Grounded Sequence-to-Sequence Transduction

Team

Undergraduate Students

Alissa Ostapenko - WPI
Karl Mulligan - Rutgers
Sun Jae (Jasmine) Lee - UPenn

Senior Researchers

Lucia Specia - Sheffield
Florian Metze - CMU
Loïc Barrault - Le Mans
Des Elliott - Edinburgh / Copenhagen
Josiah Wang - Sheffield
Pranava Madhyastha - Sheffield

Graduate Students

Jindrich Libovicky - Charles
Ramon Sanabria - CMU
Shruti Palaskar - CMU
Nils Holzenberger - JHU
Amanda Duarte - UPC
Ozan Caglayan - Le Mans

Remotely

Spandana Gella - Edinburgh Chiraag Lala - Sheffield

Motivation

Understanding language is hard

Motivation

Humans interact with the world in multimodal ways. Language understanding \& generation is not an exception

- Multimodality in computational models
- Richer context modelling
- Grounding of language
- True for a wide range of NL tasks
- Sequence-to-sequence NN is a convenient approach

Previous to JSALT...

Multimodality useful for MT

$\# \#$	Raw	z	System
1	77.8	0.665	LIUMCVC_MNMT_C
2	74.1	0.552	UvA-TiCC_IMAGINATION_U
3	70.3	0.437	NICT_NMTrerank_C
	68.1	0.325	CUNI_NeuralMonkeyTextualMT_U
	68.1	0.311	DCU-ADAPT_MultiMT_C
	65.1	0.196	LIUMCVC_NMT_C
	60.6	0.136	CUNI_NeuralMonkeyMultimodalMT_U
	59.7	0.08	UvA-TiCC_IMAGINATION_C
	55.9	-0.049	CUNI_NeuralMonkeyMultimodalMT_C
	54.4	-0.091	OREGONSTATE_2NeuralTranslation_C
	54.2	-0.108	CUNI_NeuralMonkeyTextualMT_C
	53.3	-0.144	OREGONSTATE_1NeuralTranslation_C
	49.4	-0.266	SHEF_ShefClassProj_C
	46.6	-0.37	SHEF_ShefClassInitDec_C
15	39.0	-0.615	Baseline (text-only NMT)
	36.6	-0.674	AFRL-OHIOSTATE_MULTIMODAL_U

Multimodal
 Text

Previous to JSALT...

Multimodality useful for ASR

- 90h of how-to video data
- Object and place features
- Word Error Rates:
- 23.4% with DNN/HMM + WFST (baseline)
- 22.3% with AM adaptation
- 22.6% with LM adaptation (RNNLM)
- 21.5\% with AM+LM n-best rescoring

Improvements make sense intuitively

- Higher for acoustically hard videos
(Gupta et al., 2017; Palaskar et al., 2018)

Previous to JSALT...

Promising results, but...

- 'Easy', small data (for MT)
- Limited types of modalities: static visual information
- Limited number of tasks
- Representations not shared across tasks
- Not clear where improvements are coming from

JSALT goals

More data, more modalities, more tasks
Better models, better representations, better understanding

Dataset

- 2000h of how-to videos (Yu et al., 2014)
- 300h for MT, 480h for ASR (as of today)
- Shared splits, held-out data
- Ground truth captions
- Metadata
- Number of likes / dislikes
- Visualizations
- Uploader, Date
- Tags
- Video descriptions ("summaries")

How to Repair a Polaris Pool Cleaner : Installing a Polaris 180 Pool Cleaner Head Float

SUSCRIBIRSE $3,3 \mathrm{M}$
Watch as a seasoned professional demonstrates how to install the head float of a Polaris 180 Pool Cleaner in this free online video about home pool maintenance.
mostrar más

- Very different topics
- Cooking, fixing things, playing instruments, etc.
- 300,000 segments translated into Portuguese

Dataset - example

The big picture

Groups

- Automatic Speech Recognition and Spoken Language Translation
- Text Summarization
- Region-specific Machine Translation
- Multiview Learning
- Multitask Learning

Highlights

- ASR \& SLT:
- Multi-task learning approaches that improve both tasks
- One-to-many model generalizes better than many-to-one model
- Summarization:
- Models that successfully generate teasers for videos
- Multimodal models using action features that outperform text models
- Region-specific MMT:
- Supervised attention that successfully grounds words to image regions
- Models for explicit grounding and its integration into MT

Highlights

- Multi-view learning:
- Implementation and exploration of DGCCA models
- High cross-view retrieval scores; exploration of integration in MT \& ASR
- Multi-task learning:
- Single framework for multi-task learning over multiple inputs \& outputs
- New models: Shared Recurrent Space and Mutual Projection Networks
- How-to dataset \& evaluation methods:
- Same dataset used for a number of diverse \& challenging tasks
- Established best practices and common framework for these tasks

Highlights

$\sim 13 \mathrm{~K}$ lines of code added

- New data loaders for audio, video, arbitrary feature vectors
- Layers:
- Auxiliary feature integration into RNN encoder \& decoder
- Hierarchical attention, coattention, supervised attention
- Video encoder \& video decoder
- Sequence convolutions
- Latent Recurrent Space Layer, ...
- New models: ASR, SLT, MMT, MPN, ...
- Multi-tasking
- Scheduling
- One-to-many, many-to-one, many-to-many

