.4 Simple translation . 101
5.5.5 How many sources to combine? 101

5.6 Evaluation . 105

2

5.6.1 VarDial shared task . 105
5.6.2 Extended VarDial language set 107
5.6.3 UD 1.4 language set . 110
5.6.4 Comparison to unsupervised parsing 113

5.7 Summary . 115

6 Cross-lingual Tagging 117
6.1 Projection over (multi)parallel data 118

6.1.1 Our implementation . 119
6.1.2 Effect of alignment symmetrization 119
6.1.3 Weighted projection . 120
6.1.4 Subselecting the sources 122

6.2 Machine-translating the training data 123
6.2.1 Base approach . 123
6.2.2 Multi-source setting . 124
6.2.3 Simple self-training . 128

6.3 Comparison and combination . 129
6.3.1 Influence on parsing . 131

6.4 Summary . 132

Conclusion, or How to parse an under-resourced language 135

Bibliography 139

List of Figures 159

List of Tables 161

List of Abbreviations 163

List of Publications 165

Attachments 167
A Universal relation labels v1 . 169
B List of Watchtower languages . 171

B.1 Watchtower corpus . 171
B.2 Watchtower online . 173

C Source-target language similarities 177

3

4

Introduction
The topic of this thesis is automatic linguistic analysis of written text, specifically
syntactic dependency parsing, and, to some extent, morphological part-of-speech
tagging.

Syntactic parsing is a classical Natural Language Processing (NLP) task,
which often serves as a gateway for further and deeper language understand-
ing. Part of Speech (POS) tagging has many uses, but we are only interested in
it as a preprocessing step for parsing in this thesis.

In the classical fully supervised monolingual data-driven parsing (Chapter 2),
a parser is trained on a syntactically annotated corpus, i.e. a treebank. To achieve
a reasonable parsing accuracy, the treebank should contain thousands or tens of
thousands of manually annotated sentences. However, such treebanks are expen-
sive to create, and are thus available only for a few dozen languages; currently,
less than 80 languages have at least a tiny treebank available. This renders ap-
proximately 99% of the world’s languages under-resourced in terms of parsing
resources, as the classical fully supervised approach to parsing cannot be applied
for these languages.

This situation constitutes the main motivation for our work. While treebanks
are not available for those languages, there is a belief that most or all languages
in the world are similar to each other to some extent. Therefore, annotated re-
sources for resource-rich languages might be utilized to learn knowledge useful for
analyzing other languages, especially similar ones. Moreover, even if no treebank
is available for a language, we might still exploit other resources, such as parallel
or even monolingual plain-text data. We discuss the datasets potentially useful
for parsing in Chapter 1.

One possible approach to use is the cross-lingual transfer of a delexicalized
parser, which we introduce in Chapter 3. Here, the idea is that even if two
languages differ in their lexicon, they might not differ that much in their gram-
mar. Therefore, a parser trained without any lexical features on a treebank for a
resource-rich source language (i.e. a delexicalized parser) might be applicable to a
resource-poor target language. As the delexicalized parser transfer approach has
been repeatedly shown to perform well, we take it as the basis for our research,
and extend it in several ways.

There is already a wide range of resource-rich languages, which can be used
as source languages in the parser transfer. However, automatically choosing the
optimal source language is an important yet non-trivial task. Moreover, a clever
combination of multiple sources might be an even better approach to take. We
address both of these issues in Chapter 4, where we introduce our language sim-
ilarity measure, KL−4

cpos3 , and we port a monolingual multi-source parser com-
bination method into the cross-lingual setting. This is the key chapter of this
thesis.

By delexicalizing the parser, we are losing some accuracy. Fortunately, ex-
isting parallel text corpora can be utilized to lexicalize the cross-lingual parsing,
either directly through word alignment links, or indirectly via Machine Transla-
tion (MT). In Chapter 5, we take the latter approach, investigating the potential
of simpler word-based MT approaches and their advantages over state-of-the-art

5

phrase-based MT systems.
A problem we have been leaving unaddressed so far is the fact that we typ-

ically need to provide the parsers with a morphological annotation of the input
sentences. Delexicalized parsers actually operate primarily on POS tags; and even
for lexicalized parsers, POS tags constitute a very useful input feature. However,
as we cannot reasonably assume to have supervised POS taggers available for all
under-resourced target languages, we need to apply cross-lingual approaches even
for tagging, which we investigate in Chapter 6.

We conclude the thesis by summarizing our findings in the form of step-by-step
instructions for parsing an under-resourced language.

6

1. Datasets for Parsing
In this chapter, we deal with the data that we use in cross-lingual parsing.

The key resource for data-driven dependency parsing are dependency tree-
banks, i.e. corpora of sentences annotated with syntactic trees, which we review
in Section 1.1. In the case of resource-rich target languages for which large tree-
banks are available, the task of parsing then consists of training an off-the-shelf
parser on the treebank and applying it to the texts in the target language.

However, in our scenario, we assume the target languages to be resource-poor,
with no annotated data available. Our approaches are thus based on exploitation
of treebanks for different source languages, and transfer of the knowledge learned
from those treebanks into the target languages. Unfortunately, treebanks tend
to use a wide range of different styles of both morphological and syntactic an-
notation, which poses significant problems to any cross-lingual processing – we
need the treebanks to be harmonized, i.e. to be annotated in an as much similar
way as possible. While the harmonization of syntactic annotation is obviously
crucial for cross-lingual parsing, we need the morphological annotation to be har-
monized as well, as it constitutes a very important input feature for parsing (this
is especially true for the POS tags). We deal with treebank harmonization in
Section 1.2, and explicitly list the treebank datasets or their subsets that we use
in our experiments in Section 1.3.

Another very important resource for any cross-lingual processing are parallel
corpora, i.e. texts in one (source) language accompanied by their human-devised
translations in another (target) language. These enable us to transfer annota-
tion or knowledge from the source language into the target language, typically
either by means of projection over word alignment on the parallel data, or by
training an MT system on the parallel data. Fortunately, parallel data are “nat-
ural resources”, available in the wild for harvesting and subsequent construction
of parallel corpora. We discuss parallel corpora in Section 1.4, with a focus on
parallel data that are typically available for under-resourced languages.

Other resources can also be useful for cross-lingual parsing; in the low-resource
scenario, we would ideally like to utilize any resources that are available for the
target language. We discuss exploitation of other resources in Section 1.5, with
a focus on monolingual texts and linguistic catalogues.

We note that at least a small amount of monolingual text is an unavoidable
requirement for the target language, as without any text to parse, the task of
parsing has no sense for the language.

1.1 Syntactically annotated corpora
This section partially draws from [Jurafsky and Martin, 2017].

The two largest and most common classes of syntactic trees are phrase struc-
ture trees (also called constituency trees) and dependency trees. Both typically
follow the treeness constraints, with each child node having exactly one parent
node, except for the unique root node which has no parent, and with the tree
being cycle-free, i.e. with no node being its own transitive descendant. Typically,
the left-to-right ordering of the nodes locally or globally corresponds to the word

7

order in the underlying sentence.
Phrase structure trees [Chomsky, 1956] capture the composition of a sentence

from larger phrases, which themselves are composed of smaller phrases, and so on,
until getting to single words. Phrase structure trees contain two types of nodes
– terminal (leaf) nodes correspond to words, and non-terminal (non-leaf) nodes
correspond to phrases and bear phrase labels (e.g. NP for a nominal phrase, or
PP for a prepositional phrase).

Dependency trees [Tesnière, 1959, 2015] capture syntactic relations between
individual words. Typically, they only contain one type of nodes, which corre-
spond to words (although additional nodes are added in some theories). The
label of the relation between a head (parent, governor) node and a dependent
(child, modifier) node typically corresponds to the function or role of the depen-
dent node in relation to its parent node (e.g. a nominal node can be the subject
to its verbal parent node, or an adjectival node can be an adjectival modifier to
its nominal parent node).

A wide range of syntactic theories operate within these two classes of trees,
because there are many linguistically sensible ways of representing the syntactic
structure of a sentence by a tree – both in terms of the structure of the tree, and
in terms of the labels of the phrases or the dependency relations.

Since the Penn Treebank (PennTB) of Marcus et al. [1993], the syntactic
theories have been realized by annotating treebanks. In our work, we do not
deal with the theories explicitly – as we use data-driven dependency parsers,
they can be trained on any treebank annotated with standard dependency trees,
regardless of the underlying theory. However, because of the multilingual setting
of our research, we need all of the treebanks that we use to adhere to the same
theory; or, rather, annotation style, as the practical treebank annotation may
diverge to some extent from the underlying theory.

Authors of a treebank typically devise their own annotation style, defining the
dependency structures and dependency relation labels, as well as the POSes and
other morphological features, and possibly additional annotations. The annota-
tion style is typically designed to suit well the language, but it is also inevitably
influenced by the linguistic schools and traditions which the authors adhere to.
Moreover, it usually incorporates many less systematic decisions that emerge dur-
ing the annotation process to handle phenomena that were not covered by the
initial annotation guidelines. It is also often at least partially fitted to the in-
tended use of the dataset. It can be based on a pre-existing annotation style,
such as that of the PennTB, but even in such cases, it is still usually adapted
for the new treebank at least a bit. Thus, the original treebank annotations are
extremely varied, both cross-lingually as well as even intra-lingually.

1.1.1 The Penn treebanks family
The first non-trivial treebank was the Penn Treebank (PennTB) of Marcus et al.
[1993], created at the University of Pennsylvania. It is a treebank of English
sentences annotated with POS tags and phrase structure trees. The creation
of the treebank made it possible to easily automatically evaluate as well train
automatic syntactic parsers.

The researchers at Penn University then continued by annotating constituency

8

treebanks for other languages – the Penn Korean Treebank [Han et al., 2002], the
Penn Arabic Treebank [Maamouri et al., 2004], and the Penn Chinese Treebank
[Xue et al., 2005]. While these in principle followed the same annotation style
as the PennTB, specific features of the respective languages needed to be dealt
with, leading to language-specific diversions for each of the treebanks. Of course,
PennTB also inspired other treebanks, created by researchers at other institutes,
which typically differ in the annotation style even more.

Due to the prominent position of the PennTB, many parsers, as well as other
automated NLP tools, were directly tied to its annotation style, requiring the
PennTB POS tags on the input and producing the PennTB-style parse trees on
the output. Therefore, to process other languages than those covered by the Penn
treebanks, it was quite common to use automatic conversions to obtain PennTB-
style annotations even for other languages [Xia and Palmer, 2001, Collins, 2003].
We consider these to be the first attempts at treebank annotation harmonization.

Later on, as the dependency paradigm was becoming more and more popular
for syntactic parsing, the usual direction of the conversions changed to converting
PennTB-style treebanks into dependency representations.

1.1.2 The Prague treebanks family
The first dependency treebank was the Prague Dependency Treebank (PDT)
[Hajič, 1998], created at the Charles University in Prague. It is a treebank of
Czech sentences, with an annotation style inspired by the Functional Generative
Description of Sgall [1967]. PDT is annotated on multiple layers; however, for our
work, it is sufficient to limit ourselves to the layer of words (w-layer), morphology
(m-layer), and surface syntax (a-layer).

The Prague treebanking group then continued by producing the Prague Czech-
English Dependency Treebank [Čmejrek et al., 2004, Cuř́ın et al., 2004], the
Prague Arabic Dependency Treebank [Hajič et al., 2004a,b], the Prague English
Dependency Treebank [Hajič et al., 2009], and the Prague Tamil Dependency
Treebank [Ramasamy and Žabokrtský, 2012].

Naturally, the annotation style used for creating these resources was mostly
based on the PDT annotation style (sometimes also referred to as Prague Depen-
dencies); mostly, it was only enriched with new labels and guidelines for phenom-
ena non-existent in Czech (such as determiners). While the resulting treebanks
were not yet fully harmonized in the modern sense, this gave the group the
necessary experience and ground to start the HamleDT project, which will be
introduced in Section 1.2.3.

Similarly the PennTB, PDT also inspired the creation of other treebanks –
while the PennTB was the model for constituency treebanks and treebanking in
general, PDT became a model for many dependency treebanks.

1.1.3 CoNLL treebanks
In the year 2005, there were already dependency or constituency treebanks avail-
able for a number of languages, even though their annotation styles varied con-
siderably, as did the formats in which they were stored and distributed.

9

Moreover, two new trainable data-driven dependency parsers had been devel-
oped – the MaltParser of Nivre [2003], and the MSTParser of McDonald et al.
[2005a].

This set the ground for two CoNLL shared tasks on multilingual dependency
parsing [Buchholz and Marsi, 2006, Nivre et al., 2007], with multilingual pars-
ing understood as training and evaluating a parser for more than one language,
contrary to previous works which typically only focused on parsing one or two lan-
guages. Many of the existing treebanks were gathered for the task (13 for CoNLL
2006 and 10 for CoNLL 2007, with a partial overlap), both dependency based and
constituency based, which were converted into dependencies in a semi-automatic
way.

While the CoNLL treebank collections were an important milestone in mul-
tilingual dependency parsing, their annotations were not yet harmonized in the
modern sense. The morphological annotation underwent a sort of rudimentary
normalization, including both the original fine-grained annotations as well as
simplified coarse-grained POS tags (CPOSTAG), but the particular values used
were still taken over from the original treebanks, and the syntactic annotation
(dependency structure and relation labels) was also kept from the original. The
crucial novelty at that time was the fact that all of the treebanks were converted
into the same simple text-based file format with a set of predefined fields, usually
referred to as the CoNLL or CoNLL-X format. Moreover, many of the converted
treebanks were now rather easily obtainable. This made it viable to train and
evaluate monolingual parsers on multiple treebanks, bringing multilinguality (al-
though not yet cross-linguality) into parsing.

When early attempts at cross-lingual parsing were made, the CoNLL collec-
tions were typically used, even though their limitations were clear, since there
was no better resource in existence (yet). The annotation style differences had
a clear impact on performance; even if the coarse POS tags were harmonized, it
was often observed that typological similarity of the source and target languages
used in cross-lingual parsing was of less importance than the similarity of the
annotation styles [McDonald et al., 2011].

1.2 Treebank harmonization
Using a different annotation style for each language might make perfect sense
monolingually. However, it is clear that the different annotation styles consti-
tute a major obstacle to any cross-lingual or multilingual processing. Therefore,
treebank harmonization emerged as a general approach of converting the original
heterogeneous annotations into a common style, using a similar set of POS tags,
dependency relation labels, syntactic structures, and other annotations, across
multiple languages.

If we were to analyze only one target language with no annotation available
by transferring the knowledge from annotated resources for only one source lan-
guage, the harmonization might not be necessary; although, even in that case,
the harmonization might help by avoiding annotations specific for the source lan-
guage only, such as parts of speech or dependency relation labels that do not
appear in the target language.

10

However, in practice, we typically work with multiple source and target lan-
guages, and the cross-lingual methods can therefore benefit from the harmonized
annotations, allowing us to combine multiple sources together, as well as to use
a more unified approach and tools across all of the languages.

We also typically operate in a simulated low-resource setting, applying our
methods to target languages for which at least small treebanks are available.
This is because for truly under-resourced languages, the cross-lingual methods
can be applied, but cannot be automatically evaluated. Thus, for the automatic
evaluation to be possible, we require even the target treebanks to be harmonized.

Moreover, in scenarios where we assume the availability of target POS tags,
these obviously need to be harmonized, as they constitute the input for the parser.

1.2.1 The beginnings
The need for annotation harmonization in cross-lingual parsing has been clear
since the founding work of Hwa et al. [2005], who projected annotations from
English into Chinese and Spanish over parallel data.

The authors used the English PennTB for training and the Chinese PennTB
for evaluation. Both of the treebanks use a very similar annotation style; the
authors converted them from constituency to dependency syntax using the same
algorithm, thus keeping the annotation harmonized. Moreover, they also apply
a set of post-projection rules to sanitize the output, addressing some specifics of
Chinese language and/or the Chinese treebank annotation both on the morpho-
logical and on the syntactic level.

For Spanish, the authors created a small artificial evaluation treebank by
parsing text with a rule-based dependency-like parser and then hand-correcting
the analyses, both to rectify missing or incorrect annotations as well as to match
the intended dependency structures.

1.2.2 Interset
Zeman and Resnik [2008] introduced the idea of cross-lingual delexicalized parser
transfer, removing the word forms from the training and evaluation treebanks
and using only the morphological annotation as input for the parsers.

Similarly to Hwa et al. [2005], they converted the syntactic annotation of both
of the treebanks into the same style, and applied a range of further normalization
steps to ensure that the same phenomena are annotated in the same way (fo-
cusing e.g. on determiner attachment), which allowed them to perform a reliable
evaluation of the automatically induced parse trees.

However, their parsers relied practically exclusively on the morphological tags
as input. For their approach to be applicable, it was thus crucial to harmonize
the annotation of POS and other morphological categories. For this purpose,
they devised a rather sophisticated approach of automatically mapping the orig-
inal morphological annotations to and from an interlingual representation, called
Interset [Zeman, 2008].

The original idea of Interset was to simplify automatic conversions between
various tagsets. To avoid the need of a special convertor for each pair of tagsets,
Interset operates with the concept of tagset drivers. The driver for each tagset

11

contains a decoder, which transforms the tags into an intermediate representa-
tion, and an encoder, capable of transforming the interlingual representation into
the tag. Of course, this is impossible to do completely correctly using a fully
automatic delexicalized processing, as the annotations vary immensely in their
granularity as well as their definitions of particular POS classes, let alone other
morphological features [Zeman, 2010].1 Nevertheless, the Interset quickly became
a very useful tool for tagset harmonization, even if it is rather approximate in
some cases, enabling easy transfer of delexicalized parsers across many language
pairs. It is still in active development, currently supporting 70 tagsets.2

Interestingly, while the interlingual representation was originally intended as
intermediate, it gradually became a useful format of tag representation in itself.
As we will show, it later found its use in the HamleDT treebanks, and even later,
in a modified form, in the Universal Dependencies treebanks.

A simple precursor to Interset can be seen in the work on cross-lingual POS
tagging by Yarowsky et al. [2001], who projected POS tags from English to French,
with the PennTB tags on the source side and a fine-grained French tagset on the
target side. Both of the tagsets capture a range of phenomena specific for the
underlying languages, which makes them unsuitable for cross-lingual projection.
Therefore, the authors defined a mapping from these tagsets into a set of core
POS tags, presumably containing 9 categories.3

Even earlier attempts at defining a unified tagset applicable to multiple lan-
guages were made by the Eagles advisory group [Leech and Wilson, 1996], the
Multext project [Ide and Véronis, 1994], and the Multext-East project [Dim-
itrova et al., 1998], eventually producing corpora with harmonized morphological
annotation.

1.2.3 HamleDT 1.0
Based on previous experience in cross-lingual parsing [Zeman and Resnik, 2008],
the Prague group saw the potential utility in not only extending the CoNLL
collection to include other treebanks which existed at that time, but also in
harmonizing the treebanks, i.e. in converting their morphological and syntactic
annotation into one common style, realized within the newly founded project
HamleDT [Mareček et al., 2011, Zeman et al., 2012].

Naturally, the group decided to use Prague Dependencies as the universal
annotation style, but this time using the same guidelines and sets of labels for
all of the treebanks, avoiding language-specific modifications and extensions; in-
terestingly but inevitably, this eventually led to the need to slightly modify the
annotation of the HamleDT version of the PDT, even though this was the original
source of the annotation style definition. To represent the vast amount of existing
rich morphological annotations, the Interset of Zeman [2008] was employed.

The group applied automatic conversions of the original treebanks, opting for
not using any additional manual annotation. This meant that information not

1For example, the definition of pronouns was found to be so inconsistent across languages
that Zeman [2010] decided to remove the pronoun category from Interset completely.

2https://ufal.mff.cuni.cz/interset
3The paper is not clear in that respect, listing 9 POS categories as “examples”; so there

might be more.

12

https://ufal.mff.cuni.cz/interset

captured by the original annotation was not reflected in the harmonized anno-
tation either, leading to a varying granularity of the annotation. On the other
hand, it was possible to rerun the conversion scripts on any potential newer ver-
sions of the underlying treebanks. The conversion scripts were carefully manually
crafted, featuring some universal parts, as well as components fitted to the indi-
vidual original treebanks.

1.2.4 Universal Stanford Dependencies
At that time, however, the idea of Universal Stanford Dependencies (USD), based
on Stanford Dependencies (SD) of De Marneffe and Manning [2008], was already
forming and gaining traction. Several research groups were independently trying
to produce a treebank collection covering several languages but using the same
annotation style for all of them, inspired by the Stanford Dependencies. Similarly
to HamleDT, this caused some initial problems – while the Prague Dependencies
annotation was developed primarily for Czech, the SD initially focused on English.

The vague and slowly crystallizing idea was then given a key push by Google
researchers. First, Petrov et al. [2012] devised the Universal Part of Speech Tagset
(UPT), defining a set of 12 core POS tags, and devised one-way mappings from
many existing treebank tagsets to UPT, which they published together with the
paper. Subsequently, McDonald et al. [2013] not only devised the Google Stan-
ford Dependencies (GSD) – a universal syntactic annotation style based on SD
– but also released a set of 4 new treebanks annotated from scratch using the
GSD annotation style, and 2 more treebanks obtained by automatic conversions;
five more languages were added in version 2.0.4 This was unprecedented both
in the quality of the annotations, as automatic harmonizations can hardly com-
pete with the manual annotations already being done harmonizedly, as well as
in the principledness of the annotation guidelines – while the Prague group was
multilingualizing the Prague Dependencies rather iteratively and additively, the
Google group designed their annotation style (although based on SD) with mul-
tilingualism in mind from the start.

The GSD received a lot of attention from the treebanking and parsing re-
searchers. The Stanford group quickly followed with explicitly introducing USD
[de Marneffe et al., 2014], in an attempt to canonize an authoritative language-
universal SD-based treebank annotation style, based on their original intentions
and linguistic and theoretical considerations behind designing SD. Of course, from
the practical point of view, they also took inspiration in existing harmonization
efforts, as other researchers’ experiences both from automatic harmonizations and
from manual harmonized annotations are invaluable.

At the same time, we were working basically on the same thing in the Prague
group, which eventually materialized in the Stanfordized HamleDT 2.0 [Rosa
et al., 2014], with annotations automatically converted from the Prague Depen-
dencies into our version of USD;5 avoiding manual annotations, we were unable
to reliably produce some of the USD labels, requiring us to abandon some and
generalize over others. HamleDT 2.0 featured 30 treebanks in 30 languages anno-

4https://github.com/ryanmcd/uni-dep-tb
5This was joint work of several authors, with most contributions made by Daniel Zeman,

Jan Mašek, and Rudolf Rosa.

13

https://github.com/ryanmcd/uni-dep-tb

tated both using Prague Dependencies and USD, thus being the largest treebank
collection as well as the largest collection of Stanfordized treebanks at that time.

1.2.5 Universal Dependencies
As the goal of treebank harmonization is to have one style for all of the treebanks,
the fact that several research groups were working on that problem independently
actually went against the idea itself. Fortunately, this was quickly realized by the
community, and the idea of joining forces emerged. After some negotiations and
discussions, the Universal Dependencies (UD) group was formed under the lead
of Joakim Nivre,6 joining all of the interested researchers and merging the most
significant existing ideas and approaches into one framework [Nivre, 2015, Nivre
et al., 2016a];7 gradually, practically all other harmonization activities ceased.

The key pillars of UD treebanks annotation are:
• Universal Part of Speech (UPOS) tags, based on UPT,
• Universal morphological features, based on the Interset,
• Universal dependency structure and universal dependency labels, based pri-

marily on SD, but including notions from USD, HamleDT, and GSD.
Detailed annotation style descriptions, with a large number of practical examples
in many languages, are maintained online.8

While HamleDT tried to capture mostly all information annotated in the
original treebanks, the focus of UD is a bit different, trying to capture only the
important information, but not necessarily everything. More specifically, UD an-
notations especially try to capture phenomena manifested in multiple languages,
but avoiding phenomena that only exist in one or two languages – indeed, it
would not make much sense to attempt to devise a language-independent way of
annotating something which would be only ever annotated in one language (and
it would also not be useful for any cross-lingual experiments, although this is not
the primary target for UD). Language-specific extensions are basically limited
to the option of appending a language-specific subtype to the universal relation
label.9 However, even here, there is some effort to limit the number of these, and
to semi-standardize them by discouraging the introduction of a new language-
specific label subtype for a phenomenon for which there already is a subtype
defined in another language.10

The first set of 10 UD-harmonized treebanks, UD v1.0, was released in January
6Who, interestingly, was a member of both the GSD team and of the USD group, under a

double-affiliation of Google and Uppsala University, and, as the only such person, was the most
logical leader of the joined project; of course, another important factor was his vast expertise
in both treebanking and parsing.

7http://universaldependencies.org/
8http://universaldependencies.org/guidelines.html
9For example, according to http://universaldependencies.org/fi/dep/nmod-own.html,

the nominal modifier (“nmod”) can be subtyped as “nmod:own” in Finnish, which marks that
the modifier is in fact an owner of the related subject entity. As this is a frequent and regular
construction in Finnish, it makes sense to capture this special type of “nmod”, especially as the
“nmod” itself is both very general and very frequent, and the ownership information would be
lost by only using the universal label.

10Thus, “nmod:own” is now defined for Buryat, Erzya, and Finnish; although the annotation
guidelines do not make it clear how similarly or differently the label is used in each of those
languages.

14

http://universaldependencies.org/
http://universaldependencies.org/guidelines.html
http://universaldependencies.org/fi/dep/nmod-own.html

2015 [Nivre et al., 2015]. A new version of the collection is released every 6
months, adding both conversions of existing treebanks (done manually, semi-
automatically, or automatically, potentially with checks and post-corrections), as
well as new treebanks annotated in the UD style from scratch. At the time of
writing, the latest release is UD v2.1 [Nivre et al., 2017], containing 102 treebanks
for 60 languages; the annotation style was partially modified in the transition
to the version 2.0.11 Practically all of the UD treebanks are easily available for
download under permissive licences – except for a few, where the texts/word forms
cannot be distributed together with the treebanks due to licensing issues, and have
to be obtained separately. Thanks to all of the aforementioned characteristics, UD
annotation style and datasets have quickly become the current de facto standard
for most of the work on treebanking, dependency parsing, as well as POS tagging,
both monolingual and cross-lingual.

Although the degree of harmonization is very high in UD, there are some
areas where the cross-lingual consistency is still rather low. Most notably, in
universal morphological features, there is much more variation than we would
expect based on just the properties of the languages. A lot of the information is
harvested automatically from pre-existing treebanks, which have a varied degree
of granularity of the annotations. Therefore, some information is simply not
available without manual post-processing.

Unfortunately, even for newly annotated data, incoherences are still common.
This is, to some extent, caused by the fact that the guidelines are not sufficiently
specific and allow some freedom. The official position of the UD project is that
this is on purpose, since too strict guidelines would lead to nonsensical anno-
tations. The UD project thus follows the approach of Google researchers, used
for creating their universal treebanks. The idea is to create only rough initial
guidelines, then let the annotators work mostly independently on each language,
and then review the annotations and refine the initial guidelines to find some
universal guidelines by consensus.

In [Rosa et al., 2017], we indeed found that targeting systematic differences in
the annotations by a handful of simple additional harmonization steps can bring
further notable improvements in cross-lingual parsing.12 However, it constituted
a small but non-trivial amount of manual work for each pair of languages to
bring their annotations closer together, which does not scale well to experiments
performed on dozens of languages.

In an earlier work, Mašek [2015] tried to automatically detect and correct
inconsistencies in the annotations of the HamleDT collection. He found that the
automatic error detection is viable to some extent, but the automatic correction
of errors turned out to be a very hard task, with no clearly positive results being
reported in that work.

1.3 Treebank datasets used in our experiments
As our research was done over the course of several years, during which a lot
changed in the field of treebank collections, we did not keep our dataset fixed

11http://universaldependencies.org/v2/summary.html
12The additional harmonizations were devised by Daniel Zeman.

15

http://universaldependencies.org/v2/summary.html

throughout the whole time. For the earlier experiments, we used the Stanfordized
HamleDT 2.0 treebanks (Section 1.3.1); later on, we switched to using Universal
Dependencies v1.4 (Section 1.3.2).

1.3.1 HamleDT 2.0 dataset
When the research for this thesis commenced, the HamleDT 2.0 collection [Rosa
et al., 2014, Zeman et al., 2014] was by far the largest as well as most harmo-
nized existing treebank collection and thus the logical, or probably even the only
reasonable, choice of dataset. Our work was thus among the first ones to be
applied to a really large harmonized treebank collection. HamleDT 2.0 featured
30 treebanks in 30 languages in both the Prague Dependencies and the Universal
Stanford Dependencies annotation style – and although unfortunately only some
of them were freely available to the public, we had access to all of them, giving
us a great advantage then. Thus, the experiments done early on in our research
are performed and evaluated using the Stanfordized HamleDT 2.0 dataset.

The Stanfordized treebanks are annotated with a set of 33 dependency relation
labels inspired by the USD of de Marneffe et al. [2014], and with the 12 UPT
tags as defined by Petrov et al. [2012], which we reproduce here from the official
website:13

VERB verbs (all tenses and modes)
NOUN nouns (common and proper)
PRON pronouns

ADJ adjectives
ADV adverbs
ADP adpositions (prepositions and postpositions)

CONJ conjunctions
DET determiners

NUM cardinal numbers
PRT particles or other function words

X other: foreign words, typos, abbreviations
. punctuation

As we initially focused solely on parsing, we use the gold-standard UPT tags
in all our experiments conducted on the HamleDT dataset. The treebanks also
contain fine-grained Interset morphological annotations, but we did not use these
in our experiments.

We list all of the treebanks in Table 1.1, together with the sizes of their
training and test sections in thousands of tokens, and a reference to the original
source of the treebank, as all HamleDT treebanks are semi-automatic conversions
of pre-existing treebanks. For details about the syntactic annotation and the
harmonization process, please refer to the original publication of Rosa et al. [2014].

We used these treebanks in development and tuning of our cross-lingual parser
transfer methods. Therefore, to avoid overtuning to the particular set of tree-
banks, we split them into 12 development treebanks and 18 evaluation treebanks,
and initially evaluated our methods only on the development treebanks; the eval-
uation treebanks were only used in final evaluations, once the hyperparameters

13https://github.com/slavpetrov/universal-pos-tags

16

https://github.com/slavpetrov/universal-pos-tags

Treebank (kTokens)
Language Train Test Reference

Development treebanks
ar Arabic 250 28 [Smrž et al., 2008]
bg Bulgarian 191 6 [Simov and Osenova, 2005]
ca Catalan 391 54 [Taulé et al., 2008]
el Greek 66 5 [Prokopidis et al., 2005]
es Spanish 428 51 [Taulé et al., 2008]
et Estonian 9 1 [Bick et al., 2004]
fa Persian 183 7 [Rasooli et al., 2011]
fi Finnish 54 6 [Haverinen et al., 2010]
hi Hindi 269 27 [Husain et al., 2010]
hu Hungarian 132 8 [Csendes et al., 2005]
it Italian 72 6 [Montemagni et al., 2003]
ja Japanese 152 6 [Kawata and Bartels, 2000]

Evaluation treebanks
bn Bengali 7 1 [Husain et al., 2010]
cs Czech 1,331 174 [Hajič et al., 2006]
da Danish 95 6 [Kromann et al., 2004]
de German 649 33 [Brants et al., 2004]
en English 447 6 [Surdeanu et al., 2008]
eu Basque 138 15 [Aduriz et al., 2003]
grc Ancient Greek 304 6 [Bamman and Crane, 2011]
la Latin 49 5 [Bamman and Crane, 2011]
nl Dutch 196 6 [van der Beek et al., 2002]
pt Portuguese 207 6 [Afonso et al., 2002]
ro Romanian 34 3 [Călăcean, 2008]
ru Russian 495 4 [Boguslavsky et al., 2000]
sk Slovak 816 86 [Šimková and Garab́ık, 2006]
sl Slovenian 29 7 [Džeroski et al., 2006]
sv Swedish 192 6 [Nilsson et al., 2005]
ta Tamil 8 2 [Ramasamy and Žabokrtský, 2012]
te Telugu 6 1 [Husain et al., 2010]
tr Turkish 66 5 [Atalay et al., 2003]

Table 1.1: List of HamleDT 2.0 treebanks.

17

of our methods were fixed. However, we do not split the treebanks into sources
and targets; to parse a given target language, any of the remaining treebanks can
be used as the source, i.e. we use the leave-one-out approach.

To tune our methods to perform well in many different situations, we chose
the development set to contain both smaller and larger treebanks (but not the
largest ones, to enable faster development), a pair of very close languages (ca,
es), a very solitary language (ja), multiple members of several language families
(Uralic, Romance), and both primarily left-branching (bg, el) and right-branching
(ar, ja) languages.14

Note that the treebanks for some languages are very small (bn, et, ta, te),
bringing us quite close to the intended under-resourced setting.

1.3.2 Universal Dependencies 1.4 subset
In our more recent experiments, we switched from the HamleDT 2.0 dataset to
UD 1.4 [Nivre et al., 2016b], as this was the newest UD release available at the
time of the switch, featuring 64 treebanks for 47 languages.

The UD 1.4 are annotated using the set of 17 UPOS tags of UD v1, which we
reproduce here from the official website:15

ADJ adjective
ADP adposition
ADV adverb
AUX auxiliary verb

CONJ coordinating conjunction16

DET determiner
INTJ interjection

NOUN noun
NUM numeral
PART particle
PRON pronoun

PROPN proper noun
PUNCT punctuation
SCONJ subordinating conjunction

SYM symbol
VERB verb

X other

Most treebanks are also annotated with Universal features, but we did not use
these in most experiments.

The syntactic annotation of UD 1.4 uses a set of 40 universal dependency
relation labels, which we list in Attachment A. Furthermore, many languages use
language-specific relation subtypes, such as nmod:poss, with the universal label

14We use the terms left-branching and right-branching in the usual way, where for languages
which are written right-to-left, the terms assume that we reorder the language into the left-
to-right order; i.e. left-branching corresponds to head-final and right-branching corresponds to
head-initial when processing the sentence from its beginning to its end.

15http://universaldependencies.org/docsv1/u/pos/index.html
16Changed to CCONJ in UD v2.

18

http://universaldependencies.org/docsv1/u/pos/index.html

Treebank (kT) Para data
Language Train Dev (kS)

Target languages
da Danish 89 5.9 120
el Greek 47 6.0 102
hu Hungarian 33 4.8 118
id Indonesian 98 12.6 130
ja Japanese 80 9.1 20
kk Kazakh 5 0.7 60
lv Latvian 13 3.6 95
pl Polish 69 6.9 119
sk Slovak 81 12.4 117
ta Tamil 6 1.3 92
tr Turkish 41 8.9 117
uk Ukrainian 1 0.2 98
vi Vietnamese 32 6.0 119

Source languages
ar Arabic 226 28 111
bg Bulgarian 124 16 101
ca Catalan 429 58 22
cs Czech 1,672 175 121
de German 270 12 117
en English 271 33 150
es Spanish 836 95 109
et Estonian 188 23 115
fa Farsi 121 16 63
fi Finnish 290 25 114
fr French 356 39 113
he Hebrew 135 11 101
hi Hindi 281 35 89
hr Croatian 128 5 117
it Italian 271 11 123
nl Dutch 286 11 124
no Norwegian 244 36 121
pt Portuguese 478 217 129
ro Romanian 163 28 122
ru Russian 930 120 97
sl Slovene 136 17 117
sv Swedish 131 17 115

Table 1.2: UD 1.4 dataset as used in our experiments. We separate the languages
into source languages and target languages. For each language, we report the size
of its training and development treebank in thousands of tokens, and the size of
the WTC parallel data aligned to English in thousands of sentences.

19

and the subtype label separated by a colon. While these subtypes are partially
harmonized, they are not, by definition, sufficiently language-independent, and we
therefore remove them from both the training and evaluation treebanks, keeping
only the universal parts of the labels.

We do not use all of the treebanks that are available in UD 1.4 – we remove
treebanks for which parallel data are not available in the WTC (see Section 1.4.2),
as we need those for our experiments. This eliminates the treebanks of dead
languages (Ancient Greek, Church Slavic, Coptic, Gothic, Latin, and Sanskrit),
several minority languages (Basque, Galician, Irish, and Uighur), the Swedish
sign language, and Chinese. If multiple treebanks exist for a given language, we
concatenate them all into one. We list the resulting 35 treebanks in Table 1.2,
showing their sizes in thousands of tokens for both the train section, which we
use for training, and the dev section, which we use for evaluation. We also list the
number of parallel sentences available in the WTC, in thousands – this number
is different for each language pair, but we list the number of sentences parallel
with English, as we pivot the sentence alignments through English.

We separated the languages into two non-overlapping groups: the source
languages and the target languages. The source languages are assumed to be
resource-rich, with the train sections of the source language treebanks being used
for training taggers and parsers. The target languages are used to simulate low-
resource languages; we do not use the train sections of these treebanks, and we
only use the dev sections for evaluation of our methods (see Section 2.3.4). The
languages were split into the two groups based on the size of their training tree-
banks: if the treebank contains more than 100,000 tokens, we use the language
as source; if it is smaller, we designate it a target language. This leads to a set
of 22 source languages and 13 target languages; as some of the target language
treebanks are really small, treating the languages as under-resourced seems at
least partially justified.

VarDial subset

In the VarDial cross-lingual parsing shared task [Zampieri et al., 2017], the orga-
nizers specified treebanks and parallel corpora to use, including a specification of
source and target languages. As the focus of the shared task was on close language
pairs, a set of only three very close language pairs was selected. The task thus
consisted of parsing Slovak using Czech resources, parsing Croatian using Slovene
resources, and parsing Norwegian using Danish and Swedish resources; the last
language “pair” is thus actually a triplet, but, following suggestions provided by
the organizers, we simply concatenated the Danish and Swedish data into one
Dano-Swedish resource, and further treated this as a single source language.

We list the dataset sizes on the first 3 lines of Table 1.3. The treebanks come
from the UD 1.4 dataset. The parallel data come from the OpenSubtitles2016
corpus (Section 1.4.1) and are thus much larger than the WTC; therefore, we
report their sizes in millions of sentences instead of thousands.

Extended VarDial subset

For further exploratory experiments, we then extended the VarDial dataset by
7 more languages, organized into 9 further language pairs; the whole Extended

20

Languages Treebank sizes (kT) Para data
source target source train target dev size (MS)

Source language very similar to target
cs→sk Czech Slovak 1,173 12 5.7
da+sv→no Danish+Swedish Norwegian 156 36 9.1
sl→hr Slovene Croatian 112 5 12.8
fr→es French Spanish 356 41 32.5
es→fr Spanish French 382 39 32.5
cs→pl Czech Polish 1,173 7 24.2

Source language less similar to target
it→ro Italian Romanian 271 28 22.1
en→sv English Swedish 205 10 13.3
en→de English German 205 12 15.4
de→sv German Swedish 270 10 6.4
de→en German English 270 25 15.4
fr→en French English 356 25 37.3

Table 1.3: Overview of the VarDial dataset (first 3 lines) and Extended VarDial
dataset (all lines), listing the source and target languages, the treebank sizes in
thousands of tokens, and the sizes of parallel data in millions of sentences.

VarDial dataset thus contains the 12 language pairs listed in Table 1.3. This
time, we did not concatenate multiple treebanks for the same language – we
simply always used only the largest one. For the parallel data, we again used
OpenSubtitles2016.

Following the approach of the organizers of the VarDial shared task, we pre-
selected source-target language pairs which we believed to be rather close, based
on our linguistic intuition. Moreover, we subdivided the language pairs into two
groups, the first containing pairs of languages which we believe to be very similar,
and the second one consisting of language pairs that still belong to the same
typological genera, but we believe them to be more distant than the language
pairs in the first group.

1.4 Parallel corpora
A parallel text corpus is a resource consisting of a text in one language and its
translation in another language. Parallel texts are “natural resources”, produced
by human translators and published for various reasons – we can often easily
get religious texts, international laws, film subtitles, etc. Parallel corpora are
often freely available for download, or can be compiled from parallel data har-
vested from the internet. Still, for under-resourced languages, even the amount
of available parallel data is usually lower than for resource-rich languages.

Parallel corpora are typically used in NLP to train Statistical Machine Trans-
lation (SMT) systems, which can be useful for many tasks, including cross-lingual
parsing. In the cross-lingual projection approach, parallel data are even used di-
rectly to project annotations from its one side to the other side, without using an
SMT system.

In many cases, translations of the same texts are available in multiple lan-

21

Available languages Typical number
Corpus easily potentially of sentences
OpenSubtitles 62 78 5M – 30M
Watchtower 135 300 100k – 150k
Bible 100 1200/4000 10k – 30k
UDHR 400 544 60 – 70

Table 1.4: Overview of some parallel and multiparallel corpora, with the number
of languages for which it is easily or at least potentially available, and a typical
size in number of sentences.

guages; such resources are usually referred to as multiparallel corpora, and can
be even more useful for cross-lingual processing.

In the canonical format, the corpora are sentence-aligned, i.e. there is always
a pair of one source sentence and one target sentence that correspond to each
other. Some data already more or less arrive in this format (e.g. the Bible), but
usually, the alignment has to be estimated. Fortunately, this is generally not a
difficult tasks, as high performance sentence aligners exist, such as the Hunalign
of Varga et al. [2007].

Moreover, many parallel corpora can be downloaded from linguistic reposi-
tories, such as the OPUS collection of Tiedemann [2012],17 which publish them
in a preprocessed format, usually including sentence segmentation and sentence
alignment, and often also tokenization.

In Table 1.4, we present an overview of parallel corpora which are available
for a large number of languages (in fact, all of the listed corpora are actually
multiparallel, at least to some extent).

In our experiments, we have only used the first two, OpenSubtitles and WTC.
However, we also review the other two, Bible and Universal Declaration of Human
Rights (UDHR), as they are available for an even larger number of languages
than the first two, thus broadening the potential scope of cross-lingual parsing
methods. We discus all of these corpora in more detail further on.

1.4.1 OpenSubtitles
The OpenSubtitles corpora are film and TV series subtitles and their transla-
tions provided by volunteers through the OpenSubtitles web portal.18 While the
translations are of varying quality, they have been repeatedly successfully used
by many researchers. The data are typically sufficiently large, making it possible
to train high-quality SMT systems, while also being available in a respectable
number of languages. Unfortunately, these are mostly resource-rich languages;
for resource-poor languages, little or no data are often available in this corpus,
which gravely limits the usefulness of this dataset in the intended use case of
cross-lingual parsing.

Nevertheless, we employed the OpenSubtitles data in some of our experiments,
in particular using the OpenSubtitles2016 version, published by Lison and Tiede-
mann [2016]. We report the sizes of the parallel data which we used together
with the particular languages in Section 1.3.2. We always split of the first 10,000

17http://opus.nlpl.eu/
18http://www.opensubtitles.org/

22

http://opus.nlpl.eu/
http://www.opensubtitles.org/

sentences from the dataset as development data, used for tuning the MT sys-
tems, and the last 10,000 sentences as test data, used to intrinsically evaluate the
quality of the MT systems.

1.4.2 Watchtower
Agić et al. [2016] introduced a much more realistic resource for cross-lingual
parsing: the Watchtower Corpus (WTC).19 It consists of texts of the Watchtower
magazine, published by Jehovah’s Witnesses via the Watch Tower Bible and Tract
Society of Pennsylvania in a large number of languages, including many under-
resourced ones. The texts are available on the Watchtower Online website,20 from
which they were scraped by Agić et al. [2016] and compiled into the WTC.

The WTC contains texts in 135 languages. For each language, the corpus
contains at least 27,000 and no more than 167,000 sentences; the average number
of sentences is 116,000, the median is 127,000. These are thus drastically smaller
data than the OpenSubtitles, inevitably leading to considerably worse results.
However, in line with Agić et al. [2016], we believe this to be a much more
realistic setting for under-resourced languages, leading to more plausible estimates
of the parsing accuracies – for real under-resourced languages, really large parallel
corpora are typically simply not available. We thus use OpenSubtitles for several
rather exploratory experiments, but ultimately apply WTC in our final setups.
However, given the small size of the WTC, we typically split of a lower absolute
number of sentence pairs for tuning (dev) and for evaluation (test) of the MT
systems than we did for OpenSubtitles, never taking away more than 20% of the
corpus.21

On the plus side, the WTC data are massively multiparallel, as they consist of
translations of the same texts. The texts in WTC are tokenized on punctuation
symbols by a trivial tokenizer. This means that languages which do not separate
words by spaces, such as Japanese, are not properly tokenized; the results which
we report for Japanese thus suffer from this, but we find it useful to investigate
what the results are under such settings. The texts are also segmented into
sentences using a similar approach, with one sentence per line. The average
number of tokens in an English sentence is 16.5 in WTC.

For some language pairs, automatic sentence alignment is part of the corpus,
while for other it is not, thus requiring us to rerun Hunalign on the data. As
running Hunalign for all language pairs was rather computationally demanding,
we instead took a pivoting approach, sentence-aligning each language to English
as the pivot. We then construct sentence-alignment for any pair of languages
from their alignments to English, which inevitably leads to omitting sentences
that appear in both of these languages but seem to be missing in the English
text. However, as the English text is the source for all of the translations, we
did not observe a large ratio of such omissions in practice. We believe that, due
to the nature of the data, the pivoting approach might actually lead to better

19The WTC was made available to us by Željko Agić via direct e-mail contact.
20https://wol.jw.org/
21Specifically, we take 10,000 sentence pairs for dev and another 10,000 sentence pairs for

test only if there is at least 100,000 parallel sentences for the language pair. Otherwise, we take
1000, 100, or even only 10, so that at least 80% of the sentences are left for training.

23

https://wol.jw.org/

results than pairwise alignments; but we have not measured that in any way.
We list all of the 135 languages present in the WTC in Section B.1 of At-

tachment B. However, it seems that many more languages are available on the
Watchtower website; at the time of writing, it advertises texts in 301 languages,
which suggests that the scope of the corpus (and, subsequently, of the presented
cross-lingual methods) could still be considerably extended. We include a listing
of all these languages in Section B.2.

1.4.3 Bible

While Watchtower covers a respectable number of languages, it is still clearly
surpassed by the Bible, which seems to be freely available for download in 1,200
languages at Bible.com.22 Furthermore, WorldBibles23 claim to provide access
to the text of Bible in more than 4,000 languages; however, the portal only
contains links to websites that claim to have the text of the Bible, which might
be available for free download, for purchase, in printed form, or even not at all;
the lower number of 1,200 thus seems somewhat more realistic.

Interestingly, the largest precompiled corpus of Bible texts that we were able
to find is the Edinburgh Bible Corpus (EBC)24 of Christodouloupoulos and Steed-
man [2015], covering only 100 languages, i.e. less than the WTC. Moreover, ac-
cording to Agić et al. [2016], the WTC texts are more useful for cross-lingual
NLP, as they better correspond to current everyday language than the Bible. On
the other hand, Watchtower is only published in living languages, while EBC also
contains several extinct languages, such as Coptic or Latin. Nevertheless, we did
not use the Bible in our experiments.

1.4.4 Universal Declaration of Human Rights

The text of the UDHR itself is very tiny – its 30 articles are typically formu-
lated in approximately 65 sentences. Therefore, we do not actually use it in our
experiments.

However, it stands out among the other resources by being easily available
for the largest number of languages. It is made available by the “UDHR in
Unicode” project, and can be directly downloaded from the webpage of The
Unicode Consortium25 as a ZIP file containing 455 Unicode text files. Even if we
omit unidentified languages and multiple variants of the same language, we still
get the text in 400 languages.

The original and authoritative source, which publishes a slightly larger number
of translations of the UDHR, is the Office of the United Nations High Commis-
sioner for Human Rights.26

22http://bible.com
23http://worldbibles.org/
24http://christos-c.com/bible/
25https://unicode.org/udhr/downloads.html
26http://www.ohchr.org/EN/UDHR/Pages/SearchByLang.aspx

24

http://bible.com
http://worldbibles.org/
http://christos-c.com/bible/
https://unicode.org/udhr/downloads.html
http://www.ohchr.org/EN/UDHR/Pages/SearchByLang.aspx

1.5 Other data

1.5.1 Monolingual plaintext data
Typically, plaintext monolingual data are available in a larger amount than par-
allel data, let alone annotated data. Therefore, it makes sense to try to leverage
them, as such data can be very useful for learning about the language. More
specifically, we can typically use monolingual texts to train the language models
for an SMT system (Section 5.5), or to pre-train word embeddings for a neural
parser (Section 5.3). Other possible uses exist as well, such as training a language
identifier (Section 4.1.5), or attempting machine translation without parallel data
[Rosa, 2017, Conneau et al., 2017]. Moreover, if we have no other resources than
plaintext monolingual data, we can still perform unsupervised parsing [Klein and
Manning, 2004, Mareček, 2016a] as a backoff – we compare our results to unsu-
pervised parsing in Section 5.6.4.

Interestingly, for the least-resourced languages, the situation is often some-
what reversed, as in many cases, the largest datasets available for a resource-poor
language tend to actually be multiparallel datasets – the Bible, Watchtower texts,
and/or the UDHR.

In the realm of monolingual texts, one of the massively multilingual yet easily
available corpora are the texts of Wikipedia, which are free to download for any
of its approximately 300 language editions.27 Most of the editions contain several
thousands of articles; some of the articles consist of several paragraphs of text,
while most are stubs, only containing a handful of sentences. A median Wikipedia
edition thus typically contains something between tens of thousands and millions
of words.

Another good option may be the W2C corpus of Majlǐs and Žabokrtský [2012],
which contains texts from Wikipedia as well as from the Web in 120 languages,
offering more than one million of words for most of the languages.28

In any case, the target-language side of available parallel data can always be
used as monolingual data, either in combination or instead of monolingual texts.
For simplicity, in our experiments, we always use the target side of the parallel
data instead of monolingual data even in cases where larger monolingual data are
available.

1.5.2 Linguistic catalogues
The World Atlas of Language Structures (WALS) of Dryer and Haspelmath
[2013] is one of the most well-known and respectable sources of information about
world’s languages. It is a manually curated database, gathering typological in-
formation about a wide range of languages and organized in a structured way.
The information itself comes from numerous studies, which are linked from the
atlas. Importantly, the database is freely accessible both on the web and as a
downloadable data resource, making it very useful and popular; we are unaware
of any larger or otherwise better database available for free download in such an
easy-to-use and machine-readable format.

27https://en.wikipedia.org/wiki/List_of_Wikipedias#Detailed_list
28http://ufal.mff.cuni.cz/w2c

25

https://en.wikipedia.org/wiki/List_of_Wikipedias#Detailed_list
http://ufal.mff.cuni.cz/w2c

At the time of writing, WALS contains 2679 entries,29 listing up to 192 linguis-
tic features for each of the languages (or 202, if we also count language codes and
names, and genealogical and areal information). The features are assigned names
and identifiers (e.g. “81A Order of Subject, Object and Verb”), and each feature
has a fixed and limited set of possible values (e.g. “1 SOV”, “2 SVO”. . . “6 OSV”,
and “7 No dominant order”). The features are grouped into several thematic
areas, such as phonology, morphology, word order, or lexicon. Unfortunately,
most languages are not covered by most of the features, i.e. the vast majority
of the feature values are blank – this is often not because the features would be
irrelevant or unknown for the languages, but simply because their values are not
covered by the primary sources upon which the database is built.

We review the use of WALS for cross-lingual parsing in Section 4.1.3.

29There are multiple entries for some languages, corresponding to different dialects or varieties
of the language; the total number of languages is thus lower, around 2400.

26

2. Dependency Parsing
In computational linguistics, parsing, or syntactic analysis, is the act of revealing
the structural (syntactic) relations between words in a sentence, and presenting
them in the form of a graph, usually an ordered rooted parse tree. Syntactic
parsing is a classical NLP task, with the tool that performs this task being called
a parser. The input to a parser is typically a tokenized and morphologically
annotated sentence, and the output is a syntactic parse tree of the sentence.

As we explained Section 1.1, there is a range of linguistic theories and anno-
tation styles that define a particular syntactic representation. However, typical
modern data-driven parsers are mostly theory-oblivious, as long as the theory
is realized in a treebank annotated with standard dependency or constituency
trees; the only important distinction is between phrase-structure parsing and
dependency parsing, which call for different parsing algorithms. The syntactic
theory which underlies the annotated treebank is external to the parsers, as they
simply learn to reproduce the annotators’ decisions. For cross-lingual parsing, we
need the annotations to be harmonized, as we explained in Section 1.2; however,
it is typically not crucial which particular annotation style is used, as long as it
is the same one for all of the datasets.

In this thesis, we focus on the dependency parsing paradigm, which has be-
come the de facto standard in recent years, especially in the multilingual setting,
with large collections of harmonized treebanks being available for dozens of lan-
guages.

Specifically, we have used two parsers throughout our work. In earlier exper-
iments, we use the MSTperl parser, which is a representative of the graph-based
parsers (Section 2.1). In later experiments, we use the UDPipe/Parsito parser,
which is transition-based (Section 2.2).

We partially draw from [Jurafsky and Martin, 2017] in this chapter.

2.1 Graph-based parsing
In the graph-based approach to dependency parsing, the parse tree of a tokenized
sentence is obtained by the following steps:

1. construct a complete directed graph with the tokens as nodes,
2. weight each edge by its score predicted by a trained model,
3. find the directed Maximum Spanning Tree (MST) of the graph.

Or, using the linguistic rather than graph-theoretic notions:

1. construct all potential dependency edges,
2. estimate the quality of each potential edge,
3. construct the highest quality parse tree, where the quality of a parse tree

is measured by the total quality of the edges in it.

Graph-based dependency parsing was introduced by McDonald et al. [2005a],
based on the work of Eisner [1996], in the form of the MSTParser. The parser was
first developed as a projective one, i.e. unable to produce parse trees with crossing

27

edges; its non-projective variant was then introduced by McDonald et al. [2005b].
The parser is an unlabelled one by default, producing only the tree structure
without dependency relation labels; the labelling is to be done independently in
a second stage [McDonald et al., 2006].

We review the MSTParser in more detail, as understanding its internals will
be useful in Section 4.3.1 and Section 4.3.2.

2.1.1 First-order edge factorization
In the base first-order variant of MSTParser, each edge is scored independently,
and the score of the final parse tree is simply obtained as the sum of the scores
of the individual edges.

This has the advantage of the parser efficiently exploring all possible parse
trees: if we assume that the edge scores predicted by the trained model are
optimal, the algorithm is guaranteed to return the optimal parse tree in terms of
maximizing its total score.

The clear drawback is that the parsing decisions cannot inform each other –
for example, if there are two good candidates for the subject of a verb, the parser
has no means of trying to select one or the other but not both. This was later
addressed in second-order and higher-order parsing [McDonald and Pereira, 2006,
Carreras, 2007].

2.1.2 MSTParser model and training
The MSTParser model uses a set of binary features F that are assigned weights
wf by training on a treebank.

When parsing a sentence, the parser assigns each potential edge e a score se

which is the sum of weights of features that are active for that edge:

se =
∑

∀f∈F

f(e) · wf , (2.1)

where f(e) is a binary feature function, returning 1 if the feature is active for
edge e and 0 if it is not.

The MSTParser is trained with Margin-infused Relaxed Algorithm (MIRA),
an ultra-conservative machine learning algorithm of Crammer and Singer [2003],
similar in principle to the Perceptron algorithm.

2.1.3 The MST algorithms
To find the MST of the weighted oriented graph, there is a choice of two algo-
rithms.

In the non-projective variant of the parser [McDonald et al., 2005b], the al-
gorithm of Chu and Liu [1965] and Edmonds [1967] is used. The algorithm is
O(n2), but can only be efficiently used with first-order edge factorization, as al-
ready second-order non-projective parsing is NP-hard [McDonald and Pereira,
2006].

The projective parser [McDonald et al., 2005a] uses the algorithm of Eis-
ner [1996], which is O(n3). However, its advantage is that it can be extended

28

to higher-order edge factorizations; for second-order parsing, this is even with-
out an increase of the computational complexity. Therefore, in later versions of
MSTParser, the Eisner algorithm is used, using an approximate algorithm for
non-projective parsing.

The approach of finding the MST of a weighted graph has also been exploited
for combining multiple parsers in the work of Sagae and Lavie [2006], which we
build upon in Section 4.3.1. For this task, there is no clear use of higher-order
features, and the exact Chu-Liu-Edmonds algorithm thus can be used.

Zeman and Žabokrtský [2005] took a simpler approach to the problem, using
a greedy heuristical search instead of an exact algorithm to try to find the MST;
however, their results seem to be rather competitive, suggesting that even such
approaches might be sufficient in practice.

2.1.4 MSTperl
In the earlier stages of our research, especially in Chapter 3 and Chapter 4, we
use the MSTperl parser.

MSTperl [Rosa et al., 2012a, Rosa, 2015a] is our reimplementation of the
MSTParser of McDonald et al. [2005b]; as the name suggests, the parser is im-
plemented in Perl. We decided to reimplement the parser for research purposes,
as this allowed us to experiment with modifying its internals.1

We originally implemented MSTperl for our previous work on automatic post-
editing of machine translation outputs [Rosa et al., 2012b, Rosa, 2013]. When
we moved to cross-lingual parsing, we found it particularly useful to use a parser
where we can easily access its internals. We benefited from this mainly in two
ways. First, it made it easy for us to use the inference component of the MST-
Parser (i.e. the MST algorithm) to combine parse trees produced by multiple
parsers (Section 4.3.1). And second, it enabled us to directly work with and
manipulate the trained parser models, which we tried to use for parser model
interpolation in Section 4.3.2.

The MSTParser can come in various flavours; in implementing MSTperl, we
used the following particular setup of the parser:
Non-projective The parser is not constrained to producing projective parse

trees, using the Chu-Liu-Edmonds MST algorithm for inference. This vari-
ant was selected in particular because we were originally mainly interested
in parsing Czech sentences, which contain a rather large number of non-
projective edges.

First-order The parser only takes first order features into account, i.e. all edges
are scored independently. This is implied by using the non-projective vari-
ant of the parser (the projective variant can be extended to use second-
order features, where the model scores pairs of edges rather than individual
edges).

Single-best The parser only produces the top scoring parse tree. Variants of
MSTParser that perform k-best parsing also exist, and this might even be
beneficial in our setting; however, we did not experiment with that.

1While even the original implementation of the parser is open-source, we found its source
code to be rather difficult to work with.

29

Unlabelled The original MSTParser is defined as an unlabelled one, producing
only the bare dependency tree without dependency relation labels. Mc-
Donald et al. [2006] suggest to label the parse tree with an independent
second-stage labeller, which we did in [Rosa and Mareček, 2012] and used
in the translation post-editing task. However, for cross-lingual parsing, we
only worked with the unlabelled dependency trees produced by MSTperl.

Closed-form update McDonald et al. [2005a] suggest using k-best parsing in
the training, applying a quadratic programming algorithm to find the min-
imal update of the model weights necessary to separate the correct parse
tree from high-scoring incorrect parse trees by a margin proportional to the
number of incorrectly produced edges. In MSTperl, we only do a closed
form single-best update, adjusting the model weights uniformly to sepa-
rate only the single top-scoring parse tree from the correct one by the error
margin.

Feature set

Our feature set is based on [McDonald et al., 2005a], and consists of various
conjunctions of the following features:
POS We use the 12-value UPT tags of Petrov et al. [2012]. For each potential

edge, we use the POS tag of the head token, the dependent token, their
linear neighbours, and all of the tokens that appear in the sentence between
the head and the dependent tokens.

Distance We compare the positions of the head and dependent tokens in the
sentence by measuring their token-based distance, in a signed way to also in-
corporate the information about their order: positionhead −positiondependent ;
to avoid data sparseness, the distance is bucketed into the following buckets:
+1; +2; +3; +4; ≥+5; ≥+11; −1; −2; −3; −4; ≤−5; ≤−11.

Form We use the word form of the head and dependent tokens.

Lemma We use the morphological lemma of the head and dependent tokens.
We use exactly the same settings of the parser in all experiments; for delexicalized
parsing, the form and lemma features are removed, as will be explained in Chap-
ter 3. The configuration files that contain the feature sets and other settings, as
well as the scripts we used to conduct our experiments, are available in [Rosa,
2015b].

Technical considerations

In our cross-lingual parsing experiments, we trained the parser using only 3 passes
over the training data, instead of the more usual 10 or so, as it has been suggested
to us that this makes the parser perform better in this setting. The idea is that
with more iterations, the parser becomes “overtrained” to the language of the
training data, making it less robust to the transfer to a different language.

Moreover, when training the parser over extremely large datasets, such as a
concatenation of a larger number of treebanks, we only used one iteration over
the training data, since even then the parser took many days to train.

30

As the MSTperl parser is particularly weak in some respects (see the setup
description above), the accuracies obtained when using it are very likely lower
than they could be if a stronger parser was used. However, at that point of
our research, we focused on comparing various setups to each other, rather than
trying to achieve the best absolute accuracies.

Of course, there is a risk that some of the conclusions that we made when using
the MSTperl parser might not be universally valid for other parsers. However,
when we later moved to a much newer state-of-the-art transition-based parser
(Section 2.2), we saw very similar results relatively, suggesting that using one or
another particular parser is not of crucial importance to the general approach.
Still, we did not replicate all of the intermediary experiments, so it is indeed
possible that some of our choices which were based on the performance of the
MSTperl parser might not be optimal for other parsers.

2.2 Transition-based parsing
The approach of transition-based dependency parsing is motivated by the clas-
sical shift-reduce parsing of Aho and Ullman [1972], but replacing the “reduce”
operation with “left-arc” and “right-arc” operations; it is thus also sometimes
referred to as shift-arc parsing. It was introduced in the MaltParser by Nivre
[2003], based on the work of Covington [2001].

2.2.1 Arc-standard transition-based parsing
A transition-based parser operates with a stack and a buffer; at the start of the
algorithm, the buffer contains the tokens of the sentence to be parsed, while the
stack is empty (or contains a technical root node). The algorithm then proceeds
by reading in the input sentence token-by-token, shifting its tokens onto the stack,
and building partial dependency trees on the stack, eventually finishing with an
empty buffer and the final parse tree on the stack.

Each tree on the stack is represented by its root node; other nodes of the tree
than the root node are inaccessible for the algorithm. In each step, the algorithm
decides to perform one of the following operations:

shift Take the token from the top of the buffer and push it onto the top of the
stack as a new root node with no children.

left-arc Pop the top two root nodes from the stack, create a dependency edge
between them, governed by the first node (i.e. the node that was on top of
the stack), and push the resulting tree (i.e. the first node) back onto the
stack.

right-arc Pop the top two root nodes from the stack, create a dependency edge
between them, governed by the second node, and push the resulting tree
(i.e. the second node) back onto the stack.

This base variant of MaltParser is usually referred to as arc-standard, in contrast
to the arc-eager variant of Nivre [2004].

31

The algorithm decides which action to take based on a trained multiclass
classifier,2 using both the contents of the buffer and of the stack to provide input
features. In this way, the algorithm is informed both by its past decisions and by
the input sentence, making the MaltParser stronger than the MSTParser in this
respect.

On the other hand, the parser does not take all possible parse trees into
account, but rather constructs the parse tree greedily, with each action further
limiting its search space – if the parser makes a wrong decision at some point, it
is unable to recover from it later. This makes MaltParser faster than MSTParser
(linear instead of quadratic or cubic), but at the same time making it weaker in
this respect. However, this can be partially alleviated by the use of beam search
[Zhang and Clark, 2008].

The base variant of the algorithm is only capable of projective parsing. To
induce non-projective edges, the algorithm can be enriched by a fourth operation,
“swap”, which can change the order of the nodes [Nivre, 2009].

In the way we described the algorithm, it only performs unlabelled parsing.
However, it is straightforward to extend it to labelled parsing by introducing
labelled arc operations: in the labelled variant of MaltParser, instead of a single
pair of unlabelled “left-arc” and “right-arc” operations, there is a pair of arc
operations for each dependency relation label (e.g. “left-arc-subject”, “right-arc-
subject”, “left-arc-object”. . .); the operation then creates a labelled dependency
edge instead of an unlabelled one. In contrast to MSTParser, parsing and labelling
is thus performed jointly.

2.2.2 Parsito/UDPipe
In our later experiments reported in this thesis, we use the Parsito transition-
based parser of Straka et al. [2015], which is a neural variant of the MaltParser,
following the work of Chen and Manning [2014]. The parser works similarly to
MaltParser, but the action selection is made by a neural network classifier, and
word embeddings are used to represent input features.

We use Parsito as part of the UDPipe pipeline of Straka et al. [2016], which
also contains a tokenizer and the MorphoDiTa tagger of Straková et al. [2014],
which we use for POS tagging.

In comparison to MSTperl, Parsito is rather fast and memory-efficient, both
in training and in inference, and achieves state-of-the-art results. It also natively
supports UD and the CoNLL-U data format, which MSTperl does not. On the
other hand, we are losing the easy access to the parser internals, which we had
with MSTperl. However, we have found Milan Straka to be very responsive both
in providing support for the parser as well as in developing simple introspection
tools that we needed in our research.

Switching to Parsito thus gave us access to a high performance parser with
little compromise. Moreover, a significant added benefit of using Parsito is the
fact that it employs word embeddings on its input, which can be pre-trained on
plaintext monolingual data. In our setting, this allows us to pre-train the word-
embeddings for the cross-lingual parser on target-language plaintext, which can

2Usually using either multinomial logistic regression or support vector machines.

32

serve as a semi-supervised adaptation of the parser to the target language; we
detail this approach in Section 5.3.

Features and configuration

We used Parsito with rather standard settings, except for selectively turning some
input features off and on.

We list here the settings of the parser that we worked with in our research,
reproduced according to the UDPipe manual:3

• embedding upostag (default 20): the dimension of the UPOS embedding

• embedding feats (default 20): the dimension of the Features embedding

• embedding xpostag (default 0): the dimension of the XPOS embedding

• embedding form (default 50): the dimension of the Form embedding

• embedding form file: word embeddings in word2vec textual format

If the dimension of an input feature is set to 0, such feature is not used by the
parser.

The parser is quite oblivious to the meaning of the individual input features;
they are mostly all treated in the same way. For most purposes, they can thus
be simply seen as named references to the columns in the CoNLL-U files. This
makes it possible to conduct various experiments only by modifying the contents
of the respective columns in the datasets and setting appropriate values for the
options listed above, without the need to modify the internals of the parser.

Although we will review the parser settings in the experiment descriptions,
we can already summarize the settings which we frequently use:

• For fully supervised monolingual parsing, we use the default settings.

• For cross-lingual parsing, we usually do not use the morphological features
(feats), as these do not seem to typically port well across languages.

• For delexicalized cross-lingual parsing (Chapter 3), we also do not use the
word forms (form); the parser then only relies on UPOS tags (upostag)
and on the order of the tokens.

• For lexicalized cross-lingual parsing (Chapter 5), we pre-train word embed-
dings on the target language texts with word2vec [Mikolov et al., 2013] and
provide them to the parser (form file).

• For experiments with subselection of fine-grained morphological features
(Section 3.2.1), we sometimes needed to provide two different features in-
dependently to the parser, which we achieved by constructing the input to
contain one of them in the morphological features field (feats) and the
other one in the language-specific tag field (xpostag).

3http://ufal.mff.cuni.cz/udpipe/users-manual#model_training_parser

33

http://ufal.mff.cuni.cz/udpipe/users-manual#model_training_parser

2.3 Parser evaluation
In this section, we explain and thoroughly discuss the two main parser evaluation
measures which we use throughout this work – Unlabelled Attachment Score
(UAS) and Labelled Attachment Score (LAS). We also discuss specifics of parser
evaluation on the UD datasets, and in the cross-lingual setting.

2.3.1 UAS and LAS
Dependency parsers are typically evaluated using two measures: Unlabelled At-
tachment Score (UAS), and Labelled Attachment Score (LAS). Both of these
measures are simply token-level accuracies, taking into account all tokens in the
test data, and giving each token an equal weight in the evaluation.

UAS [Eisner, 1996] only takes the tree structure into account, ignoring the
dependency relation labels. Each token is considered correctly parsed if it is
assigned the correct head; otherwise, it is considered to be parsed incorrectly.
UAS is simply the proportion of correctly parsed tokens – e.g. if there are 10
tokens in the test data, and the parser attaches 8 of them to correct parents, its
UAS is 80%.

LAS assesses both the assigned head as well as the assigned dependency rela-
tion label. While theoretically, the label expresses the relation between the head
node and the dependent node, in practice, it is generally treated as belonging
to the dependency node; thus, each node is assigned exactly one head and one
dependency relation label. LAS then considers a node correctly parsed if it is
assigned both the correct head and the correct dependency relation label; all in-
correctly parsed nodes are treated equally, i.e. it does not matter whether only the
head is incorrect, only the label is incorrect, or both are incorrect. As could be
expected, the LAS of a parser output is the proportion of correctly parsed nodes
under these criteria. LAS is typically used as the standard evaluation measure
for dependency parsing, including e.g. parsing shared tasks [Buchholz and Marsi,
2006, Zeman et al., 2017].

In cross-lingual parsing, UAS has often been used as the standard evaluation
measure, especially in the past; this is still true for unsupervised parsing, as it
is not clear how the dependency relation labels should be devised in an unsuper-
vised way. McDonald et al. [2013] are most probably the first who use LAS for
evaluation of cross-lingual parsing, noting that with the release of GSD, where
dependency relation labels are consistently annotated in the same way across
all languages, reliable evaluation with LAS is finally possible. Tiedemann et al.
[2014] and other researchers then follow this approach, using LAS as the primary
evaluation measure.

From previous work, it seems that UAS was used instead of LAS mostly in the
cases where the evaluated parser actually only produced unlabelled parse trees,
thus making evaluation with LAS impossible. However, in the usual definition
of the parsing task, the parser is expected to produce labelled dependency trees,
which should not be hard to accomplish with the current state of available tree-
bank resources and parsers. Therefore, we see no reason to use UAS instead of
LAS for cross-lingual parser evaluation, and evaluate our parsers using LAS when-
ever possible in this thesis. In older experiments performed with the unlabelled

34

MSTperl parser, we only report UAS, as we did not perform the label assignment
at that time. However, all the final best-performing setups were implemented or
reimplemented using the labelled UDPipe parser, and we report LAS for all of
them.

2.3.2 UD specifics
UD have an (at least) two-layer structure of dependency relation labels: a base
label and potentially a language-specific subtype, as in nsubj:expl used for exple-
tive subjects in French.4 In some cases, especially in fully supervised monolingual
parsing, it may be reasonable to use the full labels for evaluation. However, in the
cross-lingual setting, it seems to make very little sense to use language-specific
labels, as these will mostly be specific to either only the source or only the tar-
get language. Therefore, we omit the language-specific dependency relation label
parts from our evaluations. (Actually, we go one step further, and eliminate the
language-specific subtypes already in the treebanks.)

Furthermore, UD also allow multi-word tokens, multi-token words and elided
tokens. However, we do not deal with these in our work, removing any such
special tokens from our data.5

2.3.3 Other measures
In some works, sentence-level accuracies are also measured, i.e. the proportion of
sentences that are parsed completely correctly; this measure is often denoted EM
(exact match). While this may potentially be interesting for some high-accuracy
parsers, in our setting even the token-level accuracies are considerably low, and
we therefore do not even attempt to measure the sentence-level accuracies.

There are other possible flavours to dependency parser evaluation, the more
common ones including:

• ignoring punctuation nodes,

• ignoring sentences longer than N tokens,

• ignoring the treeness requirement, i.e. accepting general single-headed ori-
ented graphs,

• ignoring the edge direction, i.e. treating both an edge from parent to child
and from child to parent as correct (undirected attachment score).6

While all of these can be regarded as sensible from some points of view and
in some settings, we feel that in general they somewhat obfuscate the reported
results, making them harder to understand and compare. We thus prefer not to
use the alternative evaluation measures in our work.

4http://universaldependencies.org/ext-feat-index.html
5Simply put, we simplify the treebanks by removing any tokens which do have an integer

ID as the value of the first field in the CoNLL-U file.
6This measure is usual in unsupervised dependency parsing [Klein and Manning, 2004].

35

http://universaldependencies.org/ext-feat-index.html

2.3.4 Evaluation on under-resourced languages
In cross-lingual parser transfer research, this work not being and exception, parser
transfer is typically not actually applied to truly under-resourced languages for
which there are no treebanks, since there is no easy way of evaluating such ex-
periments. We follow the usual way of using target languages for which there is
a treebank available and thus the experiments can be easily evaluated, but we do
not use the target treebank for training, thus simulating the under-resourcedness
of the target language.

Still, as some of the target languages we use have only small treebanks avail-
able, they can already be considered somewhat under-resourced. Furthermore,
the newest releases of UD even contain real under-resourced languages, for which
only tiny test treebanks are available.

One also needs to always be careful about which POS tags to use in the tar-
get language. For research purposes, it may be interesting to apply the parser
to target data labelled with manually-assigned gold tags, or with tags predicted
by a tagger trained on the gold tags. However, in practice, we can hardly as-
sume to have access to such POS tags for real under-resourced target languages.
Therefore, we take care to ultimately evaluate our approaches using realistically
obtained taggers; we specifically address cross-lingual tagger induction in Chap-
ter 6.

The other option is to use no POS tags at all. While this is technically
possible, as the parser can be trained using only word forms as input features,
we found that in practice this leads to much worse results with the parsers which
we use, and therefore do not follow that approach in this work.

36

3. Delexicalized Parser Transfer
In this chapter, we introduce our base approach to cross-lingual parsing, the
single-source delexicalized parser transfer.

We explain the general idea of delexicalized parsing in Section 3.1. In Sec-
tion 3.2, we particularly focus on the cross-lingual transfer of delexicalized parsers.
And finally, in Section 3.3, we review our case study of the influence of treebank
annotation style on delexicalized parser transfer.

3.1 Delexicalized parsing
A typical syntactic parser is lexicalized, i.e. it uses the individual word forms as
input features. Usually, it also takes in POS tags as a useful abstraction over
the individual words, which helps it generalize over rare words and rare contexts.
However, the lexical features bind the parser tightly to the vocabulary appearing
in the training data. This may already pose problems in monolingual parsing, e.g.
if the training data is very small. However, it becomes a fundamental obstacle in
cross-lingual parsing, where we intend to apply the parser to a different language,
which, unless handled somehow, is bound to render the learned lexical features
mostly or completely useless.1

One possible way out is to remove the lexical features from the parser, using
only the POS tags (and potentially other morphological features, such as case and
gender), thus obtaining a delexicalized parser. Parsing without lexical features is
an approach taken already by the first grammar-based parsers, and still appearing
in simpler parsing methods. However, in those cases, the starting point already
is a parser that does not take lexical features, i.e. there was no explicit delexi-
calization taking place. In many cases, the lexical features were not used simply
because the parser was unable to handle them efficiently, e.g. because manual
creation of lexicalized grammar rules is an incredibly laborious task. However,
we only talk about delexicalized parsing when one takes an already lexicalized
parser, and then explicitly removes the lexical features from it. This method
was, to the best of our knowledge, introduced by Zeman and Resnik [2008] for
cross-lingual delexicalized parser transfer (see Section 3.2).

In the simplest case of delexicalized parsing, only coarse-grained POS tags,
such as UPOS, are used as the input features. The morphological lemmas ob-
viously need to be removed, since these are lexical features. With fine-grained
morphological features, such as case, number, gender, or tense, the situation is
less clear – they can all be kept, they can all be removed, or some of them may
be kept and others removed, based on what seems to be most appropriate for
the particular setting in which the delexicalized parser is applied. By default, we
remove all of these features; we discuss that in more detail in Section 3.2.1.

Although the delexicalization of the parsing is usually described as removing
the lexical information directly from the treebanks, in practice, we can simply
set up the parser not to use the lexical features. E.g. for the UDPipe parser,
which we use in most experiments, it is sufficient to set the dimension of the

1This problem becomes even more pronounced if the languages vary in the used alphabet.

37

I
PRON

eat
VERB

burger
NOUN

with
PREP

fries
NOUN

I
PRON

eat
VERB

burger
NOUN

with
PREP

hands
NOUN

nmod

obl

a
DET

a
DET

Figure 3.1: An example of a pair of sentences where lexical information is needed
to parse them correctly – both share the same POS tags, but the syntactic struc-
tures differ.

word form embeddings to zero (by default, we do the same for the dimension of
the embedding of the morphological features).2

The delexicalization is inevitably a lossy procedure. For some sentences, their
syntactic structure can be easily determined even without the lexical information,
just based on the POS tags. In other cases, stripping the lexical information in-
troduces ambiguity, as the same sequence of POS tags can have multiple syntactic
analyses.

See Figure 3.1 for an example of such a pair of sentences: “I eat a burger with
fries“ and “I eat a burger with hands”. With lexical information present, none of
the sentences is ambiguous, as fries would be an impractical tool to use for eating
a burger, while hands would be a very peculiar condiment to serve with a burger.
Yet, these two sentences happen to share the same sequence of UPOS tags:

PRON VERB DET NOUN PREP NOUN
Thus, the input to the syntactic parser becomes ambiguous once the lexical in-

formation is stripped; this is actually a common and well-known case of syntactic
ambiguity, where the governing node for an adpositional phrase (“with hands”)
cannot be reliably determined (PP attachment ambiguity).

In such cases, a delexicalized parser will presumably either choose one of the
possible analyses rather randomly, e.g. based on some irrelevant context features,
or lean towards the one which is more frequent in the data. In any case, such
ambiguities inevitably decrease the accuracy of delexicalized parsing, both in the
monolingual and in the cross-lingual setting.

Table 3.1 compares the performances of lexicalized and delexicalized super-
vised monolingual dependency parsers on the UD 1.4 dataset. While the average
difference is 8.8 LAS points, a lot of variance can be observed. Very small drops
(or even an increase) in accuracy can be observed for languages with very small
training treebanks, where the lexical features are too sparse and the general-
izations offered by using POS tags are very useful. However, in general, the
differences in the accuracies depend much more on the particular language than
on the treebank size, as can be seen e.g. in the small drop for the large Indonesian

2--parser=’embedding form=0;embedding feats=0;’

38

Target Lexicalized Delexicalized ∆ TB (kT)
da 77.97 69.74 -8.23 89
el 77.86 66.53 -11.33 47
hu 78.16 65.51 -12.65 33
id 72.46 66.56 -5.90 98
ja 62.83 59.08 -3.75 80
kk 61.30 60.09 -1.21 5
lv 67.77 49.53 -18.24 13
pl 86.63 75.19 -11.44 69
sk 81.86 68.05 -13.81 81
ta 69.44 62.63 -6.81 6
tr 72.09 58.34 -13.75 41
uk 41.49 49.38 7.89 1
vi 61.73 46.74 -14.99 32
AVG 70.12 61.34 -8.79 46

Table 3.1: Comparison of LAS of lexicalized versus delexicalized supervised mono-
lingual parsers on UD 1.4 target treebanks. Training treebank size in thousands
of tokens is also listed.

treebank, while the largest drop is observed for the very small Latvian treebank.
On one hand, the scores of the delexicalized parsers are often somewhat com-

petitive, suggesting that delexicalization might be justified if it enables us to use
a cross-lingual parser transfer approach which we would otherwise be unable to
use, as we will show in Section 3.2. On the other hand, the observed drops are
large enough to motivate approaches that enable us to use lexicalized parsers even
in the cross-lingual setting, which we investigate in Chapter 5.

3.2 Delexicalized parser transfer
In this thesis, we take the single-source delexicalized parser transfer as our base
approach to cross-lingual parsing, upon which we build our methods. The method
was introduced by Zeman and Resnik [2008], who trained a delexicalized parser
on a Danish treebank and evaluated it on a Swedish one.3 They note that while
the lexicons of these two languages will most probably differ significantly even if
they are very close, they may share both many morphological as well as syntactic
properties, which motivates their approach.

As they focus on a pair of very close languages, they try to utilize as rich
morphological annotation as possible, based on the Interset tag conversions (Sec-
tion 1.2.2). In our work, however, we also focus on more distant language pairs,
which is why we only use the coarse POS tags in our base approach, only selec-
tively reintroducing some of the morphological features where appropriate (see
Section 3.2.1).

While the intended use-case is the syntactic analysis of an under-resourced
target language using a resource-rich source language, the authors take the usual

3The authors actually used phrase-structure parsing, even though they operate on
dependency-based CoNLL treebanks, which they first converted into the PennTB-style phrase-
structure trees. However, the key principle of their method is easily applicable both to
dependency-based and constituency-based parsing.

39

Target Source Source-target transfer
language LAS language LAS languages LAS
da 69.74 sv 65.03 sv→da 59.01
el 66.53 bg 76.98 bg→el 53.09
hu 65.51 sv 65.03 sv→hu 46.14
id 66.56 pt 70.21 pt→id 45.56
ja 59.08 fi 54.62 fi→ja 34.74
kk 60.09 hi 72.63 hi→kk 29.67
lv 49.53 fi 54.62 fi→lv 41.07
pl 75.19 cs 67.58 cs→pl 66.34
sk 68.05 cs 67.58 cs→sk 63.71
ta 62.63 hi 72.63 hi→ta 37.69
tr 58.34 fi 54.62 fi→tr 31.21
uk 49.38 ru 70.38 ru→uk 55.19
vi 46.74 cs 67.58 cs→vi 29.69
AVG 61.34 66.11 45.62

Table 3.2: LAS of source and target supervised monolingual delexicalized parsers
and of cross-lingual delexicalized source-target delexicalized parser transfer, i.e.
target data parsed by the source parser. Gold POS tags are used here for both
source and target.

approach of simulating this situation by evaluating on a treebank for a resource-
rich language, as we already explained in Section 2.3.4 – while there is a Swedish
treebank available, its syntactic annotation is only used by the authors to be able
to evaluate their method.

However, the same cannot be said for the target morphological annotation, as
this is used as the input for the parser, and must thus be available even for the
assumedly under-resourced language. While we use the gold morphological anno-
tation from the target treebank in our experiments, we note that the assumption
of its availability is unrealistic, and therefore explore methods for cross-lingual
POS tag induction in Chapter 6. Nevertheless, at this point, we simply note that
such methods exist and perform quite well even in restricted settings. Therefore,
while the absolute accuracies reported for cross-lingual parsing using supervised
target POS tags are unrealistically high, the methods themselves are applicable
even with cross-lingually induced POS tags, and their relative comparisons re-
main similar under such settings, as will be shown later. Thus, we feel confident
applying and evaluating our methods on harmonized supervised target language
POS tags for research purposes.

In Table 3.2, we compare the LAS of supervised monolingual delexicalized
parsers, trained on source and target treebanks, and a delexicalized parser trans-
fer, i.e. the source parser applied to the target data and only evaluated on the
target treebank. The question of how to select an appropriate source language
to use for each target language is an important one, and we devote a significant
part of Chapter 4 to that issue.

As could be expected, the cross-lingual transfer of the parser typically leads
to a huge drop in parsing accuracy. For very similar language pairs, such as
Swedish-Danish or Czech-Slovak, the drop is typically not very dramatic. On
the other hand, for dissimilar language pairs, the drop can be devastating, as in

40

Hindi-Kazakh or Finnish-Japanese; the scores are most probably low enough to
render the resulting parser completely useless. This shows the need to carefully
select the source language (or even combine more of them), as will be discussed
in Chapter 4. However, we can admit upfront that for a target language very
dissimilar to any of the available source languages, we have not been able to
achieve reasonable parsing accuracies by any means.

Interestingly, for one target language in our dataset – Ukrainian – the trans-
ferred parser actually performs better than the supervised monolingual target
parser. This is because of a combination of three factors: the Ukrainian training
data being very small (only 1200 tokens), the accuracy of the source (Russian)
parser being very high, and the two languages being very close. This already
shows the power of cross-lingual parser transfer – Ukrainian is clearly an under-
resourced language here, and even the base cross-lingual approach already delivers
more accurate parsing than the monolingual parser.

3.2.1 Using fine-grained morphological features
In most of our experiments, we only use the coarse-grained UPOS tags, removing
all of the more fine-grained morphological features. This is mainly motivated
by the fact that we found this approach to generally lead to better results than
keeping all of the features. It should be noted here that both MSTperl and
UDPipe do not perform any clever processing of the features by default, taking
the whole string specifying the feature values as an atomic unit. This presumably
leads to considerable data sparseness, as well as insufficient generalization over
the feature values by the parsers.

In [Rosa et al., 2017], we investigated the possibility of subselecting only some
of the features to keep, according to what seems to be shared among the source
and target languages. These experiments were conducted on the VarDial dataset,
with the source and target languages being very close and morphologically rich.
We achieved moderate improvements (around +1.5% LAS) by using only the
case feature and discarding all other features. This was partially motivated by
a similar approach of Collins et al. [1999], who found the morphological case
to be a very informative feature for monolingual parsing of morphologically rich
languages (Czech in particular).

However, we have not been able to substantially improve upon that result,
neither by trying to add other individual features, alone or in conjunction, nor by
trying to empirically measure the level of cross-lingual sharedness of the features
on parallel data.4

Note that even though we used supervised source and target taggers in these
particular experiments, which may lead to problems due to differences in mor-
phological annotation across the languages, we also investigated and eventually
used cross-lingual tagging in that work, still not observing any larger gains in
parsing accuracy.

Moreover, as the notion of a morphological case is by no means shared across
all languages, we have then abandoned this approach altogether in further exper-
iments, reverting to not using any other morphological annotation than UPOS.

4The latter experiments were conducted by David Mareček.

41

This presumably makes our approach more sensible for source and target lan-
guages with a lower degree of grammatical similarity.

Interestingly, our observations are in stark contrast to those of Agić et al.
[2014], who reported large and consistent gains in cross-lingual parsing accuracy
thanks to using rich morphological annotation. Although the authors used a dif-
ferent setup and different languages, which may explain some of the differences in
their and our findings, we believe that the issue of usefulness of fine-grained mor-
phological features for cross-lingual parsing clearly deserves further exploration
in future.

3.3 Case study of annotation style learnability
UD have become the de facto standard for treebank annotation in the last years,
featuring, among other, the attachment of function words (adpositions, deter-
miners, etc.) as leaves. However, it has been argued that Prague style trees are
easier to obtain by using statistical parsers. Among other differences, adposi-
tions (i.e. prepositions and postpositions) provide important cues to the parser
for adpositional group attachment, which is one of the most notorious parsing
problems. This information may become harder for the parser to access when the
adpositions are annotated as leaves.

The UD annotation scheme has been intentionally designed with the idea that
linguistic adequacy or usefulness of the annotation is more important than suit-
ability for a parser. This eventually led to the fact that the selected ways of
annotating some structures may be difficult for a parser to produce. The ap-
proach suggested by de Marneffe et al. [2014] was to use a different annotation
style for parsing, with Prague style adposition annotation, among other, and to
automatically convert the dependency trees to full Stanford style only after pars-
ing. The original paper even suggested that an official parser-friendly version
of USD, easy to convert to and from standard USD, may be defined in future,
although, to the best of our knowledge, this has not materialized. While any au-
tomatic conversions are usually noisy5 to some extent,6 they have been frequently
used in parsing, as we have reviewed in Chapter 1.

The issue of dependency representation learnability has been studied by sev-
eral authors, who generally came to similar conclusions [Schwartz et al., 2012,
Søgaard, 2013, Ivanova et al., 2013]. Notably, all of the authors have found the

5In this thesis, when we say that something is noisy, what we mean is that it is somewhat
inaccurate, imprecise or biased, it does not always give the correct result, it cannot be fully
relied on, thus introducing some additional erroneousness (noise) into the processing pipeline.
We thus use the words noise, noisy in a broad sense, regardless of where the “noise” really
comes from, and to what extent it is random or systematic. We will thus venture to denote a
set of rules as noisy, even if this may sound as a contradiction, since the behaviour of rules is,
by definition, fully predictable: as we are operating in the immensely variable realm of natural
languages, even simple rules applied to our data can lead to very unexpected outcomes, which
we may perceive as noise.

6A 100% accurate and reversible conversion is theoretically possible if both of the represen-
tations capture exactly the same information. However, practice has shown that this is nearly
never the case, as even representations of simple and regular phenomena typically get murky
once they interact with coordinations, nested coordinations, ellipses, multiword expressions,
etc.

42

bar of chocolate

nmod

case

AuxP Atr

chocolate bar

nmod

Atr

Figure 3.2: Stanford style (above) and Prague style (below) analysis of the phrases
“bar of chocolate” and “chocolate bar”. Note that in Stanford style, these phrases
have a more similar structure, both featuring an nmod edge directly from “bar”
to “chocolate”. This shows the principle of constructions with a similar meaning
also having a similar dependency structure.

Prague-style adposition-as-head easier to learn for the parser than the Stanford-
style adposition-as-leaf. Naturally, the experiments were performed with standard
monolingual supervised parsers.

In multilingual and cross-lingual parsing scenarios, the higher cross-lingual
similarity of USD/UD dependency trees may be of benefit. From all of the dif-
ferences between Prague and Stanford, the adposition attachment seems to be
the most interesting, as adpositions are usually very frequent and diverse in lan-
guages, as well as very important in parsing.

In this section, adapted from [Rosa, 2015c], we investigate this problem empir-
ically, by evaluating the influence of adposition annotation style in cross-lingual
multi-source delexicalized parser transfer. Specifically, we use the HamleDT 2.0
collection and the MSTperl parser to evaluate the potential benefit of employing
Stanford style adposition attachment instead of the Prague style in parsing.

3.3.1 Prague versus Stanford
One of the prominent features of Stanford style dependencies is their approach to
function words. The general rule is that all function words, such as adpositions
or conjunctions, are attached as leaf nodes. This is a result of a standpoint which
favours direct dependency relations between lexical nodes, not mediated by func-
tion words. This also makes dependency structures more similar cross-lingually,
as it is very common that the same function is expressed by an adposition in
one language, but by other means, such as morphology or word order, in an-
other language – or even within the same language, as shown in Figure 3.2. On
the other hand, the Prague style dependencies annotate adpositions as heads of
adpositional groups.7

3.3.2 Automatic conversions
We use the HamleDT 2.0 collection of 30 dependency treebanks, which had been
semi-automatically harmonized to Prague dependencies and then Stanfordized

7The lexical nodes are only directly connected in Prague tectogrammatical (deep-syntax)
dependency trees, where function words are removed and their functions are captured via node
attributes. It is worth noting that in general, there is little difference between representing
information by means of node attributes or leaf nodes; thus, Stanford trees and Prague tec-
togrammatical trees are actually very similar in structure. The similarity becomes even greater
with the now-emerging Enhanced UD [Schuster and Manning, 2016].

43

trains with sausages and chocolate

P

P

P P

S

S SS

Figure 3.3: Original Prague style adposition analysis (above), and Stanford style
adposition analysis as produced by the conversion (below). Note that the coor-
dination stays in the Prague style. Edge labels are not shown as we do not use
them in this work.

trains with sausages and chocolate

S

S SS

P

P

P

P

Figure 3.4: Stanford style adposition analysis (above), and Prague style adposi-
tion analysis as produced by the conversion (below). Together with Figure 3.3,
this shows a case where our conversion is imperfect, as we are unable to obtain
the original structure after the conversion roundtrip.

into USD. The treebanks contained in the dataset have been presented in Ta-
ble 1.1.

In these experiments, we use the Prague style version of HamleDT as the basis;
instead of using the full Stanford version, we only focus on one of its prominent
features – adposition attachment. Thus, we alternate between Prague adposition
attachment as head (denoted “P”), and Stanford adposition attachment as leaf
node (denoted “S”), using simple conversion scripts.

• The conversion from P to S takes each adposition and attaches it as a de-
pendent of its left-most non-adpositional child, together with all of its other
non-adpositional children. Thus, the adposition becomes a leaf node, unless
it has adpositional dependent nodes (typically this signifies a compound ad-
position). Coordinating conjunctions are passed through (recursively) – if
the left-most non-adpositional child is a coordinating conjunction, then its
dependent leftmost non-adpositional conjunct is used instead as the new
head of the adposition (see Figure 3.3).

• In the conversion from S to P, each adposition with a non-adpositional
head is attached as a dependent of its head’s head, and its original head is
attached as its dependent (see Figure 3.4).

The roundtrip accuracy of the conversion (UAS after converting from P to S and
back) is around 98% in total, and around 94% for adposition nodes alone.

44

Setup Lex Delex Transfer
Prague 80.54 74.12 56.68
Stanford full 76.47 69.53 48.91
Prague non-punct 80.23 74.00 56.08
Stanford full non-punct 76.84 70.66 50.15

Table 3.3: Prague versus full Stanford annotation style, UAS averaged over 30
target languages.
The Lex icalized and Delex icalized parsers are monolingual.
The Transfer parser is a combination of 29 sources parsers applied to the remain-
ing target language.

3.3.3 Experiment setup
For the multi-source cross-lingual parser transfer, we use an unweighted parse
tree combination approach in the style of Sagae and Lavie [2006], which we will
describe in more detail in Section 4.3.1. The general setup is as follows. One of
the 30 treebanks is taken as the target treebank, and the remaining 29 treebanks
become source treebanks. Then, delexicalized parsers are trained on the source
treebanks, resulting in 29 trained parser models. Next, each of the parsers is
applied to each sentence in the test section of the target treebank. And finally,
the obtained parse trees for each sentence are combined together using the Chu-
Liu-Edmonds MST algorithm, and the resulting dependency tree is evaluated
against the target treebank annotation.

Note that there are three places where a conversion from one annotation style
to another may take place – conversion of the source treebank before training a
parser, conversion of the parser output before the parse tree combination, and
conversion of the parse tree combination output. We will denote the setups us-
ing the pattern“X/Y/Z”, where “X” denotes the annotation style used for parser
training and parsing, “Y” is the style into which the parser outputs are converted
before being combined, and “Z” is the style into which the result of the combi-
nation is converted. Furthermore, “P,S/Y/Z” will refer to parsing both with “P”
style parsers and “S” style parsers, thus resulting in 58 trees for each sentence
to combine, rather than 29. In many setups, there is no conversion after the
combination, or there is even no combination performed (in monolingual setups);
therefore, we will often omit the last part of the pattern, using only “X/Y”.

3.3.4 Full Universal Stanford Dependencies
As a preliminary experiment, we compared the Prague version with its fully
Stanfordized version. The results are shown in Table 3.3. It can be seen that the
Stanford version performs much worse than the Prague one – its results are lower
by around 5 UAS points.

Closer inspection showed that many of the errors are actually due to sentence-
final punctuation attachment. In Stanford style, sentence-final punctuation is to
be attached as a dependent node of the root node of the sentence (typically
the main predicate). However, this is difficult for the first-order parser, as it
has no knowledge of the root node when scoring the potential edges, and thus
the punctuation gets often attached to some other verb. In Prague style, the

45

Setup Lexicalized Delexicalized
P/P 80.54 74.12
S/P 78.44 72.65
S/S 79.77 73.91
P/S 80.23 73.94

Table 3.4: Average UAS of supervised monolingual parsers, both lexicalized and
delexicalized.

sentence-final punctuation is attached to the technical root node, which is marked
by special values of the node features, and thus the assignment is very easy to
make. While this is an important point to keep in mind when parsing into full
Stanford style, it is of little relevance to the goal of this work – punctuation
attachment is rarely important in NLP applications, and is not very likely to
substantially contribute to cross-lingual dependency structure similarity either.
For this reason, we also include UAS measured only on non-punctuation nodes.
Still, adposition attachment, which we are mostly interested in, accounts for only
a part of the score difference.

3.3.5 Prague versus Stanford adpositions
Further on, we only use the Prague style annotation of the treebanks, with ad-
positions annotated either in Prague style (P) or Stanford style (S).

Supervised parsers

We first evaluate supervised monolingual lexicalized and delexicalized parsers,
alternating between the P and S annotation styles of adpositions. The results in
Table 3.4 show that in the lexicalized setting, the UAS of the P style parser is
+0.77 above the S style parser. Actually, to obtain S style parse trees, it is better
to parse the text using a parser trained on a P style treebank, and then convert
the output parse trees (this yields a +0.46 higher UAS than parsing directly using
an S style parser). Here, the adpositions clearly provide important information
to the parser, and their annotation as heads benefits the results.

In the delexicalized setting, the P style parser scores higher than the S style
one only by a small margin (+0.21 UAS). Moreover, parsing directly using the S
style is now comparable to parsing using P style and then converting to S style.
This suggests that the most important piece of information for correctly attaching
an adposition is its lemma (or word form), and delexicalizing a parser thus reduces
the advantage of P style annotation for correct adposition attachment.

29-to-1 delexicalized parser transfer

We now move on to the main focus of our work, evaluating the effect of adposition
annotation style in cross-lingual transfer of 29 delexicalized source parsers to a
target language using parse tree combination.

Table 3.5 shows that using either P or S for everything leads to comparable
results, with the S style now achieving a slightly better score (+0.20 UAS on
average). The results tend to get worse when additional conversions are per-
formed; we thus omit such setups from further evaluation. Interestingly, slight

46

P style output S style output
Setup UAS Setup UAS

P/P/P 56.68 S/S/S 56.88
P/S/P 55.43 S/P/S 56.31
S/S/P 55.51 P/P/S 56.48
S/P/P 55.84 P/S/S 56.80
P,S/P/P 56.81 P,S/S/S 57.07
P,S/S/P 55.71 P,S/P/S 56.67

Table 3.5: Average UAS of various setups of delexicalized parser transfer, al-
ways using 1 language as target and the remaining 29 languages as source.
The setup details the annotation style (Prague or Stanford) used for train-
ing/combining/evaluating the parsers.

improvements can be obtained by applying both P parsers and S parsers and
combining them after conversion of the resulting trees to the S style, achieving a
total average increase of +0.39 UAS absolute over the P style baseline.

Table 3.6 shows detailed results of the better-performing transfer setups for all
target languages, together with the results of the supervised monolingual meth-
ods. We can see that employing the S style annotation in the cross-lingual transfer
leads to comparable or slightly better results. This indicates a potential benefit of
the S style annotation in a cross-lingual setting, presumably due to the increased
similarity of the dependency structures across languages.

Smaller source treebank subsets

For a deeper insight and further confirmation of our findings, we also performed a
set of experiments with smaller 3-member subsets of the treebank collection. We
selected several treebank groups, based on the ratio of adposition tokens to all
tokens. We also only chose large enough treebanks (more than 100,000 tokens).
The subsets are listed in Table 3.7; we also used a larger “All9” set of all the
9 selected treebanks. Only these were then used for training; the remaining 21
languages were used for testing as target languages.

The summary results are to be found in Table 3.8. For these datasets, the
advantage of employing the S style in combination with P style becomes clearly
visible, frequently leading to better results than when using only the P style.
Moreover, converting the parse trees to S style before combining them is also often
better than converting them to P style. The improvements are large especially
for the High, Low and Mix datasets. This suggests that the role of Stanford style
is stronger with small and highly diverse datasets, where its benefit of making the
dependency trees more similar becomes rather important.8 For the High dataset,
the best result surpasses the Prague-only baseline by as much as +2.24 UAS
absolute on average, yielding a better result for 19 of the 21 target languages.

8Of course, this is only a speculation, as there are many other properties of the source
treebank subsets which we were unable to factor out that may influence the results – e.g. the
High and Low subsets contain genealogically highly varied languages, but we were unable to
find such a varied subset among the languages with a medium frequency of adpositions.

47

Tgt Delexicalized supervised Delexicalized transfer
lang P/P S/S P/S P/P P,S/P S/S P,S/S
ar 69.61 69.29 69.50 44.61 44.99 43.16 44.13
bg 83.87 82.76 83.32 73.17 72.72 72.24 72.65
bn 77.59 78.82 77.59 59.98 60.34 60.47 60.22
ca 79.71 79.03 79.33 66.45 66.38 65.61 66.07
cs 70.99 70.69 70.69 64.06 64.14 63.62 63.93
da 81.13 80.31 80.67 63.74 63.53 62.82 63.09
de 77.52 76.92 77.47 52.58 55.17 55.95 55.32
el 75.40 75.15 74.73 67.05 67.69 67.63 67.78
en 76.57 76.19 76.03 46.13 48.23 47.65 47.09
es 79.75 78.52 79.25 69.73 69.61 68.85 69.17
et 80.96 82.85 80.75 71.34 72.07 74.06 74.48
eu 68.34 68.41 68.34 46.12 45.92 46.15 46.07
fa 70.44 71.72 70.78 54.69 54.77 56.41 56.69
fi 63.10 62.51 63.13 51.48 51.17 50.60 51.08
grc 48.92 49.10 48.80 46.24 46.38 46.48 46.50
hi 80.55 80.52 80.52 30.12 29.64 33.23 33.64
hu 72.54 71.79 72.34 59.68 59.89 60.50 60.81
it 77.49 76.57 76.92 64.52 65.13 64.44 64.50
ja 81.72 84.03 84.35 44.23 42.64 44.02 44.88
la 44.08 44.12 43.81 41.14 41.28 41.34 41.47
nl 74.02 73.70 73.57 62.47 62.04 63.81 63.80
pt 80.14 78.68 79.77 71.35 71.60 71.14 71.26
ro 85.19 85.34 84.85 59.66 59.85 58.52 58.67
ru 73.08 72.70 72.90 63.82 63.65 62.43 63.13
sk 71.38 70.88 70.93 63.66 63.73 63.36 63.62
sl 72.91 72.93 72.69 54.40 53.68 53.80 53.68
sv 78.84 77.97 78.18 62.08 62.18 62.22 61.60
ta 68.17 67.92 67.62 38.76 39.01 37.66 38.91
te 85.59 84.09 85.59 66.83 66.16 67.00 66.50
tr 73.99 73.72 73.72 40.39 40.82 41.28 41.26
Avg 74.12 73.91 73.94 56.68 56.81 56.88 57.07

Table 3.6: UAS of supervised delexicalized monolingual parsers and delexicalized
transfer parsers.