Schedule

- 1:30-1:45: Introduction
- 1:45-2:10: ASR/SLT
- 2:10-2:35: Teaser generation
- 2:35-3:00: Region-specific MT
- 3:00-3:15: Break
- 3:15-3:40: Multiview learning
- 3:40-4:05: Multitask learning
- 4:05-4:10: Take home messages

Automatic Speech Recognition Spoken Language Translation

Florian, Jindrich, Ozan, Ramon, Shruti

The big picture

Motivation

- In how-to videos, speech and visuals are often highly correlated
- Earlier work suggests that gains can be obtained by fusing
- S2S models provide an elegant framework (no separate AM / LM)

(1)) Start by loosening each bolt. Then locate the jack and lift the car. Now you can remove the bolts and then the wheel.

[^0]
Related \& Previous Results

- Have seen improvements in the past (on devtest)
- $23.4 \% \rightarrow 21.5 \%$ WER - HMM / GMM using LM rescoring on 90h
- $15.2 \% \rightarrow 14.1 \%$ TER - CTC on 480 h
- $89 \rightarrow 74$ PPL - NNLM on 480h
- Introduced new 300h training set
- Compatible with S2S machine translation experiments
- 5K SentencePiece token vocab for EN and PT
- Baselines on 300h (on cv05)
- 19.6\% WER - ESPNet Character S2S (TER=11.8\%)
- 23.6\% WER - ESPNet Word S2S (preliminary)
- 23.0\% WER - nmt py Word baseline (Small -- 4.3M params)
- 19.6\% WER - nmtpy Word Baseline (Medium -- 13.7M params, ~ESPNet)

Automatic Speech Recognition

S2S ASR Baseline

- 4-Layer BiGRU Encoder (200D)
- 200D Embeddings
- 2-Layer Conditional GRU Decoder
- MLP Attention
\square Dropout ($\mathrm{p}=0.4$)

S2S ASR Baseline

	\# of Params	Tokens	cv05 WER	dev5 WER
ASR	4.3 M	SentPiece-5K	23.0	24.0
ASR w/ 6-layer BiLSTMp encoder	13.7 M	SentPiece-5K	19.6	21.1
ESPNet 6-layer BiLSTMp encoder	-	Char	19.6	19.8

We use a small ASR for faster experimental turnaround time.

Multimodal ASR

Multimodal ASR: Motivations

- "Speech and visual are often highly correlated"
- Can we improve the decoder LM by providing visual context?
- Action-level global visual features
- Can we benefit from multimodal attention?
- Let the model learn when to pay attention to multiple modalities
- Action-level temporal visual features

Action-level Video Features [Hara et al., 2018]

Can Spatiotemporal 3D CNNs Retrace the History of 2D CNNs and ImageNet?

Kensho Hara, Hirokatsu Kataoka, Yutaka Satoh
National Institute of Advanced Industrial Science and Technology (AIST)
Tsukuba, Ibaraki, Japan
\{kensho.hara, hirokatsu.kataoka, yu.satou\}@aist.go.jp

ResNeXt

Action-level Video Features [Hara et al., 2018]

Integration of Features

Motivation: Can we improve decoder LM by visual grounding?

Integration of Features

Action level video
features (2048D)

Hivill
mean/max pooling
(L2 Normalized)

Integration of Features

Motivation: Can we improve decoder LM
by visual grounding?

Integration of Features

Motivation: Can we improve decoder LM
by visual grounding?

Integration of Features

Motivation: Can we improve decoder LM by visual grounding?

Decoder-side Interaction

- LM benefits from visual adaptation in terms of PPL [Gupta et al., 2018]
- Visual features improve acoustic modeling in HMM [Miao \& Metze, 2016]
- Hard to conclude for S2S models
- Need to experiment with bigger models and different features
- Encoder-side adaptation should be re-explored for 300 h

Hierarchical Attention

Hierarchical Attention + ActionGRU

Motivation: Can we benefit from selective multimodal attention?

Another layer of attention to fuse modality-specific contexts.
[Libovický et al. 2017]

Hierarchical Attention

- AvgCAT /AvgSUM/Action are comparable: needs further exploration
- Encoding temporal action features with an RNN hurts WER
- Reason \rightarrow the model shifts attention

Hierarchical Attention: Example \#1

Hierarchical Attention: Example \#1

Hierarchical Attention: Example \#1

Attention over video (Action)

Attention over video (Action+gru)

Hierarchical Attention: Example \#2

Spoken Language Translation

Spoken Language Translation (SLT)

- We have access to English speech, English Text and Portuguese Text
- Can we improve ASR? En Speech \rightarrow En Text
- Can we improve SLT? En Speech \rightarrow Pt Text
- Can we improve MT? En Text \rightarrow Pt Text
- Multi-task Learning
- Many-to-one
- One-to-many
- Hierarchical (auxiliary supervision)

From ASR to SLT

From ASR to SLT

Target changed from English to Portuguese

Almost ~10 BLEU difference

Multi-task Learning "Many-to-One (MTO)"