48

Subset ADP freq. Language
15% Spanish

High 19% Hindi
19% Japanese
9% Czech

Med 8% English
9% Swedish
0% Basque

Low 4% Ancient Greek
1% Hungarian

15% Spanish
Mix 9% Swedish

1% Hungarian

Table 3.7: Subsets of source treebanks, selected according to their frequency of
adposition tokens.

Setup High Med Low Mix All9
P/P 40.53 52.00 44.53 41.03 54.98
P,S/P 41.29 52.57 45.00 41.75 55.37
S/S 41.36 51.64 43.69 41.95 54.85
P,S/S 42.77 52.67 46.41 42.66 55.42

Table 3.8: UAS of delexicalized parser transfer, averaged over 21 target languages,
with the specified subset treebanks as sources.

3.3.6 Summary
In this section, we investigated the usefulness of Stanford adposition attachment
style as an alternative to the Prague style in dependency parsing, using a large set
of 30 treebanks for evaluation. We especially focused on an evaluation in multi-
source cross-lingual delexicalized parser transfer, as one of the targets behind
the design of USD and UD is to be more cross-lingually consistent than other
annotation styles.

We managed to confirm that for supervised parsing, Prague annotation style is
favorable over Stanford style, as has been already stated in literature. However, in
the parser transfer setting, Stanford style adposition attachment tends to perform
better than the Prague style, presumably thanks to its abstraction from the high
interlingual variance in adposition usage.

Best results are achieved by combining outputs of parsers trained on treebanks
of both Prague and Stanford adposition attachment style, reaching an average
improvement of +0.39 UAS absolute over the Prague style baseline. Our results
are further confirmed by experiments using smaller and more diverse subsets
of training treebanks, where the advantage of combining Prague and Stanford
adposition annotation style becomes even more pronounced, reaching average
improvements of up to +2.24 UAS absolute over the Prague style baseline.

However, we have not further focused on that path in our research. In the
further chapters, we thus only use Stanford-style annotations for all experiments,
employing either the Stanfordized HamleDT 2.0 treebanks, or the UD 1.4 tree-
banks.

49

We would also like to note that we only used the first-order non-projective
MSTperl parser in all experiments reported in this section; therefore, our conclu-
sions may only be valid for that parser.

50

4. Using Multiple Sources
Multiple potential source treebanks for resource-rich languages are usually avail-
able, and it is non-trivial to select the best one for a given target language.
While mostly ignored at first, the problem became rather clear with more and
more treebanks becoming available, and researchers in cross-lingual parsing have
made various attempts at solving it (see Section 4.1), including both methods of
selecting one best source to use, as well as combining multiple sources.

The key part of this chapter, as well as of the whole thesis, is our attempt
at solving this problem, using a designated language similarity measure, and a
refurbished method for parser combination.

In Section 4.2, we introduce KLcpos3 , our language similarity measure based
on Kullback-Leibler divergence of probability distributions of coarse POS tag tri-
grams, estimated from POS-tagged corpora for the source and target languages.
The measure has been designed and tuned specifically for multilingual delexical-
ized parser transfer, to be used both to select the most similar source language for
a given target language, as well as to assign weights to multiple source languages
in a multi-source combination. We developed two alternative approaches for per-
forming such a combination: parse tree combination, described in Section 4.3.1,
and parser model interpolation, introduced in Section 4.3.2.

In Section 4.4, we first evaluate the measure in the setting for which it was
originally designed and tuned, namely delexicalized parser transfer using gold
target POS tags. We show that in a single-source setting, KLcpos3 often succeeds
in selecting the best available source treebank for a given target language, or,
in many other cases, selects a different but competitive one. In the multi-source
parse tree combination approach, KLcpos3 is often able to appropriately weight
the available source treebanks, so that their weighted combination outperforms
an unweighted one in many cases as well as on average.

Interestingly, KLcpos3 has also been shown to perform well in various modifi-
cations of the original setting, for which it was not originally designed or tuned.
It stays accurate when computed on cross-lingually induced POS instead of gold
ones, as shown in Section 4.4.2 and independently confirmed by Agić [2017], who
also shows it to outperform other language similarity measures in that setting. It
is also successful in lexicalized parsing instead of delexicalized (Chapter 5), and
even when applied to cross-lingual POS tagging instead of parsing (Chapter 6).

Thus, eventually, our ultimate best-performing setup successfully uses KLcpos3

at several places. We therefore consider KLcpos3 to be the key component of our
approach, and the most important invention presented in this thesis.

Some parts of this chapter are adapted from [Rosa and Žabokrtský, 2015a]
and [Rosa and Žabokrtský, 2015b].

4.1 The problem, and previous approaches to it
In cross-lingual parsing, we need to transfer the knowledge of a source language to
a target language. While it has been always understood that the source language
should be similar to the target language, this is easier said than done. Moreover,
with the current explosion of the pool of easily available treebanks within the UD

51

project, with 102 treebanks for 60 languages currently being available, the choice
is huge and thus even harder to make.

Various approaches have been used in the past, both to select the one best
source treebank, as well as to use multiple (or all) of the available treebanks
combined.

4.1.1 Ignoring the problem
Many works on cross-lingual parsing do not explicitly address this problem, either
pre-selecting a fixed source language as in [Zeman and Resnik, 2008], or trying
each of the available source languages and then choosing the best performing one.
However, as already noted by McDonald et al. [2011], in the intended real-world
scenario, one does not have access to information about the accuracy of the cross-
lingual parsing on the target language, and thus cannot use it to select the source
language.

Oracle treebank

The common approach, especially in earlier works and with a smaller number
of available source treebanks, was to simply try one source after another, and
report all of the scores, usually emphasizing the highest achieved score as the
result. Such an approach does indeed truthfully assess the potential of the cross-
lingual parser transfer, showing the highest accuracy achievable by a single-source
transfer.

However, one should always bear in mind that the evaluation of the method
on annotated target language treebanks is only a proxy evaluation, as in the
intended scenario, the methods are applied to under-resourced languages, where
such an evaluation is impossible. Consequently, one cannot use the evaluation on
a target treebank as a method of choosing the source treebank to use, as assuming
the availability of such information is overly optimistic.

Therefore, we refer to a source treebank chosen in that way as the oracle
source treebank, and consider the transfer from the oracle source treebank to the
target language as an upper bound approach.

4.1.2 Treebank concatenation
The first work to explicitly acknowledge this problem is that of McDonald et al.
[2011], who applied delexicalized cross-lingual parser transfer in a setting with
multiple source treebanks available, finding that a treebank for a language that
is typologically close to the target language is typically a good choice for the
source treebank, but noting that the problem of selecting the best source treebank
without access to a target language treebank for evaluation is non-trivial.

As a work-around, the authors propose a simple resource combination method,
concatenating all of the available source treebanks into one large multilingual
treebank, and training one multilingual delexicalized parser on it, thus effectively
eliminating the problem of having multiple source treebanks. This leads to better
results than the average over individual single-source parsers, but worse than
using only the oracle single-source parser.

52

The method is a rather simple one, and has several obvious drawbacks. Most
importantly, it does not address the language similarity at all, using the same
source combination for all target languages, which may be appropriate for some
of them but less appropriate for other. It also does not deal with the fact that
the source treebanks typically vary in size, which leads to the larger treebanks
having more influence on the results. Moreover, it is also quite impractical, as
training the parser on the large treebank concatenation can be computationally
very demanding.

It is worth noting that we are unaware of any source-selection or source-
weighting method that would explicitly take source treebank sizes into account,
even though it is clear that these have an important influence on the results, as
demonstrated by Tiedemann and Agić [2016]. To the best of our knowledge, all
existing methods either explicitly ignore the treebank sizes (either by giving the
same power to all sources, or even by cropping the larger source treebanks), or
behave similarly to the base treebank concatenation method by implicitly giving
more power to larger treebanks without any further normalization or a discussion
of the appropriateness of such an approach. We believe this shortcoming of the
current approaches to constitute a promising path for future research.

4.1.3 Using the World Atlas of Language Structures
We have introduced the WALS typological database in Section 1.5.2.

If one focuses only on one or a few languages, it is reasonable to look these
up in the database manually to investigate their properties. In some scenarios,
this may be sufficient to choose the appropriate approach for handling such a
language. However, since our field of study tries to focus on many languages at
once, automatic processing is a much more palatable option.

The work of Naseem et al. [2012] is the first known to us to explicitly use
WALS features in cross-lingual parsing, followed by Søgaard and Wulff [2012]
and Täckström et al. [2013b]. These authors focused on shared genealogical clas-
sification of the languages and on shared values of important word-order features
to estimate source-target language similarity.

An interesting approach appearing in the cited works is selective enabling
or disabling of the sensitivity of the parser to word order, based on matches
or mismatches in the relevant WALS feature values. In particular, the authors
note that for a target language which is rather dissimilar to any of the source
languages, delexicalized transfer achieves better results if word order is completely
or selectively ignored, in the sense that the parser only looks at the absolute
distances of words but not their order. This is motivated by the observation
that languages, at least when being observed only through POS, become more
similar if we disregard word order. However, our preliminary experiments in that
direction did not show much potential there.

Another possible way of employing the word-order features in WALS is by
using pre- or post-reordering, thus forcibly making the source language word order
more similar to the target one (or the other way round), as done by Aufrant et al.
[2016]; such approaches are well known in MT [Xia and McCord, 2004, Collins
et al., 2005, Lerner and Petrov, 2013, Hardmeier et al., 2014].

Recently, Agić [2017] used WALS in a similar but simpler way, estimating

53

the similarity of a pair of languages by computing the Hamming loss on all of
the available WALS features. We reimplement and investigate this approach in
our work in Section 4.4.2. The approach bears a striking similarity to the work
of Duong et al. [2015], who seem to have used an identical approach, but only
limiting themselves to WALS features capturing word order, and only using the
estimated similarity for source selection, not source weighting.1

An interesting and partially related method was devised by Berg-Kirkpatrick
and Klein [2010], who used information on language phylogeny to improve unsu-
pervised parsing [Klein and Manning, 2004] by introducing a phylogenetic prior
to couple languages based on their phylogenetic similarity.

4.1.4 Looking at part-of-speech tags
Søgaard [2011] trains a POS language model on a target POS-tagged corpus, and
uses it to filter the source treebank, keeping only sentences that look like target
language sentences to the language model. This decreases the size of the training
data, but can still lead to improvements in the parsing accuracies if the threshold
is set appropriately.

To the best of our knowledge, our approach of measuring language similarity
using the KL divergence [Kullback and Leibler, 1951] of distributions of POS
trigrams, which we first presented in [Rosa and Žabokrtský, 2015b], is novel.
Interestingly, Duong et al. [2015] seem to have independently developed a very
similar method, comparing distributions of POS n-grams of lengths 1 to 6 with
the Jensen-Shannon (JS) divergence [Lee, 2001], which is a symmetrization of
KL divergence. We compared the performances of KL divergence, JS divergence,
and cosine similarity already in our original work, finding the KL divergence to
perform best; we review these experiments in Section 4.2.5.

Our work also bears some similarity to Plank and Van Noord [2011], who
apply KL divergence in a slightly different (and monolingual) setting. Although
the authors mention individual POS tags (not POS n-grams) as one of the po-
tential features whose distributions could be compared with KL divergence, they
eventually settle for only relying on plain texts, noting that the reliance on POS
tags would introduce additional noise. We review this work in Section 4.1.5.

4.1.5 Looking at words and characters
Interestingly, using POS tags for estimating language similarity seems to predate
employment of words and characters for the same purpose in cross-lingual pars-
ing. This is probably due to the fact that most early approaches assumed the
availability of POS tags in both the source and the target, thus making them
a readily available and easy-to-use feature. As has been already explained in
Section 3.1, harmonized POS tags have been repeatedly shown to be a great mul-
tilingual abstraction over the texts in various languages, while working directly

1Duong et al. [2015] use cosine similarity, while Agić [2017] uses Hamming loss. As they
apply it to binary vectors, we would expect the results to be identical, although this depends
on the exact implementation they use, especially regarding empty feature values (which are
plentiful in WALS). Unfortunately, none of the authors describe their approach in sufficient
detail.

54

with word forms is trickier, and presumably can be expected to perform well only
for lexically similar languages.

Estimating domain similarity

A problem somewhat similar to measuring language similarity is measuring do-
main similarity; the task of cross-lingual parser transfer could thus be regarded
as a specific case of domain adaptation [McClosky et al., 2006, 2010]

Several similarity measures have been evaluated by Van Asch and Daelemans
[2010] for monolingual domain adaptation of POS tagging, and Plank and Van No-
ord [2011] extended this work to other tasks, including monolingual cross-domain
parser transfer. One of the investigated measures was the KL divergence mea-
sured on probability distributions of relevant features estimated from the datasets.
Van Asch and Daelemans [2010] only compute the similarity measures on relative
frequencies of words, while Plank and Van Noord [2011] extend this by alterna-
tively using character tetragrams. They also investigate other measures, including
JS divergence, Manhattan distance, and cosine distance.

Plank and Van Noord [2011] also suggest using POS tags, but dismiss them as
introducing additional noise. While this is probably reasonable in a monolingual
setting, the situation is reversed in the cross-lingual setting, where we cannot rely
much on finding identical words or character n-grams across different languages,
making the POS tags a more appealing abstraction, even if somewhat noisy.

Using a language identification tool

Agić [2017] takes a similar approach, but rather than developing the comparison
method from scratch, they utilize an already existing tool, although originally
designed for a slightly different purpose – the langid.py tool of Lui and Baldwin
[2012].2

The langid.py tool is a state-of-the-art solution for language identification,
i.e. the task of determining in which language a given piece of text is written.
The tool is based on detecting character n-grams (from unigrams to tetragrams)
characteristic for each language. Rather than simply comparing the n-gram dis-
tributions, it takes a multi-step approach in estimating the informativeness of
each n-gram for language detection, as the authors note that some n-grams seem
to characterize the topic or domain of the text rather than its language. Even-
tually, the decision about the most likely language of the input piece of text is
performed by a Naive Bayes classifier.3 The langid.py tool comes pre-trained to
detect approximately 100 languages, but can be trained on monolingual plaintext
data to detect other languages as well. There is also a possible setting of the tool
to restrict the detection only to a given set of languages.

Agić [2017] uses the langid.py tool in two ways. First, they note a problem
not previously addressed in cross-lingual parsing – the identification of the target
language. The authors argue that it has been always implicitly or explicitly
assumed that one knows which language the target text is written in, although

2https://github.com/saffsd/langid.py
3The authors incorporate a prior distribution over languages into their approach, propor-

tional to the sizes of texts in the individual languages provided to the tool in training. Thus,
the tool is intentionally biased towards resource-rich languages.

55

https://github.com/saffsd/langid.py

this may not be always the case. Here, they employ langid.py in a standard
way. However, one may first need to train additional detection models for other
languages which are suspected to be likely to appear on the input. While we
acknowledge the sensibility of this approach, we do not follow this path in our
work, simply assuming that we know the identity of the target language, whenever
necessary.

The second and more interesting employment of the langid.py tool is for
finding a source language most similar to the target language. The method em-
ployed by Agić [2017] is to limit the langid.py identifier only to the available
source languages (excluding the target language), and to apply it in this setting
to the target text. The belief is that, prevented from correctly identifying the
actual target language, the tool will instead identify the source language which is
most similar to the target language, thus accomplishing the source selection task.
While the authors note that this heavily relies on orthographic similarity of the
languages, which only has a limited power in this scenario,4 the approach is shown
to achieve some success. Nevertheless, in their experiments, langid.py performs
worse both than KLcpos3 and WALS. Therefore, we omit it in our experiments.

4.1.6 Combining multiple sources
Since multiple sources are available, a viable solution might also be not to select
and use just one of them, but to combine multiple or all of them to exploit them
best. The combination can be performed at various stages of the processing.

Combine treebanks

The base approach is the already mentioned treebank concatenation method of
McDonald et al. [2011].

Søgaard and Wulff [2012] improved the method by enriching it with weight-
ing. They used a POS n-gram model trained on a target POS-tagged corpus
to weight source sentences by their similarity to the target language (using per-
plexity per word). They then incorporate the sentence weights into the training
of the linear model of the easy-first parser of Goldberg and Elhadad [2010] by
substituting the original structured perceptron training [Collins, 2002] with the
weighted perceptron approach of Cavallanti et al. [2010].

Combine parser outputs

The parse tree combination method was introduced by Sagae and Lavie [2006]
for a supervised monolingual setting, applying several independent parsers to the
input sentence and combining the resulting parse trees using a MST algorithm. A
simpler variant of the method was previously employed by Zeman and Žabokrtský
[2005], who used a greedy approach instead of the MST algorithm, leading to
suboptimal but competitive results.

The combination is performed following the approach of McDonald et al.
[2005a], who formulated the problem of finding the parse tree of a sentence as a
problem of finding the MST of a weighted directed graph of potential parse tree

4This is particularly obvious for close languages that use a different writing script, such as
Hindi and Urdu.

56

edges. In the tree combination method, the weight of each edge is defined as the
number of parsers which include that edge in their output. To find the MST, one
can use either the algorithm of Eisner [1996], as done by McDonald et al. [2005a]
for projective parsing, or the Chu-Liu-Edmonds algorithm [Chu and Liu, 1965,
Edmonds, 1967], which was used by McDonald et al. [2005b] for non-projective
parsing.

Conveniently, the tree combination method can be easily ported from a mono-
lingual to a multilingual setting, where the individual parsers, now delexicalized,
are trained over different languages. To the best of our knowledge, our work in
[Rosa and Žabokrtský, 2015b] was the first to do so; we detail our approach in
Section 4.3.1.

A nice feature of this tree combination approach is the straightforward pos-
sibility of assigning weights to the individual parsers, as done by Surdeanu and
Manning [2010] in a monolingual setting. They let each parser contribute with
a weight based on its performance (UAS), thus giving a more powerful vote
to parsers that seem to be better on average (the weights of identical votes
are summed). This approach was used and further refined e.g. by Green and
Žabokrtský [2012].

In the cross-lingual transfer, we are more interested in the similarity of the
source and target languages, as we would like to give more power to parsers
trained on closer languages. Thus, we also introduce a weighted variant of the
method in the cross-lingual setting, using our KLcpos3 language similarity esti-
mation to weight the source parsers; this was also already part of [Rosa and
Žabokrtský, 2015b].

This approach was later adapted by Agić [2017] in a somewhat different setting
with a sightly modified variant of the KLcpos3 measure, finding it to outperform
other similarity measures that he proposed; a linear interpolation of the measures
was observed to perform even better.

We note that the monolingual accuracy of the parser may also be of interest
even in the cross-lingual setting, as e.g. parsers trained on small treebanks can
be expected to perform poorly both monolingually and cross-lingually, even if
applied to very similar languages. However, it is not clear how to combine these
two signals. We have not experimented with incorporating any estimate of the
parser accuracy, nor are we aware of any other work doing so; this could thus
constitute an interesting subproblem for future research.

Combine parser internals

In the parse tree combination approach, there is a lot of information potentially
lost, as each of the source parsers considers many possible parse trees for the
sentence, but only outputs one, without any indication of how confident it is
about this particular parse tree, or what alternatives there are. This leads to the
idea of leveraging the internals of the parser.

Specifically, it seems intuitively reasonable to try to use the scores which the
parser assigns to its decisions – such as the edge scores in the MSTParser –
and to try to postpone the parse tree induction step till after the multi-source
combination, i.e. using the complete weighted graph of all possible edges for the
combination.

57

We explored this idea in our work on MSTParser model interpolation – which,
due to the nature of the first-order MSTParser model, is equivalent to interpolat-
ing the predicted edge scores. We presented our research in [Rosa and Žabokrtský,
2015a] and review it in Section 4.3.2. However, we have not found this approach
to perform better than the simpler tree combination method, and thus abandoned
it. As we later realized, this may have been due to the edge scores taken directly
from the MSTParser model not being good indicators of the parser confidence.
Mejer and Crammer [2012], in a work previously unknown to us, present a range
of well-performing methods of per-edge confidence estimation in the MSTParser,
which, we believe, might be the key component missing in our implementation to
achieve an interesting performance of the interpolation method.

We are not aware of any prior work on interpolating dependency parser mod-
els. However, there is work on interpolating trained phrase-structure parsers,
both in a monolingual setting for domain adaptation by McClosky et al. [2010],
as well as the interpolation of multilingual probabilistic context-free grammars of
Cohen et al. [2011].

Interestingly, there is a later work of Agić et al. [2016] revisiting our idea of
trying to utilize the edge scores predicted by the parser for all of the possible
edges, this time in a lexicalized cross-lingual projection of parser outputs over
multi-parallel data. As the authors used a different parser – the TurboParser
of Martins et al. [2010] – it is not completely clear whether the observations of
Mejer and Crammer [2012], which they do not refer to, may also apply to them.
However, similarly to us, they do not observe any gains from using the parser
scores.

4.2 KLcpos3 language similarity measure
In this section, we present KLcpos3 , our language similarity measure based on
KL divergence [Kullback and Leibler, 1951] of POS tag trigram distributions in
tagged corpora.

It has been designed for multi-source cross-lingual delexicalized parsing, both
for source treebank selection in single-source parser transfer, which has been de-
scribed in Section 3.2, and for source treebank weighting in multi-source transfer,
which will be described in Section 4.3.1.

We present and motivate the formula for computing KLcpos3 in Section 4.2.1,
and explain how we use it for source selection in Section 4.2.2 and for source
weighting in Section 4.2.3. Section 4.2.4 discusses the POS tags to use for com-
puting the measure, and Section 4.2.5 details the process of tuning the exact
definition of the measure. We include intermediary evaluations on the Ham-
leDT 2.0 development treebanks subset throughout this section; evaluations on
other datasets will be presented in Section 4.4.

4.2.1 The formula
The measure is based on comparing estimated probability distributions of POS
sequences that appear in the source and target languages. This is motivated by
the fact that POS tags constitute a key feature for delexicalized parsing.

58

de cs en it
0%

1%

2%

3%

DET ADJ NOUN

DET NOUN ADJ

#start ADJ NOUN

Figure 4.1: Example of estimated probability distributions of several selected
POS trigrams in four languages.

The probability distributions are estimated as relative frequencies of POS tag
trigrams in the treebank training sections:

P̂ (cposi−1, cposi, cposi+1) = count(cposi−1, cposi, cposi+1)∑
∀cposa,b,c

count(cposa, cposb, cposc)
; (4.1)

we use a special value for cposi−1 or cposi+1 if cposi appears at sentence beginning
or end. It is important that the POS tags used are rather coarse; we discuss that
in more detail in Section 4.2.4.

See Figure 4.1 for an example of the estimated probability distributions of
three POS tag trigrams in four languages. It can be seen that, at least as far as
these particular tag sequences are concerned, the English and German languages
are quite close to each other, while both Italian and Czech are quite distant from
any of the languages.

The particular tag sequences used in this example correspond to the way
noun phrases are formed in these languages. Italian has a slight preference of the
adjectives to follow the nouns they modify, although they also often precede them;
however, in all the other languages, the adjective-noun POS bigram is much more
frequent than the noun-adjective one. Furthermore, except for Czech, all of the
languages typically start a noun phrase with a determiner, so it is common for a
determiner to precede an adjective, and rare for the adjective to immediately start
a sentence; in Czech, where determiners are rare, this is the other way round.

Intuitively, when an automatic parser is applied to analyze the structure of
a noun phrase in a given target language, one should use a parser trained on a
source language that structures noun phrases similarly, so that it can produce
the correct analysis. While we assume not to have syntactically annotated data
for the target language, Figure 4.1 shows that already morphologically annotated
data can suggest a lot about the syntax of the language. This is the motivation
behind estimating language similarity from probability distributions of POS tag
n-grams.

Furthermore, if we were to analyze English noun phrases by either an Italian
or a Czech parser, we expect Italian to be a better choice, since the DET-ADJ-
NOUN sequence is well known to it, while this is not true for the Czech parser.
Moreover, even though the Italian parser also expects to see the inversely ordered
DET-NOUN-ADJ sequences on the input, which are rare in English, this might
not matter much, since this simply means that the ability of the parser to analyze
such sequences will remain unexploited when applied to English. This would

59

however pose a problem in the other direction, using an English parser to analyze
Italian noun phrases, since the DET-NOUN-ADJ sequence would presumably
confuse the parser greatly, as it is not used to encountering it, and therefore
presumably unable to handle it correctly. This motivates our use of KL divergence
in a particular direction.

We first represent here the general formula for KL divergence from Q to P ,
DKL(P ||Q), where P and Q are two discrete probability distributions, P being
the true or expected distribution, and Q being an approximation or model of P
used instead of P :

DKL(P ||Q) =
∑
∀x

P (x) · log P (x)
Q(x) , (4.2)

with the value of the addend defined as 0 if P (x) = 0. The value of KL divergence
is a non-negative number; the more divergent (dissimilar) the distributions, the
higher its value.

In our setting, we estimate the distance of a source language to a target
language as the KL divergence of the POS trigram probability distributions,
DKL(P̂tgt||P̂src):

KLcpos3(tgt, src) =
∑

∀cpos3∈tgt
P̂tgt(cpos3) · log P̂tgt(cpos3)

P̂src(cpos3)
, (4.3)

where cpos3 is a POS tag trigram.
For the KL divergence to be well-defined, we must ensure that the estimated

probability of each target trigram is non-zero in source. For this, we employ a
simple “add 1” smoothing approach in the source trigrams probability estimation
(4.1): for each target trigram unseen in the source data, we set its source count
to 1. We have found this smoothing approach to perform well, and did not inves-
tigate other options. Recently, Agić [2017] suggested to instead use the approach
of Brants [2000], estimating the trigram probabilities as a linear interpolation of
trigram, bigram and unigram relative frequencies, as a softer and more principled
way of performing the smoothing. We acknowledge this suggestion as potentially
promising, also allowing us to easily incorporate higher-order n-grams, and intend
to investigate it more thoroughly in future research.

The KL divergence is non-symmetric; DKL(P ||Q) expresses the amount of
information lost when a probability distribution Q is used to approximate the true
distribution P . Thus, in our setting, we use DKL(P̂tgt||P̂src), as this intuitively
corresponds to trying to minimize the error caused by using a source parser as
an approximation of a target parser (we are approximating the target language
by the source language).

Or, in even simpler words, it does not matter to us much how frequent a POS
trigram is in the source language if it does not appear in the target language,
so we simply ignore it in the computation (its summand is zero). What we do
need, is for POS trigrams frequent in the target language to appear in the source
language frequently enough. The less frequent they are in the source language (i.e.
the less trained the source parser is to analyze such structures), the smaller the
denominator, and thus the larger the summand, increasing the resulting estimate
of the distance of the languages.

60

Target language Oracle source KLcpos3 source ∆
ar Arabic ro 43.1 1.7 sk 41.2 -1.9
bg Bulgarian sk 66.8 0.4 sk 66.8 0.0
ca Catalan es 72.4 0.1 es 72.6 0.0
el Greek sk 61.4 0.7 cs 60.7 -0.7
es Spanish ca 72.7 0.0 ca 72.7 0.0
et Estonian hu 71.8 0.9 da 64.9 -6.9
fa Persian ar 35.6 1.1 cs 34.7 -0.9
fi Finnish et 44.2 1.1 et 44.2 0.0
hi Hindi ta 56.3 1.1 fa 20.8 -35.5
hu Hungarian et 52.0 0.7 cs 46.0 -6.0
it Italian ca 59.8 0.3 pt 54.9 -4.9
ja Japanese tr 49.2 2.2 ta 44.9 -4.3

Average 57.1 0.9 52.0 -5.1
Std. Dev. 12.5 16.1

Table 4.1: Performance of KLcpos3 in source selection for single-source delexical-
ized cross-lingual parser transfer, measured using UAS on HamleDT 2.0 develop-
ment target treebanks.

Empirical arguments for choosing the similarity measure and the exact for-
mula of KLcpos3 , based on evaluations on development data, can be found in
Section 4.2.5.

4.2.2 KLcpos3 for source selection
In the single-source parser transfer, the delexicalized parser is trained on a single
source treebank, and applied to the target corpus. The problem thus reduces to
selecting a source treebank that will lead to a high performance on the target
language.

In this case, we compute the KLcpos3 distance of the target corpus to each
of the source treebanks and choose the closest source treebank to use for the
transfer.

We evaluate the performance of KLcpos3 on the development treebanks in Ta-
ble 4.1 (both development and test treebanks were used as sources here, in a
leave-one-out fashion). For each target language, the table first lists the ora-
cle source language, and the UAS achieved by applying the delexicalized parser
trained on the oracle source treebank to the target language treebank; the oracle
language is the source language which maximizes this UAS, and is thus the lan-
guage we would ideally like KLcpos3 to select. Next, the language actually selected
by KLcpos3 is listed, together with the value of KLcpos3 , and the UAS achieved
by using the selected source language for the delexicalized parser transfer. The
difference of UAS achieved by using the oracle source versus the automatically
selected source is also shown.

As the table shows, KLcpos3 manages to identify the oracle source language in
one third of the cases (bg, ca, es, fi). In many other cases, it chooses a different
but competitive treebank, leading only to a tiny drop in UAS (ar, el, fa). For
other target languages (et, hu, it, ja), there is a larger drop, i.e. the selected

61

language is only somewhat appropriate. However, only in one case (hi) there is
a massive drop in UAS as compared to using the oracle source.

4.2.3 KL−4
cpos3 for source weighting

In multi-source transfer, multiple (or all) available source treebanks are used for
parser training, possibly weighted by similarity to the target language. In this
case, we need to appropriately weight the contribution of each of the sources.

To convert KLcpos3 from a negative measure of language similarity to a positive
source parser weight for the multi-source tree combination method, we need to
find a way of inverting it. However, as the results were unsatisfactory with simply
using the inverted value (1/x), we did some further tuning (see Section 4.2.5),
empirically finding the fourth power of the inverted value (1/x4) to work well.
Thus, the contribution of each of the sources gets weighted by KL−4

cpos3(tgt, src).
We deal with multi-source transfer methods in Section 4.3, where we explain

how KL−4
cpos3 is used for the source weighting, and evaluate the improvements that

it brings.
A full listing of the estimated source-target KL−4

cpos3 language similarities, com-
puted on the UD 1.4 dataset, is enclosed in Attachment C.

4.2.4 The POS tags
Various treebanks and theories use various definitions of POS tags. While tra-
ditionally, the basic categories, such as noun or verb, are typically understood
as the part-of-speech, in some treebanks, other morphological information can be
encoded in the tag – for example, for nouns, there are 2 UPOS tags in UD (NOUN
and PROPN, distinguishing proper nouns), 4 in the Penn treebank (NN, NNS,
NNP and NNPS, adding the singular/plural distinction), and 186 in PDT (2
numbers, 4 genders, 7 cases and positive/negative are commonly distinguished,
additionally allowing “non-specified” values, plus some rare special values and
features).

For KLcpos3 to work, the POS tags need to be reasonable. The first require-
ment is that the POS tags are harmonized – it does not make any sense to
compare probability distributions of POS tag labels in two languages where the
labels used are different, or have very different meanings.

Second, we intuitively believe that for a good performance of the method, all
of the POS tag labels defined by the tagset should appear in all or nearly all of the
languages – it is reasonable to e.g. include a label for determiners, which appear
in many languages (although not all), but may not be a good idea to differentiate
e.g. between singular and plural nouns in the tag, as there are many languages
where noun gender is not overtly marked on the nouns (or not annotated by the
treebank annotators, which, for our purposes, is the same thing).

And finally, the tagset should not be too large, which would make the data
too sparse – KLcpos3 operates on tag trigrams, so even for a set of 10 POS tags, we
are working with a distribution of up to 1000 trigrams. This inevitably leads to
many of the trigrams being very rare in the data, with the estimated probabilities
being quite unreliable.

62

We decided to emphasize the kind of POS tags the KLcpos3 measure expects
already in its name, where “cpos” means “coarse POS”, as it was used e.g. in the
CoNLL treebanks – the coarse POS tags were stored in the fourth column of the
CoNLL files, labelled CPOS. As the UD have become the de facto standard for
morphological and syntactic annotation since we defined the measure, we could
now as well rename the measure to KLupos3 ; however, we prefer to keep the name
unchanged.

When we were developing the measure, we used the gold POS tags present
in the HamleDT 2.0 treebanks, both on the source side and on the target side.
However, it has been since shown that the measure is quite robust to the source
of the POS tags, including well performance on cross-lingually predicted UPOS
tags. See Section 4.4.2 for an evaluation of the influence of the source of the POS
tags, and Chapter 6 for inducing target POS tags without access to POS-tagged
target data.

4.2.5 Tuning
To avoid overfitting the exact definition of KLcpos3 and KL−4

cpos3 , we used the
HamleDT 2.0 development treebanks to tune the hyperparameters; namely the
choice of the measure, POS n-gram length, and the way of transforming the KL
divergence, which is a distance measure, into a similarity measure.

POS n-gram length

We tried to vary the n-gram length from bigrams to tetragrams (we did not
include unigrams as they do not capture the word order).

The n-gram length has a surprisingly low effect on the result in the multi-
source combination – typically less than 1%. However, as Table 4.2 shows, for
source selection, trigrams clearly outperformed the tetragrams and bigrams, iden-
tifying the oracle language in half of the cases, and subsequently achieving the
highest average UAS when applying the selected source delexicalized parser to
the target data. Note, however, that for half of the targets, using any of the
n-gram lengths led to choosing the same source language.

It seems that bigrams are not predictive enough, while tetragrams are too
sparse in the data and thus the probability distributions are estimated too unre-
liably.

Turning a distance into a similarity

As KL divergence is a distance measure, while we need a similarity measure for
weighting the source contributions in multi-source combination methods, we need
to find a way to transform it appropriately. We decided to combine inversion of
the value with exponentiation, i.e. using a formula in the form KL−N

cpos3 , where N
is a hyperparameter to tune.

Table 4.3 shows the effect of using various exponents. In this tuning step,
the weight was applied to the weighted model interpolation (Section 4.3.2) and
evaluated on HamleDT 2.0 development treebanks used both as the targets and
the sources (in a leave-one-out fashion).

63

Target Oracle KLcpos2 KLcpos3 KLcpos4

ar it 36.57 fa 27.19 it 36.57 et 23.87
bg el 63.04 el 63.04 el 63.04 it 56.32
ca es 72.37 es 72.37 es 72.37 es 72.37
el bg 59.49 bg 59.49 it 53.31 it 53.31
es ca 72.73 ca 72.73 ca 72.73 ca 72.73
et hu 71.76 fi 68.93 fi 68.93 fi 68.93
fa ar 35.64 hi 19.84 hi 19.84 hi 19.84
fi et 44.22 ar 26.06 et 44.22 et 44.22
hi hu 47.15 fa 20.77 fa 20.77 fa 20.77
hu et 52.04 el 47.11 el 47.11 el 47.11
it ca 59.75 es 58.52 es 58.52 es 58.52
ja hi 49.78 bg 24.97 hi 49.78 et 41.11
AVG 55.38 4 46.75 6 50.60 3 48.26

Table 4.2: The effect of POS n-gram length in KLcpos3 for source selection, using
HamleDT 2.0 development treebanks as both sources and targets.

Target KL−1
cpos3 KL−3

cpos3 KL−4
cpos3 KL−5

cpos3 Max ∆KL−4
cpos3

ar 25.64 27.64 28.27 29.20 29.20 -0.93
bg 57.47 62.58 63.58 64.23 64.23 -0.65
ca 71.94 72.39 72.39 72.39 72.39 0.00
el 58.87 60.24 60.54 61.00 61.00 -0.46
es 71.53 72.03 72.03 72.03 72.03 0.00
et 66.74 68.48 70.84 70.28 70.84 0.00
fa 32.78 31.30 30.53 30.26 32.78 -2.25
fi 44.94 45.51 45.13 44.66 45.51 -0.38
hi 33.87 31.60 30.10 29.62 33.87 -3.77
hu 54.18 53.34 52.65 51.63 54.18 -1.53
it 58.08 57.84 57.26 57.00 58.08 -0.82
ja 36.98 40.45 41.47 42.17 42.17 -0.70
AVG 51.09 51.95 52.07 52.04 53.02 -0.96
Best 4 3 3 6

Table 4.3: Evaluation of various values for the exponent used to invert KLcpos3 ,
applied to weighted parser model interpolation, reporting UAS on HamleDT 2.0
development treebanks. Difference between KL−4

cpos3 and the maximum is also
listed.

64

In our evaluation, the parsing accuracy generally tends to rise with increasing
the exponent for half of the targets, and decrease for the other half, not making
it easy to choose an appropriate solution. A high value of the exponent strongly
promotes the most similar source language, giving minimal power to the other
languages, which is good if there is one very similar source language. A low value
enables combining information from a larger number of source languages.

Our choice of the final exponent is thus a matter of compromise. While the
exponent value of 5 leads to the best accuracy for the largest number of languages,
the average accuracy does not differ substantially from using the exponent value
of 3 or 4; the good results for some of the targets come at the cost of larger losses
for the other targets, which prefer a lower value of the exponent. As we want the
weighting to be rather well balanced, avoiding large losses is more important for
us than achieving the highest possible individual accuracies. We thus eventually
selected the value of 4 for the exponent, as it performed similarly to the value
of 3 but achieved a slightly better average accuracy (but 3 could also have been
chosen).

Agić [2017] suggests a different approach, applying the softmax transformation
with temperature 0.2 to the inverted distances of the languages, thus obtaining
a probability distribution over the sources for each target. Unless one intends
to combine multiple similarity measures (which Agić does but we do not), the
denominator can be left out, leading to the following similarity measure:

simAgic(tgt, src) = exp
(

5
KLcpos3(tgt, src)

)
(4.4)

The author offers neither a motivation for diverging from our approach, nor any
other justification. We thus performed an empirical comparison in Section 5.5.5,
finding our original approach to consistently outperform the transformation sug-
gested by Agić on our dataset.

The choice of the measure

Table 4.4 contains evaluation of several language similarity measures considered
in the tuning phase, applied to source weighting in delexicalized multi-source
tree-combination cross-lingual parser transfer (Section 4.3.1) and evaluated using
UAS on the development set.

To compare the source and target POS trigram distributions, we evaluated
Kullback-Leibler divergence computed in both directions, Jensen-Shannon di-
vergence [Lee, 2001], which is a symmetrization of KL divergence, and cosine
similarity.

Based on the results, KL−4
cpos3(target, source) was selected, as it performed

best in all aspects – it achieved the best observed accuracy most frequently (for 6
of the 12 targets), also outperforming the other variants in the average accuracy,
and it is also the most stable of the measures, as shown by its low standard
deviation.

65

Target KL−4
cpos3(tgt, src) KL−4

cpos3(src, tgt) JS−4
cpos3(tgt, src) coscpos3(tgt, src)

ar 34.93 29.72 32.22 30.53
bg 63.89 53.61 53.86 60.73
ca 72.39 72.37 72.37 67.93
el 58.13 57.83 56.45 57.89
es 72.03 72.73 72.73 68.10
et 68.49 68.83 71.03 69.46
fa 33.51 27.82 24.72 32.06
fi 43.81 44.22 44.20 39.91
hi 21.40 20.77 21.23 19.54
hu 48.23 50.04 49.21 49.95
it 55.05 60.18 59.38 61.28
ja 40.30 48.47 38.22 30.22

Best 6 4 2 1
AVG 51.01 50.55 49.64 48.97
StDev 16.66 17.42 17.98 17.69

Table 4.4: Weighted multi-source delexicalized tree-combination transfer using
various similarity measures.

4.3 Multi-source combination methods
To the best of our knowledge, the idea of combining multiple source languages for
analyzing one target languages was introduced by McDonald et al. [2011]. The
authors used a simple treebank concatenation method, combining all available
source treebanks into one multilingual treebank, and using it to train one mul-
tilingual delexicalized parser. This method does not assign explicit weights to
individual source languages; each source language is implicitly weighted by the
size of its treebank, regardless of the target language. We take this method as a
baseline approach.

Our work on cross-lingual parsing in a multi-source setting rests on two pil-
lars. The first one, the KLcpos3 language similarity measure, was presented in
Section 4.2, allowing us to estimate how appropriate each available source lan-
guage is for processing a given target language, i.e. for training a delexicalized
parser on the source language and applying it to the target language.

However, as was already foreshadowed, it is often the case that there are
multiple source languages close enough to the target, and one would then like
to learn from all such languages; the hope is that treebanks for other similar
languages might provide knowledge which is not available in the treebank for the
closest language but is necessary to parse the target language.

And there is yet another, more pragmatic reason to take multiple sources into
account. Even though it performs very well, the KLcpos3 measure is far from
infallible, often failing to designate the optimal source language. In such cases,
we would like to have a method of bringing in other promising sources, trying to
alleviate the damage done by not choosing the right source. This is a sort of risk
management – we accept the risk of achieving slightly suboptimal accuracies for
some languages to avoid massively suboptimal performance for other languages;
this is what we tuned the KL−4

cpos3 measure for.

66

For this purpose, we present three methods for combining multiple sources
that we have experimented with. Section 4.3.1 presents the parse tree combi-
nation method of Sagae and Lavie [2006], which we ported to the cross-lingual
setting in [Rosa and Žabokrtský, 2015b]; this is our primary method, as it showed
best performance in our evaluations, and we will only use this method in further
experiments. In Section 4.3.2, we show an alternative method of parser model
interpolation (or interpolation of predicted scores of potential parse tree edges),
which we developed in [Rosa and Žabokrtský, 2015a]; it often performs compa-
rably to parse tree combination, but is less robust, and we therefore do not use it
in further experiments. For comparison, we also tried to reimplement the parse
tree projection method of Agić et al. [2016] in Section 4.3.3, but, contrary to the
original work, we have found it to perform substantially worse than the parse tree
combination.5

4.3.1 Parse tree combination
The multi-source cross-lingual delexicalized parse tree combination method is
a simple parser ensembling approach. The original method, which had been
devised for a monolingual setting, combines various parsers (i.e. different parsing
algorithms), all trained on the same treebank. In our extension to the cross-
lingual setting, we only use one parser, but trained on various source treebanks.

Furthermore, as the languages of the source treebanks are different from each
other as well as from the target language, we need to delexicalize the parsers –
we assume that the POS tags used in all of the languages are the same, but we
cannot possibly assume that for the word forms. We have already discussed the
POS tags in Section 4.2.4, and we will show how to obtain them cross-lingually
in Chapter 6. Moreover, in Chapter 5, we will show how to lexicalize the parser
in a cross-lingual setting; but for now, we limit ourselves to a delexicalized one.

Unweighted tree combination

In our work, we implement the tree combination method in its base unweighted
variant in the following way (see also Figure 4.2):

1. Train a delexicalized parser on each source treebank.
2. Apply each of the parsers to the target sentence, obtaining a set of parse

trees.
3. Construct a weighted directed graph as a complete graph over all tokens of

the target sentence, where each edge is assigned a score equal to the number
of parse trees in which it appears (each parse tree contributes by either 0
or 1 to the edge score).

4. Find the final dependency parse tree as the maximum spanning tree over
the graph, using the algorithm of Chu and Liu [1965] and Edmonds [1967].

5We think that the differences in performance may be due to some differences in our im-
plementation, but we have not been able to identify those. However, when applied to POS
projection instead of parse tree projection (Section 6.1), the method performed well and in line
with the results reported in the original paper, suggesting that our reimplementation is mostly
correct.

67

VERB PREP NOUN#root

VERB PREP NOUN#root

VERB PREP NOUN#root

3 2

2

1

1

VERB PREP NOUN#root

src 1:

src 3:

src 2:

tgt:

+

+

=

Figure 4.2: Unweighted parse tree combination, combining the parse trees for a
delexicalized target sentence (tgt) produced by 3 source parsers (src 1, src 2 and
src 3), and selecting the highest scoring dependency tree (MST) as the result (in
bold).

We can also formulate the third step using the following formula for the score
we that each edge e gets assigned:

we =
∑
∀src

I(e ∈ treesrc) , (4.5)

where the indicator I(e ∈ treesrc) is 1 if the edge e appears in the parse tree
produced by the parser trained on the source language src, and 0 otherwise.

Weighted tree combination

As we have already noted, the method can be further enhanced by adding weight-
ing. In our case, we use the KL−4

cpos3 source-target language similarity estimation;
i.e., the same weight is applied to all edges in all parse trees produced by a parser
for a given source language (see also Figure 4.3).

Thus, in the weighted variant of the method, the third step of the algorithm
is modified by each source contributing not with 0 or 1 to the edge score, but
with the value of its KL−4

cpos3 similarity to the target:

we =
∑
∀src

I(e ∈ treesrc) · KL−4
cpos3(tgt, src) . (4.6)

It might also be possible to use more fine-grained weighting, e.g. on the level
of individual sentences rather than whole languages – we imagine that a variant
of KLcpos3 (or other similarity measure) may be applicable to the target sentence,
estimating to which source languages the sentence is most similar. However, we
have not experimented with that; but we did experiment with adding edge-level
weighting, as will be shown in Section 4.3.2.

68

VERB PREP NOUN#root

VERB PREP NOUN#root

VERB PREP NOUN#root

4.1 2.4

2.2

1.9

1.7

KL
cpos3

-4 :
x 1.9

x 0.5

VERB PREP NOUN#root x 1.7

src 1:

src 3:

src 2:

tgt:

+

+

=

Figure 4.3: Weighted parse tree combination, combining the parse trees for a
delexicalized target sentence (tgt) produced by 3 source parsers (src 1, src 2 and
src 3), weighted by the KL−4

cpos3 similarity of each source language to the target
language, and selecting the highest scoring dependency tree (MST) as the result
(in bold).

Target Treebank Single-source Single-source Tree combination
language concat. oracle KLcpos3 w=1 w=KL−4

cpos3

ar 37.0 ro 43.1 1.7 sk 41.2 35.3 41.3
bg 64.4 sk 66.8 0.4 sk 66.8 66.0 67.4
ca 56.3 es 72.4 0.1 es 72.4 61.5 72.4
el 63.1 sk 61.4 0.7 cs 60.7 62.3 63.8
es 59.9 ca 72.7 0.0 ca 72.7 64.3 72.7
et 67.5 hu 71.8 0.9 da 64.9 70.5 72.0
fa 30.9 ar 35.6 1.1 cs 34.7 32.5 33.3
fi 41.9 et 44.2 1.1 et 44.2 41.7 47.1
hi 24.1 ta 56.3 1.1 fa 20.8 24.6 27.2
hu 55.1 et 52.0 0.7 cs 46.0 56.5 51.2
it 52.5 ca 59.8 0.3 pt 54.9 59.5 59.6
ja 29.2 tr 49.2 2.2 ta 44.9 28.8 34.1

AVG 48.5 57.1 0.9 52.0 50.3 53.5
Std. Dev. 15.2 12.5 16.1 16.5 16.7

Table 4.5: Evaluation of the parse tree projection method on HamleDT 2.0 devel-
opment target treebanks, using UAS. For comparison, we also show the treebank
concatenation and KLcpos3-best single-source transfer baselines, as well as the
oracle single-source transfer.

69

Performance on development set

Table 4.5 shows the performance of the tree combination method, both un-
weighted as well as weighted using KL−4

cpos3 , evaluated on the HamleDT 2.0 devel-
opment target treebanks using UAS.

We can see that the weighted tree combination performs better than the
unweighted one in all but one case (hu) as well as on average; the average per-
formance is also better than that of the single-source transfer using the source
language selected by KLcpos3 .

Interestingly, the multi-source combination even surpasses the single-source
oracle transfer in 4 cases (bg, el, et, fi), even though KLcpos3 was able to identify
the oracle source language only for 2 of these targets. This shows that the ability
to weightedly use information from multiple sources can be even more important
than that of selecting the single best possible source.

We can also see that the multi-source combination does indeed mostly fulfill its
intended role of providing a backoff for cases where the single-source transfer fails
to identify the oracle language, as the weighted tree combination improves over
the single-source transfer in all but one such case (ja), often quite substantially. Of
course, it may happen that the tree combination overpowers the single-best source
even in cases where it was selected correctly, possibly leading to deteriorations.
However, the results show that with KL−4

cpos3 weighting this is not the case, as in
all cases where KLcpos3 was able to identify the oracle language, the weighted tree
combination either preserves the achieved performance (ca, es), or even further
improves over it (bg, fi).

On the other hand, the average performance of the oracle single-source transfer
is still better than that of the multi-source combination, mainly because of its
very low score for some difficult targets (hi, ja).

Labels

So far, we have only presented the unlabelled variant of the tree combination
method; that is, we have only dealt with inferring the dependency tree structure,
but not the dependency relation labels.

We decided to use an approach fundamentally similar to the tree combination
method, but without the final decoding through MST, as there are no clear
structural constraints on the dependency relation labels.

More specifically, we assign the dependency relation labels by using a simple
voting mechanism, where, in the unweighted variant, each edge from a dependent
node to its parent is assigned the label predicted by the largest number of source
parsers for an edge with that dependent. In the weighted variant, the votes of the
source parsers are weighted by KL−4

cpos3 . We take a practically identical approach
in multi-source cross-lingual tagging in Chapter 6.

For simplicity, we include all sources in the voting, even if they predicted a
different head for that dependent. While this may sometimes lead to assigning a
label not compatible with the edge (e.g. a subject label even if the parent is not
a verb), we note that the dependency relation label typically depends much more
on the dependent node (and especially on its POS) than on the head node. The
dependency relation label predicted by a given source may thus still be correct
even if the head predicted by that source is not correct.