- Motivation: Generalized decoder
- Modality-specific encoders/batches
- Multiplexed training
- Alternating encoders
- Sample TASK with $p=0.7$
- Shared decoder
- Separate attention
- Shared attention

Multi-task Learning "Many-to-One (MTO)"

- Motivation: Generalized decoder
- Modality-specific encoders/batches
- Multiplexed training
- Alternating encoders
- Sample TASK with $p=0.7$
- Shared decoder
- Separate attention
- Shared attention

Many-to-one: Speech \& EN \rightarrow PT

- SLT benefits from MT even with alternating policy
- MT does not benefit from SLT

One-to-many: Speech \rightarrow EN \& PT

- Motivation: Generalized encoder
- Task-specific decoders
- In addition to scheduling:
- Sum-of-losses model

One-to-many: Speech \rightarrow EN \& PT

- OTM clearly better than MTO
- SumLoss and Alternate better than SLT=0.7
- No need to schedule for OTM
- Alternate $\rightarrow 3$ BLEU and 1.5 WER improvements

Hierarchical SLT (HSLT)

One-to-Many architecture with sum of losses

- Motivation: Ground the intermediate representation of the encoder with ASR supervision

One-to-Many vs HSLT

SLT Performance

- HSLT even better than OTM for SLT
- ASR performance of HSLT very bad

Multimodal ASR and SLT Conclusions

- Multimodal ASR
- Decoder side improvements consistent with MNMT [Caglayan et al., 2017]
- Further exploration: Temporal smoothing of visual features
- More analysis in later parts of the talk
- Spoken Language Translation
- Mutual benefits between SLT and ASR tasks
- One-to-Many (OTM) better than Many-to-One (MTO)
- Hierarchical SLT performs best, closing gap to "Cascade"

Summarization ("Teaser Generation")

Florian, Jasmine, Jindrich, Shruti, Spandana

The big picture

Teaser Generation

- Summarization
- Present subset of information in a more compact form (maybe across modalities)
- "Description" field
- 2-3 sentences of meta data: template based, uploader provides
- "Informative" and abstractive summary of a how-to video
- Should generate interest of a potential viewer

How To Make a Spanish Omelet : Cutting Peppers for A Spanish Omelet
\qquad

General Experimental Setup

Used 2000h of data: 74k videos for training, and 5k for validation/ test (keeping original dev/ test/ heldout sets intact)

Spanish Omelet

~1.5 minutes of audio and video

"Teaser" (33 words on avg)

```
how to cut peppers to make a spanish
omelette ; get expert tips and advice on
making cuban breakfast recipes in this free
cooking video .
```


Transcript (290 words on avg)

```
on behalf of expert village my name is lizbeth muller and today we are going to show you how to make spanish
omelet . i 'm going to dice a little bit of peppers here . i 'm not going to use a lot , i 'm going to use very
very little . a little bit more then this maybe. you can use red peppers if you like to get a little bit color
in your omelet . some people do and some people do n't . but i find that some of the people that are mexicans
who are friends of mine that have a mexican she like to put red peppers and green peppers and yellow peppers in
hers and with a lot of onions . that is the way they make there spanish omelets that is what she says . i loved
it , it actually tasted really good . you are going to take the onion also and dice it really small . you do n't
want big chunks of onion in there cause it is just pops out of the omelet . so we are going to dice the up also
very very small . so we have small pieces of onions and peppers ready to go .
```


Dataset statistics

Most frequent words in transcript

Most frequent words in teasers

4806 .	579 your
3806 a	387 clip
3799 in	369 when
3058 this	360 get
2922 free	349
2883 the	
2876 to	339 more
$\mathbf{2 8 3 2}$ video	328 that
2264 and	327 you
1948 learn	307 lesson
1779 from	285 bre
1720 on	273 's
1639 with	268 make
$\mathbf{1 4 6 0}$ how	262 be
1321 tips	257 can
1220 ,	242 do
1117 for	232 music
1036 of	225 or
756 expert	221 it
675 an	218 use
654 about	217 out
634 is	214 as

Evaluation Metrics (1)

Reference

```
a ukulele is a cousin instrument to the guitar with four strings
played in folk music . learn about ukulele anatomy from a musician
in this free guitar video .
```


Hypothesis

```
the banjo 's ukulele has many different types of guitar . learn
more about the banjo string and guitar with tips from a guitar
instructor in this free music lesson video.
```


Evaluation Metrics (2)

Catchphrases in teasers

3799 in

3058 this
2922 free
2832 video
1948 learn
1460 how
1321 tips
756 expert
>=500 times

- Rouge-L
- Standard summarization evaluation metric
- F-score over longest common subsequence \rightarrow captures structural coherence
- Content word F-score (using Meteor code)
- No crossover penalty (Gamma)
- Zero weight to function words (Delta)
- Equal weight to Precision and Recall (Alpha)

ROUGE-L

Reference

```
a ukulele is a cousin instrument to the guitar with four strings
played in folk music learn about ukulele anatomy from a musician
in this free guitar video
```

Hypothesis

```
the banjo 's ukulele has many different types of
guitar. learn
more about the banjo string and guitar with tips from a guitar
instructor in this free music lesson video
```