70

We found this approach to work well in practice, and did not investigate other
options. However, we believe that further improvements might be possible, and
that the following modifications might be worth evaluating in some future work:

• The votes of sources predicting a different head node than the selected one
may be downscaled; probably more so if the POS and/or direction of the
predicted head differs from that of the selected one.

• Alternatively, one might only consider dependency relation labels suggested
by the parsers that predicted the selected head node, with the other sources
only participating in the voting if they agree on the dependency relation
label with one of those parsers.

• Information from other predicted dependency trees may be harvested, using
e.g. the usual dependency relation label for the given pair of dependent and
head as an additional vote, based on the POS of the dependent and the
head, as well as potentially the direction and/or length of the edge.

• Hard constraints originating from the UD annotation rules or trained on
the source treebanks might be enforced, such as prohibiting a head node to
have more than one subject dependent.

• And, eventually, one might even train an independent delexicalized depen-
dency relation labeller on the source treebanks and use the aforementioned
methods to transfer it cross-lingually to the target language. Note that us-
ing an independent second-stage labeller was suggested by McDonald et al.
[2005a] for the MSTParser; e.g. our implementation [Rosa and Mareček,
2012], using MIRA training and Viterbi decoding,6 could be adapted and
used.

4.3.2 Parser model interpolation
Here, we present our alternative multi-source combination method – the interpo-
lation of trained parser models.

The method proceeds as follows:

1. Train a delexicalized parser model on each source treebank.
2. Normalize the parser models.
3. Interpolate the parser models.
4. Parse the target text with a delexicalized parser using the interpolated

model.

When applied to the first-order MSTParser, this method is fully equivalent to
interpolating the individual edge scores predicted by the parsers.

6It is actually a tree variant of the Viterbi algorithm, operating on sequences of sibling
dependency nodes.

71

Model normalization

An important preliminary step to model interpolation is to normalize each of the
trained models, as the feature weights in models trained over different treebanks
are often not on the same scale (we do not perform any regularization during
the parser training). We use a simplified version of normalization by standard
deviation. First, we compute the uncorrected sample standard deviation of the
weights of the features in the model M as

sM =
√ 1

|M |
∑

∀f∈M

(wf − w̄)2 , (4.7)

where w̄ is the average feature weight, and |M | is the number of feature weights
in model M ; only features that were assigned a non-zero weight by the training
algorithm are taken into account.

We then divide each feature weight by the standard deviation:7

∀f ∈ M : wf := wf

sM

. (4.8)

The choice of normalization by standard deviation is based on its high and
stable performance on our development set, and Occam’s razor.8

Model interpolation

The interpolated model is a linear combination of the normalized models trained
over the source treebanks. The result is a model that can be used in the same
way as a standard MSTParser model.

In unweighted model interpolation, the weight of each feature (wf) is com-
puted as the sum of the weights of that feature in the source models (wf,src):

∀f ∈ F : wf =
∑
∀src

wf,src . (4.9)

In the weighted variant of model interpolation, we extend (4.9) with multipli-
cation by the KL−4

cpos3 weight:

∀f ∈ F : wf =
∑
∀src

wf,src · KL−4
cpos3(tgt, src) . (4.10)

7We have not found any further gains in performance when subtracting the sample mean
from the weight before the division; due to the particular way in which we implemented the
MIRA updates in MSTperl, the mean of the feature weights in the trained model is guaranteed
to already be equal to 0, except for some minor variation due to rounding errors.

8We tried 12 normalization schemes, nearly all of which achieved an improvement of 2.5%
to 5% UAS absolute over an interpolation of unnormalized models on average, but often with
large differences for individual languages. Another well-performing method was to divide each
feature weight by the sum of absolute values of all feature weights in the model; or a similar
method, applied during inference individually for each sentence, using only the feature weights
that fired for the sentence to compute the divisor.

72

Equivalence to edge score interpolation

Note that the model interpolation method, both weighted and unweighted, is
fully equivalent to interpolation of individual scores of all edges in the complete
graph, as predicted by the models (provided that the models are normalized).

Recall the score we,M assigned to an edge e by the model M :

we,M =
∑

∀f∈F

wf,M · f(e) (4.11)

where F is the set of features, wf,M are their weights determined by the model,
and f(e) is the value of the feature for edge e.

Next, if an interpolated model is used, we can substitute wf,M by its definition
from (4.10):

we,int =
∑

∀f∈F

∑
∀src

wsrc · wf,src · f(e) (4.12)

where wsrc is the weight of the source: KL−4
cpos3(tgt, src) in the weighted approach

or 1 in the unweighted approach.
However, by simple reordering, we can get:

we,int =
∑
∀src

wsrc ·
∑

∀f∈F

wf,src · f(e) (4.13)

which can be simplified to:

we,int =
∑
∀src

wsrc · we,src (4.14)

where we,src is the score assigned to the edge e by the src model. However, (4.14)
does not require modifying the trained models in any way, it simply uses the
models to predict the edge scores, and then interpolates these edge scores using
the source weights. So, this is an equivalent alternative implementation of the
method.

Using this formulation of the method, we can see that it is actually quite
similar to the tree combination method, enriched with the source edge weights (see
also Figure 4.4) – the tree combination is equivalent to edge score interpolation
where all edges selected by the MST algorithm get a score of 1 and all other
edges get a score of 0. Once the target weighted graph is constructed, both of
the methods continue identically by finding its MST and returning it as the final
parse tree.

Comparison to tree combination

Table 4.6 compares the performance of the model interpolation method to the
tree combination method on the 12 development language treebanks from the
HamleDT 2.0 dataset. All the 30 HamleDT 2.0 treebanks, with gold POS tags,
were used to compute the KL−4

cpos3 similarity for each pair of languages, and to
train delexicalized MSTperl parsers. Then, for each target language, all the other
29 source language parsers were combined.

The performance of the weighted model interpolation is comparable to the
weighted tree combination – model interpolation scores -0.5% UAS lower than

73

VERB PREP NOUN#root
12.5 3.4 15.7

18.2-3.4

-6.3

2.1 10.2

1.3

VERB PREP NOUN#root
17.4 14.3 9.7

-1.46.1

5.2

10.8 -2.4

2.2

src 2:

src 1:

+

VERB PREP NOUN#root
29.9 17.7 25.4

16.82.7

-1.1

12.9 7.8

3.5

tgt (∑):=

VERB PREP NOUN#root
29.9 17.7 25.4

16.82.7

-1.1

12.9 7.8

3.5

MST:→

Figure 4.4: Unweighted parser model interpolation shown as unweighted edge
scores interpolation, combining the weighted complete graphs of possible depen-
dency edges for a delexicalized target sentence (tgt) produced by 2 source parsers
(src 1 and src 2), and selecting the highest scoring dependency tree (MST) as the
result.

74

Unweighted Weighted
Target Treebank Tree Model Tree Model

language concat. comb. interp. comb. interp.
ar Arabic 37.0 35.3 30.7 41.3 34.6
bg Bulgarian 64.4 66.0 60.3 67.4 68.5
ca Catalan 56.3 61.5 58.5 72.4 72.4
el Greek 63.1 62.3 59.6 63.8 64.1
es Spanish 59.9 64.3 60.4 72.7 72.7
et Estonian 67.5 70.5 67.4 72.0 71.7
fa Persian 30.9 32.5 29.5 33.3 28.6
fi Finnish 41.9 41.7 41.5 47.1 44.7
hi Hindi 24.1 24.6 26.2 27.2 32.7
hu Hungarian 55.1 56.5 57.4 51.2 53.0
it Italian 52.5 59.5 56.0 59.6 60.1
ja Japanese 29.2 28.8 27.2 34.1 33.0

Average 48.5 50.3 47.9 53.5 53.0
Std. dev. 15.2 16.5 15.6 16.7 17.4

Table 4.6: Comparison of UAS of the tree concatenation baseline with parse tree
combination and parser model interpolation, both weighted and unweighted, on
the development target treebanks of the HamleDT 2.0 dataset.

the tree combination, but achieves a better result than the tree combination for
7 of the 12 target languages; for most of the target languages, the accuracies of
the two methods are very close. This shows that weighted model interpolation
may be a good alternative to weighted tree combination.

In the unweighted setting, the situation is quite different, with model interpo-
lation scoring much lower than tree combination (-2.4%), and even slightly lower
than treebank concatenation (-0.6%) on average. This suggests that, contrary to
our original intuition, edge scores assigned by the source models are not a good
proxy for parser confidence, not even when appropriately normalized.9 This may
suggest, among other, that the source-target language similarity is much more
important than the exact values of source edge scores for resource combination
in delexicalized parser transfer.

Discussion and related work

While the parser model interpolation method is promising, it does not empirically
show any clear advantages over the tree combination method, and is much more
sensitive to proper weighting of the sources. Also, it relies on having access to
the internals of the parsers, which the tree combination method does not. As
we initially used MSTperl, our own reimplementation of the MSTParser, we had
access to this information. However, when we later switched to a state-of-the-art
Parsito/UDPipe parser, we lost access to this information, and abandoned the
parser model interpolation method altogether.

It was later brought to our attention that Mejer and Crammer [2012] had
9The same tendency was observed across all normalization methods evaluated on the devel-

opment set.

75

already clearly demonstrated that the edge scores predicted by the MSTParser
are not very good indicators of the parser confidence. Instead, the authors suggest
several alternative methods for estimating the confidence of the parser about
the correctness of a given edge. The methods seem to perform well, although
they require modifications of the parser architecture and lead to an increased
computational complexity of the parsing algorithm. Nevertheless, we believe that
using their parser confidence estimation methods with our parser interpolation
method could lead to interesting results, improving over the more crude tree
combination method. Unfortunately, we do not perform such experiments in this
work.

Later, Agić et al. [2016] revisited this idea, using a practically identical ap-
proach to ours – the scores of target edges are determined by an interpolation
(a weighted sum) of the source edge scores predicted by the source parsers, tak-
ing into account the complete weighted graphs, and the target dependency tree
is then induced via the MST algorithm. Also, the source scores are normalized
via the normalization by standard deviation, but applied per sentence, not per
model. The only difference is that the authors do not use delexicalized parsers
on the target sentence, but rather apply lexicalized parsers on the source sides
of a multiparallel corpus (i.e. on source translations of the sentence) and project
the edge scores through word alignment. The authors also used the TurboParser
[Martins et al., 2010] instead of the MSTParser, so the observations of Mejer and
Crammer [2012] might not fully apply to them. Nevertheless, very similarly to
us, they did not observe any clear improvements over using the disambiguated
parse trees output by the source parsers, rather achieving a slight deterioration
on average.

4.3.3 Parse tree projection
For comparison, we also tried to reimplement the method of Agić et al. [2016],
based on projection of source parse trees through multi-parallel data. The method
is a variant to the classical approach of Hwa et al. [2005], who project source parse
trees over word-aligned parallel data, and then employ heuristics to obtain a valid
target parse tree. Instead, the authors follow our multi-source tree combination
approach, projecting multiple source trees onto the target sentence and combining
them via the MST algorithm. Thus, for their method to be applicable, they re-
quire multi-parallel data, so that for each target sentence translations in multiple
source languages are available, allowing them to use and combine multiple source
parsers. However, these are only required in the first step, as once the target
side of the multi-parallel data is parsed, a standard parser can be trained on the
resulting target treebank and then applied to any target data. The authors also
include two potential sources of weighting – edge scores predicted by the source
parsers, and alignment scores predicted by the word aligner.

The authors defined the fundamentally same method both for cross-lingual
tagging and parsing. For cross-lingual tagging, we found the method to perform
rather well, investigated it thoroughly by experimenting with its various hyperpa-
rameters (Section 6.1, and applied it with success as one component of our overall
approach; however, we found the word aligner scores to actually worsen the results
rather than improving them, and therefore use the method unweightedly.

76

Target Comb. Proj., rev. al. Proj., int. al.
lang. LAS LAS diff. LAS diff.
da 47.09 40.55 -6.54 42.04 -5.05
el 42.09 40.04 -2.05 40.22 -1.87
hu 24.22 21.59 -2.63 21.36 -2.86
id 36.11 32.21 -3.90 32.64 -3.47
ja 6.50 7.75 1.25 2.99 -3.51
kk 7.53 7.08 -0.45 8.28 0.75
lv 22.86 23.57 0.71 22.94 0.08
pl 46.44 39.02 -7.42 43.60 -2.84
sk 48.57 39.10 -9.47 42.59 -5.98
ta 7.76 7.92 0.16 7.76 0.00
tr 13.62 15.56 1.94 17.07 3.45
uk 38.17 38.59 0.42 31.12 -7.05
vi 21.47 19.01 -2.46 15.53 -5.94

AVG 27.88 25.54 -2.34 25.24 -2.64

Table 4.7: Comparison of unweighted parse tree combination and parse tree pro-
jection, using either reverse alignment or intersection alignment. The difference
in LAS obtained by the tree projection versus the tree combination is also shown.

The situation is quite different in cross-lingual parsing, as we observed the
method to consistently perform worse than our tree combination method. Thus,
we did not take so much care in tuning it for parsing, but rather only evaluated it
in its base form. We did not include any of the weighting, as the alignment score
weighting performed poorly in tagging, and using source parser scores performed
poorly even in the original paper. Besides, we do not have access to edge scores
in the parser we use, and, it being a transition based one, there is even no easy
way of obtaining them.

In Table 4.7, we compare the performance of the parse tree projection method
to the delexicalized tree combination method, using the UD 1.4 dataset and LAS
evaluation. We use the unweighted variant of the tree combination, since it is
in principle more comparable to the unweighted projection. We use POS tags
obtained by the cross-lingual projection method in this experiment.

The results show the parse tree projection to perform worse than the un-
weighted tree combination, outperforming it only for 5 out of 13 target languages
in its reverse-alignment variant, and only slightly – always by less than 2% –
while in other cases it typically loses by more than 2%. It also loses on average,
also by more than 2%. Moreover, the parse tree projection method is lexicalized
in principle, while the tree combination used here is not, as we will only intro-
duce its lexicalization in Chapter 5; this suggests that the tree projection is even
somewhat weaker than the results shown here suggest.

We also compared using the reverse alignment, suggested in the original paper,
and the intersection alignment, which we found to perform much better in POS
tagging. For parsing, using the reverse alignment does perform very similarly to
the intersection alignment, leading to a better accuracy for one half of the target
languages and to a worse one for the other half, on average reaching LAS higher
by 0.3%.

We did not see any massive improvements by softmax-normalizing the edge

77

scores per each dependent node, which the authors claimed to make a roughly
10% difference in the accuracies. In our experiments, the difference was only
around 0.3%. We believe that the softmax normalization becomes much more
important when using the edge scores predicted by the source parsers, which is
an approach that ultimately did not perform better than only using the resulting
source parse trees in the original paper, and we thus did not reinvestigate it here.

4.4 Evaluation
4.4.1 HamleDT 2.0 dataset
We now use the 18 test target language treebanks from the HamleDT 2.0 dataset
to evaluate our methods, as opposed to the 12 development language treebanks
which we used for tuning. All the 30 HamleDT 2.0 treebanks, with gold POS
tags, were used to compute the KL−4

cpos3 similarity for each pair of languages, and
to train delexicalized MSTperl parsers. Then, for each target language, the other
29 languages were used as potential sources. In the single-source method, only
the delexicalized parser trained on the most similar source language treebank is
applied to the target data. In the multi-source approach, all of the source delex-
icalized parsers are applied to the target data. Their outputs are then combined
using the tree combination method, either with the contributions of each source
weighted by its KL−4

cpos3 similarity to the target, or using equal weights for all
sources.

Table 4.8 contains the results of applying the delexicalized parser transfer in
several setups to the test target treebanks.

Our baseline is the treebank concatenation method of McDonald et al. [2011],
i.e. a single delexicalized parser trained on the concatenation of the 29 source
treebanks.

As an upper bound,10 we report the results of the oracle single-source delexi-
calized transfer: for each target language, the oracle source parser is the one that
achieves the highest UAS on the target treebank test section. In this table, we do
not include results of a higher upper bound of a supervised delexicalized parser
(trained on the target treebank), which has an average UAS of 68.5%. It was not
surpassed by our methods for any target language, although it was reached for
Telugu, and approached within 5% for Czech and Latin.

The results show that KLcpos3 performs well both in the selection task and
in the weighting task, as both the single-source and the weighted multi-source
transfer methods outperform the unweighted tree combination on average, as
well as the treebank concatenation baseline. In 8 of 18 cases, KLcpos3 is able to
correctly identify the oracle source treebank for the single-source approach. In
two of these cases, weighted tree combination further improves upon the result
of the single-source transfer, i.e., surpasses the oracle. It also always reaches or
surpasses the single-best transfer as, in principle, it performs a soft weighted n-
best transfer. This proves KLcpos3 to be a successful language similarity measure
for delexicalized parser transfer, and the weighted multi-source transfer to be a
better performing approach than the single-source transfer.

10This is a hard upper-bound for the single-source transfer, but can be (and sometimes is)
surpassed by the multi-source transfer.

78

Target Treebank Single-source Single-source Tree combination
language concatenation oracle KLcpos3 w=1 w=KL−4

cpos3

bn 61.0 te 66.7 0.5 te 66.7 63.2 66.7
cs 60.5 sk 65.8 0.3 sk 65.8 60.4 65.8
da 56.2 en 55.4 0.5 sl 42.1 54.4 50.3
de 12.6 en 56.8 0.7 en 56.8 27.6 56.8
en 12.3 de 42.6 0.8 de 42.6 21.1 42.6
eu 41.2 da 42.1 0.7 tr 29.1 40.8 30.6
grc 43.2 et 42.2 1.0 sl 34.0 44.7 42.6
la 38.1 grc 40.3 1.2 cs 35.0 40.3 39.7
nl 55.0 da 57.9 0.7 da 57.9 56.2 58.7
pt 62.8 en 64.2 0.2 es 62.7 67.2 62.7
ro 44.2 it 66.4 1.6 la 30.8 51.2 50.0
ru 55.5 sk 57.7 0.9 la 40.4 57.8 57.2
sk 52.2 cs 61.7 0.2 sl 58.4 59.6 58.4
sl 45.9 sk 53.9 0.2 sk 53.9 47.1 53.9
sv 45.4 de 61.6 0.6 da 49.8 52.3 50.8
ta 27.9 hi 53.5 1.1 tr 31.1 28.0 40.0
te 67.8 bn 77.4 0.4 bn 77.4 68.7 77.4
tr 18.8 ta 40.3 0.7 ta 40.3 23.2 41.1

AVG 44.5 55.9 0.7 48.6 48.0 52.5
Std.Dev. 16.9 10.8 14.4 15.0 11.8

Table 4.8: Evaluation using UAS on HamleDT 2.0 test target treebanks.

The weighted tree combination is better than its unweighted variant only for
half of the target languages, but it is more stable, as indicated by its lower stan-
dard deviation, and achieves an average UAS higher by 4.5% absolute. The un-
weighted tree combination, as well as treebank concatenation, perform especially
poorly for English, German, Tamil, and Turkish, which are rich in determiners,
unlike the rest of the treebanks: in the treebanks for these four languages, deter-
miners constitute around 5-10% of all tokens, while most other treebanks contain
no determiners at all.11 Thus, in the unweighted method, determiners are parsed
rather randomly12 – UAS of determiner attachment tends to be lower than 5%,
which is several times less than for any other POS. In the weighted methods, this
is not the case anymore, as for a determiner-rich target language, determiner-rich
source languages are given a high weight.

For target languages for which KLcpos3 of the closest source language was
lower or equal to its average value of 0.7, the oracle treebank was identified in 7
cases out of 12 and a different but competitive one in 2 cases; when higher than
0.7, an appropriate treebank was only chosen in 1 case out of 6. When KLcpos3

11In many cases, this is probably related to properties of the treebank annotation or its
harmonization rather than properties of the language.

12If the source language treebank does not contain determiners, all parser features that con-
tain the POS of the child node inevitably have a zero weight for a determiner. The only
non-zero-weight features are thus the parent node POS tag, the distance of the child and the
parent, and the conjunction of these two. This very often leads to the determiner being attached
to the nearest verb, as verbs are the most fertile nodes and it is not uncommon for them to
have both close and distant children.

79

failed to identify the oracle, weighted tree combination was mostly worse than
unweighted tree combination. This shows that for distant languages, KLcpos3 does
not perform as good as for close languages.

4.4.2 UD 1.4 dataset
We now proceed to evaluate our methods on the UD 1.4 dataset, using a set of
13 target treebanks and 22 different source treebanks.

As we have already noted, using gold POS tags may be useful in research,
but it is not realistic to assume their availability for real under-resourced target
languages. Therefore, to show that the methods presented in this chapter can
indeed be successfully used in a realistic scenario, we use cross-lingually induced
POS tags for the experiments evaluated in this section. For the experiments we
report here, we use a POS projection approach very similar to that of Agić et al.
[2016], which we already described in Section 4.3.3 for parsing; i.e., the POS tags
are projected over word-alignment links from automatically tagged source sides
of multiparallel data, and combined with unweighted voting. The method will be
described in more detail in Section 6.1.

We also move from the unlabelled MSTParser to the labelled UDPipe parser,
and evaluate our approach using LAS instead of UAS; on average, the LAS of the
cross-lingual parsing tends to be about 15 points lower than UAS on this dataset.

Source selection

First, we evaluate the source selection based on KLcpos3 . We represent the results
of applying KLcpos3 on UD 1.4 treebanks annotated with gold POS, and compare
them to using the cross-lingually projected POS.

We also evaluate using the delexicalized POS tagger of Yu et al. [2016], which
does not require any resources for the target language other than the text to
be tagged. In practice, we did not really apply their tagger to our data, but
rather computed KLcpos3 on the tagged data which they released as Deltacorpus
[Mareček et al., 2016].

In Section 4.1, we noted that there are other possible methods and information
sources related to source-target language similarity. Therefore, we also incorpo-
rate WALS Hamming loss (see Section 4.1.3) into the comparison, suggested by
Agić [2017].

Table 4.9 compares the possible sources of POS tags to be used for KLcpos3 lan-
guage similarity computation. Oracle is the upper bound, which always chooses
the best performing source language. Gold POS is a theoretical upper bound
for the KLcpos3 selection, using the POS tags in source and target treebanks;
in practice, we assume that target treebanks are not available. Projected POS
compares POS in the automatically tagged source sides of the multiparallel data
(using taggers trained on source treebanks), and the projected POS in the target
sides. Deltacorpus POS compares POS tags in the Deltacorpus, not using either
the source treebanks or the multiparallel data. For each of the POS tag sources,
we report the language selected as most similar, and the relative LAS achieved
by applying the selected source delexicalized parser to the target data, compared
to the oracle LAS: LASselected/LASoracle. The last line of the table lists average

80

Target Oracle source Gold POS Proj. POS Dcorp. POS WALS
lang lang LAS lang % or. lang % or. lang % or. lang % or.
da sv 47.21 sv 100% sv 100% sv 100% sv 100%
el bg 39.73 en 86% en 86% ro 96% ru 97%
hu sv 22.11 de 82% ru 91% de 82% fi 97%
id pt 35.50 he 90% ro 96% ar 63% en 63%
ja fi 11.75 fi 100% nl 52% ar 28% fa 17%
kk hi 7.08 fi 86% ru 89% he 36% ru 89%
lv fi 25.00 ru 79% en 67% cs 82% ru 79%
pl cs 42.98 ru 89% ru 89% ru 89% ru 89%
sk cs 51.38 cs 100% cs 100% cs 100% cs 100%
ta hi 9.58 hi 100% fi 81% he 18% hi 100%
tr fi 20.56 fi 100% fi 100% ar 36% fa 38%
uk ru 34.44 ru 100% ru 100% ru 100% ru 100%
vi cs 21.52 sl 88% ro 90% ar 72% en 81%

AVG 28.37 6 92% 4 88% 3 69% 4 81%

Table 4.9: Comparison of using various sources of POS tags for KLcpos3 source
selection in cross-lingual delexicalized parser transfer: golden POS tags in training
treebanks (not available for target languages in practice), POS tags projected on
multiparallel data, and POS tags from the Deltacorpus. Using WALS Hamming
loss instead of KLcpos3 is also reported. For each method, the language selected as
most similar is listed, along with the oracle rate, i.e. the proportion of the oracle
LAS score obtained by using the selected language as the source (% or.).

values for numeric columns; for the language columns, it lists the number of times
the oracle language was correctly identified.

As these results were obtained on a different dataset than when developing and
evaluating KLcpos3 itself (different tagset, very different dependency annotation
style. . .), we would first like to note that the evaluation once again shows the high
quality of the KLcpos3 measure. When computed on gold POS tags, it manages
to identify the oracle source language in nearly half of the cases, including some
difficult ones (fi-ja, fi-tr, hi-ta). When the oracle is not identified, the resulting
accuracies are still highly competitive, with the worst result being 79% of oracle
for ru-lv.

As KLcpos3 was originally developed and evaluated using gold POS tags only,
there were some concerns, voiced by Agić [2017] as well as several reviewers of
our papers, about porting the measure to a more realistic setting where gold
POS tags are not available. Specifically, in the setup evaluated here, the tags are
projected unweightedly through small out-of-domain multi-parallel data, with an
accuracy of only roughly 70%, which is way below supervised taggers, let alone the
gold standard manual annotations. However (maybe somewhat surprisingly), the
performance of KLcpos3 on the projected tags is nearly flawless, with an average
drop of only 4% absolute. More surprisingly, it even surpasses the gold-POS setup
in 4 cases, presumably due to the fact that the projected POS tags eventually
get to be used on the parser input, and may therefore be more informative than
the theoretically better but practically unreachable gold POS tags. The oracle
language is now identified in only 4 cases, while using gold POS tags led to
identifying the oracle in 6 cases – for Tamil and Japanese, the method now selects

81

a (strongly) suboptimal source language, leading to large drops in accuracy.
The performance of KLcpos3 on the Deltacorpus delexicalized tagger POS tags

is clearly much lower, although the results are still competitive for about a half
of the targets. On one hand, we expected the performance to be even worse, as
the tagging accuracy in Deltacorpus is only around 60%. On the other hand, this
is not that much lower than the projection tagging, while the accuracy drop is
much larger, so we believe that with some more tuning, the delexicalized tagging
approach might be brought to a state of usefulness for cross-lingual parsing. Also,
while the final POS tags that the method outputs may not be optimal, it may
be that the internal representations and/or classifier output distributions contain
more useful information which could be leveraged.

In general, the results show that KLcpos3 is a rather robust measure, con-
sistently performing well across various datasets with various qualities of POS
tags.

We can also confirm the findings of Agić [2017], who found KLcpos3 to perform
better than WALS Hamming loss. While both of these methods identify the
oracle language in 4 cases, WALS makes worse mistakes in cases where it does
not identify the best language, leading to a lower average score. On the other
hand, employing WALS leads to better results than computing KLcpos3 on the
Deltacorpus POS tags, while both of these methods can do without parallel data,
making them potentially useful in a scenario where parallel data are even more
scarce, or non-existent. WALS also has one nice win, returning Finnish as the
most similar language to Hungarian, which does make much sense and which the
POS-based method was unable to detect.

Source combination

We now proceed to evaluate the multi-source parse tree combination method on
cross-lingually projected POS tags.

Table 4.10 shows the LAS achieved by the tree combination, both unweighted
and weighted using KL−4

cpos3 , as well as the single-source approaches using either
the oracle source treebank or the source selected with KLcpos3 .

The first thing we notice are the overall low scores, with the average LAS
around 30%, which seems to be much lower than what we saw on the HamleDT 2.0
dataset. However, this is mostly an illusion, as the apparent drop is mainly due to
us moving from UAS to LAS: the average UAS on the UD 1.4 dataset (not shown
in the table) is around 45%, which is not that much lower than the averages on
the HamleDT 2.0 dataset, which were around 50%. In other words, it is not
that the results suddenly got much worse; they already were this low before,
only this was partially hidden by using a different evaluation metric. Thus, the
use of cross-lingually predicted POS instead of gold POS only leads to a slight
deterioration of the (already quite low) results.

A real change to be noticed is the fact that the differences between the methods
diminished – while the distance of the weighted tree combination from the oracle
transfer is roughly similar as on the HamleDT 2.0 dataset, it is now very closely
followed by the single-source transfer using the automatically selected source
treebank, and also the unweighted tree combination performs only slightly worse.

On the other hand, the results are much more stable: on the HamleDT 2.0
dataset, unweighted tree combination actually reached the highest UAS among

82

Target Single-source Single-source Tree combination
language oracle KLcpos3 w=1 w=KL−4

cpos3

da 47.44 47.44 47.09 47.17
el 41.94 39.81 42.09 41.86
hu 24.45 22.71 24.22 26.00
id 36.40 34.64 36.11 36.58
ja 17.27 8.63 6.50 7.36
kk 7.83 6.93 7.53 7.83
lv 30.19 22.28 22.86 22.97
pl 47.57 43.31 46.44 46.70
sk 49.94 49.94 48.57 49.57
ta 13.62 13.62 7.76 10.29
tr 22.82 22.82 13.62 15.35
uk 35.27 35.27 38.17 38.17
vi 21.60 20.75 21.47 21.61

AVG 30.26 28.32 27.88 28.57
St. Dev. 13.82 14.42 16.01 15.61

Table 4.10: Evaluation using LAS on UD 1.4 target treebanks.

the non-oracle methods for half of the target languages (even though being worse
on average), while on the UD 1.4 dataset, this only happens in 1 case (el); for
all other targets, the weighted tree combination reaches a better score (or an
identical one for uk).

We hypothesize that this stabilization of the results is due to all of the POS
tags being induced very similarly (or actually identically), while on the Ham-
leDT 2.0 dataset, we used the gold POS tags, which may still have been influenced
by shortcomings in the treebank harmonization.

Otherwise, the overall picture is mostly similar as on the HamleDT 2.0 dataset.
The weighted multi-source tree combination is better both than single-source

transfer and unweighted tree combination, both on average as well as in most
cases, leading to the best performance for 7 of the 13 targets, while the single-
source transfer performs best in 5 cases and the unweighted combination in 2.

What we unfortunately lose is the previously observed property of weighted
tree combination not spoiling the single-source transfer in cases where we were
able to identify the oracle source with KLcpos3 . On the HamleDT 2.0 dataset,
the weighted tree combination was never worse than the single-source transfer.
However, on the UD 2.0 dataset, the score differences are lower, and the weighted
combination does in fact fail to reach the score of the single-source transfer in 5
cases. While the difference is rather negligible in 2 cases (less than 0.5 absolute
for da and sk), it is unpleasant in the other 3 cases, with a particularly large drop
for tr. Moreover, 4 of the deteriorations occur with target languages for which
KLcpos3 was actually able to identify the oracle source; this may well be the cause
itself, as the set of languages we use here is more varied, and so if there is indeed
a good and easy-to-identify source language, the other sources may be mostly
irrelevant.

On the other hand, while the oracle single-source transfer stays best on aver-
age, it is surpassed by the tree combination in 4 cases, which is something that

83

we observed on the HamleDT 2.0 development set but not on the test set.
To conclude the evaluation, we observed some changes when moving from

the unlabelled parsing with gold POS tags on the HamleDT 2.0 dataset to the
labelled parsing with cross-lingually projected POS tags on the UD 1.4 dataset.
While some of these changes are most probably due to the different setup, such
as the higher stability of the scores which we attribute to the higher uniformity
of the POS tags, other may simply be because of the different set of source
and target languages. Nevertheless, the overall results give the same message,
showing both KLcpos3 and the parse tree combination to be good approaches to
cross-lingual parsing, and the parse tree combination weighted by KL−4

cpos3 source-
target similarity to be the best performing setup.

4.5 Summary
In this chapter, we introduced KLcpos3 , our language similarity measure based
on the KL divergence of POS trigram distributions in the source and target lan-
guages, and showed it to perform well in selecting an appropriate source language
for a given target language to use in single-source delexicalized parser transfer.

We then presented several methods for combining multiple sources together
to perform multi-source delexicalized parser transfer, with parse tree combination
performing best in our experiments. We further enhance the method by weighting
the sources by their KL−4

cpos3 similarity to the target language.
Finally, we evaluated our approach in a somewhat different setting, using a

different set of treebanks in a different annotation style, as well as cross-lingually
predicted POS tags instead of supervised ones, and found it to perform well even
under such conditions.

84

5. Cross-lingual Lexicalization
So far, the basis for our cross-lingual parsing has been the delexicalized parser.
However, as we already showed in Section 3.1, omitting the lexical information
leads to a noticeable drop in parsing accuracy, as the POS tags are often not
sufficient by themselves to unambiguously expose the syntactic structure of the
sentence. Therefore, in this chapter, we deal with lexicalizing the cross-lingual
parsing.

There is in fact a very wide range of directions from which lexicalized cross-
lingual parsing can be approached. We try to review them in Section 5.1, includ-
ing observations from preliminary experiments that we conducted for many of
them; however, in the rest of the chapter, we only deal with the approach which
we eventually chose, based on applying MT methods to the source language tree-
banks.

We first present two very basic initial approaches, applicable for pairs of
very close source and target languages: source-lexicalized parsing (Section 5.2)
and character-level transformations (Section 5.4); we also explored simple string-
similarity-based translation in [Rosa, 2017].

We then move on to using full-fledged MT systems in Section 5.5, automati-
cally translating the source treebank into the target language, and then training
a rather standard lexicalized parser on it. We explore various setups, and finally
settle on the GIZA++ word aligner [Och and Ney, 2003] with intersection align-
ment and the Moses MT decoder [Koehn et al., 2007] in a monotone word-based
setting, i.e. translating each source word to exactly one target word without any
reordering.

Such an approach clearly has its limits, as even in close languages, words do
not correspond 1:1 (let alone in distant languages) and systematic differences in
word order are also common, making the word-based monotone translation sub-
optimal in terms of intrinsic translation quality. However, we have found this
approach to have two important benefits which seem to outweigh that. First,
it makes the annotation transfer extremely simple and thus less noisy. And
second, it forces the MT system to produce more literal translations, keeping
the structure of the target sentence very similar to the source sentence, which
increases the chance of the source annotation to be valid for the translation as
well.

5.1 Overview of possible approaches

5.1.1 Projection over parallel data
In the founding work on cross-lingual parsing, Hwa et al. [2005] trained a standard
lexicalized parser on a source language treebank, used it to parse the source side of
a parallel corpus, and then projected these automatic annotations onto the target
side of the corpus, thus obtaining a synthetic target-language treebank, which was
then used to train a target-language parser. As the parallel sentences typically
do not align 1:1, and because the target annotations need to form valid syntactic
trees, complex heuristics have to be employed in the transfer. Later, Agić et al.

85

[2016] successfully extended this approach to a setting with multiparallel corpora.
We have briefly explored this approach in Section 4.3.3, but found it to perform

even worse than the delexicalized parser transfer in our experiments. We think
this is because the noise introduced into the setup by using automatically induced
source annotations combines with the noisy transfer heuristics, leading to a too
low quality of the resulting synthetic target treebank.

However, for cross-lingual POS tagging (Section 6.1), this approach seems to
perform quite well – presumably because there are no such strict constraints on
the validity of a POS tag sequence as there are for a parse tree, thus avoiding
the complex and noisy transfer heuristics. We thus incorporate the projection
approach into our final cross-lingual POS tagging setup (Section 6.3).

5.1.2 Machine translation approaches

Machine translation of source treebank

Tiedemann et al. [2014] introduce the approach of using a full-fledged SMT system
to translate the word forms in a source language treebank (i.e. annotated source
language sentences) into the target language. In this way, they again obtain
a synthetic target-language treebank, which can be used to train a standard
lexicalized parser.

Depending on the type of the MT system used, the transfer of the source
sentence annotations onto the target language sentences produced by the MT
system can be quite simple or quite complex. Tiedemann et al. [2014] explore
multiple setups, but eventually decide for a complex SMT system, which requires
the use of transfer heuristics similar to those of Hwa et al. [2005], and follow this
path in their further works [Tiedemann, 2017]. In our work, on the contrary,
we follow the other option which they had explored, using a word-based SMT
system, which achieves a lower quality of the translation as measured in BLEU
[Papineni et al., 2002], but makes it possible to transfer the source annotation by
simply copying it over the 1:1 word alignment, thus avoiding the need for noisy
transfer heuristics.

The approach of machine translating the source treebanks has the advantage
of directly employing the manually annotated resources, which can be expected
to be of high quality with only little noise. Of course, the translations provided
by an MT system are inherently noisy, containing mistranslations, untranslated
words, etc., which is bound to introduce noise in the process. On the other hand,
the MT outputs can be expected to structurally correspond better to the source
sentences than human translations, as they tend to be more literal, which might
actually make the annotation transfer more reliable than if human translations
were used.1 Also, additional monolingual target-language texts are trivial to
incorporate into this approach, using them to enrich the training data for the
target language model.

1Of course, this assumes a certain level of quality of the machine translation; if the available
parallel corpora are too small, there is a high risk of the quality of the translation actually
being too low to make any assumptions about it.

86

Machine translation of target sentence

Ramasamy et al. [2014] used the MT system in the other direction, translating
each input target-language sentence into the source language, analyzing it with a
source language parser, and then transferring the predicted parse tree back onto
the original target-language sentence.

In our preliminary experiments, this approach performed worse than using
MT in the other direction, and so we do not follow that here. We think that
the major shortcoming of that method is that it uses both synthetic parallel
data (MT outputs) and automatic parsing, thus containing two steps that are
inherently noisy, while the two previously mentioned methods use either real
parallel data, or manually annotated parse trees, which presumably reduces the
noisiness of the transfer.

Machine translation into a pivot language

In principle, it is of course also possible to apply MT both to the source-language
treebank and to the target-language sentence, translating them into a common
pivot language; this could either be a real third language, or a synthetic one.
This will inevitably lead to an even larger accumulation of noise in the pipeline,
and we thus do not expect such an approach to lead to state-of-the-art results.
Still, we explore a simple variant of this method in Section 5.4, where we exploit
pairs of languages with a high degree of lexical similarity, trying to simplify the
word forms used in both of them in the same way to bring them closer together.
However, these experiments are rather exploratory.

5.1.3 Using cross-lingual clusters
Täckström et al. [2012] devised an approach which is somewhat similar to the
idea of translating both languages into a common pivot language. In their work,
they utilize word clustering approaches and parallel data to obtain a set of 256
cross-lingual word clusters, mapping both source and target words into this set
of clusters while trying to always map corresponding words into the same cluster.
Then they use the word clusters instead of word forms as input features to train a
parser on a source language treebank, and apply it to a target language sentences
where words are again replaced by their clusters.

The cross-lingual clusters introduce lexical information into the cross-lingual
parsing in a rather coarse-grained way; they could also be viewed rather as an
alternative fine-grained POS-like tagset. We thus consider this approach to be
somewhere between delexicalized and lexicalized parsing.

5.1.4 Using word embeddings
In recent years, word embeddings [Bengio et al., 2003, Mikolov et al., 2013] have
become the favourite way of lexicalizing NLP tools, with parsing being no excep-
tion. Relating to the work of Täckström et al. [2012], we can probably view word
embeddings as a sort of soft multidimensional word clusters.

As we use the UDPipe parser in our experiments, which is a neural parser and
uses word embeddings as the representations of the input words (Section 2.2.2),

87

this opens up several further options for lexicalized cross-lingual parsing for us.

Monolingual word embeddings

In the monolingual setting, the UDPipe Manual2 recommends pre-training word
embeddings on larger plaintext data, if available, as this leads to higher-quality
embeddings than when they are only trained on the small treebank (for the
purposes of training word embeddings, all treebanks are small).

Obviously, this does not lead to the cross-lingual lexicalization of the parser by
itself – one of the other approaches discussed in this section has to be used for that
first. However, in [Rosa et al., 2017], we have found that once the lexicalization
has been achieved, providing the parser with word embeddings pre-trained on
target language data can serve as a further adaptation of the parser to the target
language. We discuss and evaluate this approach in Section 5.3.

Multilingual word embeddings

In the multilingual or cross-lingual setting, many authors have explored various
ways of inducing bilingual or multilingual word embeddings [Xiao and Guo, 2014,
Guo et al., 2015, Zhang and Barzilay, 2015, Gouws and Søgaard, 2015, Duong
et al., 2015, Ammar et al., 2016].

However, we have not found any work that would report substantial improve-
ments achieved in this way for the cross-lingual parsing task, especially in com-
parison to using an MT system; the review work of Søgaard et al. [2015] explicitly
concludes that the multilingual word embedding approaches do not seem to bring
much for this task. Our preliminary experiments are in agreement with that, and
we thus do not follow this path in our approach.

However, there has recently been tremendous progress in performing machine
translation with little or no parallel data, based on the observation that the vector
spaces of word embeddings tend to have a similar shape in all languages, and thus
independently obtained monolingual word embeddings seem to be possible to map
onto each other using a linear transformation with local adaptations, based on
tiny or even no parallel data [Artetxe et al., 2017, Conneau et al., 2017]. We
find such findings to be fascinating and are curious about their potential future
applicability to cross-lingual parsing of under-resourced languages.

5.1.5 Translating the parser model internals
It is also possible to translate the lexical features of a trained parser model itself,
e.g., if it is a neural parser, by using the bilingual or multilingual word embeddings
approaches; however, this approach could also be used with non-neural parsers.

We conducted some preliminary experiments with UDPipe, either translating
each word in the vocabulary of the parser into its most probable counterpart,
or devising an embedding for each target language word as a linear combination
of the embeddings for its source language counterparts. Again, we did not find
this approach to perform well. It is not clear to us in what way this could be
better than using MT to translate the source treebank, which allows the use of

2https://ufal.mff.cuni.cz/udpipe/users-manual#udpipe_training_parser_
embeddings

88

https://ufal.mff.cuni.cz/udpipe/users-manual#udpipe_training_parser_embeddings
https://ufal.mff.cuni.cz/udpipe/users-manual#udpipe_training_parser_embeddings

standard monolingual target language word embeddings in the process, while the
translation of whole sentences (in the treebank) is bound to be more accurate
than the translation/transfer of individual words without context (in the word
embedding space).

5.1.6 Using subword units
Another approach which is also becoming the de facto standard for language
processing in neural networks is the splitting of the input words into subword
units, either linguistically motivated (morphs/morphemes), as performed e.g. by
Morfessor [Creutz and Lagus, 2005], or, more often, linguistically agnostic, based
e.g. on convolutional approaches or compression algorithms, such as Byte Pair
Encoding (BPE) [Gage, 1994, Sennrich et al., 2016]. Again, these approaches do
not achieve the cross-lingual lexicalization by themselves – another method from
this section must be applied first.

While we have experimented with both of these approaches – applying either
Morfessor or BPE to split words into smaller units – we have found it hard to
employ them for either monolingual or cross-lingual parsing; splitting the words
into smaller units always led to a decrease of parsing accuracy in our prelimi-
nary experiments. Based on manual inspections of the outputs, we now think
that the problem is that the concept of the word as an atomic unit is very cen-
tral to dependency parsing, and splitting words into smaller units seems to add
a lot of noise into the processing without bringing any clear improvements to
counterweigh that.

In cross-lingual parsing, we hoped that using subwords could prove to be a
win-win solution to the question of using accurate M:N translation versus simple
1:1 alignment that allows high-precision structure transfer – with an appropriate
splitting of the texts into subwords, one could theoretically achieve a 1:1 align-
ment for sufficiently close languages with little compromise. However, in our
experiments, we found that this is very hard to do correctly, and also makes the
processing even noisier. Moreover, most “parallel” sentences in typical parallel
corpora are not literal translations of each other, where we could hope for a nearly
1:1 alignment of appropriate subword units, but rather free paraphrases of each
other, where no such transformations can make the sentences easy to align 1:1.

5.2 Source-lexicalized parsing
To the best of our knowledge, source-lexicalized parsing was first explicitly intro-
duced as a viable approach for cross-lingual parsing by Zampieri et al. [2017] in
the VarDial 2017 Cross-lingual parsing shared task, with the organizers provid-
ing both a delexicalized transfer baseline as well as a second, slightly stronger,
source-lexicalized parser baseline.

Interestingly, this approach is even simpler than the delexicalized parser. In
cross-lingual source-lexicalized parsing, a standard lexicalized parser is trained on
the source treebank, and then applied to target language without any adaptation.
If there is a non-trivial overlap of the word forms used in the source and target
language, such an approach can leverage these and achieve a better parsing ac-
curacy. For even better results, the source parser should be trained only on POS

89

Setup cs→sk da+sv→no sl→hr
Delexicalized 53.66 57.84 53.93
Source-lexicalized 54.61 59.10 56.85
Difference +0.95 +1.26 +2.92

Table 5.1: Comparison of delexicalized and source-lexicalized parser transfer for
the very close UD 1.4 VarDial languages dev-sets, as reported by Zampieri et al.
[2017], using LAS and gold POS tags.

tags and word forms, i.e. excluding other morphological annotation, which seems
to be typically insufficiently cross-lingual.

In Table 5.1, we re-present the LAS scores observed by Zampieri et al. [2017] on
the UD 1.4 VarDial dataset (Section 1.3.2), showing that for very close languages,
it can outperform delexicalized parser transfer by several points in LAS.

As the main assumptions are that the source and target language share a
reasonable amount of word forms which have similar meanings in both of the
languages, this approach cannot be used but for very close languages, making it
weaker than delexicalized parsing in this respect. Still, on very close language
pairs, source-lexicalized parsing usually achieves higher accuracies than a delexi-
calized parser.

On the other hand, source-lexicalized parsing can also be viewed as being
stronger than delexicalized parsing, since it does not require target-side POS
tags: if these are not available, we can still train a detagged parser, which uses
only word forms as its features. However, we have found the detagged parser to
perform much worse than the delexicalized parser, even if the delexicalized parser
is applied to cross-lingually induced POS tags.

In Section 5.4, we build upon the source-lexicalized parser transfer approach
by targeting cases where the spelling of corresponding source and target words is
often not identical, but still somewhat systematically similar, achieving further
improvements. We then compare these methods to the source-lexicalized baseline
in Section 5.4.1.

In fact, in our work, we further improve the method by pre-training target-side
word-embeddings, as explained in Section 5.3, and use those when training the
source parser, hoping that for each target word that is identical to a source word
appearing in the training treebank, the parser also learns how to parse similar
target words (with similar word embeddings) – which may even be non-existent
in the source language, let alone the source treebank.

5.3 Monolingual word-embeddings
As we are using a neural parser (UDPipe), all input features, especially the word
forms, have to be converted to vectors (embeddings). By default, UDPipe trains
embeddings of each input feature on the training treebank jointly with training
the parser. However, this means that word form embeddings are typically trained
on very small data, leading to a low quality of the embeddings as well as poten-
tially high out-of-vocabulary rates, which is unfortunate since larger monolingual
plaintext data are usually available. Therefore, the UDPipe Manual recommends
pre-training word embeddings on larger plaintext data, if available, even in the

90

cs→sk da+sv→no sl→hr
Setup LAS ∆ LAS ∆ LAS ∆
Base 61.33 64.03 59.47
Pre-train 66.91 +5.6 66.49 +2.5 61.95 +2.5

Table 5.2: Evaluation of the effect of pre-training target word embeddings on large
monolingual data, versus the default of training only on the target translation of
the source treebank.

supervised monolingual case.3
In the cross-lingual setting, this has an additional benefit of using real target

language data in the training of the parser, thus letting it, indirectly through the
word embeddings, learn something about what sentences in the target language
actually look like. Note that the default UDPipe approach is even more problem-
atic in our setting, since we do not have a real target treebank at our disposal,
and so target embeddings trained on the pseudo-target treebank can be expected
to be of an even lower quality than in the fully supervised monolingual setting.
In that sense, pre-training the word embeddings can serve as an additional target
language adaptation.

For pre-training the embeddings, we use word2vec [Mikolov et al., 2013], with
the parameters suggested in the UDPipe Manual.4 We use the target side of the
parallel data to train the embeddings.

In Table 5.2, we evaluate the effect of pre-training word embeddings on the
target side of OpenSubtitles2016 on the VarDial dataset, employed in a MT-
lexicalized cross-lingual parser transfer applied on supervised target POS tags.
The results clearly show the huge effect of this simple trick, improving LAS by
more than 3 points on average. While the available data were quite big in this
case, more moderate improvements are to be expected with smaller parallel data,
which can more realistically be expected to be available for an under-resourced
language. Nevertheless, we do not see how employing the word embeddings pre-
training could ever harm the performance, and therefore believe it to be worth
performing in all situations.

5.4 Character-level transformations
In this section, we investigate several attempts to slightly improve the source-
lexicalized parsing by simple character-level transformations of the source and
target word forms.5 We specifically target a similar case as the source-lexicalized
parsing, where corresponding words in the source and target language are very
similar, but e.g. may have a slightly different spelling, or the inflection patterns
differ slightly, etc.

This approach can be regarded as a simple heuristical translation of both the
source and the target language into a simplified common “pivot language”, which

3https://ufal.mff.cuni.cz/udpipe/users-manual#udpipe_training_parser_
embeddings

4-cbow 0 -size 50 -window 10 -negative 5 -hs 0 -sample 1e-1 -binary 0
-iter 15 -min-count 2 -threads 12

5This is joint work of Rosa et al. [2017], with substantial contributions made by Daniel
Zeman, Zdeněk Žabokrtský, and Rudolf Rosa.

91

https://ufal.mff.cuni.cz/udpipe/users-manual#udpipe_training_parser_embeddings
https://ufal.mff.cuni.cz/udpipe/users-manual#udpipe_training_parser_embeddings

is constructed by keeping the features shared among the languages and discarding
those in which they differ.

We have tried this approach for the VarDial language pairs: Czech→Slovak,
Slovene→Croatian, and Danish+Swedish→Norwegian (Section 1.3.2). We noted
that in many cases, corresponding words in the languages look similar, but are
not completely identical, suggesting a space for improvement over the source-
lexicalization baseline by the envisioned method.

We noted that some of the differences seem regular, and could be targeted
by a rule-based translation system operating on subword level, but assumed this
would be a lot of work of unclear value – we only wanted to do a simple quick
experiment evaluating the viability of such a heuristical approach, with the in-
tention of ultimately moving on to SMT. Moreover, we wanted to design a set of
transformations applicable to multiple languages, while the rule-based translator
would inevitably be bound to a fixed language pair.

In particular, we exploit the fact that for similar words that correspond to
each other in the VarDial languages, we observed a high interlingual variability in
vowels, in diacritical marks, in duplication of letters, and in word-final inflection.
This motivates the introduction of the following five simple transformations:

Removing diacritics Replace each letter with diacritical marks by its variant
without the diacritical marks, using the Unidecode library6 by Burke [2001]
– e.g. “caffé” → “caffe”

Removing vowels Delete the letters a, e, i, o, u, y, with or without diacritical
marks – e.g. “caffé” → “cff”

Removing duplicated letters If a letter is duplicated in a word, we remove
the duplication – e.g. “caffé” → “café”

Simple stemming Keep only the first N letters from each word – e.g., for stem3,
“caffé” → “caf”

Lemmatization Instead of the word form, use the morphological lemma anno-
tated in the treebank.

5.4.1 Evaluation
We evaluated the effects of the aforementioned character transformations on the
three language pairs used in the VarDial workshop [Rosa et al., 2017, Zampieri
et al., 2017], using the parser transfer from Czech to Slovak, Slovene to Croatian,
and Danish+Swedish to Norwegian. The results are shown in Table 5.3. As
the baselines, we compare our results to the delexicalized parser (Section 3.2),
as well as the source-lexicalized parser (Section 5.2); as the source and target
languages are very close, source-lexicalized parsing is consistently better than the
delexicalized parsing for all of the language pairs.

We first try to further improve the source-lexicalization by switching to lem-
mas or simple stems (of length 6) instead of word forms, but the results are gener-
ally unfavourable: we observed minor improvements for the Slovene to Croatian
parser transfer only, with the simple stemming looking rather promising. The
lemmatization performs especially poorly, which may be due to the definitions of

6https://pypi.org/project/Unidecode/

92

https://pypi.org/project/Unidecode/

cs→sk da+sv→no sl→hr
Setup LAS ∆ LAS ∆ LAS ∆
Base ∆ = improvement versus delexicalized
Delexicalized 52.4 58.9 53.2
Source-lexicalized 56.0 +3.6 59.3 +0.4 55.9 +2.7
Simple changes ∆ = improvement versus source-lexicalized
lemma 51.5 -4.5 56.5 -2.8 56.2 +0.3
stem6 54.8 -1.2 58.8 -0.6 56.8 +0.9
-dia -dup 56.3 +0.3 58.0 -1.4 55.4 -0.5
-vow 58.2 +2.2 62.4 +3.1 57.1 +1.3
-vow -dia -dup 57.7 +1.7 61.9 +2.6 55.4 -0.5
Combinations ∆ = improvement versus -vow
-vow stem3 58.7 +0.5 62.3 -0.2 56.7 -0.5
-vow stem4 57.4 -0.8 62.5 +0.0 56.7 -0.5
-vow stem5 58.2 +0.0 61.9 -0.5 56.1 -1.0
-vow -dia -dup stem3 58.6 +0.4 61.7 -0.8 57.0 -0.2
-vow -dia -dup stem4 58.8 +0.6 62.0 -0.5 56.0 -1.2

Table 5.3: Evaluation of various simple lexicalization strategies: lemmatization
(lemma), simple stemming by clipping to N characters (stemN), removing vowels
(-vow), removing diacritics (-dia), and removing duplicated letters (-dup).

the lemmas being different in the treebanks;7 it may also be the effect of using
the pre-trained word embeddings (Section 5.3), which we expect to perform a
sort of soft lemmatization, among other.

We then proceed with removing vowels, diacritics and duplicated letters. Re-
moving vowels consistently performs very well, adding around 2 LAS points on
average. On the other hand, removing diacritics nearly always worsens the per-
formance; removing duplicated letters mostly had only a negligible effect, which
is why we evaluate it together with removing diacritics, as we see those transfor-
mations as being quite similar in principle. When these approaches are combined,
the results are consistently worse than that of only removing the vowels.

Finally, we try to combine removing vowels with the simple stemming, this
time experimenting with the prefix size. The words are already considerably
shorter due to the removal of the vowels, we therefore try low prefix lengths:
3, 4, and 5. We also try to remove the diacritics and duplicated letters again.
However, we do not observe any large and consistent improvements in comparison
to the removal of vowels alone. There are some small positive numbers for the
Czech to Slovak transfer, but they seem to be rather random fluctuations than
real solid improvements, as we have not been able to identify any clear pattern in
the results. Furthermore, we can see that the originally promising result of simple
stemming for the Slovene to Croatian transfer disappeared when applied on top
of the vowel removal, suggesting that after removing all vowels from the suffixes,

7For example, we have noticed that the negation prefix “ne-” is stripped in lemmatization in
Czech but kept in Slovak. Thus e.g. the word “nezabalená” (“not packed” in feminine gender),
which happens to be identical in both Czech and Slovak, is lemmatized as “nezabalený” (“not
packed” in masculine gender) in Slovak, but as “zabalený” (“packed” in masculine gender) in
Czech. If a parser is trained on Czech lemmas, all lemmas of negated Slovak words will thus
be unknown to it.

93

they already become sufficiently similar, and further removal of the consonantal
remains of the suffixes is not beneficial.

Thus, we conclude that from the simple character-level transformations that
we tried out, the only one that leads to large and consistent performance im-
provements across all of the evaluated language pairs is removing vowels.

We acknowledge that these transformations are very simple, and much more
sophisticated approaches could be taken: for example, one could employ proper
character-based machine translation, as done e.g. by Durrani et al. [2010]. Still,
the performance of any character-based methods has a clear (and usually rather
low) upper bound, as the character-level similarity even between close languages is
rather limited, with many corresponding words that are dissimilar, many similar
words that have different meanings, etc. For this reason, we move on to word-
based machine translation in the next section. However, we believe that there
is some potential value even in the character-based transformations, especially
in situations where the source and target languages are extremely close, and
the amount of parallel data usable for training a word-based MT system is very
limited; in such cases, using character-level transformations, either alone, or in
combination with word-based MT, as done e.g. by Durrani et al. [2014], could
perform well.

5.5 Machine translation
We now move to proper machine translation, based on models learned from par-
allel data.

Our final setup is based on using word-based SMT in an otherwise rather stan-
dard setting8 – employing GIZA++ word aligner [Och and Ney, 2003] with in-
tersection alignment symmetrization,9 phrase table extraction with phrase length
fixed to 1,10 Moses decoder [Koehn et al., 2007] in a monotone setting,11 and the
KenLM language model [Heafield, 2011] with trigrams,12 trained on the target
side of the parallel data. However, we explore several alternatives and variations
to this setup, both theoretically as well as, in some cases, empirically.

5.5.1 Translation arity
In the previous section, we noted that there are multiple options for the MT
system setup, with implications to the annotation transfer process. Here, we will
particularly focus on the problem of translation arity, i.e. whether each source
word is always translated into exactly one target word – we will refer to that
approach as word-based translation – or whether a source word or a group of
source words can be translated into one or multiple target words (phrase based
translation).

In the case of the simpler word-based MT approaches, a 1:1 correspondence
between the source and target words can be ensured, and the annotation can then

8http://www.statmt.org/moses/?n=Moses.Baseline
9-alignment intersect

10-max-phrase-length 1
11-distortion-limit 0
12-o 3

94

http://www.statmt.org/moses/?n=Moses.Baseline

be trivially copied onto the target sentence without any modifications. However,
the word-based approach is bound to produce a lower quality translation, as even
for very close languages, some expressions cannot be translated 1:1.

If standard Phrase-Based Machine Translation (PBMT) is used, the quality
of the translations is higher, but the source-target word correspondence is rather
N:M (phrase to phrase). In that case, a set of heuristics, such as those proposed
by Hwa et al. [2005], must be used to map the source annotations onto the target
sentence, together with a way of estimating the internal alignment of the phrases.
This makes the annotation transfer inevitably somewhat noisy.

Tiedemann et al. [2014] investigated both of these approaches, using a stan-
dard PBMT setup, based on GIZA++ and Moses. In the phrase-based translation
approach, they use a vanilla Moses setup, and then project the source annotations
using heuristics similar to those introduced by Hwa et al. [2005], but utilizing ad-
ditional alignment information provided by the MT system for a more precise
annotation projection. To perform word-based translation, they simply filter the
phrase table to only contain one-word phrases, and then proceed in the standard
way. Word reordering can still be performed by the MT system, but this does
not complicate the annotation transfer much, as Moses outputs the source-target
1:1 word alignment links. Surprisingly, the authors found both of the setups to
perform very similarly in their setting, reaching accuracies within 0.1 LAS point
on average from each other.

An observation which we believe to be important is that while SMT systems
are typically tuned to produce translations best suited to be read by humans, this
may not be the right target in our case. What we are actually interested in is a
translation that is reasonably accurate, but also enables a reliable transfer of the
annotation. Moreover, in Section 5.6, we will actually show that the cross-lingual
parsing accuracy does not seem to be too sensitive to the translation quality, as
measured by BLEU.

Based on our investigations of the translation outputs produced by the various
configurations of the MT system, we observed the word-based translations to be
somewhat cumbersome and often containing several garbage function words,13

but on the other hand much more literal and therefore better preserving the
source sentence structure. The phrase-based translations tend to be more fluent
and generally better, but also less literal, changing part of speech and language
structures to fit what is preferred in the target language, thus making the source
morphological and syntactic annotation less transferable onto the output, even if
it was not for the noisy M:N transfer heuristics.

Thus, contrary to the case of standard human-targeted translation, but in
accord with findings of Tiedemann et al. [2014], we consider word-based MT
not to be inferior to phrase-based MT in our setting, but to constitute a viable
and competitive alternative, at least in the case of somewhat similar languages.
Moreover, employment of phrase-based MT into cross-lingual parsing is rather
well studied, while the previous research on employing word-based MT is rather
rudimentary, uses sub-optimal approaches and does not exploit even the standard
features available in GIZA++ and Moses. Therefore, we decided not to deal with
phrase-based MT in our research, but to rather focus on word-based MT, investi-

13Typically “translations” of source function words which should not have any counterpart
in the target language.

95

gating the potential of employing state-of-the-art word-based MT approaches in
cross-lingual parser transfer.

We would like to note here that both word-based and phrase-based MT can
but does not have to be monotonous (a monotonous MT system is one which
does not perform word reordering during the translation). We discuss that issue
and investigate the effect of translation monotonicity in Section 5.5.3.

5.5.2 Word alignment
For word alignment, by default, we use the standard GIZA++ tool in the usual
way, i.e. computing both forward and reverse alignment, and then combining
them via symmetrization.

Alignment symmetrization

The word alignment systems offer many flavours of the word alignment, and it is
far from clear which one should perform best. GIZA++ itself only performs the
word alignment in one direction. In the default forward alignment, each target
word is aligned to exactly one source word, while each source word can be aligned
to 0 or more target words; and vice versa for the reverse alignment direction. The
logic behind the naming is that if one translates in the direction from the source
language into the target language, one needs to produce all of the target words
exactly once, so that the output is identical to the target sentence, while it does
not matter how the source words are used – some can be translated into multiple
target words, and some can be ignored. However, later it was found out that both
the forward and the reverse alignments are useful for SMT, while none being of
high quality on its own. Therefore, symmetrization heuristics are typically used
to combine the two alignments into one of higher quality [Och and Ney, 2003].

The simplest two symmetrizations applied to alignment links are:

union Keep all links that appear either in the forward or in the reverse alignment.

intersection Keep only links that appear in both forward and reverse alignment.

However, as these still do not usually perform very well in PBMT, a set of more
sophisticated heuristics was devised, all starting with the intersection alignment
as their backbone and iteratively adding some of the most likely alignment links
from the union alignment. In particular, the grow-diag-final-and (gdfa) sym-
metrization is usually used in SMT.14

Tiedemann [2014] investigated the main symmetrization approaches in apply-
ing MT to parser transfer, concluding that the effect of the particular method
used is not very strong, and that no general conclusion about which method per-
forms best in this scenario can be drawn from the results, as different methods
ranked differently for different language pairs. Specifically, the gdfa symmetriza-
tion approach was found to perform well on average and often led to the best
LAS scores, but its advantage was not crucial.

In our work, we decided to use the intersection symmetrization. The main
advantage of this method is that it natively produces a 1:1 word alignment,

14http://hermes.fbk.eu/people/bertoldi/teaching/img/Word_Alignment_
Symmetrization.pdf

96

http://hermes.fbk.eu/people/bertoldi/teaching/img/Word_Alignment_Symmetrization.pdf
http://hermes.fbk.eu/people/bertoldi/teaching/img/Word_Alignment_Symmetrization.pdf

making it easily applicable to our setting, as word-to-word translation pairs can
be directly extracted from it. It is also typically described as strongly preferring
alignment precision over recall, which might be preferable in our case: we wish to
use cross-lingual lexicalization of the parser only to improve its performance, so
we might want to focus only on quite reliable translations. As we demonstrated on
the success of source-lexicalized parser transfer (Section 5.2), we do not actually
need to cover the whole target lexicon; covering even a small part of it can be
very helpful.

The work of Tiedemann [2014] gives us confidence that if we are losing some-
thing due to using intersection symmetrization, we should not be losing too much.
We did not explicitly replicate his work for parsing, but we do investigate the
effect of alignment symmetrization on POS annotation projection over parallel
data in Section 6.1.2, where we actually find the intersection symmetrization to
substantially outperform all of the other options.

Monolingual Greedy Aligner

For situations where the source and target languages are very close to each other,
such as the VarDial dataset, we decided to also try using the heuristic Mono-
lingual Greedy Aligner (MGA)15 of Rosa et al. [2012a]16 instead of GIZA++.
Our main motivation was the fact that GIZA++, as well as many other word
aligners, completely ignore cross-lingual string-wise word similarity, while the
source-lexicalized parsing experiments (Section 5.2), as well as the character-
level transformations (Section 5.4), clearly showed that for very close languages,
character-level similarities of source and target words definitely can be exploited.

MGA is intended for aligning sentences written in the same language, and
had been specifically tuned to be applied to the Czech language and the PDT
annotation; it has been used e.g. on error correction or paraphrasing datasets.
However, based on its implementation, it can also be used for aligning a pair of
sentences in different but lexically similar languages. It utilizes the word, lemma,
and POS tag similarity based on Jaro-Winkler distance [Winkler, 1990],17 and the
similarity of relative positions in the sentences, to devise a score for each potential
alignment link as a linear combination of these, weighted by pre-set weights. The
iterative alignment process then greedily chooses the currently highest scoring
pair of words to align in each step; each word can only be aligned once. The
process stops when one of the sides is fully aligned, or when the scores of the
remaining potential links fall below a pre-set threshold.

Unlike classical word aligners, MGA does not train or iterate on the input data
in any way, but processes each pair of sentences independently, using a set of 5 pre-
set hyperparameters (weights of the 4 input features, and the stopping threshold);
the values of the hyperparameters had been reportedly manually tuned by its
author on a set of ten Czech sentence pairs, but were subsequently found to

15https://github.com/ufal/treex/blob/master/lib/Treex/Tool/Align/
MonolingualGreedy.pm

16MGA was developed by Martin Popel.
17The POS tag similarity makes much more sense on the Czech positional tagset, with which

it was intended to be used. We note that for the UPOS tags, it only makes sense in some cases
(e.g. ADJ and ADV) and not in other cases (e.g. ADJ and ADP); an UPOS-specific similarity
should presumably be defined instead.

97

https://github.com/ufal/treex/blob/master/lib/Treex/Tool/Align/MonolingualGreedy.pm
https://github.com/ufal/treex/blob/master/lib/Treex/Tool/Align/MonolingualGreedy.pm

perform quite well and thus are typically used with their default values.
Even though we use MGA in a different than the intended setting, applying

it to sentences in similar but not identical languages, we did not modify either
its hyperparameters or its implementation in any way, but still observed it to
perform rather competitively.

We note that MGA needs both the source side and the target side of the par-
allel data to be morphologically analyzed at least for POS, which is a significant
limitation. We actually applied it to the VarDial dataset, where availability of
supervised target taggers was assumed. However, in the intended low-resource
scenario, cross-lingually induced POS tags (Chapter 6) would need to be used;
however, we have not evaluated MGA in such a setting.

5.5.3 Word reordering
In general, the word order patterns differ across languages. Often, the usual or-
dering of Subject, Object, and Verb (predicate) is used as one of the primary
characteristics of a language, leading to division of languages into SVO languages
(such as English or Czech), SOV languages (such as Japanese or Latin), etc.
However, this is by far not a sufficient characterization; not only do many lan-
guages exhibit multiple of these word order patterns, but the languages also differ
in the ordering of other sentence components than these three – other commonly
investigated are nouns and their modifiers, adpositions (prepositions or postposi-
tions), verbs and adverbs, negation particles, etc. The final ordering of words in
a given sentence is typically based on many complex mechanisms, and is difficult
to cover by rules. The word order may convey information relating to the role
of the sentence constituents, the meaning of the sentence as a whole, emphasis,
and other. Thus, correct handling of word order in NLP applications such as MT
is both important and hard, and a monotone translation (i.e. one that keeps the
source word order) is usually not desirable or even acceptable.

In SMT, various approaches can be taken. In Moses, the default approach is
the use of a reordering model, which allows the decoder to pick source phrases to
translate out of order (the target translation is always constructed continuously
left to right), while paying a reordering cost proportional to the number of source
words skipped. If the target language model supports the reordering sufficiently to
override the reordering cost, the reordering is performed. This approach may be
sufficient for simple local reorderings, but is too weak to perform any sophisticated
and/or long-distance word order changes.

Another common approach is to perform pre-reordering, in an attempt to
bring the source language word order closer to the target language word order,
and then proceed with standard monotone translation. This can be done either
in a rule-based way as in [Collins et al., 2005], or machine-learned, as in [Xiong
et al., 2006]. There is at least one fundamental problem with this approach: as the
source sentence word order presumably conveys some information, this may be
lost due to the pre-reordering. However, as SMT often struggles even to transfer
the core lexical meaning of the source sentence, the often subtle differences in
meaning expressed by the word order would be lost in the translation anyway. A
logical, though less frequently used alternative, is post-reordering [Sudoh et al.,
2011], i.e. performing the translation first and only reordering the output in a

98

subsequent processing step; however, this approach cannot usefully cooperate
with the target language model, which is a strong component in the decoding.

In previous applications of MT to cross-lingual parsing, the authors usually
employed standard phrase-based SMT, in which case the complexity of transfer-
ring the parse trees through this M:N translation generally overcasts the issues
connected to reordering. Moreover, the authors usually employed the translation
systems in their vanilla version, without any parameter adaptations. Therefore,
we are unaware of any study focusing on the effect of word reordering in the MT
decoder when applied in the cross-lingual parser transfer scenario.

In Table 5.4, we investigate the effect of allowing or disallowing word reorder-
ing in the MT system, using UD 1.4 target treebanks, with English fixed as the
source language for all of the 32 target languages. We either used monotone
translation,18 where word reordering is forbidden, or employed the default re-
ordering model19 and transferred the annotation via word alignment links output
by Moses.20 The MT system was trained on the OpenSubtitles2016 dataset. The
results were originally reported in [Rosa and Žabokrtský, 2017].

To our surprise, we found that except for 8 target languages quite different
from the source language (mostly non-Indo-European), allowing the word reorder-
ing consistently leads to a deterioration of the cross-lingual parsing accuracy; for
all the remaining 24 languages (mostly Indo-European), as well as on average,
the monotone translation led to better parsing.

When we inspected the data for a few languages, we spotted a common pat-
tern, similar to our observation for translation arity in Section 5.5.1. What we
found was that the monotonicity constraint forces the MT system to produce more
literal translations, even if somewhat cumbersome, with the syntactic structure
rather similar to the source sentence. If reordering is allowed, the translations
are more free, more fluent, but the syntactic structure tends to differ more.

The opposing forces of the language model, which pushes for fluency, and
the translation model, which pushes for accuracy, are well known in MT. What
we argue here is that for cross-lingual transfer of annotation, the ideal balance
seems to be different than what is optimal for human-targeted translation – more
emphasis should be put on accuracy than on fluency, which, it seems, can be
achieved by enforcing monotone translation.

While content words are typically easy to translate 1:1, it is the function
words that often do not really match another word in the target language, as
one language often uses a function word where the other language does not (con-
sider e.g. prepositions versus inflection for case, determiners versus morphological
agreement, or pronoun dropping). The 1:1 MT system then usually translates
such words into some “garbage words”, e.g. to a preposition or a determiner that
is quite frequent in the target language,

In monotone MT, this leads to these “garbage words” appearing at somewhat
unexpected positions, which typically makes the translation somewhat cumber-
some and disfluent. As this goes against the language model, it makes the trans-
lation model more powerful, leading to more literal translations.

If the MT system is allowed to perform reordering, it rather moves the trans-
18-dl 0
19-reordering msd-bidirectional-fe
20-alignment-output-file alignment.out

99

Target Monotone Reordering Difference
Low source-target similarity

hi 10.44 13.17 2.73
eu 10.20 11.29 1.09
vi 21.48 19.12 -2.36
fa 14.06 19.22 5.16
ar 14.03 16.82 2.80
tr 13.79 13.40 -0.40
uk 35.68 36.51 0.83
hu 21.31 20.85 -0.46
he 28.48 30.83 2.35
fi 26.77 25.32 -1.44
AVG 19.63 20.65 1.03

Medium source-target similarity
sl 33.53 27.48 -6.05
lv 24.09 13.87 -10.22
et 29.44 28.51 -0.94
pl 37.93 35.23 -2.70
ro 32.29 30.78 -1.51
hr 34.44 35.33 0.89
el 46.45 46.12 -0.33
id 24.31 26.79 2.48
ru 30.40 29.71 -0.69
cs 32.56 31.33 -1.23
sk 39.38 37.16 -2.22
nl 41.50 39.29 -2.21
gl 18.92 17.90 -1.02
ca 41.19 14.53 -26.66
bg 45.21 42.67 -2.53
AVG 34.11 30.45 -3.66

High source-target similarity
sv 47.48 37.00 -10.48
de 47.38 44.00 -3.39
da 50.75 19.61 -31.14
fr 51.83 50.75 -1.08
it 51.35 50.62 -0.73
no 58.56 35.14 -23.42
pt 50.98 48.50 -2.48
AVG 51.19 40.80 -10.39
ALL 33.32 29.65 -3.67

Table 5.4: Effect of enabling word reordering in Moses. Measured in LAS on
UD 1.4 treebanks, using English as the source for all target languages.

100

lations of these non-matching words to a “garbage position”, e.g. the end of the
sentence or a clause boundary, where the flow of the sentence naturally breaks
anyway, and the language model is thus more tolerant at such places. However,
this allows the language model to have a stronger influence in other parts of the
translation, which may make the translation more fluent but less literal.

5.5.4 Simple translation
Apart from using Moses, we also experimented with a simple lexicon-based trans-
lation. This approach was introduced by Agić et al. [2012], and later revisited
and explored in more detail by Tiedemann et al. [2014], who refer to it as Lookup
translation.

In our implementation, we translate each source treebank into the target lan-
guage word-by-word, independent of source or target context, based on a word-to-
word translation table extracted from the parallel data aligned by an intersection
alignment. If there are multiple translation options for a source word, the one
most frequently seen in the parallel data is produced; we use Jaro-Winkler simi-
larity of the source and target word forms as a tie breaker. Unknown words are
left untranslated.

As a potential improvement to this simplistic setup, we use the UPOS and
morphological features labels for source-side disambiguation. We automatically
analyze the source side of the parallel data, labelling it with UPOS and mor-
phological features, and store these labels together with the source word in the
translation table. Then, to translate a source word which is annotated with a
specific UPOS and morphological features in the source treebank, we first try to
use a matching entry in the translation table. Two backoff layers are used if the
translation table does not contain the source word form with the given annota-
tions, first only taking the word form and the UPOS into account, and the second
only looking at the word form. Note that, as we only use these annotations on the
source side, i.e. for the language assumed to be resource-rich, we can realistically
expect to have these annotations available in practice.

5.5.5 How many sources to combine?
In delexicalized parser transfer, we could easily train and combine the delexical-
ized parsers for all source languages, since the delexicalized parser was trained
only once for each source language, independent on the target. However, with
cross-lingual parsing lexicalized through MT, this is not the case anymore, as a
separate MT system, and subsequently a lexicalized parser, has to be trained for
each source-target pair.

While this does not immediately seem to pose a problem, we quickly found
that in our setting, using the UD 1.4 dataset with 22 sources and 13 targets,
training of 286 Moses systems is way beyond standard technical limits even of
a medium-sized computational cluster, which is available to us. Interestingly, at
least in our case, the CPU or RAM capacities turned out not to be the main bot-
tleneck – the disc operations were. For some reason, the Moses training pipeline
keeps reading from the disc and writing to the disc almost continuously, which,
when done in parallel, sooner or later stalls the whole shared filesystem, and

101

Target Top 1 Top 3 Top 4 Top 5 Top 6 Top 7
da 55.89 57.58 57.85 57.68 57.72 57.90
el 44.78 48.35 49.10 49.41 49.36 49.63
hu 28.40 31.46 33.49 32.57 32.55 32.84
id 39.06 39.06 40.90 41.11 42.06 43.08
ja 11.65 11.93 12.90 14.58 13.06 14.58
kk 11.45 14.01 15.51 13.86 14.01 13.40
lv 28.16 36.59 38.74 42.23 42.34 41.35
pl 54.10 56.79 56.93 58.46 57.51 57.79
sk 65.75 62.78 63.23 62.21 61.91 61.95
ta 18.21 18.21 17.34 16.39 16.47 15.52
tr 24.45 19.45 23.23 22.47 22.44 21.93
uk 47.30 47.72 48.55 48.55 46.89 47.30
vi 25.44 26.56 27.18 27.90 27.93 27.56
AVG 34.97 36.19 37.30 37.49 37.25 37.29

Table 5.5: Comparing the combination of top N source languages with N from 1 to
7, as ordered by their KLcpos3 similarity to the target, using the KL−4

cpos3 weighted
combination of parse trees produced by MT-lexicalized parsers, evaluated using
LAS on UD 1.4 treebanks.

sends most of the training processes crashing.21 Thus, even with the significant
computational power available to us, we were unable to train more than roughly
two dozen instances of Moses at the same time, and even then we had to adopt
an approach of slightly distributing the starting times of the individual training
processes, so that there is a reasonable chance that the training will not reach
the periods of the most disc-intense operations at the same time in all of the
instances. This all holds for the rather small WTC parallel datasets, where the
whole pipeline can run in hours or dozens of hours; we can only imagine that for
significantly larger datasets, such the OpenSubtitles data, this endeavour would
be even more hopeless. We thus conclude that a researcher cannot be reasonably
expected to train several dozen MT systems for a single target language.

Eventually,22 we managed to obtain trained MT systems for the 7 most
KLcpos3-similar source languages for each target language, as well as the ora-
cle language. We present the results of varying the number of source languages
to combine in Table 5.5; we do not include “top 2”, as this does not make much
sense with the voting scheme that we employ. This again uses the UD 1.4 dataset
and the best-performing cross-lingual POS tagging, with a weighted lexicalized
parse tree combination on top.

It can be seen that combining the top 5 sources works best on average. How-
ever, it is obvious that this is mostly compromise, as for some targets, adding
more sources keeps improving the score, for other it keeps degrading the score,
and yet for other the score keeps improving up to a point and then starts dete-
riorating after adding several sources; the breaking point is at the top 5 sources
for some of the targets, which further licenses the selection of the “top 5” com-

21As well as many processes of our colleagues, to their great dismay. If any of them happens
to read this, we sincerely apologize for the disruptions to them.

22After a few weeks, and with scheduling most of the training for the weekends to minimize
the disruption of work of our colleagues.

102

Setup Top 1 Top 3 Top 4 Top 5 Top 6 Top 7 Top 22
unweighted delex. 32.23 32.23 31.70 32.77 32.71 32.74 32.47
weighted delex. 32.23 33.17 33.77 34.13 34.14 33.80 33.28
unweighted lex. 33.91 35.06 34.38 35.59 35.15 35.43
weighted lex. 33.91 35.47 36.37 36.66 36.39 36.35

Table 5.6: Effect of varying the N for a top N combination for various setups.
Only the average LAS on the UD 1.4 target treebanks is shown.

bination as the best performing one, even though the average performance is
definitely a more important indicator. Possibly due to the KL−4

cpos3 weighting, the
score improvements tend to get lower with adding more and more languages (if
there are improvements), so we seem not to lose that much by stopping at 5.

Ideally, we would hope for KL−4
cpos3 weighting to smooth out this effect com-

pletely, only weighting the further sources high enough for them to make a mean-
ingful contribution in cases where something useful can be learned from them,
and weighting them down into oblivion if they are simply too dissimilar from the
target language.23 Unfortunately, while we have explicitly tuned KL−4

cpos3 to do
that and we have seen exactly this behaviour on the development HamleDT 2.0
treebanks, this effect is somewhat watered down in the setting evaluated here,
even though it still seems to exist.

Alternatively, we would like to choose a different N to use in the top N combi-
nation for each target language, but we simply do not see how to determine such
N. It would seem logical to combine fewer sources if one or several are extremely
similar to the target language, as they alone can probably provide much of the
required information. It would also make sense to combine as many sources as
possible if none of them is particularly close to the target language, since differ-
ent things can probably be learnt from them. However, the results do not seem
to support such an approach sufficiently for us to formulate it more clearly and
explicitly test it in experiments. We thus simply accept the compromise value of
5 as the best we can do.

Interestingly, the “top 5” approach seems to universally work well on our
dataset, even in the unweighted case as well as for the delexicalized parsing, as
shown in Table 5.6. We only show the averages here, since there is similar variance
for the individual targets as we saw in Table 5.5, from which we did not manage
to draw any new meaningful conclusions. Note that the underlying POS tags
come from an earlier setup this time, and the results are therefore different from
those in Table 5.5.

Taking the top 5 sources interestingly practically always leads to the highest
score on our dataset, no matter what the setup is. We are quite certain that
this is very probably a property of the particular dataset we are using, and that
the “magical number” will most probably be slightly different for other settings,
as it is clearly different for individual target languages and only seems best on
average. However, we believe that our general observation is valid: it is not
necessary or even useful to take all of the available sources, as taking only a few

23This is obviously not fully possible, at least because of the fact that KL−4
cpos3 does not take

source treebank sizes into account, i.e. does not even have all of the necessary information on
its input.

103

Target exp
(
5/KLcpos3

)
KL−4

cpos3

lang. Top 1 Top 3 Top 4 Top 5 Top 6 Top 7 Top 5 Best
da 55.89 55.89 55.89 55.89 55.89 55.89 57.68 57.90
el 44.78 44.78 44.78 44.78 44.78 44.78 49.41 49.63
hu 28.40 31.44 33.51 32.55 32.40 32.75 32.57 33.49
id 39.06 39.06 39.06 39.06 39.06 39.06 41.11 43.08
ja 11.65 11.93 12.88 14.59 13.06 14.59 14.58 14.58
kk 11.45 14.01 15.51 13.86 14.01 13.40 13.86 15.51
lv 28.16 36.02 38.21 41.46 41.57 40.99 42.23 42.34
pl 54.10 56.82 57.14 57.28 57.17 57.41 58.46 58.46
sk 65.75 65.75 65.75 65.75 65.75 65.75 62.21 63.23
ta 18.21 18.21 18.21 18.05 17.58 16.55 16.39 18.21
tr 24.45 24.45 24.45 23.61 23.43 23.28 22.47 23.23
uk 47.30 47.30 48.96 49.38 49.38 50.62 48.55 48.55
vi 25.44 26.54 27.18 27.90 27.74 27.49 27.90 27.93
AVG 34.97 36.32 37.04 37.24 37.06 37.12 37.49 38.16

Table 5.7: Performance of the softmax-normalization of KLcpos3 , compared to the
single-best transfer, and to our KL−4

cpos3 transformation on top 5 sources as well
as the best-performing combination from Table 5.5, on UD 1.4.

of the most similar ones works best. Besides, training so many MT systems may
be too computationally demanding to be carried out in practice, especially in a
setting where significant computational power is not available, so we are quite
relieved with this finding. We thus limit ourselves to only using the top 5 sources
in further experiments on the UD 1.4 dataset.

Comparison to softmax distance normalization

As we mentioned in Section 4.2.5, Agić [2017] suggested a slightly different way
of transforming the KLcpos3 distance into a similarity measure, based on softmax
normalization with temperature:

simAgic(tgt, src) = exp
(

5
KLcpos3(tgt, src)

)
(5.1)

As he did not explain why this should be better than our original suggestion of us-
ing KL−4

cpos3 as the similarity measure, we decided to compare the two approaches
empirically.

Table 5.7 shows that the softmax normalization is often very peaked, giving a
too low weight to other sources languages than the most similar one. In 4 cases,
this effectively eliminates all other sources (da, el, id, sk), making the application
of the multi-source combination useless; for Slovak, this is actually beneficial,
since we have not been able to improve over the single-best transfer anyway, thus
avoiding the losses that we encountered. We observe a similar situation for Tamil
and Turkish, where we were also unable to surpass the single-best transfer, and
Agić’s more conservative employment of additional sources thus leads to lower
losses against the single-source transfer.

Ukrainian is the only target language where the softmax weighting outper-
forms both our weighting and the single-source transfer. For all the remaining

104

System cs→sk sl→hr da+sv→no
Source-lexicalized 53.72 53.35 59.95
Coltekin 64.05 55.20 65.62
Tiedemann 73.14 57.98 68.60
MGA+simple 78.12 60.70 70.21
Supervised 69.14 68.51 78.23

Table 5.8: Results of the VarDial 2017 cross-lingual parsing shared task (LAS).
Comparing our MGA+simple submission to the source-lexicalized baseline and
monolingual supervised upper-bound, as well as to the submission of Tiedemann
[2017] and Çöltekin and Rama [2017].

6 target languages, KL−4
cpos3 leads to identical or higher improvements over the

single-source than the softmaxed KLcpos3 , both when comparing the “top 5” com-
bination for both and when comparing the best performing combination for both;
it also performs better on average. Thus, except for Ukrainian, the softmaxed
KLcpos3 was only able to improve over KL−4

cpos3 by minimizing the loss towards the
single-source, not by actually leading to a better combination of the sources.

While it is probable that a different choice of the temperature hyperparam-
eter value could lead to better performance of the softmax transformation, we
note that we simply use the value that Agić [2017] obtained by tuning on En-
glish UD 1.3 development data with cross-lingually predicted POS tags, i.e. in a
setting very similar to that used in our evaluation, while KL−4

cpos3 was tuned on
the considerably different HamleDT 2.0 treebanks with gold POS tags (both of
the methods were tuned on delexicalized parser transfer). Therefore, we find it
fair to conclude that our original transformation of the KLcpos3 distance into the
KL−4

cpos3 similarity measure outperforms the softmax transformation suggested by
Agić [2017].

5.6 Evaluation
In this section, we evaluate the lexicalized cross-lingual parsing in several setups
and on several datasets.

5.6.1 VarDial shared task
In January 2017, we participated with an early version of our cross-lingual parsing
system in the VarDial 2017 Cross-lingual parsing shared task [Zampieri et al.,
2017]. Although we have further improved the system since then, we still find it
fruitful to review the results of that shared task, as this was a unique occasion
in terms of reliably comparing our approach to other state-of-the-art systems on
an identical test set with identical training data; and, incidentally, also using an
identical UDPipe parser.

In particular, as our submission to the shared task outperformed both of the
other submissions [Tiedemann, 2017, Çöltekin and Rama, 2017] for all target
languages, we believe that this shows our methods to be clearly within the state
of the art in the field.

105

In Table 5.8, we represent the results of our participation in the shared task,
as well as the results achieved by other participants. We also list the source-
lexicalized baseline and the supervised upper-bound. The results are taken over
from the task organizers.24 The task was evaluated using the VarDial subsection
of the UD 1.4 treebanks (see Section 1.3.2) with supervised POS tags.

The “MGA+simple” line denotes our winning submission to the shared task
[Rosa et al., 2017],25 based on MGA alignment with simple translation using
OpenSubtitles2016 parallel data, with several further improvements. These in-
cluded, most importantly, target word embeddings pre-training (Section 5.3),
slight further source annotation harmonizations (Section 1.2.5),26 and the incor-
poration of the Case morphological feature into the parser input, as it proved
to be cross-lingually useful for these particular language pairs (Section 3.2.1).27

However, as most of the improvements had been specifically tuned for the par-
ticular languages, we removed them in later experiments, since the hand-tuning
does not scale well to datasets containing many languages; further on, we only
employ the word embeddings pre-training, which is language-independent and
seems to be rather universally useful.

We can see that even with the simple machine translation strategy, the system
performs well above the baseline, and even surpasses the supervised upper-bound
for Slovak. While this setting is not the typical intended one, as none of these
languages are truly under-resourced, and also as supervised target tags were used,
we still find the results rather solid. Nevertheless, it must be noted that all of
these language pairs are extremely close, as can be seen already from the high
performance of the source-lexicalized baseline (Section 5.2). Moreover, the Slovak
supervised parser seems to have an unexpectedly low accuracy, i.e. we believe that
with proper tuning, the monolingual supervised parser might be able to surpass
our cross-lingual one.

Additionally, we include the results of the second best system in the competi-
tion, submitted by Tiedemann [2017], who used a slightly different approach for
each of the language pairs, alternating between the tree projection approach of
Agić et al. [2016], which we explored in Section 4.3.3, and phrase-based or syntax-
based MT, based on his previous work [Tiedemann, 2014, Tiedemann et al., 2014,
Tiedemann, 2015]. It is interesting to note that even though the cross-lingual
lexicalization component was the one that the author paid most attention to,
investigating several powerful and well-developed approaches and choosing the
best-performing one for each target (which brought him improvements of sev-
eral LAS points), our submission managed to surpass that by a large margin for
each of the targets, despite using an extremely simple MT approach. On one
hand, it very much seems that our winning of the shared task does not come
from using particularly that MT approach, as we have since been able to further
improve the performance of our methods by using a stronger SMT system; we

24https://bitbucket.org/hy-crossNLP/vardial2017
25This was joint work by all the authors of the paper.
26These additional harmonizations were devised by Daniel Zeman.
27Other improvements consisted of varying the way in which the morphological taggers were

trained and applied, as supervised target taggers were allowed in the shared task, which opened
up a range of possible setups to use; however, as assuming the availability of a supervised tagger
is rather unrealistic for a real low-resource target language, we do not find this component of
our submission to be of much value.

106

https://bitbucket.org/hy-crossNLP/vardial2017

rather believe that the “further improvements”, which we mentioned above, were
the key component which differentiated our setup from the others. On the other
hand, using such a simple MT approach surprisingly did not substantially hurt
our performance either, contrary to our expectations. Thus, the results seem to
actually confirm the findings of Tiedemann et al. [2014], who observed that even
simple word-based approaches to MT can lead to highly competitive accuracies
in cross-lingual parsing.

Furthermore, we believe this to support our decision to prefer the simplicity
and accuracy of the annotation transfer to the intrinsic quality of the MT system.
While we do not feel that we have sufficient proof to denote the path we chose as
the one and only correct way of lexicalizing the cross-lingual parser transfer, we
do believe that the results show it to constitute a viable and highly competitive
approach at the very least.

The third submission to the cross-lingual parsing shared task was made by
Çöltekin and Rama [2017], who participated in multiple of the VarDial shared
tasks and thus did not focus that much on the cross-lingual parsing task itself.
Interestingly, they use an approach very similar to ours in principle, but without
the “further improvements”. They use a word-based Moses, but with the efmaral
aligner [Östling and Tiedemann, 2016] and grow-diag-final-and symmetrization,
and do not seem to employ any further tricks or tuning. This further supports our
belief that the good performance of our setup was mostly due to the “additional
improvements” that we employed, as the submission of Tiedemann [2017] seems
to mostly win over that of Çöltekin and Rama [2017] because of careful selection
of the machine translation approach to use for each language pair (together with
a focus on the approach to tagging).

5.6.2 Extended VarDial language set
We now move to the Extended VarDial dataset with more language pairs, still
using the large OpenSubtitles2016 parallel data and supervised target POS tags.

In Table 5.9 and Table 5.10, we evaluate the effect of MT setup, using both
intrinsic MT evaluation (BLEU) and extrinsic evaluation in delexicalized parser
transfer (LAS). We compare the MGA with simple translation to GIZA++ with
monotone word-based Moses, and source-lexicalization as a baseline approach.
Note that although source-lexicalization can also be evaluated using BLEU – we
simply take the source side of the parallel data and evaluate it against the target
side reference translation – the BLEU scores are extremely unreliable under such
conditions [Bojar et al., 2010] and we provide them rather for curiosity.

On average, higher absolute BLEU scores are achieved for the more similar
languages, but there is large variation in the results; not only language similar-
ity, but also e.g. parallel data sizes are important. Remarkably high scores are
achieved for source-lexicalization on VarDial languages, as the shared task orga-
nizers focused on pairs of extremely close languages; still, the scores are negligible
compared to these achieved by real MT setups.

What we are most interested in is the comparison of the simple MGA+simple
translation setup versus the full-fledged GIZA++ and Moses. The main advan-
tage of Moses in that setting is that it uses a language model to explore and
evaluate multiple translation options for each word, while the simple translation

107

Source- MGA, GIZA++, ∆ ∆
Languages lexicalized simple Moses abs rel

Source language very similar to target
cs→sk 10.1 37.0 37.4 0.3 1%
da+sv→no 7.7 38.3 43.0 4.6 12%
sl→hr 5.3 19.3 20.6 1.3 7%
fr→es 1.7 13.8 18.0 4.2 31%
es→fr 1.7 13.2 17.6 4.4 33%
cs→pl 1.4 9.3 11.0 1.6 18%
Average 4.6 21.8 24.6 2.7 13%

Source language less similar to target
it→ro 2.1 8.3 12.1 3.8 45%
en→sv 1.3 9.2 13.1 3.9 43%
en→de 2.9 11.0 16.3 5.2 47%
de→sv 1.4 10.4 12.8 2.4 23%
de→en 3.0 15.5 18.9 3.4 22%
fr→en 2.2 16.5 21.4 5.0 30%
Average 2.2 11.8 15.8 3.9 33%

Table 5.9: Evaluation of various setups for machine translation using BLEU
computed on the last 10,000 sentences from the parallel data. Comparing the
source-lexicalized baseline, MGA + simple translation, and GIZA++ with Moses
translation, also reporting the absolute and relative improvement in BLEU score
achieved by Moses over MGA

approach only uses the most frequently aligned target word as the translation
each time in a context-independent fashion; both of the systems use monotone
word-based translation in this experiment, i.e. translating the source words 1:1
into target words without reordering.

While the improvement in BLEU brought by using Moses is substantial for
nearly all language pairs, the relative improvement is only 13% on average for
the more similar languages, while being 33% for the less similar (although there
is again much variation). This shows that for very close languages, even simpler
approaches to MT are capable of achieving somewhat competitive translation
quality. In particular, the result for Czech→Slovak, which is the most similar
language pair in the set, is fascinating, with the difference in BLEU scores being
rather negligible; the high similarity of these languages is also manifested in the
very high BLEU score of 10.1 for the source-lexicalization baseline.

Let us now move to the extrinsic evaluation (Table 5.10). Suddenly, the
situation is somewhat different. It is still true that the source-lexicalized approach
is substantially weaker than the real MT approaches (although it does achieve
competitive accuracy in several cases). However, the GIZA++ and Moses setup
is not such a clear winner in the extrinsic evaluation, actually leading to a worse
accuracy than MGA and simple translation for 3 of the 12 language pairs, bringing
a rather moderate improvement of 1.4 LAS points on average. The improvements
are usually larger for the more distant language pairs, but not always.

Moreover, the improvement in BLEU does not seem to predict well the im-
provement in LAS. The Pearson coefficient of the correlation between the absolute
LAS difference and the relative BLEU difference of the two MT setups is 0.21; if

108

Source- MGA, ∆ vs GIZA++, ∆ vs
Languages lexicalized simple SrcLex Moses MGA

Source language very similar to target
cs→sk 62.25 68.86 6.61 70.50 1.64
da+sv→no 62.31 67.76 5.45 68.16 0.40
sl→hr 60.02 63.76 3.74 61.93 -1.83
fr→es 61.41 67.52 6.11 69.61 2.09
es→fr 69.69 72.82 3.13 75.21 2.39
cs→pl 62.20 66.52 4.32 69.29 2.77
Average 62.98 67.87 4.89 69.12 1.24

Source language less similar to target
it→ro 21.94 33.60 11.66 37.06 3.46
en→sv 47.61 52.52 4.91 51.84 -0.68
en→de 37.44 41.46 4.02 43.46 2.00
de→sv 34.94 41.96 7.02 44.77 2.81
de→en 46.19 46.93 0.74 49.99 3.06
fr→en 39.92 53.47 13.55 52.08 -1.39
Average 38.01 44.99 6.98 46.53 1.54

Table 5.10: Evaluation of various setups for machine translation using LAS. Com-
paring the source-lexicalized baseline, MGA + simple translation, and GIZA++
with Moses translation, also reporting the absolute improvements in LAS.

we use the absolute BLEU difference, it is -0.03. Thus, the results merely suggest
that using a higher quality MT system, as measured in BLEU, often leads to
a better lexicalization of the cross-lingual parsing, but the connection between
the performances is not very strong. There is a clear improvement by introduc-
ing a full MT setup instead of the source-lexicalization, but the influence of the
particular setup of this MT system seems to be much weaker.

Nevertheless, the setup using Moses does clearly perform better on average,
and we thus select it as our final MT system for cross-lingual parser lexicalization.

The results presented here give additional support to our decision to focus
only on word-based translation. While we have not explicitly measured the effect
of moving from word-based to phrase-based MT, it seems rather clear that, es-
pecially for very close languages, no large improvements are to be expected, and
even deteriorations may be common.

For more distant languages, the situation may be somewhat different, and
PBMT could be expected to bring larger improvements there. Nevertheless, as
the absolute LAS scores clearly show, cross-lingual parser transfer between only
moderately similar languages yields much lower accuracies, with more than half
of the relations being predicted incorrectly by the parser. Moreover, the setting
for this evaluation is still a very optimistic one, assuming the availability of super-
vised target POS tags, rather large parallel corpora for training the MT systems,
and still using rather close language pairs. The performance of the cross-lingual
lexicalization methods applied to similar languages is thus probably of more in-
terest to us, as for distant languages, the accuracies will most probably be too
low for any practical use of the results.

109

Single-source transfer Multi-source tree combination
Target Oracle Automatic Unweighted Weighted
lang. delex lex delex lex delex lex delex lex

da 50.44 55.89 50.44 55.89 51.28 58.31 50.75 57.68
el 48.34 52.31 43.52 44.78 46.05 50.72 45.34 49.41
hu 28.93 30.33 25.96 28.40 30.64 33.11 30.62 32.57
id 37.48 40.01 35.32 39.06 37.97 41.67 37.32 41.11
ja 19.89 18.71 9.33 11.65 15.43 16.04 14.21 14.58
kk 11.45 15.96 11.45 11.45 12.50 14.91 12.65 13.86
lv 35.99 40.74 24.31 28.16 37.64 41.68 39.01 42.23
pl 55.93 58.84 51.79 54.10 54.03 57.59 54.84 58.46
sk 59.41 65.75 59.41 65.75 49.49 53.81 57.44 62.21
ta 17.50 18.21 17.50 18.21 10.37 10.45 15.44 16.39
tr 25.23 24.45 25.23 24.45 21.64 22.07 22.86 22.47
uk 44.40 47.30 44.40 47.30 44.40 46.89 44.81 48.55
vi 22.47 25.44 21.83 25.44 25.54 28.10 25.32 27.90
AVG 35.19 38.00 32.34 34.97 33.61 36.57 34.66 37.49
St.Dev. 15.61 17.02 16.25 17.52 15.33 16.92 15.66 17.39

Table 5.11: Evaluation of cross-lingual lexicalization on UD 1.4 treebanks subset
with LAS, using WTC data, GIZA++ alignment, word based monotone Moses,
cross-lingually induced POS tags, and sources selected using KL−4

cpos3 . The top 5
sources are used in the tree combination. Best score and best non-oracle score
are marked in bold, and reaching the oracle score in the single-source transfer is
marked by underlining.

5.6.3 UD 1.4 language set
In our final evaluation, we move to a more realistic setting, using the larger and
more varied UD 1.4 dataset, employing the best cross-lingual tagging setup from
Chapter 6 to obtain target POS tags, training the word-based monotone Moses
MT system on the smaller out-of-domain WTC multiparallel data, and using
KL−4

cpos3 to select and weight the top 5 source languages to use for processing each
target language (or top 1 in the single-source transfer).

Table 5.11 shows the parsing accuracies in LAS for both delexicalized and
lexicalized cross-lingual parser transfer in single-source and multi-source transfer,
using either unweighted or weighted parse tree combination. For the single-source
transfer, the highest obtainable results (i.e. the oracle) are also presented; how-
ever, as we did not train the Moses system for all existing language pairs, the
lexicalized oracle may not always be the true oracle – we used the source language
of the delexicalized oracle, unless the result for one of the “top 5” languages was
higher, in which case we selected this one as the oracle source.

Lexicalization

The first thing to notice from the results is that lexicalized parsing outperforms
the delexicalized one for all methods and all target languages except for Turkish
(and, in the case of the oracle, for Japanese), with the average improvement on all
of the setups being around 3 LAS points. While this may not seem to be a lot, we
would like to note that the difference between monolingual supervised lexicalized

110

and delexicalized parsers for these languages is 8.8 LAS points on average, with
the average lexicalized LAS score being 70.1% (Table 3.1). With the cross-lingual
parsing LAS being only about half of the supervised, we probably cannot hope
to achieve a much larger improvement than 4.5 points on average. Thus, while
there still seems to be room for improvement, we seem to already cover most of
that gap with our approach.

Interestingly, we can see that even though the word-based monotone MT could
be expected to be particularly unsuitable for distant language pairs, we cannot
make such conclusion from the results. While the absolute improvements in LAS
brought by the lexicalization are clearly larger for Indo-European languages than
for the non-Indo-European ones (which are all quite solitary in our dataset), the
absolute LAS scores themselves are also higher. In relative terms, the lexicaliza-
tion of the tree combination setup, on average, improves the LAS scores by 8.6%
for the Indo-European target languages, and by 6.2% for the non-Indo-European
ones, which does not seem to be a crucial difference. Moreover, the median rel-
ative improvements are even closer to each other: 8.3% for Indo-European and
7.8% for non-Indo-European targets. We thus conclude that the monotone word-
based MT seems to be reasonably suitable even for very distant languages, which
we find rather surprising.