Reference length $=30$ Hypothesis length $=32$
Common subsequence length $=12$

Content word F-score

Reference

Reference content words = 13

Recall $=4 / 13=.31$
Precision $=4 / 12=.33$

F1 score $=.32$

Evaluation Metrics

Catchphrases in teasers

3799 in

3058 this
2922 free
2832 video
1948 learn
1460 how
1321 tips
756 expert
>=500 times

- Rouge-L
- Standard summarization evaluation metric
- F-score over longest common subsequence \rightarrow captures structural coherence
- Prefers style over content
- Content word F-score (using Meteor code)
- No crossover penalty (Gamma)
- Zero weight to function words (Delta)
- Equal weight to Precision and Recall (Alpha)
- Ignores fluency

Rule-based Baseline

- Rule based extractive summary - 1 most informative sentence
- Sentence contains "how to"
- The predicate is "learn", "tell","show","discuss", "explain"
- Second sentence in the transcript

```
on behalf of expert village my name is
lizbeth muller and today we are going to show
you how to make spanish omelet .
```


Random Baseline

- Train a language model on the teasers and sample from the model
- Nice text, correct style, nonsense content

```
learn tips on how to play the bass drum beat
variation on the guitar in this free video
clip on music theory and guitar lesson.
```

Rouge-L
27.5

Content F1
8.3

S2S models: Vocabulary

- S2S model with attention
- Vocabulary matters

```
how to add tomatoes to a spanish omelette ;
get expert tips and advice on making
traditional cuban breakfast recipes in this
free cooking video .
```

	Rouge-L	Content F1
BPE 10k	45.1	35.5
BPE 20k	46.5	37.8
Tokens 20k	53.9	47.4
Tokens 30k	53.5	46.3

No gain from from larger vocabulary, just trains slowly

Do we need the complete transcript?

	Rouge-L	Content F1
No input = Language model	27.5	8.3
Extracted sentence (itself 18.8 F1 points)	46.6	36.0
First 200 tokens	40.3	27.5
Complete transcript (up to 650 tokens)	53.9	47.4

Action Recognition Features

Kensho Hara, Hirokatsu Kataoka, Yutaka Satoh
National Institute of Advanced Industrial Science and Technology (AIST)
Tsukuba, Ibaraki, Japan
\{kensho.hara, hirokatsu.kataoka, yu.satou\}@aist.go.jp

ResNeXt

Video Features as Input

	Rouge-L	Content F1
Text-only input	53.9	47.4
Features only	38.5	24.8
Features + RNN	46.3	34.9

Multi-modal Attention

Hierarchical Multi-modal Attention

Results of Attention Combination

- Modest improvements when we combine text and video

Slow to converge

	Rouge-L	Content F1
Text-only input	53.9	47.4
Context vector concatenation	51.0	44.4
Hierarchical attention	54.9	48.9

Wall time hours

Results of Attention Combination

- Modest improvements when we combine text and video
- RNN over action features does not seem to help

	Rouge-L	Content F1
Text-only input	53.9	47.4
Context vector concatenation	51.0	44.4
$+\quad$ RNN over actions	42.2	30.3
Hierarchical attention	54.9	48.9
$+\quad$ RNN over actions	53.4	46.8

Slow to converge

Overview of the Result

	Rouge-L	Content F1
Language model	27.5	8.3
Extractive rules	16.4	18.8
S2S from extractive rules	46.6	36.0
Text-only input	53.9	47.4
Action features	46.3	24.8
Action features + RNN	54.9	48.9
Text + action features w/o RNN	53.4	46.8
Text + action features w/ RNN		

Attention over the Transcriptions

Attention over the Video Features

Example

partial dentures come in both plastic and metal versions. examine

Text

Actions RNN

Actions

 different types of partial dentures with information from a dentist in this free oral hygiene video.partial dentures will help to prevent dentures . learn about partial dentures from a dentist in this free oral hygiene video. do n't leave a home drug test. learn about vacuum cleaners with expert tips from a dentist in this free oral hygiene video.
in order to make an nail art design, get expert tips and advice on housecleaning in this free video series that will teach you everything you need to know to make your own ceviche in this free video.
$1: 38 / 1: 50$

Example

Ref.
Text
Actions RNN

Actions
stretching out your calves is a great way to alleviate stress and rejuvenate your muscles. learn a healthy leg stretch from a yoga instructor in this free yoga video.
stretching is a great way to warm up your calves . learn some calf raises from a professional pilates instructor in this free fitness video.
the yoga chair pose is a great way to strengthen the muscles in the upper back. learn about shoulder and deltoid exercises in this free hatha yoga video.
learn the basics of hatha yoga with expert tips on headache relief in this free home improvement video.ur knees as much as
$0: 36 / 0: 51$

Topics in How-To Videos (LDA on Transcripts)

Selected Topic: $12 \quad$ Previous Topic Next Topic Clear Topic

Intertopic Distance Map (via multidimensional scaling)

Estimated term frequency within the selected topic

1. saliency $($ term $w)=$ frequency $(w) *[$ sum_ $t p(t \mid w) * \log (p(t \mid w) / p(t))]$ for topics $t ;$ see Chuang et. al (2012) 2. relevance(term $w \mid$ topic $t)=\lambda \cdot p(w \mid t)+(1-\lambda)^{*} p(w \mid t) / p(w)$; see Sievert \& Shirley (2014)

Use of Topics

- What if we take the teaser from the next neighbor video in topic space?
- wearing a bra is almost universal in western countries, but did you ever wonder why? learn about why women wear bras and what function they serve in this free women 's fashion video.
- do n't wrinkle you suit right after ironing it ! learn how to hang a jacket while ironing a men 's suit in this free clothing care video from a wardrobe professional.
- This performs similarly to our rule-based baseline!
- Worse in content F1 than all S2S models.