Source selection

KLcpos3 is able to identify the oracle for half of the target languages; note that
the oracle source language may not be the same for the lexicalized and for the
delexicalized parsing, as it happened for Kazakh and Vietnamese.28 However, it
is nearly always surpassed by the top 5 multi-source tree combination, typically
both by the weighted one as well as the unweighted one. On the other hand, in
the three cases where the single-source method performs best (sk, ta, tr – each
time the oracle source is successfully identified), the tree combination methods
suffer quite unpleasant losses, especially the unweighted one.

Moreover, while the oracle single-source transfer still achieves the highest ac-
curacy on average, it is no more such a strong “upper-bound”, being outperformed
by the weighted tree combination for half of the target languages and only gain-
ing 0.5 LAS points over it on average. For most target languages, the accuracies
achieved by these two methods are within 2 or 3 LAS points from each other.

Source weighting

As for the performance of KL−4
cpos3 weighting itself, we can again see a pattern

similar to what we observed for the delexicalized transfer on the HamleDT 2.0
dataset in Table 4.8 – while the weighted tree combination is better on average,
even though by only 0.9 LAS point, it is actually surpassed by the unweighted
combination for half of the target languages. Furthermore, in cases where KL−4

cpos3

works well for the multi-source weighting, it is also typically able to identify the
oracle treebank, and thus the single-source method is highly competitive or even
better than the weighted tree combination. Thus, although being best on average,

28This is mostly because the accuracies are so low that the notion of an “oracle” source
language is quite weak here – basically, many of the available languages are more or less equally
bad sources for these targets.

111

it actually only achieves the best score in 3 cases. From this perspective, the
unweighted combination actually may seem as a better option.

This could also be interpreted as the KLcpos3 measure itself still performing
well in the given setting, appropriately selecting one or multiple source treebanks
to use for the cross-lingual parsing (note that, in this way, even the unweighted
tree combination makes use of it), but its KL−4

cpos3 variant not performing as nicely
as we saw it in Chapter 4. This may well be the case – the KLcpos3 measure itself
was theoretically motivated in a sensible way, and its only hyperparameter that
was determined empirically based on the performance on development treebanks
was the length of the POS n-grams to use, where trigrams seemed to clearly
perform better than both bigrams and tetragrams. On the other hand, we did not
find any good theoretical background for determining the best way of converting
it from a mere ranking measure to a weight useful for interpolating multiple
sources, and thus based the exact formula of KL−4

cpos3 practically exclusively on
its performance on the development data, still noting that the exponentiation to
the minus fourth power is more of a compromise choice rather than a clearly best
approach (see Section 4.2.5). Therefore, it is probably no surprise that it seems
to perform best on average but not for many of the individual target languages,
as it was actually chosen in the development particularly based on its good and
stable average performance.

Nevertheless, even though the weighted tree combination is usually not the
best performing approach, it typically gets very close to it, losing on average only
1 LAS point towards the winner, and always less than 3.6 points. In this way,
the KL−4

cpos3 weighting does perform its job well, evening out the results and thus
preventing any huge losses (but also the wins). With the unweighted variant
of the tree combination method, as well as with the single-source method, it is
much more of a hit-or-miss, losing up to 12 LAS points towards the winner for
the former, and up to 14 points for the latter. Thus, even though we acknowl-
edge that it does not usually achieve the best result, we still conclude that the
weighted lexicalized tree combination seems to be the best of the methods which
we evaluated.

Predicting the LAS

The absolute LASes are rather low on average, but there is much variance. By
far, the strongest influencer of the achieved accuracy for a target language is the
presence of sufficiently similar source languages in the dataset (see also Attach-
ment C). In particular, for Indo-European target languages, the average LAS of
the weighted tree combination is 53%, while for non-Indo-European ones, it is
only 24%; this is quite striking. The languages are even separable into the two
groups by the LAS being above or below 42% (or 40.5% for the oracle single-
source transfer). Thus, independent of what particular setup one uses, the key
to success in cross-lingual parsing is to find annotated resources for one or more
source languages sufficiently similar to the target language.

KLcpos3 can be used as a rather good predictor of the final LAS. The Pearson
coefficient of the correlation between the lexicalized weighted tree combination
LAS and the lowest KLcpos3 distance for the target language (i.e. the distance
of the target language and the source language we select for the single-source

112

Target l.w.t.c. KLcpos3 1/4KLcpos3 ∆
da 57.68 0.39 64.46 6.78
el 49.41 0.55 45.70 -3.71
hu 32.57 0.73 34.39 1.82
id 41.11 0.61 40.75 -0.36
ja 14.58 1.14 21.94 7.36
kk 13.86 0.94 26.56 12.70
lv 42.23 0.71 35.22 -7.00
pl 58.46 0.55 45.62 -12.84
sk 62.21 0.50 49.51 -12.70
ta 16.39 0.80 31.42 15.03
tr 22.47 0.70 35.89 13.42
uk 48.55 0.59 42.09 -6.46
vi 27.90 0.92 27.18 -0.73
AVG 37.49 0.70 38.52 1.02

Table 5.12: Estimation of LAS of the lexicalized weighted tree combination as
1/4k, where k is the lowest source-target KLcpos3 on the dataset for the given
target. The LAS are given in %.

transfer) is -0.87; for the lexicalized single-source transfer, it is -0.89, and -0.85
for the oracle.

As shown in Table 5.12, the formula of 1/4KLcpos3 can be used to very roughly
guess the LAS that the lexicalized weighted multi-source tree combination will
achieve. While the estimation often misses the real value by more than 10 LAS
points, the average absolute error is only 7.8, which is rather respectable, given
that this estimation ignores other important factors, such as the similarities of
other source languages, or the size of the training datasets.

On the other hand, on this dataset, a similar result can be achieved simply
by estimating the LAS to be 53% for Indo-European languages and 24% for
non-Indo-European languages (i.e. the average values for these groups), with a
correlation of 0.86 and an average absolute error of 7.4.

5.6.4 Comparison to unsupervised parsing
Finally, we also compare our best performing setup to unsupervised dependency
parsing of Mareček [2016b]. This is a state-of-the-art approach, based on the De-
pendency Model with Valence of Klein and Manning [2004] and employing a range
of improvements implemented as external prior probabilities, most importantly
exploiting the reducibility principle [Mareček and Žabokrtský, 2012] and perform-
ing a minimal supervision by adding a set of handcrafted language-independent
grammatical rules based on the UD guidelines.

As our setup, we use the lexicalized weighted parse tree combination based
on the 5 closest source languages. Since the unsupervised parser is delexicalized,
we also compare its performance to the delexicalized variant of our setup.

Both of the parsers are evaluated on exactly the same dataset, i.e. the UD 1.4
development treebanks tagged with cross-lingually induced POS tags (Chapter 6).
However, as the unsupervised parser only produces unlabelled parse trees, we
evaluate the results using UAS instead of LAS; i.e. our setups correspond to the

113

Target Cross-lingual Unsupervised
lang. lex delex delex ∆ delex
da 68.16 62.15 48.09 -14.06
el 64.75 60.80 59.36 -1.44
hu 51.14 50.64 41.08 -9.56
id 57.28 53.91 42.21 -11.70
ja 32.15 31.60 33.81 2.21
kk 26.36 24.70 32.38 7.68
lv 56.43 52.36 32.31 -20.05
pl 73.11 71.05 61.89 -9.17
sk 76.24 71.11 64.81 -6.30
ta 31.91 31.91 25.50 -6.42
tr 33.11 31.76 28.82 -2.94
uk 67.63 70.12 55.19 -14.93
vi 47.30 43.51 41.03 -2.48
AVG 52.74 50.43 43.57 -6.86

Table 5.13: Comparison of our best performing cross-lingual setup to the unsu-
pervised parser of Mareček [2016b], applied to cross-lingually induced POS tags
and evaluated with UAS. The difference of scores between the unsupervised parser
and our delexicalized parser is also reported.

last two columns of Table 5.11 except for the evaluation measure used. The
results for the unsupervised parser were obtained directly from David Mareček
through personal communication – this experiment was performed with his help
just for the sake of this comparison.

The results in Table 5.13 show that cross-lingual parsing clearly outperforms
unsupervised parsing, especially in the case of target languages for which suffi-
ciently similar source languages are available in our dataset (e.g. da, lv, pl, uk).
On average, the delexicalized cross-lingual parsing performs better by nearly 7
UAS points, and more than 9 UAS points in the lexicalized setting.

On the other hand, in the case of more solitary languages, the unsupervised
parser often achieves quite competitive scores (el, tr, vi), and even surpasses our
setup by respectable margins in two cases (ja, kk). This seems to show that
for very solitary languages, the cross-lingual transfer does not have sufficient
ground to handle the target language well, as it mostly builds upon knowledge
learned from distant source languages. The unsupervised parser takes a different
approach, actively exploring the target language, identifying repeated patterns,
and trying to devise structures that fit the language well; the ultimate optimiza-
tion criterion for the unsupervised parser is to devise parse trees in such a way
that the same substructures are frequently repeated in the corpus. The results
seem to show that this is a promising path, especially for solitary languages, and
that cross-lingual parsing does indeed have something to learn from unsupervised
parsing in this respect. We believe that this opens interesting opportunities for
future research.

114

5.7 Summary
In this chapter, we examined the options of introducing lexical features into the
parser, because, as we demonstrated in Section 3.1, POS tags alone are generally
not sufficient to achieve high-accuracy parsing.

Similarly to Tiedemann et al. [2014], we found translation of the source tree-
bank by a machine translation system to perform well in that task. However,
while Tiedemann [2014] decided to further focus on phrase-based M:N transla-
tion and complex dependency tree transfer mechanisms, we followed the other
promising path of using lower-quality simpler word-based 1:1 MT, allowing us to
employ a direct 1:1 annotation transfer mechanism.

We found that the quality of the MT system seems to have only a moderate in-
fluence on the accuracy of cross-lingual parsing, with even very simple approaches
already capable of achieving substantial improvements in parsing accuracy, which
then rises only slowly when more sophisticated MT is employed. We thus con-
sider it sensible not to venture into the complex M:N translation, which would
slightly improve the translation quality but would make the annotation transfer
much more complex and noisy.

Surprisingly, we even observed a positive effect of using word-based monotone
translation. This approach seems to force the MT system to resort to very literal
translations, in which the morphological and syntactic structure of the source
sentence tends to be better preserved than in higher-quality but less structurally
similar translations, making the annotation transfer even more reliable.

We then re-evaluated the source selection and source combination methods
from Chapter 4, which were originally developed for and applied to delexicalized
parsing, finding them to perform rather well even in the cross-lingually lexicalized
setting. Our conclusion is thus mostly similar to the previous chapter, finding
the parse tree combination method weighted by KL−4

cpos3 source-target language
similarity to perform best. However, this time, we select the combination of
only the 5 most similar sources as the ultimate setup, which we observed to
achieve respectable accuracies while being more practical than a combination of
all sources.

115

116

6. Cross-lingual Tagging
POS tagging is a very important prerequisite for syntactic parsing, both monolin-
gual and cross-lingual. In NLP, POS tagging is a standard task on its own, with
many applications, and is useful even without subsequent parsing. However, as
our focus in this thesis is on parsing, we rather treat POS tagging only as a nec-
essary pre-processing step in the parsing process. Nevertheless, as it is a crucial
step, we focus on it in more detail in this chapter.

The need of POS tags is clear in the case of delexicalized parsing, since they
are practically the only input feature for the parsers. While we originally used
supervised target POS tags for cross-lingual delexicalized parser transfer, it is
clear that this is too optimistic given the intended use case, and an exploration
of cross-lingual POS tagging methods is therefore inevitable.

For lexicalized parsing, the need of POS tags is less obvious, as the parser
could, in theory, internally perform all the processing that the tagger does, with-
out the need to explicitly use the POS tag labels in the process. While this is true,
and there is indeed successful research on joint tagging and parsing [Bohnet and
Nivre, 2012] or parsing without tagging [Fairon et al., 2005], this has never be-
come the mainstream approach to parsing, presumably because it results in much
more complex systems without clear performance gains. Research has shown that,
while a joint approach can always be expected to achieve better accuracies, in the
case of tagging and parsing, the decoupling of these two steps does not reduce
the accuracies too much, while being more practical. One may e.g. experiment
with varying the tagging or parsing approach independently, without having to
modify and retrain the whole system. As both tagging and parsing are rather
hard problems on their own, asking for clever and complex solutions, the re-
searchers benefit greatly from the possibility to only focus on one or the other,
making both development and evaluation much simpler and clearer. Best results
are then obtained by combining independently developed best taggers and best
parsers, using the POS tags as a useful and practical common interface.

The benefit of this decoupling is even more clear in our case, since the POS
tags themselves are a very good language-independent abstraction over the in-
dividual word forms, as shown by the delexicalized parsing approaches, allowing
us to focus on several tasks independently – the delexicalized parser transfer,
the cross-lingual lexicalization of the parsers, and the cross-lingual POS tagging.
This decoupling is also justified by our evaluations, as improving the approach
used for one of them practically always improves the overall performance of the
whole setup, regardless of the particular approaches used for the other problems.

Nevertheless, as POS tagging is not our main focus, we do not present any
particularly advanced or novel methods in this chapter. Instead, we build on pre-
existing approaches of other authors, which we have also already seen applied
to cross-lingual parsing in this thesis, and introduce some rather minor modifi-
cations and improvements into them. Specifically, we use POS projection over
multiparallel data in Section 6.1, which is a simpler version of the tree projec-
tion method from Section 4.3.3, and machine translation of source treebanks in
Section 6.2, which is mostly identical to the parser lexicalization via MT from
Section 5.5.

117

6.1 Projection over (multi)parallel data
To the best of our knowledge, the first work on cross-lingual tagger induction is
that of Yarowsky et al. [2001], who introduce the approach of projecting POS tags
over parallel corpora. The main principle of their method of devising a tagger
for an under-resourced target language, which we follow even in our work, is as
follows:

1. train a POS tagger for a source language,

2. use it to tag the source side of a parallel corpus,

3. word-align the parallel corpus,

4. transfer the source POS tags over the word alignment links onto the target
words,

5. train a target tagger on the, now tagged, target side of the parallel corpus.

The setting for the method fits perfectly our use case, as it utilizes just the
resources that we assume to have, i.e. a source language treebank and a source-
target sentence-aligned parallel corpus.

The method has been revisited and further improved by many authors, some
of them devising remarkably sophisticated solutions. For example, Das and
Petrov [2011] introduced a graph-based projection approach, constructing bilin-
gual graphs with nodes corresponding to word types and word trigram types to
define constraints for an unsupervised tagging model. In a somewhat related
approach, Täckström et al. [2013a] leveraged both bilingual texts and the Wiki-
tionary lexicon to induce both token-level and type-level constraints, which were
then used to provide a partial signal in training a partially observed conditional
random field model. A wide range of other works exist in this field.

In our work, we mostly follow the approach of Agić et al. [2015, 2016], who
observed the utility of exploiting multiparallel corpora, such as Bible (through
EBC) or WTC texts. The crucial advantage of such resources is the fact that
for each target sentence, there are aligned source sentences in multiple languages.
These constitute a much more robust source of information, as, for each target
word, there are multiple POS tag options based on the various aligned tagged
source words. The authors find a simple majority voting mechanism to perform
remarkably well, and gain further improvements by incorporating the alignment
scores to obtain a weighted voting setup. This is practically the same method
as we described in Section 4.3.3 for parsing, but it is simpler, as there are no
complex constraints on the validity of the tag sequence as there are on the parse
trees (“treeness”); i.e., the MST algorithm is not used here. The authors also
show that respectable tagging accuracies can be obtained even with rather small
parallel corpora based on religious texts, which, however, can be realistically
expected to be available for many under-resourced target languages. This makes
their work even more relevant for us.

118

6.1.1 Our implementation
Our implementation of the cross-lingual POS projection on multiparallel data is
not exactly same as that of Agić et al. [2016], we therefore explicitly detail our
approach here. We assume that there is one target language and a set of source
languages (we handle each target language independently).

1. We use the WTC, sentence-aligned with Hunalign1 [Varga et al., 2007]
and word-aligned with FastAlign2 [Dyer et al., 2013], using the intersection
symmetrization.

2. We train the UDPipe3 [Straka et al., 2016] tagger on the UD 1.4 source
treebanks, setting it to only predict UPOS.4

3. Using the trained taggers, we label the source sides of the multiparallel data
with POS tags.

4. For each target word, we gather the POS tags of source words aligned to
it, and then use majority voting to choose a POS tag for the target word.

5. If the target word is not aligned to anything, we use the POS tag most
frequently assigned to the target word in other of its occurrences in the
data; we thus need to perform the POS projection in two passes.

6. If the tag for a word still cannot be determined, we label it as “NOUN”, as
this seems to be the most frequent POS for open class words (“PROPN”
might also be a good label).

7. We train the target UDPipe tagger on the, now tagged, target side of the
multiparallel corpus, using the same settings as above.

We have also investigated several variations to the approach, but eventually
settled on the method as described above. Nevertheless, we describe those ex-
periments in the following sections. There are also other potential improvements
which we did not evaluate, such as taking the target context into account, or
tagging all target languages simultaneously as done by Agić et al. [2015].

6.1.2 Effect of alignment symmetrization
As we noted in Section 5.5.2, there is a range of possible choices for word alignment
symmetrization. Agić et al. [2016] reported that reverse alignment works best
for annotation projection, although this is never clearly explained – the paper
claims that Agić et al. [2015] “observe a major advantage in using reverse-mode
alignment for POS projection (4-5 accuracy points absolute)”. However, no such
observation is mentioned in the cited paper; instead, the paper explicitly mentions
that “many-to-many word alignments are allowed”, and does not even contain
the word “reverse”. Therefore, we decided to investigate this problem ourselves

1https://github.com/danielvarga/hunalign
2https://github.com/clab/fast_align
3http://ufal.mff.cuni.cz/udpipe
4use xpostag=0; provide xpostag=0; use feats=0; provide feats=0; use lemma=0;

provide lemma=0

119

https://github.com/danielvarga/hunalign
https://github.com/clab/fast_align
http://ufal.mff.cuni.cz/udpipe

Target fwd rev gdfa gd gdf union intersect
da 78.13 82.10 80.56 80.41 79.95 78.60 84.02
el 62.31 72.26 65.79 64.98 63.80 63.29 73.06
hu 64.23 64.13 65.80 66.41 62.41 64.46 70.57
id 77.22 77.84 77.68 77.81 77.49 77.01 79.66
ja 29.92 47.05 49.76 50.03 50.77 49.74 48.72
kk 49.25 50.45 52.71 54.97 53.16 51.51 53.31
lv 72.83 71.43 73.52 73.87 73.13 72.20 75.16
pl 74.72 77.45 75.20 76.00 75.19 75.00 79.93
sk 76.06 79.61 76.73 77.23 77.01 76.09 80.98
ta 41.73 40.14 42.68 42.28 41.81 41.09 43.94
tr 60.20 58.63 59.47 59.27 59.00 59.29 62.36
uk 69.71 69.71 68.05 68.05 68.05 66.80 74.69
vi 57.41 56.75 58.41 56.74 57.92 57.79 59.69

AVG 62.59 65.20 65.10 65.23 64.59 64.07 68.16

Table 6.1: Effect of alignment symmetrization on cross-lingual tagging accuracy.
The aligner outputs forward (fwd) and reverse (rev) alignment links, which can
be symmetrized by using the simpler union and intersect approaches, as well as
the more advanced grow-diag (gd), grow-diag-final (gdf) and grow-diag-final-and
(gdfa) symmetrizations.

in more detail, comparing the forward and reverse alignment, as well as all of the
symmetrization heuristics available in the FastAlign aligner.

In Table 6.1, we compare the POS projection accuracies achieved when dif-
ferent alignment symmetrizations are used. After performing the POS projection
through the word alignment links, a UDPipe tagger was trained on the resulting
dataset, and then evaluated on the gold target treebank (dev section).

First, the results do partially confirm the claim of Agić et al. [2016], as with
the reverse alignment, the average achieved accuracies are +2.5 % absolute higher
than with the forward alignment. However, all of the symmetrization heuristics
overpower the forward alignment. While most of them fare comparably to the
reverse alignment, the intersection symmetrization clearly stands out, adding
another +3 % absolute over the reverse alignment on average, and scoring best
of all of the alignment flavours for 11 out of the 13 target languages. Based on
this finding, we decided to use the intersection alignment as our default choice in
all experiments.

6.1.3 Weighted projection
Agić et al. [2016] suggest to use the alignment score returned by the word aligner
to improve the quality of the POS projection, although they do not describe the
process in sufficient detail. It seems that in their case, the word aligner provides
a score for each individual alignment link, while in our case, when FastAlign is
set to output alignment score,5 it only provides one for each aligned sentence pair
(a large negative number). Nevertheless, we tried to use what we had, taking the
exp() of the score to push it into the (0, 1) interval, and combining together the
resulting scores from the forward and reverse alignment via multiplication. We

5-s

120

Weight 1 align score KL−4
cpos3 KLcpos3 1 or KL−4

cpos3

da 84.02 84.09 84.46 0.388 84.46
el 73.06 72.55 73.29 0.547 73.29
hu 70.57 65.61 68.40 0.727 70.57
id 79.66 78.04 78.28 0.614 78.28
ja 48.72 31.82 43.78 1.139 48.72
kk 53.31 46.39 53.61 0.941 53.31
lv 75.16 70.22 73.21 0.710 75.16
pl 79.93 76.58 80.80 0.548 80.80
sk 80.98 81.82 83.13 0.505 83.13
ta 43.94 37.13 43.07 0.796 43.94
tr 62.36 56.73 60.89 0.697 60.89
uk 74.69 70.54 75.10 0.594 75.10
vi 59.69 58.39 59.61 0.920 59.69

AVG 68.16 63.84 67.51 0.702 68.26

Table 6.2: Effect of adding weighting into the POS projection setup. The base
setup is an unweighted one, using each source language with a weight of 1. Then
there are two setups which weight the source contributions, either by alignment
score, or by KL−4

cpos3 source-target similarity. Finally, there is a setup conditioned
on the lowest KLcpos3 value of any source, using KL−4

cpos3 weighting if the KLcpos3

value is < 0.7, and the base setup otherwise (i.e. each source weighted by 1).

then used this score to perform weighted voting in the POS projection, with all
POS labels suggested by a given source weighted by this score.

We also tried to incorporate source-target language similarity estimates into
the projection, using the KL−4

cpos3 measure, described in Section 4.2. In this exper-
iment, instead of weighting the source votes by the alignment scores, we weight
them by the source-target KL−4

cpos3 similarity, computed on the POS tags obtained
by the unweighted projection. – so this time, the same source weight is used for
all sentences.

Table 6.2 compares the accuracy of cross-lingual tagging with and without
weighting. Surprisingly, adding the alignment scores makes the results much
worse. Because Agić et al. [2016] reported an improvement, we suspect that they
used a different way of extracting the alignment scores from the word aligner.

With adding the KL−4
cpos3 weighting, the situation is more subtle, as the results

improve for one half of the target languages but deteriorate for the other half,
with the overall effect being only slightly negative on average. A more careful look
shows that the results tend to improve in cases where the achievable accuracies
are high enough, i.e. in cases where there are some source languages sufficiently
similar to the target languages, and it thus makes sense to prefer them in the
projection. On the other hand, if all of the source languages are rather distant
from the target language, it does not make much sense to differentiate among
them, and simply using all of them in an unweighted scheme is the most reliable
approach. In other words, it seems that if we do not have enough confidence to
suppress some of the sources, we should just treat them all equally. Note that
this is very similar to how KL−4

cpos3 usually behaves in the parse tree combination
approach (Section 4.4 and Section 5.6).

We decided to perform one more experiment, conditioning the setup to use

121

Sources All Top 3 Top 5
Weight 1 KL−4

cpos3 1 KL−4
cpos3 1 KL−4

cpos3

da 84.02 84.46 83.32 84.19 84.55 85.28
el 73.06 73.29 73.24 72.84 73.17 72.78
hu 70.57 68.40 71.99 68.10 63.73 64.67
id 79.66 78.28 74.80 75.14 77.32 76.14
ja 48.72 43.78 37.87 43.12 52.08 46.87
kk 53.31 53.61 50.00 51.96 56.48 54.67
lv 75.16 73.21 74.51 72.75 74.15 73.93
pl 79.93 80.80 79.38 79.93 78.45 79.86
sk 80.98 83.13 80.60 82.36 80.64 82.72
ta 43.94 43.07 45.61 45.29 42.91 43.63
tr 62.36 60.89 59.33 59.52 60.56 60.26
uk 74.69 75.10 73.86 78.84 77.18 75.93
vi 59.69 59.61 59.31 59.58 60.56 60.63
AVG 68.16 67.51 66.45 67.20 67.83 67.49

Table 6.3: Comparison of source subselection versus using all sources in POS tag
projection.

on the KLcpos3 value for the most similar source. Specifically, if the best KLcpos3

is lower than its average value of 0.7, we use the weighted projection, and if it is
higher, we use the unweighted projection.

While this turns out to be the best performing setup, choosing the better of the
two weighting schemes for 10 of the 13 languages, the average improvement over
the unweighted baseline is quite negligible (+0.1 % absolute). Therefore, based
on Occam’s razor, we do not feel confident adding such a potentially overtuned
hyperparameter,6 and rather select the unweighted projection as the approach to
use.

6.1.4 Subselecting the sources
In Section 5.5.5, we found that for the lexicalized parse tree combination, combin-
ing only the top 5 most similar source languages worked quite well. We therefore
also evaluated the effect of only using the top 3 or top 5 sources for POS projec-
tion, using both the weighted and the unweighted projection.7

As the results in Table 6.3 show, on average, none of the subselection setups
outperforms the base of using all sources. Similarly to what we observed in
Section 5.5.5, for individual target languages there is much variance in terms
of which setup performs best; most of the setups achieve the best result in the
table for 2 or 3 targets. Still, similarly to what we had observed before, higher
accuracies are evidently obtainable by selecting the right setup for each target

6The results clearly show that with a bit more tuning, a threshold value of e.g. 0.6 would
lead to even better results, selecting the better of the two approaches in 12 out of the 13 cases.
However, we consider it to be highly risky to tune such a hyperparameter on only 13 data
points, especially when the potential gains are rather moderate.

7For each of the setups, training a tagger on the target side of the parallel data is necessary,
which makes the experiments rather demanding computationally, as training the tagger takes
dozens of hours for some of the target languages. This is why we only evaluated a handful of
setups.

122

language, but we fail to identify any clear rule or pattern to guide such selection.
On the other hand, it generally seems that using more sources leads to better

results, as the “top 5” setup mostly outperforms the “top 3” setup, and the
average accuracy approaches that of the base setup. We think this may be because
the intersection alignment typically has “gaps”, i.e. contains numerous unaligned
words on both the source side and the target side. Using more sources lowers the
probability of a particular target word not being aligned to any source word and
thus not having any support for choosing the right POS tag for it. In that way,
even more distant sources can improve the projection by providing at least some
information in cases where it would be missing otherwise. It is thus possible
that there might be an optimum number of sources to use, maybe 7 or 10 or
15. . . However, as these experiments are rather computationally demanding, we
did not follow this question further.

Moreover, in the projection approach, the number of sources used does not
influence the computational complexity of the approach much, since most of the
computational power is spent on training the final tagger on the projected POS
tags, independently of the number of sources used. We are thus content to use
all of the available sources for the projection.

6.2 Machine-translating the training data
The other approach to cross-lingual tagging that we explore is machine translation
of the source treebanks, which is practically the same method as the one we used
for cross-lingual parsing in Section 5.5, only applied to POS tagging.

We first introduce the base approach in Section 6.2.1. We then deal with the
specifics of applying it in the multi-source setting in Section 6.2.2, introducing
the KLcpos3 measure into the approach. Finally, we further improve it by using a
simple self-training approach in Section 6.2.3

6.2.1 Base approach
The base approach can be summarized as follows:

1. train an MT system on source-target parallel data,

2. translate the word forms in a source treebank, keeping the POS annotation
intact,

3. train a target POS tagger on the resulting synthetic target treebank.

Using MT to translate source training treebanks into the target language for
cross-lingual POS tagger induction was introduced by Tiedemann [2014], applying
the same approach to tagging and parsing. His setup was very similar to what we
use in our work, featuring the GIZA++ word alignment and word-based Moses
decoder with the KenLM language model.

In our base approach, we differ rather slightly from his approach. The orig-
inal author seems to have used the usual grow-diag-final-and alignment sym-
metrization, as it performed quite well in his evaluation in comparison to other
symmetrizations, although the evaluation was only performed for cross-lingual

123

parsing, not tagging. We use the intersection symmetrization instead, as we saw
it perform better than other symmetrizations for cross-lingual POS projection in
Section 6.1.2; however, we have not evaluated the effect of the symmetrization
specifically in the MT setup.

We use monotone translation, as we observed it to perform better than transla-
tion with reordering in Section 5.5.3, although this evaluation was also performed
only for cross-lingual parsing, not tagging. We assume that the original author
used word reordering, as this is part of the usual setup of Moses, thus adding
an additional step of reordering the POS annotation according to the alignment
links output by Moses.

We train the MT system on the smaller but more realistic WTC instead of
the larger Europarl, and therefore only use 3-grams instead of 5-grams in the
language model.

The tagger trained on the translated treebank is UDPipe in our case, while
Tiedemann [2014] used the HunPos tagger of Halácsy et al. [2007]. However, we
do not expect this difference to have a dramatic influence on the results.

6.2.2 Multi-source setting
Similarly to cross-lingual parsing, it is realistic to assume that multiple treebanks
are available to use as the sources for translation into the target language and
training of the target parser. We thus revisit the ideas from Chapter 4 of source
selection and source combination, based on the KL−4

cpos3 language similarity mea-
sure, and apply them to cross-lingual tagging.

Moreover, as we already explained in Section 5.5.5, using all of the available
source languages is not viable, as training so many MT systems is too compu-
tationally demanding. Therefore, selecting only one or a few sources to use for
each given target is an inevitable first step in the processing pipeline.

We would also like to emphasize that the KL−4
cpos3 measure was explicitly de-

signed and tuned for use in cross-lingual parsing. It is thus very interesting to
observe its performance for the considerably different task of cross-lingual POS
tagging.

Chicken-egg problem

In the cross-lingual POS tagging, we first need to deal with a chicken-and-egg
problem. All of the multi-source methods that we wish to apply here use the
KL−4

cpos3 source-target language similarity measure in one way or another; but to
compute it, we need POS tagged data in both the source and the target language.
While for cross-lingual parsing, we assumed that we somehow have the target POS
tags, we obviously cannot assume that for cross-lingual tagging.

Therefore, even though we investigate the treebank translation method as an
alternative to the POS projection on multi-parallel data (Section 6.1), we actually
do need to first use the projection even in this setup, to obtain initial target POS
tagging which we need to compute the KL−4

cpos3 measure. This is all due to the
fact that it is computationally much less demanding to only compute the word
alignment with FastAlign for all source-target language pairs than it is to build
instances of a full-fledged Moses SMT system.

124

Target 1st 2nd 3rd 4th 5th max 1st-max
da 86.56 87.99 82.25 74.97 65.04 87.99 -1.43
el 68.62 68.57 67.11 69.75 67.97 69.75 -1.13
hu 56.81 62.96 58.29 59.86 56.31 62.96 -6.15
id 61.30 73.22 66.75 68.27 67.94 73.22 -11.92
ja 31.57 36.26 24.39 33.55 36.80 36.80 -5.23
kk 54.07 48.95 51.51 47.29 50.00 54.07 0.00
lv 61.54 64.31 70.30 69.04 73.08 73.08 -11.54
pl 81.17 75.07 71.54 70.55 70.26 81.17 0.00
sk 86.59 78.02 75.69 75.14 75.00 86.59 0.00
ta 40.46 36.03 47.35 30.32 41.41 47.35 -6.89
tr 57.74 49.84 52.55 57.09 47.91 57.74 0.00
uk 83.40 68.46 70.12 65.15 72.61 83.40 0.00
vi 49.02 48.01 50.96 50.32 52.03 52.03 -3.01
AVG 62.99 61.36 60.68 59.33 59.72 66.63 -3.64
Best 5 3 1 1 3

Table 6.4: Evaluation of the cross-lingual POS tagging accuracy, training the
target tagger on a translation of the treebank for the Nth most similar source
language, as measured with KLcpos3 .

Fortunately, we can omit the last step of the projection approach, i.e. training
a tagger on the target side of the projectedly-tagged parallel data, as we can
(and do) simply use these tagged data to estimate the KL−4

cpos3 similarity. This
makes the whole process significantly more efficient, as it typically only takes a
few dozens of seconds to word-align the WTC with FastAlign and to project the
POS tags onto the target language, while it then often takes a few dozens of hours
to train a tagger on the projected tags.

Single-source

First, we examine using KLcpos3 to select the closest source language to use for
a single-source transfer, i.e. training the target tagger on the translation of only
one source treebank.

As we already explained, we did not train the MT system for all possible
source-target combinations. We thus have no knowledge of the optimal source
to use in the single-source setting (i.e. the oracle). Instead, Table 6.4 lists the
tagging accuracies obtained when using one of the top 5 sources according to
the predictions of KLcpos3 . We also list the maximum accuracy achieved for
each target, as an approximation of the oracle, and the difference between the
maximum and the source selected by KLcpos3 .

Although there is considerable variance in the results, we can see that KLcpos3

actually performs rather well in this task, selecting the best of the evaluated
source languages in 5 cases. Also the average accuracy is highest when using the
sources predicted as the first most similar, with a loss of less than 4 % absolute
towards the maximum. The accuracies also often tend to decrease with moving
towards the sources predicted to be less similar to the target.

The results suggest that KLcpos3 can indeed be useful even in cross-lingual
tagging. We thus proceed by applying it to both subselection and weighting of

125

Target top 1 top 3 top 4 top 5 top 6 top 7
da 86.56 88.53 87.87 89.30 88.74 88.14
el 68.62 73.22 75.29 75.59 76.06 76.42
hu 56.81 64.78 66.87 66.03 70.82 70.95
id 61.30 74.85 75.02 77.01 79.09 78.47
ja 31.57 32.46 34.24 42.04 39.91 37.68
kk 54.07 56.63 54.22 56.33 59.34 57.83
lv 61.54 70.41 75.22 78.85 78.38 79.15
pl 81.17 82.55 82.85 84.29 83.49 83.19
sk 86.59 85.84 84.99 84.25 84.25 84.53
ta 40.46 44.10 45.37 49.09 47.35 49.64
tr 57.74 56.63 60.13 61.50 62.79 62.91
uk 83.40 78.84 78.42 77.59 78.84 78.84
vi 49.02 53.90 54.57 56.10 55.69 56.46
AVG 62.99 66.36 67.31 69.07 69.60 69.55
Best 2 0 0 3 2 6

Table 6.5: Evaluation of the unweighted multi-source cross-lingual POS tagging
accuracy, combining the top N sources as ordered by KLcpos3 .

the source languages.

Unweighted multi-source combination

We now move on to an unweighted combination of multiple sources. This is
again a voting-based method, very similar to that used in the multi-source POS
projection (Section 6.1) or the dependency relation label assignment in parse tree
combination (Section 4.3.1).

For each target language, we first select several sources languages to use, based
on their KLcpos3 distance from the target. We then translate each of the source
treebanks into the target language, and train a target tagger on it. Each target
sentence is then tagged by each of the target taggers, and each word is assigned
the POS tag predicted for it by the largest number of the taggers.

Table 6.5 shows that combining multiple sources helps a lot, much more than
what we saw for parse tree combination. We believe that for parsing, the gram-
matical similarity of the source and target languages matters a lot, as the same
sequences of POS tags can signify very different syntactic structures, and thus
not much can usually be learned from distant source languages. In POS tagging,
however, it can be expected that e.g. a noun in one language typically corre-
sponds to a noun in most other languages, and even more distant sources can
thus contribute usefully. We already saw this effect in POS tag projection, where
we were unable to find a subselection of the sources that would clearly improve
over a combination of all of the sources.

For the individual target languages, we mostly see an approximate pattern of
the accuracies improving with adding more sources, culminating at one point, and
then gradually deteriorating with the addition of even more sources. For some
targets, the culmination point is already at using 1 source only, for others, it is
e.g. at the combination of 5 sources, but the most common situation is that the
culmination point is either at 7 sources or beyond (which we cannot distinguish,

126

Target top 1 top 3 top 4 top 5 top 6 top 7 unw. top 7
da 86.56 88.72 88.86 88.88 88.82 88.86 88.14
el 68.62 73.24 74.20 75.28 75.76 76.04 76.42
hu 56.81 64.51 66.79 65.01 69.76 70.32 70.95
id 61.30 61.30 71.08 73.83 76.44 76.70 78.47
ja 31.57 32.83 35.67 36.79 37.28 39.01 37.68
kk 54.07 56.02 56.48 57.98 57.98 59.64 57.83
lv 61.54 71.48 74.86 76.98 77.61 77.94 79.15
pl 81.17 83.46 83.74 85.04 84.84 84.96 83.19
sk 86.59 86.35 86.84 86.33 86.39 86.49 84.53
ta 40.46 40.46 42.68 45.84 46.00 47.43 49.64
tr 57.74 59.49 59.96 60.63 61.41 62.16 62.91
uk 83.40 83.82 79.67 81.33 82.16 80.91 78.84
vi 49.02 52.55 54.14 55.24 55.42 56.10 56.46
AVG 62.99 65.71 67.30 68.40 69.22 69.73 69.55
Best 0 1 1 2 0 9 7

Table 6.6: Evaluation of the weighted multi-source cross-lingual POS tagging
accuracy, combining the top N sources as ordered by KLcpos3 . Also listing the
top 7 setup from the unweighted combination.

as we did not evaluate using more than 7 sources).
The average accuracy is actually highest for the combination of the top 6

sources. However, as the top 7 combination surpasses it for the majority of
targets while performing only negligibly worse on average, we see the “top 7”
combination as the most promising setup.

Weighted multi-source combination

The weighted variant of the method proceeds in the same way, but weights the
votes of the sources by their KL−4

cpos3 similarity to the target.
Table 6.6 shows that the weighted approach quite successfully avoids the prob-

lem of the unweighted one, shifting the culmination point to the top 7 combination
for most targets (9 out of 13), and reaching only a tiny loss towards the best per-
forming combination for 3 of the 4 remaining targets (0.02, 0.08 and 0.35); only
for Ukrainian, top 7 is considerably lower than top 3, with a loss of nearly 3
percentage points.

This shows that even in cross-lingual tagging, KL−4
cpos3 is capable of evening

out the accuracies across the varying number of sources used, similarly to what we
observed in cross-lingual parsing. As we are adding more sources, they are getting
weaker and weaker weights, and so, instead of culminating and then deteriorating
as we saw for the unweighted combination, the accuracy rather tends to level out,
preserving what we have and avoiding bad losses.

On the other hand, as we have also already seen before, this at the same
time seems to prevent possible larger gains, i.e. the evening out works both ways.
This is demonstrated by the unweighted top 7 combination outperforming the
weighted one for half of the targets (these are mostly the same cases for which
top 7 was best among the unweighted combinations), even though it achieves a
slightly worse average accuracy.

127

Target Top 7 Retrain
da 88.86 88.77
el 76.04 76.75
hu 70.32 71.49
id 76.70 78.56
ja 39.01 43.64
kk 59.64 59.34
lv 77.94 79.97
pl 84.96 86.38
sk 86.49 86.95
ta 47.43 47.90
tr 62.16 63.52
uk 80.91 82.57
vi 56.10 58.48
AVG 69.73 71.10

Table 6.7: Evaluation of a simple self-training approach, applying the weighted
combination of the top 7 sources to WTC target side and retraining the tagger
on it.

Nevertheless, although the gains in accuracy are not completely convincing,
we believe the weighted combination to be a better method than the unweighted
one, since it is more stable and predictable.

6.2.3 Simple self-training
Probably the most important drawback of the MT approach, as compared to
the projection approach, is the fact that we train the target taggers on synthetic
texts, which may be very different from real texts in the target language. In
the projection approach, this is not the case, as the final tagger is trained on
the target side of the parallel corpus, i.e. real target language texts (while the
main drawback of the projection method is the projection of automatic POS tags,
whereas the MT method directly uses gold standard source annotations).

Here, we try to somewhat rectify that shortcoming by introducing real target
texts into the process, using a simple self-training approach. Specifically, we
apply the weighted multi-source cross-lingual POS tagging to the target side of
the parallel data, and then train a new POS tagger on that data.

As Table 6.7 shows, this approach is clearly successful, leading to an increase
of accuracy for 11 of the 13 target languages, on average improving the accuracy
by +1.4 percentage points.

The tagger thus benefits from training on larger data, even if these are tagged
noisily. We hypothesize that, while it seems unlikely that the final tagger would
learn different tags for words that were known already to the underlying taggers,
it may arrive at a better grasp of the POS sequences usual in the target language,
allowing it to better disambiguate the correct POSes for known but ambiguous
words, as well as to bridge words unknown to it.

Also, as our MT setup is a simple one, its outputs contain many untranslated
words, and the tagger trained on the translated treebank is thus taught to tag not
only the translated target words, but also the source words, which may confuse

128

it, as well as waste its learning capacity on words that it will never encounter
once applied to real target data.

Moreover, we believe that the fact that we use particularly the target side
of the parallel data, i.e. the training data for the MT system, may also be of
importance, as it consists of words that are bound to be best known to the taggers;
we would expect the taggers to work especially well on such data. However, this
is hard to measure reliably, as we do not have the gold POS tags for the parallel
data.

6.3 Comparison and combination
We now compare the performances of the two individual cross-lingual POS tag-
ging methods that we described, in their settings which we believe to be the best,
based on our experiments. For POS projection over multiparallel data, we use
the unweighted combination of all sources and the intersection alignment sym-
metrization. In the treebank machine translation approach, we use the weighted
combination of the 7 closest sources with the simple self-training.

The results in the first two columns of Table 6.8 clearly show the superiority
of the machine translation approach, outperforming the projection approach for
10 of the 13 targets, and reaching an accuracy higher by 3 percentage points
on average. We believe that the strongest advantage of the MT method is the
utilization of gold source annotation instead of the automatic ones, while using
automatic translations instead of human translations might not be such a weak
point as it would seem to be, due to the machine translations being more literal
than the human translations, especially given our monotone word-based setting
for the MT system.

Interestingly, the results of our evaluation go against the claims made by
Tiedemann and Agić [2016] and Agić et al. [2016], who assume that small parallel
corpora, such as the WTC, are insufficient for building an MT system sufficiently
accurate to be used for the treebank translation approach to cross-lingual analysis,
without actually providing any support for such claims. While the rather poor
results of the MT approach which we observed in the single-source setting may
suggest this, the subsequent combination of multiple sources leads to surprising
accuracy gains, eventually surpassing the projection method. It is possible that
Tiedemann and Agić [2016] did not take such an option into account, as we
have found no mention of a multi-source combination approach to the treebank
translation method in their work, even though it is directly based on the methods
previously introduced by these authors. We also believe that we benefit here from
using the simpler word-based approach to MT, while the authors seem to have
assumed using the more complex phrase-based MT. However, as we showed in
Section 5.6, the accuracy of the underlying MT system seems to only have a
moderate effect on the accuracy of the cross-lingual analysis.

Nevertheless, this does not mean that we can completely abandon the projec-
tion method, as we still need it to provide us with an initial tagging to compute
the KL−4

cpos3 similarity for source subselection and weighting. Moreover, it is in-
teresting to note that the accuracy of the projection method is still rather close
to that of the MT method, even though its approach is considerably different.

This naturally leads to the idea of combining the two methods in an ensemble

129

Target Projection MT Ensemble Retrain Supervised
da 84.02 88.77 89.08 87.75 95.81
el 73.06 76.75 77.02 77.65 97.45
hu 70.57 71.49 73.60 73.00 94.27
id 79.66 78.56 80.66 81.20 93.33
ja 48.72 43.64 44.54 53.76 96.97
kk 53.31 59.34 60.84 62.05 81.02
lv 75.16 79.97 81.37 81.90 90.30
pl 79.93 86.38 85.64 85.64 94.87
sk 80.98 86.95 87.00 86.88 92.07
ta 43.94 47.90 51.39 50.04 84.32
tr 62.36 63.52 65.93 66.34 92.19
uk 74.69 82.57 78.42 78.42 70.95
vi 59.69 58.48 59.03 60.91 88.23
AVG 68.16 71.10 71.89 72.73 90.14

Table 6.8: Comparison of the two cross-lingual POS tagging methods – POS
projection and treebank machine translation – in their best preforming settings,
with the better performing one marked in bold. We also include accuracy of
their ensemble combination (marked in bold if it surpasses both of the individual
methods), and the self-training approach applied in top of the ensemble method
(marked in bold if it surpasses the non-retrained ensemble). Accuracy of a fully
supervised monolingual tagger, trained on the target treebank, is also reported.

fashion. We implement this idea by incorporating the tagger trained on the
projected POS into the voting; i.e. we now combine 8 taggers, 7 trained on the
translated source treebanks, and one trained on the projectedly tagged target side
of the multiparallel corpus. As we use the weighted voting, we need to assign a
weight to the additional tagger; we use the value of KL−4

cpos3 for the closest source.
Additionally, we also apply the self-training on top of the ensemble, by using the
ensemble tagging to assign POS tags to the target side of the multiparallel corpus
and then training the final tagger on this data.

Table 6.8 shows the ensemble to improve over both of the individual methods
for 9 of the 13 targets, as well as on average (+0.7). This shows that, while the
two methods achieve a similar accuracy, their strengths and weaknesses somewhat
differ, and it thus makes sense to combine them.

Unsurprisingly, the ensemble seems to perform particularly well if both of
the methods yield comparably good accuracies (hu, tr). If one of the methods
performs substantially better than the other, the ensemble often fails to improve
over it (ja, pl, uk), or does so with only a small gain (da, sk). Nevertheless,
the combination always outperforms at least the weaker of the two underlying
methods.

The self-training approach does further improve the average performance by
another +0.7 percentage points, but leads to a drop in accuracy for 4 target
languages. This is in slight contrast with our observations when the self-training
was applied on top of the base treebank translation method, where the average
improvement was twice as large, and minor deteriorations only occurred for 2
targets. We believe that the effect of mixing in the projection tagger is somewhat
complementary to the self-training approach, as both of these benefit from the

130

Target lang. Top 7 unw. Top 7 w. Retrain Ensemble
Danish 59.11 59.51 59.37 57.68
Greek 47.69 47.74 48.70 49.41
Hungarian 26.96 29.95 30.79 32.57
Indonesian 37.16 37.88 38.72 41.11
Japanese 11.73 10.05 9.20 14.58
Kazakh 11.14 12.35 12.95 13.86
Latvian 37.53 38.05 41.10 42.23
Polish 55.45 56.00 57.51 58.46
Slovak 59.74 62.52 63.46 62.21
Tamil 14.96 13.06 14.57 16.39
Turkish 19.51 18.40 18.96 22.47
Ukrainian 51.87 51.04 54.36 48.55
Vietnamese 25.95 26.00 26.95 27.90
AVG LAS 35.29 35.58 36.66 37.49
AVG POSacc 69.55 69.73 71.10 72.73

Table 6.9: Cross-lingual parsing LAS based on the tagging setup used – un-
weighted combination of the top 7 sources, weighted combination of the top 7
sources, self-training using the weighted top 7 combination, and self-training on
top of the ensemble setup. The last line lists the average POS tagging accuracy
of the underlying cross-lingual tagging setup.

tagger being exposed to the target side of the parallel corpus. Nevertheless, the
self-training on the ensemble outputs still does bring improvements, including a
particularly large gain for Japanese (+9.2), and we thus designate it as our final
ultimate best-performing approach to cross-lingual POS tagging.

The absolute accuracies of the taggers are far from perfect, as been seen when
comparing them to the supervised tagger. Still, they are rather respectable, often
surpassing 80%, suggesting that the tagging may be already useful for downstream
applications, most notably for cross-lingual parsing. The supervised performance
is approached for some targets, especially for Slovak, where the huge treebank
for a very similar source language (Czech) brings remarkably good results. For
Ukrainian, the supervised tagger is even surpassed, as the Ukrainian UD 1.4
training data are very small (about 1000 tokens). This nicely simulates the under-
resourced scenario, showing that our methods can outperform supervised methods
if training data is scarce.

6.3.1 Influence on parsing
We now show the influence of improvements in the cross-lingual POS tagging to
cross-lingual dependency parsing, evaluated within the best parsing setup from
Chapter 5 (weighted parse tree combination of 5 closest source parsers, lexicalized
using word-based monotone Moses treebank translation).

Table 6.9 compares the LAS achieved in parsing on top of POS tags provided
by four of the tagging setups that we evaluated – unweighted combination of the
taggers trained on machine translated treebanks for the 7 closest source languages,
the weighted variant thereof, the self-training applied on top of the weighted
combination, and the ensemble of the translation and projection approaches with

131

self-training on top.
We can see that improvements in tagging accuracy generally tend to lead to

corresponding improvements in parsing accuracy, both on average as well as for
the individual target languages (although there is, as could be expected, some
variance in the numbers). The weighted combination is slightly better than the
unweighted one on average as well as for 8 of the 13 target languages. Self-
training leads to an improvement of all but two targets and adds 1 LAS point on
average. And ensembling with self-training leads to a further improvement for 10
of the 13 languages, adding another +0.9 LAS on average (for all the three target
languages that experienced a deterioration in LAS, there was also a decrease of
tagging accuracy).

On average, the table shows the tagging accuracy rising by 3.2 percentage
points from the weakest setup to the strongest one, while the corresponding LAS
rises by 2.2 points.

Most importantly, from the results we can see that improvements in tagging
accuracy generally tend to lead to improvements in parsing accuracy, justifying
the approach of dealing with tagging and parsing independently and then com-
bining the best performing setups to form the final system.

Interestingly, we obtained best results when the parsers were trained on gold
POS tags, even though better results are usually achieved by training on POS
tags predicted by the tagger that will eventually be used in the inference, as this
helps the parsers to know what POS tags they can expect and adapt to that.
Moreover, this effect could be expected to be even stronger in the cross-lingual
setting, where the inference-stage POS tags are typically considerably different
from the gold POS tags. However, in our setup, the machine-translated treebanks
which we use for training the parsers are actually quite different from the real
target-language texts that both the taggers and the parsers will be eventually
applied to, which probably weakens this effect.8

6.4 Summary
In this chapter, we investigated two pre-existing approaches to cross-lingual POS
tagging.

First, we reimplemented the method of projecting POS tags over multiparallel
data, suggested by Agić et al. [2016]. We found the intersection word-alignment
to outperform the reverse word-alignment suggested by the original authors. On
the other hand, we were unable to improve the performance of the method by
incorporating source weighting based on alignment scores or KL−4

cpos3 source-target
similarity, and we also did not find a subselection of the sources that would
perform better than using all of the sources.