Ongoing Work

- Treat context vector like visual feature - use for adaptation
- General framework for adaptation of S2S models
- Multi-document summarization
- Create captions for multiple videos together - this would be really useful
- A bit slow to train (2000h ...), but running now using multi-task encoders (two)
- Need to think about evaluation some more (currently: ROUGE=52.1 vs 53.0)
- Form of data augmentation?
- Discriminative summarization
- See three videos at the same time: two similar, one different
- Explain (e.g. generate text) how one is different from the other(s)
- Use ranking loss for discrimination

Summarization Conclusion

- It works! Kind of. Still looking at ...
- Multi-document summarization
- End-to-end summarization from speech
- Multi-modal summarization with temporal structure and/ or object \& scene features
- Text-generated descriptions are generative, pretty detailed and often repeats certain key phrases.
- Action-feature generated text is boiler-plate but accurate, Act-RNN text is more diverse and more self-consistent.
- Need to tie in with representation learning and investigate portability

Region-specific Machine Translation

Alissa, Chiraag, Jasmine, Josiah, Lucia, Pranava

The big picture

Q: Can region-specific multimodal MT improve translation quality?

Grounding Machine Translation

The player on the right has just hit the ball

Ojogadorà direita acaba de acertar a bola

Grounding Machine Translation to Image Regions

The player on the right has just hit the ball
A jogadora à direita acaba de acertar a bola

Dataset: Multi30K + Flickr30k Entities

| | English | A man in an orange hat staring at something. |
| :--- | :--- | :--- | :--- |
| | German | Ein Mann mit einem orangefarbenen Hut, der etwas anstarrt. |
| | Crench | Un homme avec un chapeau orange regardant quelque chose. |

30K (image, sentence) pairs per language
A man with pierced ears is wearing glasses and an orange hat.
A man with glasses is wearing a beer can crotched hat.
A man with gauges and glasses is wearing a Blitz hat.
A man in an orange hat starring at something.
A man wears an orange hat and glasses.

Region-specific Grounded MT

Obtain image regions	Represent image regions	Devise algorithms to learn associations	Use grounded representation between visual
		to guide MT and text	
		information	

Step 1: Obtaining Image Regions

Step 1

Obtain image regions

Represent image
Devise algorithms
Use grounded
tolearn representation
associations
to guide MT
between visual
and text
information

Step 1: Obtaining Image Regions

- Oracle regions (Flickr30k Entities)

A bride and groom are standing in front of their wedding cake at their reception.
A bride and groom smile as they view their wedding cake at a reception.

Step 1: Obtaining Image Regions

- Output of a detector (545 categories -- Open Images)

Step 1: Obtaining Image Regions

Precision and Recall for Open Images detection

Step 2: Representing Image Regions

Step 2: Representing Image Regions

Grounding Regions and MT

Implicit

Alignment and MT jointly

Explicit

Alignment, then MT

Grounding Regions and MT

Implicit
Alignment and MT jointly

Steps 3 \& 4: Joint Alignment and MT

Standard Decoder Attention

Fusion: concat

S: A man in a pink shirt is sitting in the grass and a ball is in the air.

Fusion: hierarchical

S: A man in a pink shirt is sitting in the grass and a ball is in the air.

Encoder Attention Model

Idea: Ground the images in the source

Context for Decoder:
j weighted vectors

j text vectors

Supervised Encoder Attention Model

Given gold word-region alignments, add an auxiliary loss to main MT loss

Context for Decoder:
j weighted vectors

j text vectors

Fusion: concat, hierarchical

Alignments are much clearer! Even though metrics don't improve...

Grounding Regions and MT

Explicit

Alignment, then MT

Step 3: Explicit Alignment

Alignments Learnt Explicitly

Step 4: Using Explicitly Learnt Alignments for MT

Idea

- Further specify source words with respective image region visual info

Category: clothing

The man in yellow pants is raising his arms

Categories from Image Regions

- Oracle (8)
- People
- Clothing
- Scene
- Animals
- Vehicles
- Instruments
- Body parts
- Other
- Predicted (545)

Categories from Image Regions

Take category of image region to be the category of head noun of corresponding text phrase

- For any other word, set category to "empty"
Sentence: \quad The man \quad in \quad yellow \quad pants \quad is \quad raising

Categories from Image Regions

Examples (En-De)

Gold	Baseline	With Categories
five people in winter jackets and helmets stand in the snow. a man is standing by a group of video games in a bar .	five people in winter jackets and helmets stand in the snow. a man is standing next to a group of students in a bar.	five people in winter clothes and with their helmets standing in the snow. a man is standing in a bar next to a group of video games.