Next, we examined the method of training target language taggers on source
language treebanks translated with a word-based MT system, which was intro-
duced by Tiedemann [2014]. We showed the effectiveness of KLcpos3 for selecting
appropriate source languages to use for a given target language, noting the need
to first use the projection method to obtain initial target POS tags for the com-

8Training the parsers on gold POS tags led to the parsing accuracies being higher by ap-
proximately +1.5 LAS point on average.

132

putation of KLcpos3 . We then successfully extended the single-source method
into a voting-based multi-source combination, and further improved it by the
introduction of weighted voting, with source weights computed as the KL−4

cpos3

source-target similarities. We obtained further gains by performing simple self-
training, tagging the target side of the parallel corpus and retraining a tagger on
that, thus allowing it to encounter real target language texts in training.

We then compared performances of the two methods, finding the translation-
based method to consistently outperform the projection-based one, although not
drastically. On the other hand, the projection is quite light-weight and can be
easily performed for all language pairs, while the translation is computationally
demanding and needs to only be applied on a subselection of sources for each
target. Subsequently, we also tried to combine the two methods together, finding
the ensemble to outperform both of the individual methods. Moreover, applying
the self-training on top of the ensemble led to a further moderate improvement
of tagging accuracy.

Finally, we compared several of the tagging setups within our final approach
to cross-lingual parsing, confirming that more accurate POS tagging tends to lead
to improvements in the subsequent parsing.

We tried to realistically focus on the intended use case for the cross-lingual
methods, using only a small parallel corpus, which, however, is available for a large
number of languages, including many under-resourced ones. This also allowed
us to investigate a larger number of setups, since the computational resources
necessary to perform the experiments are typically proportional to the size of
the datasets used. We assume that operating on larger datasets would further
improve the resulting accuracies, while it is not clear whether the same methods
would still be the best performing ones under such settings. Nevertheless, such
datasets are typically not available for under-resourced languages, thus probably
making this uncertainty to be of little importance.

133

134

Conclusion, or How to parse an
under-resourced language
As a conclusion of the thesis, we summarize our findings in the form of a set of in-
structions for parsing an under-resourced target language for which no annotated
data are available.

Get source treebanks

You will need harmonized dependency treebanks for some source languages; ide-
ally for some languages which are close to the target language, but even distant
languages can help. The Universal Dependencies treebank collection is currently
the best such resource in existence.

Get parallel data

Obtain source-target parallel data for your target language and the source lan-
guages for which you have treebanks; multiparallel data are even better. The
Watchtower texts seem to be very good for that purpose, and available for many
under-resourced languages. Other religious texts are also available in many lan-
guages, especially the Bible.

Get monolingual target data

The target side of the parallel data can be used as monolingual target data. For
some target languages, other larger monolingual data may be available, such as
the Wikipedia texts.

Tokenize the parallel data

If the target language uses word spaces and punctuation, a simple rule-based
tokenizer can be used. If not, a specialized tokenizer should be applied. For the
source languages, a tokenizer can be trained on the source treebanks.

Align the parallel data

If the parallel data are not sentence-aligned, this has to be performed first; the
Hunalign tool can be used for that. For word alignment, there is a range of
existing tools, such as FastAlign or GIZA++. The intersection symmetrization
should be applied to the produced alignment, as other symmetrizations are too
noisy and also more difficult to work with.

Train source part-of-speech taggers

It is recommended to train a tagger that only predicts the coarse POS tags, as
more fine-grained morphological labels do not seem to be sufficiently cross-lingual.
We were satisfied with using the UDPipe tagger.

135

POS-tag the parallel data

Use the trained taggers to assign POS tags to the source sides of the parallel
data.

Project POS tags over the word alignment

For each target token, determine its POS as the most frequent POS assigned to
the source words aligned to it. This will give you initial target POS tags

Measure language similarity

Using the POS-tagged source and target sides of the parallel data, compute the
KL−4

cpos3 language similarity for each source-target pair.

Train machine translation systems

For several of the source languages which seem to be the most similar to the
target language (5 seems like a nice number), train a source→target MT system,
such as Moses. Use only word-to-word translation without reordering. Employ a
language model, trained on the target data you have.

Translate the source treebanks

Translate the word forms in the source treebanks into the target language. Using
a word-based monotone MT system ensures that the annotation can be kept
intact.

Train target word embeddings

Apply the word2vec to the target data to obtain target word embeddings. If you
use a neural dependency parser in the next step, providing it with the pre-trained
embeddings can help adapting it to the target language (but is typically useful
even in a monolingual scenario).

Train tagger and parser

Train target taggers and parsers on the translated treebanks. We were satisfied
with using UDPipe. Use the gold POS tags for training the parser.

Retag the target data

Retag the target data with the POS taggers trained on the translated treebanks.
Determine the the final POS tag for each token by weighted voting, with the
weight of the vote of each tagger determined by the KL−4

cpos3 similarity of its source
language to the target language. Also include the current POS tags, obtained
through projection over word alignment, into the voting, with a weight identical
to that of the closest source.

136

Train the final tagger

Train the final tagger on the POS-tagged target data. Training the tagger on
real target language data instead of the machine translation outputs makes it
better. Also, it is more practical, as it results in a single standard parser that
can be directly applied to target language texts, rather than having to perform
the multi-source tagger combination each time.

Parse the target data

Tag the target data with the final tagger, and parse it with the dependency parsers
trained on the translated treebanks. Score each possible target dependency edge
by the sum of the KL−4

cpos3 similarities of the sources of all of the parsers that
predicted that edge. Find the final parse tree by applying the Maximum Spanning
Tree algorithm to the resulting weighted directed graph. For each dependent
node, determine the label for the dependency relation to its head node through
weighted voting on the labels predicted by all of the parsers, again using KL−4

cpos3

weights.

Optional: Train a final parser

A final parser can be trained on the parsed target data. However, in the case
of the parser, this seems to actually decrease the accuracy, presumably because
this way it gets trained on better target texts but worse POS tags; to achieve
the highest accuracy of parsing, this step thus should probably be skipped. On
the other hand, having one final parser which can be directly applied to target
language sentences instead of a pool of parsers whose outputs need to be combined
to get the parse tree may obviously be more handy in practice.

Use the final tagger and parser

Apply the final tagger and parser (or the parser combination) to any tokenized
texts in the target language.

Expect low accuracy

The accuracy of the results depends on many factors, especially on the similar-
ity of the available source languages to the target language and on the sizes of
the available parallel data and source treebanks. Very roughly, with using the
WTC multiparallel data, the accuracy of the POS tagger can be expected to be
approximately (70 ± 20)%, and the labelled attachment accuracy of the parser
approximately (35 ± 20)%. While this may be insufficient for most practical
purposes, it is, to the best of our knowledge, about the best you can get.

137

138

Bibliography
Itzair Aduriz, Maŕıa Jesús Aranzabe, Jose Mari Arriola, Aitziber Atutxa, Arantza

Dı́az de Ilarraza, Aitzpea Garmendia, and Maite Oronoz. Construction of a
Basque dependency treebank. In Proc. of the 2nd Workshop on Treebanks and
Linguistic Theories, 2003.

Susana Afonso, Eckhard Bick, Renato Haber, and Diana Santos. “Floresta
sintá(c)tica”: a treebank for Portuguese. In Proc. of LREC, pages 1968–1703,
2002.

Željko Agić. Cross-lingual parser selection for low-resource languages. In Pro-
ceedings of the NoDaLiDa 2017 Workshop on Universal Dependencies (UDW
2017), pages 1–10, Gothenburg, Sweden, May 2017. Association for Computa-
tional Linguistics. URL http://www.aclweb.org/anthology/W17-0401.

Željko Agić, Danijela Merkler, and Daša Berovic. Slovene-Croatian treebank
transfer using bilingual lexicon improves Croatian dependency parsing. In Pro-
ceedings of IS-LTC, pages 5–9, 2012.

Željko Agić, Jörg Tiedemann, Kaja Dobrovoljc, Simon Krek, Danijela Merkler,
and Sara Može. Cross-lingual dependency parsing of related languages with rich
morphosyntactic tagsets. In EMNLP 2014 Workshop on Language Technology
for Closely Related Languages and Language Variants, 2014.

Željko Agić, Dirk Hovy, and Anders Søgaard. If all you have is a bit of the
Bible: Learning POS taggers for truly low-resource languages. In The 53rd
Annual Meeting of the Association for Computational Linguistics and the 7th
International Joint Conference of the Asian Federation of Natural Language
Processing (ACL-IJCNLP 2015). Hrvatska znanstvena bibliografija i MZOS-
Svibor, 2015.

Željko Agić, Anders Johannsen, Barbara Plank, Héctor Alonso Mart́ınez, Na-
talie Schluter, and Anders Søgaard. Multilingual projection for parsing truly
low-resource languages. Transactions of the Association for Computational
Linguistics, 4:301, 2016.

Alfred V Aho and Jeffrey D Ullman. The theory of parsing, translation, and
compiling, volume 1. Prentice-Hall, Englewood Cliffs, NJ, 1972.

Waleed Ammar, George Mulcaire, Miguel Ballesteros, Chris Dyer, and Noah A
Smith. One parser, many languages. CoRR, abs/1602.01595, 2016.

Mikel Artetxe, Gorka Labaka, and Eneko Agirre. Learning bilingual word em-
beddings with (almost) no bilingual data. In Proceedings of the 55th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), volume 1, pages 451–462, 2017.

Nart B. Atalay, Kemal Oflazer, Bilge Say, and Informatics Inst. The annotation
process in the Turkish treebank. In Proc. of the 4th Intern. Workshop on
Linguistically Interpreteted Corpora (LINC), 2003.

139

http://www.aclweb.org/anthology/W17-0401

Lauriane Aufrant, Guillaume Wisniewski, and François Yvon. Zero-resource de-
pendency parsing: Boosting delexicalized cross-lingual transfer with linguis-
tic knowledge. In Proceedings of COLING 2016, the 26th International Con-
ference on Computational Linguistics: Technical Papers, pages 119–130, Os-
aka, Japan, December 2016. The COLING 2016 Organizing Committee. URL
http://aclweb.org/anthology/C16-1012.

David Bamman and Gregory Crane. The Ancient Greek and Latin dependency
treebanks. In Caroline Sporleder, Antal Bosch, and Kalliopi Zervanou, editors,
Language Technology for Cultural Heritage, Theory and Applications of Natural
Language Processing, pages 79–98. Springer Berlin Heidelberg, 2011. ISBN
978-3-642-20227-8.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jauvin. A
neural probabilistic language model. Journal of machine learning research, 3
(Feb):1137–1155, 2003.

Taylor Berg-Kirkpatrick and Dan Klein. Phylogenetic grammar induction. In
Proceedings of the 48th Annual Meeting of the Association for Computational
Linguistics, ACL ’10, pages 1288–1297, Stroudsburg, PA, USA, 2010. Asso-
ciation for Computational Linguistics. URL http://dl.acm.org/citation.
cfm?id=1858681.1858812.

Eckhard Bick, Heli Uibo, and Kaili Müürisep. Arborest – a VISL-style treebank
derived from an Estonian constraint grammar corpus. In Proc. of Treebanks
and Linguistic Theories, 2004. URL http://beta.visl.sdu.dk/pdf/Bick_
Uibo_Muurisep_TLT04.pdf.

Igor Boguslavsky, Svetlana Grigorieva, Nikolai Grigoriev, Leonid Kreidlin, and
Nadezhda Frid. Dependency treebank for Russian: Concept, tools, types of in-
formation. In Proc. of the 18th conference on Computational linguistics-Volume
2, pages 987–991. Association for Computational Linguistics Morristown, NJ,
USA, 2000.

Bernd Bohnet and Joakim Nivre. A transition-based system for joint part-of-
speech tagging and labeled non-projective dependency parsing. In Proceed-
ings of the 2012 Joint Conference on Empirical Methods in Natural Language
Processing and Computational Natural Language Learning, pages 1455–1465.
Association for Computational Linguistics, 2012.

Ondřej Bojar, Kamil Kos, and David Mareček. Tackling sparse data issue in ma-
chine translation evaluation. In Proceedings of the ACL 2010 Conference Short
Papers, ACLShort ’10, pages 86–91, Stroudsburg, PA, USA, 2010. Association
for Computational Linguistics. URL http://dl.acm.org/citation.cfm?id=
1858842.1858858.

Sabine Brants, Stefanie Dipper, Peter Eisenberg, Silvia Hansen, Esther König,
Wolfgang Lezius, Christian Rohrer, George Smith, and Hans Uszkoreit.
TIGER: Linguistic interpretation of a German corpus. Journal of Language
and Computation, 2(4):597–620, 2004. Special Issue.

140

http://aclweb.org/anthology/C16-1012
http://dl.acm.org/citation.cfm?id=1858681.1858812
http://dl.acm.org/citation.cfm?id=1858681.1858812
http://beta.visl.sdu.dk/pdf/Bick_Uibo_Muurisep_TLT04.pdf
http://beta.visl.sdu.dk/pdf/Bick_Uibo_Muurisep_TLT04.pdf
http://dl.acm.org/citation.cfm?id=1858842.1858858
http://dl.acm.org/citation.cfm?id=1858842.1858858

Thorsten Brants. TnT: A statistical part-of-speech tagger. In Proceedings of the
Sixth Conference on Applied Natural Language Processing, ANLC ’00, pages
224–231, Stroudsburg, PA, USA, 2000. Association for Computational Linguis-
tics. doi: 10.3115/974147.974178. URL https://doi.org/10.3115/974147.
974178.

Sabine Buchholz and Erwin Marsi. CoNLL-X shared task on multilingual de-
pendency parsing. In Proceedings of the Tenth Conference on Computational
Natural Language Learning, CoNLL-X ’06, pages 149–164, Stroudsburg, PA,
USA, 2006. Association for Computational Linguistics.

Sean M. Burke. Unidecode! Sys Admin, 10(12):54–60, December 2001. ISSN
1061-2688. URL http://interglacial.com/tpj/22/.

Xavier Carreras. Experiments with a higher-order projective dependency parser.
In Proceedings of the CoNLL Shared Task Session of EMNLP-CoNLL, vol-
ume 7, pages 957–961, 2007.

Giovanni Cavallanti, Nicolo Cesa-Bianchi, and Claudio Gentile. Linear algorithms
for online multitask classification. The Journal of Machine Learning Research,
11:2901–2934, 2010.

Danqi Chen and Christopher Manning. A fast and accurate dependency parser
using neural networks. In Proceedings of the 2014 conference on empirical
methods in natural language processing (EMNLP), pages 740–750, 2014.

Noam Chomsky. Three models for the description of language. IRE Transactions
on Information Theory, 2(3):113–124, September 1956. ISSN 0096-1000. doi:
10.1109/TIT.1956.1056813.

Christos Christodouloupoulos and Mark Steedman. A massively parallel corpus:
the Bible in 100 languages. Language resources and evaluation, 49(2):375–395,
2015.

Yoeng-Jin Chu and Tseng-Hong Liu. On shortest arborescence of a directed
graph. Scientia Sinica, 14(10):1396, 1965.

Martin Čmejrek, Jan Cuř́ın, Jǐŕı Havelka, Jan Hajič, and Vladislav Kuboň.
Prague Czech-English dependency treebank: Syntactically annotated resources
for machine translation. In Proceedings of the 4th International Conference on
Language Resources and Evaluation, volume V, pages 1597–1600, Lisboa, 2004.
European Language Resources Association. ISBN ISBN 2-9517408-1-6.

Shay B. Cohen, Dipanjan Das, and Noah A. Smith. Unsupervised structure
prediction with non-parallel multilingual guidance. In Proceedings of the Con-
ference on Empirical Methods in Natural Language Processing, EMNLP ’11,
pages 50–61, Stroudsburg, PA, USA, 2011. ACL. ISBN 978-1-937284-11-4.
URL http://dl.acm.org/citation.cfm?id=2145432.2145439.

Michael Collins. Discriminative training methods for Hidden Markov Models:
Theory and experiments with Perceptron algorithms. In Proceedings of the
ACL-02 Conference on Empirical Methods in Natural Language Processing -

141

https://doi.org/10.3115/974147.974178
https://doi.org/10.3115/974147.974178
http://interglacial.com/tpj/22/
http://dl.acm.org/citation.cfm?id=2145432.2145439

Volume 10, EMNLP ’02, pages 1–8, Stroudsburg, PA, USA, 2002. Association
for Computational Linguistics. doi: 10.3115/1118693.1118694. URL https:
//doi.org/10.3115/1118693.1118694.

Michael Collins. Head-driven statistical models for natural language
parsing. Computational Linguistics, 29(4):589–637, 2003. doi:
10.1162/089120103322753356. URL https://doi.org/10.1162/
089120103322753356.

Michael Collins, Lance Ramshaw, Jan Hajič, and Christoph Tillmann. A sta-
tistical parser for Czech. In Proceedings of the 37th Annual Meeting of the
Association for Computational Linguistics on Computational Linguistics, ACL
’99, pages 505–512, Stroudsburg, PA, USA, 1999. Association for Computa-
tional Linguistics.

Michael Collins, Philipp Koehn, and Ivona Kučerová. Clause restructuring for
statistical machine translation. In Proceedings of the 43rd annual meeting on
association for computational linguistics, pages 531–540. Association for Com-
putational Linguistics, 2005.

Çağrı Çöltekin and Taraka Rama. Tübingen system in vardial 2017 shared task:
Experiments with language identification and cross-lingual parsing. In Pro-
ceedings of the Fourth Workshop on NLP for Similar Languages, Varieties and
Dialects (VarDial), pages 146–155, 2017.

Alexis Conneau, Guillaume Lample, Marc’Aurelio Ranzato, Ludovic De-
noyer, and Hervé Jégou. Word translation without parallel data. CoRR,
abs/1710.04087, 2017. URL http://arxiv.org/abs/1710.04087.

Michael A Covington. A fundamental algorithm for dependency parsing. In Pro-
ceedings of the 39th annual ACM southeast conference, pages 95–102. Citeseer,
2001.

Koby Crammer and Yoram Singer. Ultraconservative online algorithms for mul-
ticlass problems. The Journal of Machine Learning Research, 3:951–991, 2003.

Mathias Creutz and Krista Lagus. Unsupervised morpheme segmentation and
morphology induction from text corpora using Morfessor 1.0. Helsinki Univer-
sity of Technology Helsinki, 2005.

Dóra Csendes, János Csirik, Tibor Gyimóthy, and András Kocsor. The Szeged
treebank. In Václav Matoušek, Pavel Mautner, and Tomáš Pavelka, editors,
Text, Speech and Dialogue, pages 123–131, Berlin, Heidelberg, 2005. Springer
Berlin Heidelberg. ISBN 978-3-540-31817-0.

Jan Cuř́ın, Martin Čmejrek, Jǐŕı Havelka, Jan Hajič, Vladislav Kuboň, and
Zdeněk Žabokrtský. Prague Czech-English dependency treebank version 1.0.
In Linguistic Data Consortium (LDC), number LDC2004T25, University of
Pennsylvania, 2004. Linguistic Data Consortium (LDC). ISBN 1-58563-321-6.

Mihaela Călăcean. Data-driven dependency parsing for Romanian. Master’s
thesis, Uppsala University, 2008. URL http://citeseerx.ist.psu.edu/
viewdoc/download?doi=10.1.1.153.6068&rep=rep1&type=pdf.

142

https://doi.org/10.3115/1118693.1118694
https://doi.org/10.3115/1118693.1118694
https://doi.org/10.1162/089120103322753356
https://doi.org/10.1162/089120103322753356
http://arxiv.org/abs/1710.04087
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.153.6068&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.153.6068&rep=rep1&type=pdf

Dipanjan Das and Slav Petrov. Unsupervised part-of-speech tagging with bilin-
gual graph-based projections. In Proceedings of the 49th Annual Meeting of
the Association for Computational Linguistics: Human Language Technologies-
Volume 1, pages 600–609. Association for Computational Linguistics, 2011.

Marie-Catherine De Marneffe and Christopher D Manning. The Stanford typed
dependencies representation. In Coling 2008: Proceedings of the workshop on
Cross-Framework and Cross-Domain Parser Evaluation, pages 1–8. Association
for Computational Linguistics, 2008.

Marie-Catherine de Marneffe, Natalia Silveira, Timothy Dozat, Katri Haverinen,
Filip Ginter, Joakim Nivre, and Christopher D. Manning. Universal Stanford
dependencies: A cross-linguistic typology. In Proceedings of LREC’14, Reyk-
jav́ık, Iceland, 2014. ELRA.

Ludmila Dimitrova, Nancy Ide, Vladimir Petkevic, Tomaz Erjavec, Heiki Jaan
Kaalep, and Dan Tufis. Multext-East: Parallel and comparable corpora and
lexicons for six Central and Eastern European languages. In Proceedings of the
36th Annual Meeting of the Association for Computational Linguistics and 17th
International Conference on Computational Linguistics - Volume 1, ACL ’98,
pages 315–319, Stroudsburg, PA, USA, 1998. Association for Computational
Linguistics. doi: 10.3115/980845.980897. URL https://doi.org/10.3115/
980845.980897.

Matthew S. Dryer and Martin Haspelmath, editors. WALS Online. Max Planck
Institute for Evolutionary Anthropology, Leipzig, 2013. URL http://wals.
info/.

Long Duong, Trevor Cohn, Steven Bird, and Paul Cook. Cross-lingual transfer
for unsupervised dependency parsing without parallel data. In CoNLL, pages
113–122, 2015.

Nadir Durrani, Hassan Sajjad, Alexander Fraser, and Helmut Schmid. Hindi-to-
Urdu machine translation through transliteration. In Proceedings of the 48th
Annual meeting of the Association for Computational Linguistics, pages 465–
474. Association for Computational Linguistics, 2010.

Nadir Durrani, Hassan Sajjad, Hieu Hoang, and Philipp Koehn. Integrating
an unsupervised transliteration model into statistical machine translation. In
EACL, volume 14, pages 148–153, 2014.

Sašo Džeroski, Tomaž Erjavec, Nina Ledinek, Petr Pajas, Zdeněk Žabokrtský, and
Andreja Žele. Towards a Slovene dependency treebank. In Proc. of LREC 2006,
pages 1388–1391, Genova, Italy, 2006. European Language Resources Associ-
ation (ELRA). URL http://hnk.ffzg.hr/bibl/lrec2006/summaries/133.
html.

Chris Dyer, Victor Chahuneau, and Noah A. Smith. A simple, fast, and effective
reparameterization of IBM model 2. In Proceedings of the 2013 Conference of
the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, pages 644–648, Atlanta, Georgia, June 2013.

143

https://doi.org/10.3115/980845.980897
https://doi.org/10.3115/980845.980897
http://wals.info/
http://wals.info/
http://hnk.ffzg.hr/bibl/lrec2006/summaries/133.html
http://hnk.ffzg.hr/bibl/lrec2006/summaries/133.html

Association for Computational Linguistics. URL http://www.aclweb.org/
anthology/N13-1073.

Jack Edmonds. Optimum branchings. Journal of Research of the National Bureau
of Standards B, 71(4):233–240, 1967.

Jason M. Eisner. Three new probabilistic models for dependency parsing: An
exploration. In Proceedings of the 16th Conference on Computational Lin-
guistics - Volume 1, COLING ’96, pages 340–345, Stroudsburg, PA, USA,
1996. ACL. doi: 10.3115/992628.992688. URL http://dx.doi.org/10.3115/
992628.992688.

Cédrick Fairon, Sébastien Paumier, and Patrick Watrin. Can we parse without
tagging? In 2nd Language & Technology Conference (LTC’05), pages 473–477,
Poznan, Poland, 2005. 2nd Language & Technology Conference (LTC’05). URL
https://hal-upec-upem.archives-ouvertes.fr/hal-00636997.

Philip Gage. A new algorithm for data compression. The C Users Journal, 12
(2):23–38, 1994.

Yoav Goldberg and Michael Elhadad. An efficient algorithm for easy-first non-
directional dependency parsing. In Human Language Technologies: The 2010
Annual Conference of the North American Chapter of the Association for
Computational Linguistics, HLT ’10, pages 742–750, Stroudsburg, PA, USA,
2010. Association for Computational Linguistics. ISBN 1-932432-65-5. URL
http://dl.acm.org/citation.cfm?id=1857999.1858114.

Stephan Gouws and Anders Søgaard. Simple task-specific bilingual word embed-
dings. In Proceedings of the 2015 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies,
pages 1386–1390, 2015.

Nathan David Green and Zdeněk Žabokrtský. Hybrid combination of con-
stituency and dependency trees into an ensemble dependency parser. In Pro-
ceedings of the Workshop on Innovative Hybrid Approaches to the Processing of
Textual Data, HYBRID ’12, pages 19–26, Stroudsburg, PA, USA, 2012. Asso-
ciation for Computational Linguistics. URL http://dl.acm.org/citation.
cfm?id=2388632.2388635.

Jiang Guo, Wanxiang Che, David Yarowsky, Haifeng Wang, and Ting Liu. Cross-
lingual dependency parsing based on distributed representations. In Proceedings
of the 53rd Annual Meeting of the Association for Computational Linguistics
and the 7th International Joint Conference on Natural Language Processing
(Volume 1: Long Papers), volume 1, pages 1234–1244, 2015.

Jan Hajič, Otakar Smrž, Petr Zemánek, Petr Pajas, Jan Šnaidauf, Emanuel
Beška, Jakub Kráčmar, and Kamila Hassanová. Prague Arabic dependency
treebank 1.0. Linguistic Data Consortium, 2004a. ISBN 1-58563-319-4.

Jan Hajič, Otakar Smrž, Petr Zemánek, Jan Šnaidauf, and Emanuel Beška.
Prague Arabic dependency treebank: Development in data and tools. In

144

http://www.aclweb.org/anthology/N13-1073
http://www.aclweb.org/anthology/N13-1073
http://dx.doi.org/10.3115/992628.992688
http://dx.doi.org/10.3115/992628.992688
https://hal-upec-upem.archives-ouvertes.fr/hal-00636997
http://dl.acm.org/citation.cfm?id=1857999.1858114
http://dl.acm.org/citation.cfm?id=2388632.2388635
http://dl.acm.org/citation.cfm?id=2388632.2388635

Mahtab Nikkhou, editor, Proceedings of the NEMLAR International Confer-
ence on Arabic Language Resources and Tools, pages 110–117, Cairo, 2004b.
ELDA.

Jan Hajič, Jarmila Panevová, Eva Hajičová, Petr Sgall, Petr Pajas, Jan Štěpánek,
Jǐŕı Havelka, Marie Mikulová, Zdeněk Žabokrtský, and Magda Ševč́ıková-
Raźımová. Prague Dependency Treebank 2.0. CD-ROM, Linguistic Data
Consortium, LDC Catalog No.: LDC2006T01, Philadelphia, 2006. URL
http://hdl.handle.net/11858/00-097C-0000-0001-B098-5.

Jan Hajič, Silvie Cinková, Kristýna Čermáková, Lucie Mladová, Anja
Nedolužko, Petr Pajas, Jǐŕı Semecký, Jana Šindlerová, Josef Toman, Kristýna
Tomš̊u, Matěj Korvas, Magdaléna Rysová, Kateřina Veselovská, and Zdeněk
Žabokrtský. Prague English dependency treebank 1.0, 2009.

Jan Hajič. Building a syntactically annotated corpus: The Prague Dependency
Treebank. In Eva Hajičová, editor, Issues of Valency and Meaning. Studies in
Honor of Jarmila Panevová, pages 12–19. Prague Karolinum, Charles Univer-
sity Press, 1998.

Péter Halácsy, András Kornai, and Csaba Oravecz. HunPos: an open source
trigram tagger. In Proceedings of the 45th annual meeting of the ACL on
interactive poster and demonstration sessions, pages 209–212. Association for
Computational Linguistics, 2007.

Chung-hye Han, Na-Rae Han, Eon-Suk Ko, Martha Palmer, and Heejong Yi.
Penn Korean treebank: Development and evaluation. In Proceedings of the 16th
Pacific Asia Conference on Language, Information and Computation, pages
69–78, 2002.

Christian Hardmeier, Sara Stymne, Jörg Tiedemann, Aaron Smith, and Joakim
Nivre. Anaphora models and reordering for phrase-based SMT. In Proceedings
of the Ninth Workshop on Statistical Machine Translation, pages 122–129, Bal-
timore, Maryland, USA, June 2014. Association for Computational Linguistics.
URL http://www.aclweb.org/anthology/W14-3312.

Katri Haverinen, Timo Viljanen, Veronika Laippala, Samuel Kohonen, Filip Gin-
ter, and Tapio Salakoski. Treebanking Finnish. In Markus Dickinson, Kaili
Müürisep, and Marco Passarotti, editors, Proc. of the Ninth International
Workshop on Treebanks and Linguistic Theories (TLT9), pages 79–90, 2010.
URL http://hdl.handle.net/10062/15936.

Kenneth Heafield. KenLM: Faster and smaller language model queries. In Pro-
ceedings of the Sixth Workshop on Statistical Machine Translation, pages 187–
197. Association for Computational Linguistics, 2011.

Samar Husain, Prashanth Mannem, Bharat Ambati, and Phani Gadde. The
ICON-2010 tools contest on Indian language dependency parsing. In Proc. of
ICON-2010 Tools Contest on Indian Language Dependency Parsing, Kharag-
pur, India, 2010.

145

http://hdl.handle.net/11858/00-097C-0000-0001-B098-5
http://www.aclweb.org/anthology/W14-3312
http://hdl.handle.net/10062/15936

Rebecca Hwa, Philip Resnik, Amy Weinberg, Clara Cabezas, and Okan Kolak.
Bootstrapping parsers via syntactic projection across parallel texts. Natural
Language Engineering, 11:11–311, 2005.

Nancy Ide and Jean Véronis. Multext: Multilingual text tools and corpora. In
Proceedings of the 15th Conference on Computational Linguistics - Volume 1,
COLING ’94, pages 588–592, Stroudsburg, PA, USA, 1994. Association for
Computational Linguistics. doi: 10.3115/991886.991990. URL https://doi.
org/10.3115/991886.991990.

Angelina Ivanova, Stephan Oepen, and Lilja Øvrelid. Survey on parsing three
dependency representations for English. In ACL (Student Research Workshop),
pages 31–37, 2013.

Dan Jurafsky and James H Martin. Speech and language processing: An intro-
duction to natural language processing, computational linguistics, and speech
recognition. Prentice Hall series in artificial intelligence. Prentice Hall, Pearson
Education International, 2 edition, 2009.

Dan Jurafsky and James H Martin. Speech and language processing: An intro-
duction to natural language processing, computational linguistics, and speech
recognition. Draft of the 3rd edition, Aug 2017. URL https://web.stanford.
edu/˜jurafsky/slp3/.

Yasuhiro Kawata and Julia Bartels. Stylebook for the Japanese treebank in
Verbmobil. In Report 240, Tübingen, Germany, 2000.

Dan Klein and Christopher D Manning. Corpus-based induction of syntactic
structure: Models of dependency and constituency. In Proceedings of the 42nd
Annual Meeting on Association for Computational Linguistics, page 478. As-
sociation for Computational Linguistics, 2004.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris Callison-Burch, Marcello
Federico, Nicola Bertoldi, Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, Chris Dyer, Ondřej Bojar, Alexandra Constantin, and Evan
Herbst. Moses: Open source toolkit for statistical machine translation. In
Proceedings of the 45th Annual Meeting of the Association for Computational
Linguistics Companion Volume, Proceedings of the Student Research Workshop,
Proceedings of Demo and Poster Sessions, Tutorial Abstracts, pages 177–180,
Praha, Czechia, 2007. Univerzita Karlova v Praze, Association for Computa-
tional Linguistics. ISBN 978-1-932432-87-9.

Matthias T. Kromann, Line Mikkelsen, and Stine Kern Lynge. Dan-
ish dependency treebank, 2004. URL http://code.google.com/p/
copenhagen-dependency-treebank/.

Solomon Kullback and Richard A Leibler. On information and sufficiency. The
annals of mathematical statistics, pages 79–86, 1951.

Lillian Lee. On the effectiveness of the skew divergence for statistical language
analysis. In Artificial intelligence and statistics, volume 2001, pages 65–72,
2001.

146

https://doi.org/10.3115/991886.991990
https://doi.org/10.3115/991886.991990
https://web.stanford.edu/~jurafsky/slp3/
https://web.stanford.edu/~jurafsky/slp3/
http://code.google.com/p/copenhagen-dependency-treebank/
http://code.google.com/p/copenhagen-dependency-treebank/

Geoffrey Leech and Andrew Wilson. EAGLES recommendations for the mor-
phosyntactic annotation of corpora. Technical Report EAG–TCWG–MAC/R,
Expert Advisory Group on Language Engineering Standards, March 1996.

Uri Lerner and Slav Petrov. Source-side classifier preordering for machine trans-
lation. In Proceedings of the 2013 Conference on Empirical Methods in Nat-
ural Language Processing, pages 513–523, Seattle, Washington, USA, October
2013. Association for Computational Linguistics. URL http://www.aclweb.
org/anthology/D13-1049.

Pierre Lison and Jörg Tiedemann. Opensubtitles2016: Extracting large parallel
corpora from movie and TV subtitles. In Proceedings of the 10th International
Conference on Language Resources and Evaluation (LREC 2016). European
Language Resources Association, 2016.

Marco Lui and Timothy Baldwin. langid.py: An off-the-shelf language identifica-
tion tool. In Proceedings of the ACL 2012 system demonstrations, pages 25–30.
Association for Computational Linguistics, 2012.

Mohamed Maamouri, Ann Bies, Tim Buckwalter, and Wigdan Mekki. The Penn
Arabic treebank: Building a large-scale annotated Arabic corpus. In NEMLAR
conference on Arabic language resources and tools, volume 27, pages 466–467.
Cairo, 2004.

Martin Majlǐs and Zdeněk Žabokrtský. Language richness of the web. In Proceed-
ings of the 8th International Conference on Language Resources and Evaluation
(LREC 2012), pages 2927–2934, İstanbul, Turkey, 2012. European Language
Resources Association. ISBN 978-2-9517408-7-7.

Mitchell P Marcus, Mary Ann Marcinkiewicz, and Beatrice Santorini. Building
a large annotated corpus of English: The Penn Treebank. Computational
linguistics, 19(2):313–330, 1993.

David Mareček. Twelve years of unsupervised dependency parsing. In Broňa
Brejová, editor, Proceedings of the 16th ITAT: Slovenskočeský NLP workshop
(SloNLP 2016), volume 1649 of CEUR Workshop Proceedings, pages 56–62,
Bratislava, Slovakia, 2016a. Comenius University in Bratislava, Faculty of
Mathematics, Physics and Informatics, CreateSpace Independent Publishing
Platform. ISBN 978-1537016740.

David Mareček. Delexicalized and minimally supervised parsing on Universal
Dependencies. In Pavel Král and Carlos Mart́ın-Vide, editors, Lecture Nites in
Artificial Intelligence, Statistical Language and Speech Processing, number 9918
in Lecture Notes in Computer Science, pages 30–42, Cham, Switzerland, 2016b.
NTIS research centre at the Faculty of Applied Sciences of the University of
West Bohemia, Springer International Publishing. ISBN 978-3-319-45924-0.

David Mareček and Zdeněk Žabokrtský. Exploiting reducibility in unsupervised
dependency parsing. In Proceedings of the 2012 Joint Conference on Empirical
Methods in Natural Language Processing and Computational Natural Language
Learning, pages 297–307, Stroudsburg, PA, USA, 2012. Association for Com-
putational Linguistics. ISBN 978-1-937284-43-5.

147

http://www.aclweb.org/anthology/D13-1049
http://www.aclweb.org/anthology/D13-1049

David Mareček, Martin Popel, Loganathan Ramasamy, Jan Štěpánek, Daniel
Zeman, Zdeněk Žabokrtský, and Jan Hajič. HamleDT - HArmonized Multi-
LanguagE Dependency Treebank, 2011.

David Mareček, Zhiwei Yu, Daniel Zeman, and Zdeněk Žabokrtský. Deltacorpus
1.1, 2016. URL http://hdl.handle.net/11234/1-1743. LINDAT/CLARIN
digital library at the Institute of Formal and Applied Linguistics (ÚFAL), Fac-
ulty of Mathematics and Physics, Charles University.

André FT Martins, Noah A Smith, Eric P Xing, Pedro MQ Aguiar, and Mário AT
Figueiredo. Turbo parsers: Dependency parsing by approximate variational in-
ference. In Proceedings of the 2010 Conference on Empirical Methods in Natural
Language Processing, pages 34–44. Association for Computational Linguistics,
2010.

Jan Mašek. Detection and correction of inconsistencies in the multilingual tree-
bank HamleDT. Master’s thesis, Charles University in Prague, Faculty of
Mathematics and Physics, Praha, Czechia, 2015.

David McClosky, Eugene Charniak, and Mark Johnson. Reranking and self-
training for parser adaptation. In Proceedings of the 21st International Confer-
ence on Computational Linguistics and the 44th Annual Meeting of the Associ-
ation for Computational Linguistics, ACL-44, pages 337–344, Stroudsburg, PA,
USA, 2006. Association for Computational Linguistics. doi: 10.3115/1220175.
1220218. URL https://doi.org/10.3115/1220175.1220218.

David McClosky, Eugene Charniak, and Mark Johnson. Automatic domain adap-
tation for parsing. In Proceedings of HLT-NAACL, pages 28–36. ACL, 2010.

Ryan McDonald and Fernando Pereira. Online learning of approximate depen-
dency parsing algorithms. In Proceedings of EACL, volume 6, pages 81–88,
2006.

Ryan McDonald, Koby Crammer, and Fernando Pereira. Online large-margin
training of dependency parsers. In Proceedings of ACL, pages 91–98. ACL,
2005a.

Ryan McDonald, Fernando Pereira, Kiril Ribarov, and Jan Hajič. Non-projective
dependency parsing using spanning tree algorithms. In Proceedings of HLT-
EMNLP, pages 523–530. ACL, 2005b.

Ryan McDonald, Kevin Lerman, and Fernando Pereira. Multilingual dependency
analysis with a two-stage discriminative parser. In Proceedings of the Tenth
Conference on Computational Natural Language Learning, CoNLL-X ’06, pages
216–220, Stroudsburg, PA, USA, 2006. Association for Computational Linguis-
tics. URL http://dl.acm.org/citation.cfm?id=1596276.1596317.

Ryan McDonald, Slav Petrov, and Keith Hall. Multi-source transfer of delexi-
calized dependency parsers. In Proceedings of Empirical Methods in Natural
Language Processing (EMNLP), 2011.

148

http://hdl.handle.net/11234/1-1743
https://doi.org/10.3115/1220175.1220218
http://dl.acm.org/citation.cfm?id=1596276.1596317

Ryan McDonald, Joakim Nivre, Yvonne Quirmbach-Brundage, Yoav Goldberg,
Dipanjan Das, Kuzman Ganchev, Keith Hall, Slav Petrov, Hao Zhang, Oscar
Täckström, Claudia Bedini, Núria Bertomeu Castelló, and Jungmee Lee. Uni-
versal dependency annotation for multilingual parsing. In Proceedings of the
51st Annual Meeting of the Association for Computational Linguistics, pages
92–97, 2013.

Avihai Mejer and Koby Crammer. Are you sure? confidence in prediction of
dependency tree edges. In Proceedings of the 2012 Conference of the North
American Chapter of the Association for Computational Linguistics: Human
Language Technologies, NAACL HLT ’12, pages 573–576, Stroudsburg, PA,
USA, 2012. Association for Computational Linguistics. ISBN 978-1-937284-20-
6. URL http://dl.acm.org/citation.cfm?id=2382029.2382119.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S. Corrado, and Jeffrey Dean.
Distributed representations of words and phrases and their compositionality. In
Advances in Neural Information Processing Systems 26: 27th Annual Confer-
ence on Neural Information Processing Systems 2013. Proceedings of a meeting
held December 5-8, 2013, Lake Tahoe, Nevada, United States., pages 3111–3119,
2013.

Simonetta Montemagni, Francesco Barsotti, Marco Battista, Nicoletta Calzo-
lari, Ornella Corazzari, Alessandro Lenci, Antonio Zampolli, Francesca Fanci-
ulli, Maria Massetani, Remo Raffaelli, Roberto Basili, Maria Teresa Pazienza,
Dario Saracino, Fabio Zanzotto, Nadia Mana, Fabio Pianesi, and Rodolfo Del-
monte. Building the Italian syntactic-semantic treebank. In Anne Abeillé,
editor, Building and using Parsed Corpora, Language and Speech series, pages
189–210, Dordrecht, 2003. Kluwer.

Tahira Naseem, Regina Barzilay, and Amir Globerson. Selective sharing for mul-
tilingual dependency parsing. In Proceedings of the 50th Annual Meeting of the
ACL: Long Papers - Volume 1, ACL ’12, pages 629–637, Stroudsburg, PA, USA,
2012. ACL. URL http://dl.acm.org/citation.cfm?id=2390524.2390613.

Jens Nilsson, Johan Hall, and Joakim Nivre. MAMBA meets TIGER: Recon-
structing a Swedish treebank from antiquity. In Proc. of the NODALIDA
Special Session on Treebanks, 2005. URL http://www.msi.vxu.se/users/
nivre/research/Talbanken05.html.

Joakim Nivre. An efficient algorithm for projective dependency parsing. In Pro-
ceedings of the 8th International Workshop on Parsing Technologies (IWPT,
pages 149–160, 2003.

Joakim Nivre. Incrementality in deterministic dependency parsing. In Proceedings
of the Workshop on Incremental Parsing: Bringing Engineering and Cognition
Together, pages 50–57. Association for Computational Linguistics, 2004.

Joakim Nivre. Non-projective dependency parsing in expected linear time. In
Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and
the 4th International Joint Conference on Natural Language Processing of the
AFNLP: Volume 1-Volume 1, pages 351–359. Association for Computational
Linguistics, 2009.

149

http://dl.acm.org/citation.cfm?id=2382029.2382119
http://dl.acm.org/citation.cfm?id=2390524.2390613
http://www.msi.vxu.se/users/nivre/research/Talbanken05.html
http://www.msi.vxu.se/users/nivre/research/Talbanken05.html

Joakim Nivre. Towards a universal grammar for natural language processing.
In Alexander Gelbukh, editor, Computational Linguistics and Intelligent Text
Processing, pages 3–16, Cham, 2015. Springer International Publishing. ISBN
978-3-319-18111-0.

Joakim Nivre, Johan Hall, Sandra Kübler, Ryan McDonald, Jens Nilsson, Sebas-
tian Riedel, and Deniz Yuret. The CoNLL 2007 shared task on dependency
parsing. In Proceedings of the CoNLL Shared Task Session of EMNLP-CoNLL
2007, pages 915–932, Prague, Czech Republic, June 2007. Association for Com-
putational Linguistics.

Joakim Nivre, Cristina Bosco, Jinho Choi, Marie-Catherine de Marneffe, Tim-
othy Dozat, Richárd Farkas, Jennifer Foster, Filip Ginter, Yoav Goldberg,
Jan Hajič, Jenna Kanerva, Veronika Laippala, Alessandro Lenci, Teresa Lynn,
Christopher Manning, Ryan McDonald, Anna Missilä, Simonetta Montemagni,
Slav Petrov, Sampo Pyysalo, Natalia Silveira, Maria Simi, Aaron Smith, Reut
Tsarfaty, Veronika Vincze, and Daniel Zeman. Universal Dependencies 1.0,
2015. URL http://hdl.handle.net/11234/1-1464. http://hdl.handle.
net/11234/1-1464.

Joakim Nivre, Marie-Catherine de Marneffe, Filip Ginter, Yoav Goldberg, Jan
Hajič, Christopher Manning, Ryan McDonald, Slav Petrov, Sampo Pyysalo,
Natalia Silveira, Reut Tsarfaty, and Daniel Zeman. Universal dependencies v1:
A multilingual treebank collection. In Proceedings of the 10th International
Conference on Language Resources and Evaluation (LREC 2016), pages 1659–
1666, Portorož, Slovenia, 2016a.

Joakim Nivre et al. Universal dependencies 1.4, 2016b. URL http://hdl.
handle.net/11234/1-1827. LINDAT/CLARIN digital library at the Insti-
tute of Formal and Applied Linguistics (ÚFAL), Faculty of Mathematics and
Physics, Charles University.

Joakim Nivre et al. Universal dependencies 2.1, 2017. URL http://hdl.handle.
net/11234/1-2515. LINDAT/CLARIN digital library at the Institute of For-
mal and Applied Linguistics (ÚFAL), Faculty of Mathematics and Physics,
Charles University.

Franz Josef Och and Hermann Ney. A systematic comparison of various statistical
alignment models. Computational Linguistics, 29(1):19–51, 2003.

Robert Östling and Jörg Tiedemann. Efficient word alignment with Markov
chain Monte Carlo. The Prague Bulletin of Mathematical Linguistics, 106(1):
125–146, 2016.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. BLEU: a
method for automatic evaluation of machine translation. In Proceedings of
the 40th annual meeting on association for computational linguistics, pages
311–318. Association for Computational Linguistics, 2002.

150

http://hdl.handle.net/11234/1-1464
http://hdl.handle.net/11234/1-1464
http://hdl.handle.net/11234/1-1464
http://hdl.handle.net/11234/1-1827
http://hdl.handle.net/11234/1-1827
http://hdl.handle.net/11234/1-2515
http://hdl.handle.net/11234/1-2515

Slav Petrov, Dipanjan Das, and Ryan McDonald. A universal part-of-speech
tagset. In Proceedings of the Eight International Conference on Language Re-
sources and Evaluation (LREC’12), Istanbul, Turkey, May 2012. European
Language Resources Association (ELRA). ISBN 978-2-9517408-7-7.

Barbara Plank and Gertjan Van Noord. Effective measures of domain similarity
for parsing. In Proceedings of the 49th Annual Meeting of the ACL: Human
Language Technologies-Volume 1, pages 1566–1576. ACL, 2011.

Prokopis Prokopidis, Elina Desipri, Maria Koutsombogera, Harris Papageorgiou,
and Stelios Piperidis. Theoretical and practical issues in the construction of a
Greek dependency treebank. In Proc. of the 4th Workshop on Treebanks and
Linguistic Theories (TLT), pages 149–160, 2005.

Loganathan Ramasamy and Zdeněk Žabokrtský. Prague dependency style tree-
bank for Tamil. In Proceedings of the 8th International Conference on Language
Resources and Evaluation (LREC 2012), pages 23–25, İstanbul, Turkey, 2012.
European Language Resources Association. ISBN 978-2-9517408-7-7.

Loganathan Ramasamy, David Mareček, and Zdeněk Žabokrtský. Multilingual
dependency parsing: Using machine translated texts instead of parallel corpora.
The Prague Bulletin of Mathematical Linguistics, 102:93–104, 2014. ISSN 0032-
6585.

Mohammad Sadegh Rasooli, Amirsaeid Moloodi, Manouchehr Kouhestani, and
Behrouz Minaei-Bidgoli. A syntactic valency lexicon for Persian verbs: The
first steps towards Persian dependency treebank. In 5th Language & Tech-
nology Conference (LTC): Human Language Technologies as a Challenge for
Computer Science and Linguistics, pages 227–231, Poznań, Poland, 2011.

Rudolf Rosa. Automatic post-editing of phrase-based machine translation out-
puts. Master’s thesis, Charles University in Prague, Faculty of Mathematics
and Physics, Praha, Czechia, 2013.

Rudolf Rosa. MSTperl parser (2015-05-19), 2015a. URL http://hdl.handle.
net/11234/1-1480. LINDAT/CLARIN digital library at the Institute of For-
mal and Applied Linguistics (ÚFAL), Faculty of Mathematics and Physics,
Charles University.

Rudolf Rosa. MSTperl delexicalized parser transfer scripts and configuration files,
2015b. URL http://hdl.handle.net/11234/1-1485. LINDAT/CLARIN dig-
ital library at the Institute of Formal and Applied Linguistics (ÚFAL), Faculty
of Mathematics and Physics, Charles University.

Rudolf Rosa. Multi-source cross-lingual delexicalized parser transfer: Prague or
Stanford? In Eva Hajičová and Joakim Nivre, editors, Proceedings of the Third
International Conference on Dependency Linguistics, Depling 2015, Uppsala,
Sweden, 2015c. Uppsala University, Uppsala University.

Rudolf Rosa. MonoTrans: Statistical machine translation from monolingual data.
In Jaroslava Hlaváčová, editor, Proceedings of the 17th conference ITAT 2017:

151

http://hdl.handle.net/11234/1-1480
http://hdl.handle.net/11234/1-1480
http://hdl.handle.net/11234/1-1485

Slovenskočeský NLP workshop (SloNLP 2017), volume 1885 of CEUR Work-
shop Proceedings, pages 201–208, Praha, Czechia, 2017. ÚFAL MFF UK, Cre-
ateSpace Independent Publishing Platform. ISBN 978-1974274741.

Rudolf Rosa and David Mareček. Dependency relations labeller for Czech. In
Petr Sojka, Aleš Horák, Ivan Kopeček, and Karel Pala, editors, Text, Speech
and Dialogue: 15th International Conference, TSD 2012. Proceedings, number
7499 in Lecture Notes in Computer Science, pages 256–263, Berlin / Heidelberg,
2012. Masarykova univerzita v Brně, Springer Verlag. ISBN 978-3-642-32789-6.

Rudolf Rosa and Zdeněk Žabokrtský. MSTParser model interpolation for multi-
source delexicalized transfer. In Proceedings of the 14th International Confer-
ence on Parsing Technologies, pages 71–75, Stroudsburg, PA, USA, 2015a. Eu-
skal Herriko Unibertsitatea, Association for Computational Linguistics. ISBN
978-1-941643-98-3.

Rudolf Rosa and Zdeněk Žabokrtský. KLcpos3 – a language similarity measure
for delexicalized parser transfer. In Proceedings of the 51st Annual Meeting of
the Association for Computational Linguistics and the 7th International Joint
Conference on Natural Language Processing of the Asian Federation of Natural
Language Processing, Short Papers, Stroudsburg, PA, USA, 2015b. Association
for Computational Linguistics.

Rudolf Rosa and Zdeněk Žabokrtský. Error analysis of cross-lingual tagging and
parsing. In Jan Hajič, editor, Proceedings of the 16th International Workshop
on Treebanks and Linguistic Theories, pages 106–118, Praha, Czechia, 2017.
Univerzita Karlova, Univerzita Karlova. ISBN 978-80-88132-04-2.

Rudolf Rosa, Ondřej Dušek, David Mareček, and Martin Popel. Using parallel fea-
tures in parsing of machine-translated sentences for correction of grammatical
errors. In Proceedings of Sixth Workshop on Syntax, Semantics and Structure in
Statistical Translation (SSST-6), ACL, pages 39–48, Jeju, Korea, 2012a. ACL.
ISBN 978-1-937284-38-1.

Rudolf Rosa, David Mareček, and Ondřej Dušek. DEPFIX: A system for auto-
matic correction of Czech MT outputs. In Proceedings of the Seventh Workshop
on Statistical Machine Translation, pages 362–368, Montréal, Canada, 2012b.
Association for Computational Linguistics. ISBN 978-1-937284-20-6.

Rudolf Rosa, Jan Mašek, David Mareček, Martin Popel, Daniel Zeman, and
Zdeněk Žabokrtský. HamleDT 2.0: Thirty dependency treebanks stanfordized.
In Proceedings of LREC 2014, pages 2334–2341, Reykjav́ık, Iceland, 2014.
ELRA. ISBN 978-2-9517408-8-4.

Rudolf Rosa, Daniel Zeman, David Mareček, and Zdeněk Žabokrtský. Slavic for-
est, Norwegian wood. In Preslav Nakov, Marcos Zampieri, Nikola Ljubešić,
Jörg Tiedemann, Shervin Malmasi, and Ahmed Ali, editors, Proceedings of the
Fourth Workshop on NLP for Similar Languages, Varieties and Dialects (Var-
Dial4), pages 210–219, Stroudsburg, PA, USA, 2017. Association for Compu-
tational Linguistics, Association for Computational Linguistics. ISBN 978-1-
945626-43-2.

152

Kenji Sagae and Alon Lavie. Parser combination by reparsing. In Proceedings of
HLT-NAACL, pages 129–132. ACL, 2006.

Sebastian Schuster and Christopher D Manning. Enhanced English Universal
Dependencies: An improved representation for natural language understanding
tasks. In LREC, 2016.

Roy Schwartz, Omri Abend, and Ari Rappoport. Learnability-based syntactic
annotation design. In Proceedings of COLING 2012: Technical Papers, 2012.

Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation
of rare words with subword units. In Proceedings of the 54th Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers),
volume 1, pages 1715–1725, 2016.

Petr Sgall. Functional sentence perspective in a generative description. Prague
studies in mathematical linguistics, 2(203-225), 1967.

Kiril Simov and Petya Osenova. Extending the annotation of BulTreeBank: Phase
2. In The Fourth Workshop on Treebanks and Linguistic Theories (TLT 2005),
pages 173–184, Barcelona, 2005.

Otakar Smrž, Viktor Bielický, Iveta Kouřilová, Jakub Kráčmar, Jan Hajič, and
Petr Zemánek. Prague Arabic dependency treebank: A word on the million
words. In Proc. of the Workshop on Arabic and Local Languages (LREC 2008),
pages 16–23, Marrakech, Morocco, 2008. European Language Resources Asso-
ciation. ISBN 2-9517408-4-0.

Anders Søgaard. Data point selection for cross-language adaptation of depen-
dency parsers. In Proceedings of the 49th Annual Meeting of the ACL: Human
Language Technologies: short papers-Volume 2, pages 682–686. ACL, 2011.

Anders Søgaard. An empirical study of differences between conversion schemes
and annotation guidelines. In Proceedings of the Second International Con-
ference on Dependency Linguistics (DepLing 2013), Prague, Czech Republic:
Charles University in Prague, Matfyzpress, pages 298–307, 2013.

Anders Søgaard and Julie Wulff. An empirical etudy of non-lexical extensions to
delexicalized transfer. In COLING (Posters), pages 1181–1190, 2012.

Anders Søgaard, Željko Agić, Héctor Mart́ınez Alonso, Barbara Plank, Bernd
Bohnet, and Anders Johannsen. Inverted indexing for cross-lingual NLP. In
The 53rd Annual Meeting of the Association for Computational Linguistics
and the 7th International Joint Conference of the Asian Federation of Natural
Language Processing (ACL-IJCNLP 2015), 2015.

Milan Straka, Jan Hajič, Jana Straková, and Jan Hajič jr. Parsing universal
dependency treebanks using neural networks and search-based oracle. In Pro-
ceedings of Fourteenth International Workshop on Treebanks and Linguistic
Theories (TLT 14), December 2015.

153

Milan Straka, Jan Hajič, and Jana Straková. UDPipe: trainable pipeline for pro-
cessing CoNLL-U files performing tokenization, morphological analysis, POS
tagging and parsing. In Proceedings of the Tenth International Conference
on Language Resources and Evaluation (LREC’16), Paris, France, May 2016.
European Language Resources Association (ELRA). ISBN 978-2-9517408-9-1.

Jana Straková, Milan Straka, and Jan Hajič. Open-Source Tools for Morphology,
Lemmatization, POS Tagging and Named Entity Recognition. In Proceedings of
52nd Annual Meeting of the Association for Computational Linguistics: System
Demonstrations, pages 13–18, Baltimore, Maryland, June 2014. Association
for Computational Linguistics. URL http://www.aclweb.org/anthology/P/
P14/P14-5003.pdf.

Katsuhito Sudoh, Xianchao Wu, Kevin Duh, Hajime Tsukada, and Masaaki Na-
gata. Post-ordering in statistical machine translation. In Proc. MT Summit,
2011.

Mihai Surdeanu and Christopher D. Manning. Ensemble models for dependency
parsing: Cheap and good? In Proceedings of HLT-NAACL, HLT ’10, pages
649–652, Stroudsburg, PA, USA, 2010. ACL. ISBN 1-932432-65-5. URL http:
//dl.acm.org/citation.cfm?id=1857999.1858090.

Mihai Surdeanu, Richard Johansson, Adam Meyers, Llúıs Màrquez, and Joakim
Nivre. The CoNLL-2008 shared task on joint parsing of syntactic and semantic
dependencies. In Proc. of CoNLL, 2008.

Oscar Täckström, Ryan McDonald, and Jakob Uszkoreit. Cross-lingual word
clusters for direct transfer of linguistic structure. In Proceedings of the 2012
Conference of the North American Chapter of the ACL: Human Language Tech-
nologies, NAACL HLT ’12, pages 477–487, Stroudsburg, PA, USA, 2012. ACL,
Association for Computational Linguistics. ISBN 978-1-937284-20-6. URL
http://dl.acm.org/citation.cfm?id=2382029.2382096.

Oscar Täckström, Dipanjan Das, Slav Petrov, Ryan McDonald, and Joakim
Nivre. Token and type constraints for cross-lingual part-of-speech tagging.
Transactions of the Association for Computational Linguistics, 1:1–12, 2013a.

Oscar Täckström, Ryan McDonald, and Joakim Nivre. Target language adapta-
tion of discriminative transfer parsers. In Proceedings of NAACL-HLT 2013,
pages 1061–1071, 2013b.

Mariona Taulé, Maria Antònia Mart́ı, and Marta Recasens. AnCora: Multilevel
annotated corpora for Catalan and Spanish. In LREC, 2008.

Lucien Tesnière. Eléments de syntaxe structurale. Éditions Klincksieck, Paris,
1959.

Lucien Tesnière. Elements of structural syntax, translated by Timothy Osborne
and Sylvain Kahane. Benjamins, Amsterdam/Philadelphia, 2015.

Jörg Tiedemann. Parallel data, tools and interfaces in OPUS. In LREC, volume
2012, pages 2214–2218, 2012.

154

http://www.aclweb.org/anthology/P/P14/P14-5003.pdf
http://www.aclweb.org/anthology/P/P14/P14-5003.pdf
http://dl.acm.org/citation.cfm?id=1857999.1858090
http://dl.acm.org/citation.cfm?id=1857999.1858090
http://dl.acm.org/citation.cfm?id=2382029.2382096

Jörg Tiedemann. Rediscovering annotation projection for cross-lingual parser in-
duction. In Proceedings of COLING 2014, the 25th International Conference on
Computational Linguistics: Technical Papers, pages 1854–1864, August 2014.

Jörg Tiedemann. Improving the cross-lingual projection of syntactic dependen-
cies. In Proceedings of the 20th Nordic Conference of Computational Linguis-
tics, NODALIDA 2015, May 11-13, 2015, Vilnius, Lithuania, number 109,
pages 191–199. Linköping University Electronic Press, 2015.

Jörg Tiedemann. Cross-lingual dependency parsing for closely related languages –
Helsinki’s submission to VarDial 2017. In Proceedings of the Fourth Workshop
on NLP for Similar Languages, Varieties and Dialects (VarDial), Valencia,
Spain, 2017.

Jörg Tiedemann and Željko Agić. Synthetic treebanking for cross-lingual depen-
dency parsing. Journal of Artificial Intelligence Research, 2016.

Jörg Tiedemann, Željko Agić, and Joakim Nivre. Treebank translation for cross-
lingual parser induction. In Eighteenth Conference on Computational Natural
Language Learning (CoNLL 2014), 2014.

Vincent Van Asch and Walter Daelemans. Using domain similarity for perfor-
mance estimation. In Proceedings of the 2010 Workshop on Domain Adaptation
for Natural Language Processing, pages 31–36. ACL, 2010.

Leonoor van der Beek, Gosse Bouma, Jan Daciuk, Tanja Gaustad, Robert Malouf,
Gertjan van Noord, Robbert Prins, and Begoña Villada. Chapter 5. the Alpino
dependency treebank. In Algorithms for Linguistic Processing NWO PIONIER
Progress Report, Groningen, The Netherlands, 2002. URL http://odur.let.
rug.nl/˜vannoord/trees/Papers/report_ch5.pdf.

Dániel Varga, Péter Halácsy, András Kornai, Viktor Nagy, László Németh, and
Viktor Trón. Parallel corpora for medium density languages. Amsterdam stud-
ies in the theory and history of linguistic science series 4, 292:247, 2007.

Mária Šimková and Radovan Garab́ık. Sintaksičeskaja razmetka v Slovackom na-
cional’nom korpuse. In Trudy meždunarodnoj konferencii Korpusnaja lingvis-
tika – 2006, pages 389–394, Sankt-Peterburg, Russia, 2006. St. Petersburg Uni-
versity Press. ISBN 5-288-04181-4.

William E. Winkler. String comparator metrics and enhanced decision rules in
the Fellegi-Sunter model of record linkage. In Proceedings of the Section on
Survey Research Methods (American Statistical Association), pages 354–359,
1990. URL http://www.amstat.org/sections/srms/Proceedings/papers/
1990_056.pdf.

Fei Xia and Michael McCord. Improving a statistical MT system with auto-
matically learned rewrite patterns. In Proceedings of the 20th international
conference on Computational Linguistics, page 508. Association for Computa-
tional Linguistics, 2004.

155

http://odur.let.rug.nl/~vannoord/trees/Papers/report_ch5.pdf
http://odur.let.rug.nl/~vannoord/trees/Papers/report_ch5.pdf
http://www.amstat.org/sections/srms/Proceedings/papers/1990_056.pdf
http://www.amstat.org/sections/srms/Proceedings/papers/1990_056.pdf

Fei Xia and Martha Palmer. Converting dependency structures to phrase struc-
tures. In Proceedings of the First International Conference on Human Language
Technology Research, HLT ’01, pages 1–5, Stroudsburg, PA, USA, 2001. As-
sociation for Computational Linguistics. doi: 10.3115/1072133.1072147. URL
https://doi.org/10.3115/1072133.1072147.

Min Xiao and Yuhong Guo. Distributed word representation learning for cross-
lingual dependency parsing. In Proceedings of the Eighteenth Conference on
Computational Natural Language Learning, pages 119–129, 2014.

Deyi Xiong, Qun Liu, and Shouxun Lin. Maximum entropy based phrase re-
ordering model for statistical machine translation. In Proceedings of the 21st
International Conference on Computational Linguistics and the 44th Annual
Meeting of the Association for Computational Linguistics, ACL-44, pages 521–
528, Stroudsburg, PA, USA, 2006. Association for Computational Linguistics.
doi: 10.3115/1220175.1220241. URL http://dx.doi.org/10.3115/1220175.
1220241.

Naiwen Xue, Fei Xia, Fu-Dong Chiou, and Marta Palmer. The Penn Chinese
treebank: Phrase structure annotation of a large corpus. Natural language
engineering, 11(2):207–238, 2005.

David Yarowsky, Grace Ngai, and Richard Wicentowski. Inducing multilin-
gual text analysis tools via robust projection across aligned corpora. In
Proceedings of the First International Conference on Human Language Tech-
nology Research, HLT ’01, pages 1–8, Stroudsburg, PA, USA, 2001. Associ-
ation for Computational Linguistics. doi: 10.3115/1072133.1072187. URL
https://doi.org/10.3115/1072133.1072187.

Zhiwei Yu, David Mareček, Zdeněk Žabokrtský, and Daniel Zeman. If you even
don’t have a bit of Bible: Learning delexicalized POS taggers. In Nicoletta Cal-
zolari, Khalid Choukri, Thierry Declerck, Marko Grobelnik, Bente Maegaard,
Joseph Mariani, Asunción Moreno, Jan Odijk, and Stelios Piperidis, editors,
Proceedings of the 10th International Conference on Language Resources and
Evaluation (LREC 2016), pages 96–103, Paris, France, 2016. European Lan-
guage Resources Association. ISBN 978-2-9517408-9-1.

Marcos Zampieri, Shervin Malmasi, Nikola Ljubešić, Preslav Nakov, Ahmed Ali,
Jörg Tiedemann, Yves Scherrer, and Noëmi Aepli. Findings of the VarDial
evaluation campaign 2017. In Proceedings of the Fourth Workshop on NLP for
Similar Languages, Varieties and Dialects (VarDial), Valencia, Spain, 2017.

Daniel Zeman. Reusable tagset conversion using tagset drivers. In Proceedings
of the 6th International Conference on Language Resources and Evaluation
(LREC 2008), pages 213–218, Marrakech, Morocco, 2008. European Language
Resources Association. ISBN 2-9517408-4-0.

Daniel Zeman. Hard problems of tagset conversion. In Alex Fang, Nancy Ide, and
Jonathan Webster, editors, Proceedings of the Second International Conference
on Global Interoperability for Language Resources, pages 181–185, Hong Kong,
China, 2010. City University of Hong Kong, City University of Hong Kong.
ISBN 978-962-442-323-5.

156

https://doi.org/10.3115/1072133.1072147
http://dx.doi.org/10.3115/1220175.1220241
http://dx.doi.org/10.3115/1220175.1220241
https://doi.org/10.3115/1072133.1072187

Daniel Zeman and Philip Resnik. Cross-language parser adaptation between
related languages. In IJCNLP 2008 Workshop on NLP for Less Privileged
Languages, pages 35–42, Hyderabad, India, 2008. Asian Federation of Natural
Language Processing, International Institute of Information Technology.

Daniel Zeman and Zdeněk Žabokrtský. Improving parsing accuracy by combining
diverse dependency parsers. In Proceedings of the Ninth International Workshop
on Parsing Technologies (IWPT), pages 171–178, Vancouver, BC, Canada,
2005. Simon Fraser University, ACL. ISBN 1-932432-58-2.

Daniel Zeman, David Mareček, Martin Popel, Loganathan Ramasamy, Jan
Štěpánek, Zdeněk Žabokrtský, and Jan Hajič. HamleDT: To parse or not
to parse? In Proceedings of LREC’12, Istanbul, Turkey, May 2012. ELRA.
ISBN 978-2-9517408-7-7. URL http://www.lrec-conf.org/proceedings/
lrec2012/pdf/429_Paper.pdf.

Daniel Zeman, David Mareček, Jan Mašek, Martin Popel, Loganathan Ra-
masamy, Rudolf Rosa, Jan Štěpánek, and Zdeněk Žabokrtský. HamleDT 2.0,
2014. URL http://hdl.handle.net/11858/00-097C-0000-0023-9551-4.
LINDAT/CLARIN digital library at the Institute of Formal and Applied Lin-
guistics (ÚFAL), Faculty of Mathematics and Physics, Charles University.

Daniel Zeman, Martin Popel, Milan Straka, Jan Hajič, Joakim Nivre, Filip
Ginter, Juhani Luotolahti, Sampo Pyysalo, Slav Petrov, Martin Potthast,
Francis Tyers, Elena Badmaeva, Memduh Gökırmak, Anna Nedoluzhko, Sil-
vie Cinková, jr. Jan Hajič, Jaroslava Hlaváčová, Václava Kettnerová, Zdeňka
Urešová, Jenna Kanerva, Stina Ojala, Anna Missilä, Christopher Manning, Se-
bastian Schuster, Siva Reddy, Dima Taji, Nizar Habash, Herman Leung, Marie-
Catherine de Marneffe, Manuela Sanguinetti, Maria Simi, Hiroshi Kanayama,
Valeria de Paiva, Kira Droganova, Héctor Mart́ınez Alonso, Çağrı Çöltekin,
Umut Sulubacak, Hans Uszkoreit, Vivien Macketanz, Aljoscha Burchardt, Kim
Harris, Katrin Marheinecke, Georg Rehm, Tolga Kayadelen, Mohammed At-
tia, Ali Elkahky, Zhuoran Yu, Emily Pitler, Saran Lertpradit, Michael Mandl,
Jesse Kirchner, Hector Fernandez Alcalde, Jana Strnadová, Esha Banerjee, Ruli
Manurung, Antonio Stella, Atsuko Shimada, Sookyoung Kwak, Gustavo Men-
donça, Tatiana Lando, Rattima Nitisaroj, and Josie Li. CoNLL 2017 shared
task: Multilingual parsing from raw text to universal dependencies. In Pro-
ceedings of the CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text
to Universal Dependencies, pages 1–19, Stroudsburg, PA, USA, 2017. Charles
University, Association for Computational Linguistics. ISBN 978-1-945626-70-
8. URL http://www.aclweb.org/anthology/K/K17/K17-3001.pdf.

Yuan Zhang and Regina Barzilay. Hierarchical low-rank tensors for multilingual
transfer parsing. In Proceedings of the 2015 Conference on Empirical Methods
in Natural Language Processing, pages 1857–1867, Lisbon, Portugal, September
2015. Association for Computational Linguistics. URL http://aclweb.org/
anthology/D15-1213.

Yue Zhang and Stephen Clark. A tale of two parsers: Investigating and combin-
ing graph-based and transition-based dependency parsing using beam-search.

157

http://www.lrec-conf.org/proceedings/lrec2012/pdf/429_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2012/pdf/429_Paper.pdf
http://hdl.handle.net/11858/00-097C-0000-0023-9551-4
http://www.aclweb.org/anthology/K/K17/K17-3001.pdf
http://aclweb.org/anthology/D15-1213
http://aclweb.org/anthology/D15-1213

In Proceedings of the Conference on Empirical Methods in Natural Language
Processing, EMNLP ’08, pages 562–571, Stroudsburg, PA, USA, 2008. Asso-
ciation for Computational Linguistics. URL http://dl.acm.org/citation.
cfm?id=1613715.1613784.

158

http://dl.acm.org/citation.cfm?id=1613715.1613784
http://dl.acm.org/citation.cfm?id=1613715.1613784

List of Figures

3.1 Sentences hard to analyze when delexicalized 38
3.2 Stanford style and Prague style analysis of two phrases 43
3.3 Conversion from Prague to Stanford style adposition analysis . . 44
3.4 Conversion from Stanford to Prague style adposition analysis . . 44

4.1 Example of estimated POS trigram distributions 59
4.2 Unweighted parse tree combination 68
4.3 Weighted parse tree combination 69
4.4 Unweighted parser model interpolation 74

159

160

List of Tables

1.1 List of HamleDT 2.0 treebanks. 17
1.2 List of the UD 1.4 dataset. 19
1.3 VarDial and Extended VarDial datasets 21
1.4 Overview of parallel corpora . 22

3.1 Comparison of lexicalized and delexicalized supervised parsers . . 39
3.2 Delexicalized parser transfer. 40
3.3 Prague versus full Stanford annotation style. 45
3.4 Average UAS of supervised monolingual parsers 46
3.5 Average UAS of various 29-to-1 setups of delexicalized parser transfer. 47
3.6 UAS of delexicalized parsing . 48
3.7 Subsets of source treebanks . 49
3.8 UAS of delexicalized parser transfer. 49

4.1 Performance of KLcpos3 source selection on development treebanks. 61
4.2 Effect of POS n-gram length . 64
4.3 Tuning the inversion of KLcpos3 64
4.4 Weighted multi-source transfer using various similarity measures. 66
4.5 Evaluation of parse tree combination on development treebanks. . 69
4.6 Comparison of parse tree projection and parser model interpolation 75
4.7 Comparison of parse tree combination and parse tree projection. . 77
4.8 Evaluation using UAS on test HamleDT 2.0 target treebanks. . . 79
4.9 POS tag sources for KLcpos3 . 81
4.10 Evaluation using LAS on UD 1.4 target treebanks. 83

5.1 Comparison of delexicalized and source-lexicalized parser transfer 90
5.2 Evaluation of the effect of pre-training target word embeddings . . 91
5.3 Evaluation of various simple lexicalization strategies 93
5.4 Effect of enabling word reordering in Moses 100
5.5 Combining top N sources with varied N. 102
5.6 Effect of varying the N for a top N combination 103
5.7 Softmax transformation of KLcpos3 104
5.8 Results of the VarDial 2017 shared task 105
5.9 Evaluation of various setups for machine translation using BLEU. 108
5.10 Evaluation of various setups for machine translation using LAS . . 109
5.11 Evaluation of cross-lingual lexicalization on UD 1.4 110
5.12 Estimating LAS with KLcpos3 . 113
5.13 Comparison to unsupervised parsing 114

6.1 Effect of alignment on cross-lingual tagging. 120
6.2 Effect of adding weighting into the POS projection setup. 121
6.3 Effect of source subselection . 122
6.4 Single-source cross-lingual POS tagging 125
6.5 Unweighted multi-source cross-lingual POS tagging 126
6.6 Weighted multi-source cross-lingual POS tagging 127
6.7 Self-training for weighted multi-source cross-lingual POS tagging . 128

161

6.8 Comparison and combination of the projection and MT methods. 130
6.9 Effect of tagging setup on parsing 131
C.1 KL−4

cpos3 source-target similarities, part 1. 177
C.2 KL−4

cpos3 source-target similarities, part 2. 178
C.3 KL−4

cpos3 source-target similarities, part 3. 178

162

List of Abbreviations
BPE . Byte Pair Encoding

EBC Edinburgh Bible Corpus

GSD . Google Stanford Dependencies

LAS . Labelled Attachment Score

MGA Monolingual Greedy Aligner

MIRA Margin-infused Relaxed Algorithm

MST Maximum Spanning Tree

MT . Machine Translation

NLP . Natural Language Processing

PBMT Phrase-Based Machine Translation

PDT Prague Dependency Treebank

PennTB Penn Treebank

POS . Part of Speech

SD . Stanford Dependencies

SMT Statistical Machine Translation

UAS . Unlabelled Attachment Score

UD . Universal Dependencies

UDHR Universal Declaration of Human Rights

UPOS Universal Part of Speech

UPT Universal Part of Speech Tagset

USD . Universal Stanford Dependencies

WALS World Atlas of Language Structures

WTC Watchtower Corpus

163

164

List of Publications

Joakim Nivre et al. Universal dependencies 1.4, 2016. URL http://hdl.handle.
net/11234/1-1827. LINDAT/CLARIN digital library at the Institute of For-
mal and Applied Linguistics (ÚFAL), Faculty of Mathematics and Physics,
Charles University.

Rudolf Rosa. Automatic post-editing of phrase-based machine translation out-
puts. Master’s thesis, Charles University in Prague, Faculty of Mathematics
and Physics, Praha, Czechia, 2013.

Rudolf Rosa. MSTperl parser (2015-05-19), 2015a. URL http://hdl.handle.
net/11234/1-1480. LINDAT/CLARIN digital library at the Institute of For-
mal and Applied Linguistics (ÚFAL), Faculty of Mathematics and Physics,
Charles University.

Rudolf Rosa. MSTperl delexicalized parser transfer scripts and configuration files,
2015b. URL http://hdl.handle.net/11234/1-1485. LINDAT/CLARIN dig-
ital library at the Institute of Formal and Applied Linguistics (ÚFAL), Faculty
of Mathematics and Physics, Charles University.

Rudolf Rosa. Multi-source cross-lingual delexicalized parser transfer: Prague or
Stanford? In Eva Hajičová and Joakim Nivre, editors, Proceedings of the Third
International Conference on Dependency Linguistics, Depling 2015, Uppsala,
Sweden, 2015c. Uppsala University, Uppsala University.

Rudolf Rosa. MonoTrans: Statistical machine translation from monolingual data.
In Jaroslava Hlaváčová, editor, Proceedings of the 17th conference ITAT 2017:
Slovenskočeský NLP workshop (SloNLP 2017), volume 1885 of CEUR Work-
shop Proceedings, pages 201–208, Praha, Czechia, 2017a. ÚFAL MFF UK, Cre-
ateSpace Independent Publishing Platform. ISBN 978-1974274741.

Rudolf Rosa. Terminal-based CoNLL-file viewer, v2, 2017b. URL http:
//hdl.handle.net/11234/1-2514. LINDAT/CLARIN digital library at the
Institute of Formal and Applied Linguistics (ÚFAL), Faculty of Mathematics
and Physics, Charles University.

Rudolf Rosa and David Mareček. Dependency relations labeller for Czech. In
Petr Sojka, Aleš Horák, Ivan Kopeček, and Karel Pala, editors, Text, Speech
and Dialogue: 15th International Conference, TSD 2012. Proceedings, number
7499 in Lecture Notes in Computer Science, pages 256–263, Berlin / Heidelberg,
2012. Masarykova univerzita v Brně, Springer Verlag. ISBN 978-3-642-32789-6.

165

Rudolf Rosa and Zdeněk Žabokrtský. MSTParser model interpolation for multi-
source delexicalized transfer. In Proceedings of the 14th International Confer-
ence on Parsing Technologies, pages 71–75, Stroudsburg, PA, USA, 2015a. Eu-
skal Herriko Unibertsitatea, Association for Computational Linguistics. ISBN
978-1-941643-98-3.

Rudolf Rosa and Zdeněk Žabokrtský. KLcpos3 – a language similarity measure
for delexicalized parser transfer. In Proceedings of the 51st Annual Meeting of
the Association for Computational Linguistics and the 7th International Joint
Conference on Natural Language Processing of the Asian Federation of Natural
Language Processing, Short Papers, Stroudsburg, PA, USA, 2015b. Association
for Computational Linguistics.

Rudolf Rosa and Zdeněk Žabokrtský. Error analysis of cross-lingual tagging and
parsing. In Jan Hajič, editor, Proceedings of the 16th International Workshop
on Treebanks and Linguistic Theories, pages 106–118, Praha, Czechia, 2017.
Univerzita Karlova, Univerzita Karlova. ISBN 978-80-88132-04-2.

Rudolf Rosa, Ondřej Dušek, David Mareček, and Martin Popel. Using parallel
features in parsing of machine-translated sentences for correction of grammat-
ical errors. In Proceedings of Sixth Workshop on Syntax, Semantics and Struc-
ture in Statistical Translation (SSST-6), ACL, pages 39–48, Jeju, Korea, 2012.
ACL. ISBN 978-1-937284-38-1.

Rudolf Rosa, Jan Mašek, David Mareček, Martin Popel, Daniel Zeman, and
Zdeněk Žabokrtský. HamleDT 2.0: Thirty dependency treebanks stanfordized.
In Proceedings of LREC 2014, pages 2334–2341, Reykjav́ık, Iceland, 2014.
ELRA. ISBN 978-2-9517408-8-4.

Rudolf Rosa, Daniel Zeman, David Mareček, and Zdeněk Žabokrtský. Slavic for-
est, Norwegian wood (scripts), 2017a. URL http://hdl.handle.net/11234/
1-1970. LINDAT/CLARIN digital library at the Institute of Formal and Ap-
plied Linguistics (ÚFAL), Faculty of Mathematics and Physics, Charles Uni-
versity.

Rudolf Rosa, Daniel Zeman, David Mareček, and Zdeněk Žabokrtský. Slavic for-
est, Norwegian wood. In Preslav Nakov, Marcos Zampieri, Nikola Ljubešić,
Jörg Tiedemann, Shervin Malmasi, and Ahmed Ali, editors, Proceedings of the
Fourth Workshop on NLP for Similar Languages, Varieties and Dialects (Var-
Dial4), pages 210–219, Stroudsburg, PA, USA, 2017b. Association for Compu-
tational Linguistics, Association for Computational Linguistics. ISBN 978-1-
945626-43-2.

Daniel Zeman, David Mareček, Jan Mašek, Martin Popel, Loganathan Ra-
masamy, Rudolf Rosa, Jan Štěpánek, and Zdeněk Žabokrtský. HamleDT 2.0,
2014. URL http://hdl.handle.net/11858/00-097C-0000-0023-9551-4.
LINDAT/CLARIN digital library at the Institute of Formal and Applied Lin-
guistics (ÚFAL), Faculty of Mathematics and Physics, Charles University.

166

Attachments

167

168

A Universal relation labels v1
List of the 40 universal dependency relation labels used in Universal Dependencies
v1, reproduced from the official website:9

acl clausal modifier of noun (adjectival clause)
advcl adverbial clause modifier

advmod adverbial modifier
amod adjectival modifier
appos appositional modifier

aux auxiliary
auxpass passive auxiliary

case case marking
cc coordinating conjunction

ccomp clausal complement
compound compound

conj conjunct
cop copula

csubj clausal subject
csubjpass clausal passive subject

dep unspecified dependency
det determiner

discourse discourse element
dislocated dislocated elements

dobj direct object
expl expletive

foreign foreign words
goeswith goes with

iobj indirect object
list list

mark marker
mwe multi-word expression

name name
neg negation modifier

nmod nominal modifier
nsubj nominal subject

nsubjpass passive nominal subject
nummod numeric modifier
parataxis parataxis

punct punctuation
remnant remnant in ellipsis

reparandum overridden disfluency
root root

vocative vocative
xcomp open clausal complement

9http://universaldependencies.org/docsv1/u/dep/index.html

169

http://universaldependencies.org/docsv1/u/dep/index.html

170

B List of Watchtower languages
B.1 Watchtower corpus
The WTC of Agić et al. [2016] contains texts in 135 languages. For each language,
we report its ISO code as used in the dataset, its name according to WALS or
Wikipedia, and the number of sentences, i.e. lines in the text file for that language
in WTC.

af Afrikaans (144,194)
am Amharic (142,754)
ar Arabic (136,565)
ay Aymara (61,913)
az Azerbaijani (93,326)

bci Baule (78,066)
bcl Central Bikol (116,068)

bem Bemba (142,863)
bg Bulgarian (129,709)
bi Bislama (126,420)

bn Bengali (114,477)
cat Catalan (28,293)
ceb Cebuano (139,075)

cs Czech (153,642)
da Danish (146,251)
de German (159,244)
ee Ewe (141,134)
efi Efik (134,668)
el Greek (131,653)

en English (149,604)
es Spanish (144,939)
et Estonian (143,944)
fa Persian (84,966)
fi Finnish (138,408)
fj Fijian (130,713)
fr French (154,479)

gaa Gã (130,768)
gil Kiribati (82,170)

gug Guarańı (56,028)
gu Gujarati (123,994)

guw Gungbe (126,776)
he Hebrew (127,336)
hil Hiligaynon (137,922)
hi Hindi (124,822)
ho Hiri Motu (109,805)
hr Croatian (151,108)
ht Haitian (86,950)
hu Hungarian (152,073)
hy Armenian (153,674)
id Indonesian (150,193)

ig Igbo (138,487)
ilo Ilocano (137,980)
is Icelandic (98,489)
it Italian (148,543)
ja Japanese (44,017)
ka Georgian (138,997)

khk Khalkha (76,750)
ki Kikuyu (27,447)

kk Kazakh (83,946)
kl Kalaallisut (82,766)

km Khmer (40,666)
kn Kannada (127,783)
ko Korean (150,090)

kqn Kaonde (87,178)
kwy Iwoyo (64,779)

ky Kirghiz (86,264)
lg Ganda (95,453)
ln Lingala (144,733)

loz Lozi (120,701)
lt Lithuanian (145,741)

lue Luvale (105,597)
lun Lunda (50,034)
luo Luo (53,239)

lv Latvian (126,340)
mg Malagasy (146,349)
mk Macedonian (138,298)
ml Malayalam (129,985)

mos Mossi (83,629)
mr Marathi (117,743)
mt Maltese (122,785)
my Burmese (46,389)
ne Nepali (114,714)
nl Dutch (144,533)
no Norwegian (149,099)

nso Northern Sotho (144,428)
nyk Nyaneka (43,337)

ny Chichewa (148,638)
om Oromo (65,177)
os Ossetian (103,918)

pag Pangasinan (116,125)

171

pap Papiamentu (118,750)
pa Panjabi (123,884)
pis Solomons Pijin (118,876)
pl Polish (146,432)

pon Pohnpeian (82,001)
pt Portuguese (146,554)
qu Quechua (64,741)

quy Ayacucho Quechua (52,686)
quz Cuzco Quechua (51,584)

ro Romanian (153,409)
run Rundi (132,091)

ru Russian (126,196)
rw Kinyarwanda (140,668)
sg Sango (118,253)
si Sinhala (166,468)

sk Slovak (145,333)
sl Slovenian (143,777)

sm Samoan (136,201)
sn Shona (143,197)
sq Albanian (150,830)

srn Sranan (152,377)
st Southern Sotho (141,252)
sv Swedish (147,864)

swc Swahili (29,723)
sw Swahili (144,896)
ta Tamil (134,742)
te Telugu (125,027)
th Thai (125,410)

ti Tigrinya (146,282)
tl Tagalog (140,432)

tn Tswana (140,873)
toi Tonga/Zambezi (91,078)
to Tonga (119,007)

tpi Tok Pisin (151,673)
tr Turkish (161,164)
ts Tsonga (141,690)
tt Tatar (81,896)

tum Tumbuka (95,362)
tvl Tuvaluan (74,376)
tw Twi (138,146)
ty Tahitian (93,513)

tzo Tzotzil (56,900)
uk Ukrainian (132,368)

umb Umbundu (81,928)
ur Urdu (111,508)
uz Uzbek (59,741)
ve Venda (64,441)
vi Vietnamese (149,592)

war Waray-Waray (114,875)
wls Wallisian (101,211)
xh Xhosa (135,372)
yo Yoruba (142,807)

yua Yucatec (76,130)
zai Isthmus Zapotec (68,070)
zu Zulu (134,792)

172

B.2 Watchtower online
Based on the language selection box on the Watchtower Online website,10 it seems
that the Watchtower texts are available in the following 301 languages as of 28th
March 2018:

1. Acholi
2. Afrikaans
3. Ahanta
4. Aja
5. Albanian
6. Albanian Sign Language
7. Amharic
8. Arabic
9. Arabic (Jordan)

10. Arabic (Lebanon)
11. Argentinean Sign Language
12. Armenian
13. Armenian (West)
14. Attié
15. Aukan
16. Australian Sign Language
17. Aymara
18. Azerbaijani
19. Azerbaijani (Cyrillic)
20. Bambara
21. Baoule
22. Bariba
23. Bashkir
24. Basque
25. Bassa (Cameroon)
26. Bassa (Liberia)
27. Batak (Toba)
28. Bengali
29. Betsimisaraka (Northern)
30. Betsimisaraka (Southern)
31. Bicol
32. Bidayuh (Bukar)
33. Bislama
34. Bissau Guinean Creole
35. Blackfoot
36. Bomu
37. Bosnian
38. British Sign Language
39. Bulgarian
40. Cambodian
41. Catalan

42. Cebuano
43. Changana (Zimbabwe)
44. Chichewa
45. Chilean Sign Language
46. Chin (Falam)
47. Chin (Hakha)
48. Chinese Mandarin (Simplified)
49. Chinese Mandarin (Traditional)
50. Chitonga (Malawi)
51. Chitonga (Zimbabwe)
52. Chitumbuka
53. Chiyao
54. Chokwe
55. Cinamwanga
56. Croatian
57. Croatian Sign Language
58. Czech
59. Dagaare
60. Dangme
61. Danish
62. Dari
63. Douala
64. Drehu
65. Dusun
66. Dutch
67. Dutch Sign Language
68. English
69. Esan
70. Estonian
71. Estonian Sign Language
72. Ethiopian Sign Language
73. Ewe
74. Fante
75. Faroese
76. Fataluku
77. Fijian
78. Finnish
79. Finnish Sign Language
80. Fon
81. Frafra
82. French

10https://wol.jw.org/

173

https://wol.jw.org/

83. French Sign Language
84. Frisian
85. Fulfulde (Cameroon)
86. Ga
87. Galician
88. Garifuna
89. Georgian
90. German
91. Greek
92. Greenlandic
93. Guarani
94. Guerze
95. Gun
96. Guéré
97. Haitian Creole
98. Haya
99. Hebrew

100. Hiligaynon
101. Hindi
102. Hmong (White)
103. Hungarian
104. Iban
105. Ibinda
106. Icelandic
107. Igbo
108. Iloko
109. Indonesian
110. Irish
111. Irish Sign Language
112. Isoko
113. Italian
114. Italian Sign Language
115. Japanese
116. Japanese Sign Language
117. Javanese
118. Jula
119. Kabiye
120. Kachin
121. Kadazan
122. Kalanga (Zimbabwe)
123. Karen (S’gaw)
124. Kazakh
125. Kikaonde
126. Kikongo
127. Kikuyu
128. Kimbundu
129. Kinyarwanda
130. Kirghiz

131. Kisi
132. Konkani (Devanagari)
133. Konkani (Roman)
134. Korean
135. Kpelle
136. Krio
137. Kurdish Kurmanji
138. Kurdish Kurmanji (Caucasus)
139. Kurdish Kurmanji (Cyrillic)
140. Kwanyama
141. Kyangonde
142. Latgalian
143. Latvian
144. Latvian Sign Language
145. Lingala
146. Lithuanian
147. Logo
148. Loma
149. Low German
150. Luganda
151. Macedonian
152. Madura
153. Mahorian (Roman)
154. Maithili
155. Makasae
156. Malagasy
157. Malay
158. Malayalam
159. Malaysian Sign Language
160. Mam
161. Mambae (Ermera)
162. Mandinka
163. Mandjak
164. Mangbetu
165. Maninkakan (Eastern)
166. Mano
167. Mapudungun
168. Marathi
169. Mauritian Creole
170. Mazahua
171. Mende
172. Meru
173. Mingrelian
174. Mixtec (Huajuapan)
175. Mizo
176. Mongolian
177. Moore
178. Myanmar

174

179. Nahuatl (Huasteca)
180. Nambya
181. Ndebele (Zimbabwe)
182. Ndonga
183. Nepali
184. Nepali Sign Language
185. Newari
186. Ngangela
187. Nias
188. Nigerian Pidgin
189. Niuean
190. Nivaclé
191. Norwegian
192. Nyaneka
193. Nzema
194. Obolo
195. Oromo
196. Otomi (Mezquital Valley)
197. Pangasinan
198. Papel
199. Papiamento (Aruba)
200. Papiamento (Curaçao)
201. Pehuenche
202. Pemon
203. Pennsylvania German
204. Persian
205. Piaroa
206. Pidgin (Cameroon)
207. Pilagá
208. Polish
209. Pomeranian
210. Portuguese
211. Portuguese (Portugal)
212. Pular
213. Punjabi
214. Punjabi (Shahmukhi)
215. Quebec Sign Language
216. Quechua (Ayacucho)
217. Quechua (Cuzco)
218. Quechua (Huaylla Wanca)
219. Quichua (Chibuleo)
220. Quichua (Chimborazo)
221. Quichua (Imbabura)
222. Quichua (Pastaza)
223. Quichua (Santiago del Estero)
224. Quichua (Tena)
225. Rapa Nui
226. Rarotongan

227. Romanian
228. Romany (Albania)
229. Romany (Argentina)
230. Romany (Eastern Slovakia)
231. Rungus
232. Runyankore
233. Russian
234. Rutoro
235. Saramaccan
236. Sarnami
237. Scottish Gaelic
238. Sehwi
239. Senoufo (Cebaara)
240. Sepedi
241. Serbian
242. Serbian (Roman)
243. Serer
244. Setswana
245. Seychelles Creole
246. Shona
247. Shuar
248. Shughni
249. Sidama
250. Sindhi
251. Sinhala
252. Slovak
253. Slovenian
254. Somali
255. Spanish
256. Sranantongo
257. Susu
258. Svan (Lower)
259. Svan (Upper)
260. Swahili
261. Swati
262. Swedish
263. Tagalog
264. Tahitian
265. Tajiki
266. Tandroy
267. Tankarana
268. Tarascan
269. Tatar
270. Telugu
271. Tetun Dili
272. Thai
273. Thai Sign Language
274. Ticuna

175

275. Tigrinya
276. Tiv
277. Toba
278. Tojolabal
279. Tok Pisin
280. Tongan
281. Toupouri
282. Turkish
283. Ukrainian
284. Umbundu
285. Urdu
286. Urhobo
287. Uruguayan Sign Language
288. Uzbek

289. Uzbek (Roman)
290. Valencian
291. Venezuelan Sign Language
292. Vezo
293. Vietnamese
294. Voru
295. Wallisian
296. Welsh
297. Wichi
298. Wolof
299. Xhosa
300. Yoruba
301. Yukpa

176

C Source-target language similarities
This attachment lists the KL−4

cpos3 source-target similarities for all source and
target languages from the UD 1.4 dataset, computed on POS tags cross-lingually
projected on multi-parallel Watchtower data.

See Table C.1, Table C.2 and Table C.3. The oracle source language for the
delexicalized parser transfer is marked in bold; note that for different setups, the
oracle source language may be different. Also note that this does not say anything
about how appropriate the other sources are. We also mark the first 5 and first
7 most similar source languages, as these are used in the lexicalized parser and
tagger combination, respectively.

Target da el hu id
1. sv 44.21 en 11.16 ru 3.58 ro 7.06
2. no 40.27 sv 6.84 en 3.01 no 3.00
3. en 23.81 no 4.94 sv 2.87 ru 2.80
4. nl 4.89 ro 3.79 fi 2.62 sv 2.71
5. sl 2.45 nl 2.74 cs 2.34 cs 2.57
6. ro 2.34 sl 2.15 nl 2.25 en 2.04
7. bg 1.25 ru 1.60 sl 1.98 he 2.03
8. cs 1.25 bg 1.41 no 1.28 sl 1.79
9. pt 1.12 cs 1.40 ro 0.96 hr 1.17

10. ru 1.12 pt 1.19 he 0.73 fi 0.92
11. it 1.08 he 1.04 bg 0.66 bg 0.89
12. es 1.06 it 0.94 de 0.63 nl 0.83
13. he 0.77 es 0.86 pt 0.38 pt 0.55
14. de 0.72 de 0.58 et 0.33 it 0.43
15. fr 0.59 fr 0.53 it 0.30 et 0.41
16. ca 0.49 ca 0.46 hr 0.29 es 0.36
17. fi 0.37 fi 0.28 es 0.26 fr 0.24
18. hr 0.25 hr 0.20 fr 0.15 de 0.22
19. et 0.10 fa 0.10 ca 0.14 ca 0.21
20. fa 0.07 et 0.06 fa 0.13 fa 0.12
21. hi 0.04 hi 0.05 hi 0.05 ar 0.05
22. ar 0.02 ar 0.03 ar 0.02 hi 0.04

Table C.1: KL−4
cpos3 source-target similarities, part 1.

177

Target ja kk lv pl
1. nl 0.59 ru 1.27 en 3.94 ru 11.08
2. en 0.43 en 1.12 sv 3.02 cs 10.43
3. cs 0.37 fi 1.02 cs 2.39 sv 6.71
4. no 0.30 sv 1.01 sl 2.30 sl 6.33
5. sv 0.28 ro 0.96 ru 2.30 en 5.06
6. bg 0.26 nl 0.87 fi 2.25 ro 3.58
7. fi 0.26 cs 0.83 no 2.14 no 3.32
8. sl 0.25 no 0.81 nl 2.08 nl 2.68
9. ro 0.23 sl 0.67 ro 1.37 fi 2.34

10. pt 0.18 he 0.56 bg 0.86 bg 2.23
11. ru 0.14 hr 0.44 et 0.68 he 1.58
12. hr 0.13 et 0.36 he 0.62 hr 0.94
13. et 0.13 bg 0.35 hr 0.61 pt 0.89
14. he 0.11 pt 0.26 de 0.43 de 0.69
15. it 0.10 de 0.22 pt 0.40 it 0.67
16. de 0.09 it 0.18 it 0.38 et 0.58
17. es 0.06 fa 0.18 es 0.35 es 0.54
18. fr 0.06 es 0.14 fr 0.18 fr 0.28
19. fa 0.04 fr 0.10 ca 0.17 ca 0.22
20. ca 0.03 ca 0.08 fa 0.10 fa 0.14
21. ar 0.03 hi 0.07 hi 0.04 hi 0.05
22. hi 0.02 ar 0.05 ar 0.03 ar 0.04

Table C.2: KL−4
cpos3 source-target similarities, part 2.

Target sk ta tr uk vi
1. cs 15.38 fi 2.50 fi 4.25 ru 8.04 ro 1.40
2. ru 9.99 ru 1.30 cs 2.52 cs 5.15 sl 0.92
3. sv 8.31 en 1.05 ru 2.27 en 4.58 cs 0.90
4. sl 7.82 cs 0.90 et 1.35 sv 4.35 he 0.88
5. en 6.46 nl 0.82 sv 1.17 sl 4.05 ru 0.86
6. no 3.43 sv 0.81 en 1.13 fi 2.94 en 0.81
7. fi 2.73 sl 0.77 ro 1.01 ro 2.31 sv 0.76
8. nl 2.61 ro 0.75 nl 1.00 no 2.24 fi 0.61
9. bg 2.27 he 0.59 sl 0.99 nl 1.97 no 0.56

10. ro 2.25 et 0.55 hr 0.66 bg 1.55 nl 0.53
11. he 0.99 no 0.49 he 0.62 he 1.21 hr 0.50
12. pt 0.90 hr 0.44 no 0.55 hr 0.93 pt 0.27
13. hr 0.78 bg 0.28 bg 0.37 pt 0.75 et 0.21
14. it 0.74 pt 0.22 fa 0.31 et 0.61 it 0.19
15. es 0.63 fa 0.19 de 0.29 it 0.46 es 0.19
16. et 0.59 de 0.16 pt 0.23 de 0.40 bg 0.19
17. de 0.58 it 0.14 it 0.16 es 0.37 fa 0.16
18. fr 0.28 es 0.12 es 0.13 fr 0.23 fr 0.11
19. ca 0.26 fr 0.08 hi 0.09 ca 0.16 ca 0.11
20. fa 0.11 hi 0.07 fr 0.09 fa 0.12 de 0.10
21. hi 0.04 ca 0.06 ca 0.07 hi 0.05 hi 0.06
22. ar 0.03 ar 0.04 ar 0.04 ar 0.04 ar 0.05

Table C.3: KL−4
cpos3 source-target similarities, part 3.

178

	Introduction
	Datasets for Parsing
	Syntactically annotated corpora
	The Penn treebanks family
	The Prague treebanks family
	CoNLL treebanks

	Treebank harmonization
	The beginnings
	Interset
	HamleDT 1.0
	Universal Stanford Dependencies
	Universal Dependencies

	Treebank datasets used in our experiments
	HamleDT 2.0 dataset
	Universal Dependencies 1.4 subset

	Parallel corpora
	OpenSubtitles
	Watchtower
	Bible
	Universal Declaration of Human Rights

	Other data
	Monolingual plaintext data
	Linguistic catalogues

	Dependency Parsing
	Graph-based parsing
	First-order edge factorization
	MSTParser model and training
	The MST algorithms
	MSTperl

	Transition-based parsing
	Arc-standard transition-based parsing
	Parsito/UDPipe

	Parser evaluation
	UAS and LAS
	UD specifics
	Other measures
	Evaluation on under-resourced languages

	Delexicalized Parser Transfer
	Delexicalized parsing
	Delexicalized parser transfer
	Using fine-grained morphological features

	Case study of annotation style learnability
	Prague versus Stanford
	Automatic conversions
	Experiment setup
	Full Universal Stanford Dependencies
	Prague versus Stanford adpositions
	Summary

	Using Multiple Sources
	The problem, and previous approaches to it
	Ignoring the problem
	Treebank concatenation
	Using the World Atlas of Language Structures
	Looking at part-of-speech tags
	Looking at words and characters
	Combining multiple sources

	KLcpos3 language similarity measure
	The formula
	KLcpos3 for source selection
	KLcpos3-4 for source weighting
	The POS tags
	Tuning

	Multi-source combination methods
	Parse tree combination
	Parser model interpolation
	Parse tree projection

	Evaluation
	HamleDT 2.0 dataset
	UD 1.4 dataset

	Summary

	Cross-lingual Lexicalization
	Overview of possible approaches
	Projection over parallel data
	Machine translation approaches
	Using cross-lingual clusters
	Using word embeddings
	Translating the parser model internals
	Using subword units

	Source-lexicalized parsing
	Monolingual word-embeddings
	Character-level transformations
	Evaluation

	Machine translation
	Translation arity
	Word alignment
	Word reordering
	Simple translation
	How many sources to combine?

	Evaluation
	VarDial shared task
	Extended VarDial language set
	UD 1.4 language set
	Comparison to unsupervised parsing

	Summary

	Cross-lingual Tagging
	Projection over (multi)parallel data
	Our implementation
	Effect of alignment symmetrization
	Weighted projection
	Subselecting the sources

	Machine-translating the training data
	Base approach
	Multi-source setting
	Simple self-training

	Comparison and combination
	Influence on parsing

	Summary

	Conclusion, or How to parse an under-resourced language
	Bibliography
	List of Figures
	List of Tables
	List of Abbreviations
	List of Publications
	Attachments
	Universal relation labels v1
	List of Watchtower languages
	Watchtower corpus
	Watchtower online

	Source-target language similarities