Noun Drop

- "Drop" head nouns in source sentences, but keep category information

The man sat in the rain.

The < DEL> sat in the < DEL> .

- In the absence of words, can visual information can guide model to generate better translations?

Sentence Drop

- In training, "drop" 20\% of source sentences, but keep category information

The man sat in the rain.

- In the absence of sentences, can visual information guide model to generate better translations?

Sentence Drop Examples (En-De)

Gold	Baseline	With Categories		
a group of Asian boys is waiting for meat to be grilled.	a group of Asian boys is waiting for meat to be grilled.	a group of Asian boys is waiting for meat to be photographed.		
a boston terrier is running				
on lush green grass in front				
of a white fence.				boston cook runs in front
:---				
of a white fence on green				
grass and runs over green				
grass.	\quad	a boston shepherd dog		
:---				
runs in front of a white fence				
on a green meadow.				

Drop Results

Noun Drop

	Features	en-de	en-fr	en-cs
Text-only	-	31.28	49.81	25.77
Explicit alignment	Cat. embeddings	30.31	49.65	25.12

Sentence Drop

	Features	en-de	en-fr	en-cs
Text-only	-	35.35	57.84	26.71
Explicit alignment	Cat. embeddings	36.29	58.64	30.14

General results

Results (test2016)

METEOR	Features	en-de	en-fr	en-cs
Text-only (no image)	-	57.35	75.16	29.35
Decoder init. (full image)	Pool5	56.97	74.82	29.04
Attention over regions (decoder)	Pool5	56.77	74.74	28.86
Attention over regions (decoder)	Cat. er	56.48	73.65	28.42
Encoder attention over regions	Pool5	57.30	75.36	30.48
Encoder attention over regions	Cat. embeddings	57.29	75.97	30.78
Supervised attention over regions	Pool5	56.34	75.07	30.19
Supervised attention over regions	Cat. embeddings	56.64	75.56	30.39
Explicit alignment - projection	Cat. embeddings	57.39	75.25	30.64
Explicit alignment - concatenation	Cat. embeddings	57.44	75.47	30.77

Results - lexical ambiguity (test2016)

ACCURACY	Features	en-de	en-fr	en-cs
Text-only (no image)	-	37.00	53.62	10.44
Decoder init. (full image)	Pool5	37.53	53.31	13.65
Attention over regions (decoder)	Pool5	37.82	53.62	10.84
Attention over regions (decoder)	Cat.	37.76	52.31	14.46
Encoder attention over regions	Pool5	38.06	55.16	12.45
Encoder attention over regions	Cat. embeddings	37.94	54.24	14.06
Supervised attention over regions	Pool5	37.47	53.39	13.25
Supervised attention over regions	Cat. embeddings	36.89	54.08	14.06
Explicit alignment - projection	Cat. embeddings	38.41	54.08	13.65
Explicit alignment - concatenation	Cat. embeddings	38.06	53.78	12.85

Results - lexical ambiguity accuracy (test2018)

ACCURACY	Features	en-de	en-fr	en-cs
Text-only (no image)	-	44.14	43.06	-
Decoder init. (full image)	Pool5	46.85	43.06	-
Attention over regions (decoder)	Cat. em		48.65	45.83

Results - human eval

- Proportion of times each system is better (meaning preservation)

- Text-only system is more fluent but has less correct content words

Conclusions and Future Work

- Text-only vs region-specific
- Region-specific always better
- Oracle vs predicted regions and alignment
- Predictions do not degrade performance substantially
- Representations: pool5 vs category embeddings
- Similar but category embeddings more interpretable
- Meteor/BLEU are not indicative of performance variations
- Lexical ambiguity evaluation: more indicative but only subset of words
- Human evaluation: much more telling
- Future: more human eval, better use of explicit \& implicit alignments

Multiview Learning

Nils, Pranava, Shruti

The big picture

A look at our Dataset

Q: What could explicit representation learning give us?

Learning from Multiple Views

- Each is different but all views share similar information
- Visual, Auditory and Language views are aligned
- Views in the same modality v / s Views in multiple modalities
- Unit level representations v/s Sequence Level Representations

Canonical Correlation Analysis

Task Specific Representations
Transformations

CCA in a Nutshell

"a man in an onange hat staring at somefhing."

> Find transformations $\quad \mathbf{u} \in \mathbb{R}^{d_{x}}, \mathbf{v} \in \mathbb{R}^{d_{y}}$
> to maximize correlation $\left(\mathbf{u}^{T} f_{\theta}(X), \mathbf{v}^{T} g_{\phi}(Y)\right)$

CCA in a Nutshell

CCA: Extentions

- Extending from two views to multiple views

CCA: Extensions

- Deep Generalized CCA: At the bleeding edge!

Salient Properties

- (DG)CCA helps us obtain maximally correlated information that is consistent with each view
- Gives us a handle on the amount of variance shared
- Grounds information consistent with other view(s)
- It also helps in denoising and maximizing mutually relevant information

Our Goal

Text Representations - Words

Text Representations - Words

Recall@10

Nearest neighbors before CCA After CCA
os (the)

1. trinkets
2. sells
3. wins
devagar (slow)
4. hotel
5. tetra
6. dispute
os (the)
7. the
8. your
9. their
devagar (slow)
10. tightly
11. slowly
12. totally

Text Representations - Sentences

Text Representations - Sentences

Recall@10 over test set

Linear CCA
81.4\%

Deep CCA
95.0\%

Text Representations - Sentences

Arora et al., 2017.

Video Representations

Text and Video Representations - Sentences

Recall@10
 over test set

Linear CCA
0.8\%

Deep CCA
1.6\%

Text Representations - Summary

Text Representations - Summary

Text Representations - Summary

Retrieval for MT

Given a Portuguese sentence from the test set, retrieve the closest English sentence in a reference set.

Portuguese reference sentences

English source sentence

Hypothesis for MT

Reference set	BLEU (top 1 retrieval)	BLEU (random pick)
train	5.2	0.4
train + test	80.7	0.4

Re-ranking in MT

Re-ranking in MT

Re-ranking in MT

Integration in MT

Recap: Our Goal

Recap: Our Goal

Speech Representations - S2S Model

- Char-based ASR model has a scale mismatch with NMT (words)
- End-to-End Word-based Speech Recognition Model
WORDS
WORDS

Speech Representations - Sentences

Speech and Text Representations

Retrieve Text Given Speech

Recall@10 over Test set

Linearcca	Deperca 96.9%
90.1%	

Retrieve Speech Given Text

Recall@10 over Test set

Linear CCA
96.1\%
Deep CCA
89.7\%

Speech and Video Representations

Retrieve Video Given Speech

Recall@10 over Test set

Linear CCA
0.5%

Deep CCA
1.8\%

Speech, Text and Video Representations

Retrieval: Speech, Text (En \& Pt) and Video on Test Set

Recall@10		English Text	Portuguese Text	4
C-17	-	85.4	70.7	1.0
lish Text	85.4		98.4	0.9
		98.3		1.1
	1.1	1.1	0.9	

Retrieval: Speech, Text (En \& Pt) and Video on Test Set

Retrieval: Speech, Text (En \& Pt) and Video on Test Set

Retrieval: Speech, Text (En \& Pt) and Video on Test Set

Retrieve Text Given Speech - Comparison

Model	Recall@10
Speech \& En Text	90.1%
Speech, En Text, Pt Text \& Video	85.4%

Retrieval for ASR

Given a Speech segment from the test set, retrieve the closest English sentence in a reference set.

English reference
sentences

Input speech
segment

Hypothesis for ASR

Reference set	WER \downarrow
S2S Model	24.2%
Train	134%
Train + Test	27.4%

Retrieve Pt Text Given Speech - Comparison

Given a Speech segment from the test set, retrieve the closest Portuguese sentence in a reference set.

Portuguese reference sentences

Input speech
segment

Hypothesis for Spoken
Language Translation

Reference set	BLEU \uparrow
S2S Model	27.9
Train	0.2
Train + Test	19.8

Speech Representations - Integration in ASR

Word Based ASR model Vocabulary: 19k words

	WER (\%) \downarrow
S2S Model	24.2
+ CCA projections	25.3

Substitutions $\uparrow 7 \%$

Speech Representations - Integration in ASR (Encoder-side)

Word Based ASR model Vocabulary: 19k words

	WER (\%) \downarrow
S2S Model	24.2
+ CCA projections	27.3

Substitutions $\uparrow 14 \%$
Deletions $\uparrow 11 \%$
Insertions $\uparrow 11 \%$

Conclusion

- Implementation and exploration of DGCCA models
- CCA can learn strong representations with high cross-view retrieval scores (even with a simple, closed form linear version)
- Exploration of integration into task-specific models

Multitask learning

Amanda, Desmond, Loïc, Karl

The big picture

Our big picture

Q: How and when is it useful to learn a shared representation between different modalities?

Defining useful Multitask Learning

When: Shared Encoder

Video Reconstruction + Teaser Generation

When: Shared Decoder

Spoken Language Translation + Machine Translation

When: Shared Decoder

ASR + Video closed-captioning

When: Shared Decoder

ASR + MT

When: Shared Decoder

Video closed-captioning + MT

How: Multitask Learning

How: MTL by scheduling tasks

$\mathrm{ctx}_{\mathrm{y} 1}$

Scheduler

How：MTL by scheduling tasks

$\operatorname{ctx}_{\mathrm{y} 1}$

Scheduler

＂阴明彻h

How: MTL with Shared Recurrent Space

- Learn a shared representation z given multiple tasks (Lu et al. 2018)

MTL with Mutual Projection Networks

- Assume $n>2$ modalities of aligned data
- Assume we have an encoder for each modality
$D=$ Speech, English, Portuguese, Video, Teasers

Sample a source-target task
from the training schedule and
an auxiliary source of data

For $(x, y, a) \sim D$:
$\mathcal{L}(\theta)=\sum_{j}-\log \mathrm{p}\left(y_{j} \mid y_{<j}, x\right)+\alpha \mathrm{d}(x, a)+\beta \mathrm{d}(y, a)$

Project auxiliary data into the same space as the encoder and the decoder

Why Mutual Projection Networks?

- Explicitly learn a shared space between the different views of the data
- Regularise the main task encoder and decoder with projection losses
- Learn multiple encoders for the price of one!

MPN Illustrative Model

Experiments

Experimental Methodology

- Fixed hyperparameters from single-task baseline models
- Fixed data pre-processing pipeline
- Models:
- Single-task baseline
- Multi-task learning model (MTL)
- MTL with Shared Recurrent Space
- MTL with Mutual Projection Network

Hypothesis: the MTL models will outperform the single-task models because their representations need to be useful for more than one task.

When: Shared Encoder

Video Reconstruction + Teaser Generation

Results: Video Reconstruction + Teaser Generation

Video Reconstruction

When: Shared Decoder

Spoken Language Translation + Machine Translation

Results: SLT + MT

When: Shared Decoder

ASR + Video closed-captioning

Results: ASR + Video closed-captioning

English ASR (WER s)

WER

Video CC (Paragraph BLEU $\diamond)$

(lack of semantic parallelism)

When: Shared Decoder

ASR + MT

Results: ASR + MT

When: Shared Decoder

Video closed-captioning + MT

Results: Video closed-captioning + MT

Video closed-captioning

Summary

Conclusion: when is MTL useful?

Conclusion and Future Work

- Explored Multitask learning with different models
- scheduling/shared space/mutual projection networks
- Need more detailed analysis
- Can we cram multiple modalities into a sequence of vectors?
- Can't be answered in a few weeks!
- Need to study the behaviour of the Recurrent Shared Space
- Plan: explore different architectures
- When does MPN regularisation help and why?
- Few hints during this project, thorough investigation required
- Plan: benchmark modality retrieval performance

Project Conclusions

Take home messages

- Multimodal ASR also works with S2S models
- Promising results for SLT \& ASR
- Summarization works surprisingly well, need meaningful evaluation
- Region-specific MMT makes sense with the right evaluation
- CCA can obtain rich representations from diverse views and modalities
- MTL can be useful: potential gains \propto semantic relatedness of the signals

We just need to keep trying!

Thank you

		Carnegie Mellon University Language Technologies Institute	(3) MultimT
7 Le Mans Université	Edinburgh Cind		9100

amazon
facebook
Google

Publications

- Shruti Palaskar, Ramon Sanabria, and Florian Metze. End-to-end multi-modal speech recognition. In Proc. ICASSP, Calgary, Canada, 2018. IEEE.
- Abhinav Gupta, Yajie Miao, Leonardo Neves, and Florian Metze. Visual features for context-aware speech recognition. In Proc. ICASSP, New Orleans, LA, 2017. IEEE.
- Yajie Miao and Florian Metze . Open-Domain Audio-Visual Speech Recognition: A Deep Learning Approach. In Proc. INTERSPEECH 2016. San Francisco, US, 2016. ISCA.
- Ozan Caglayan, Loïc Barrault, Fethi Bougares. Multimodal attention for neural machine translation. In arXiv 1609.03976.
- Caglayan, Ozan, et al. LIUM-CVC Submissions for WMT17 Multimodal Translation Task. In Proc. WMT, Copenhagen, Denmark, 2017.
- Jindřich Libovický, Jindřich Helcl,. Attention Strategies for Multi-Source Sequence-to-Sequence Learning. In Proc. ACL, Vancouver, Canada, 2017.
- Desmond Elliott, Stella Frank, Loic Barrault, Fethi Bougares, and Lucia Specia. Findings of the Second Shared Task on Multimodal Machine Translation and Multilingual Image Description. In Proc. WMT, Copenhagen, Denmark, 2017.

References

- Shoou-I Yu, Lu Jiang, and Alex Hauptmann. Instructional Videos for Unsupervised Harvesting and Learning of Action Examples. In Proc. ACM MM, Orlando, FL; U.S.A., Nov 2014. ACM.
- Alayrac, Jean-Baptiste, et al. "Unsupervised learning from narrated instruction videos." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016.
- Hara, K., Kataoka, H., \& Satoh, Y. (2018, June). Can spatiotemporal 3D CNNs retrace the history of 2D CNNs and ImageNet?. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA.
- Hotelling, H., Relations between two sets of variants (1936)
- Wang, W., Arora, R., Livescu, K. \& Bilmes, J. On deep multi-view representation learning: objectives and optimization (2016)
- Benton, A., Khayrallah, H., Gujral, B., Reisinger, D. A., Zhang, S., Arora, R., Deep generalized canonical correlation analysis (2017)
- Arora, S., Liang, Y., Ma, T., A Simple but Tough-to-Beat Baseline for Sentence Embeddings, ICLR 2017.
- Rich Caruana, Multitask Learning. 1998. Ph.D Thesis, Carnegie Mellon University.

Schedule

- 1:30-1:45: Intro
- 1:45-2:10: ASR/SLT
- 2:10-2:35: Summarization
- 2:35-3:00: Region MT
- 3:00-3:15: Break
- 3:15-3:40: Multiview
- 3:40-4:05: Multitask
- 4:05-4:10: Summary

[^0]: (1))

 First undo the nuts. Once that done, you can jack the car. Then withdraw the nuts completely so that you can remove the flat tire.

