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Malostranské náměstı́ 25, 118 00 Prague, Czech Republic
{helcl, libovicky, varis}@ufal.mff.cuni.cz

Abstract

We present our submission to the WMT18
Multimodal Translation Task. The main fea-
ture of our submission is applying a self-
attentive network instead of a recurrent neu-
ral network. We evaluate two methods of in-
corporating the visual features in the model:
first, we include the image representation as
another input to the network; second, we train
the model to predict the visual features and use
it as an auxiliary objective. For our submis-
sion, we acquired both textual and multimodal
additional data. Both of the proposed methods
yield significant improvements over recurrent
networks and self-attentive textual baselines.

1 Introduction

Multimodal Machine Translation (MMT) is one
of the tasks that seek ways of capturing the rela-
tion of texts in different languages given a shared
“grounding” information in a different (e.g. vi-
sual) modality.

The goal of the MMT shared task is to gen-
erate an image description (caption) in the target
language using a caption in the source language
and the image itself. The main motivation for this
task is the development of models that can exploit
the visual information for meaning disambigua-
tion and thus model the denotation of words.

During the last years, MMT was addressed as
a subtask of neural machine translation (NMT). It
was thoroughly studied within the framework of
recurrent neural networks (RNNs) (Specia et al.,
2016; Elliott et al., 2017). Recently, the archi-
tectures based on self-attention such as the Trans-
former (Vaswani et al., 2017) became state-of-the-
art in NMT.

In this work, we present our submission based
on the Transformer model. We propose two ways
of extending the model. First, we tweak the archi-
tecture such that it is able to process both moda-

lities in a multi-source learning scenario. Second,
we leave the model architecture intact, but add an-
other training objective and train the textual en-
coder to be able to predict the visual features of the
image described by the text. This training compo-
nent has been introduced in RNNs by Elliott and
Kádár (2017) and is called the “imagination”.

We find that with self-attentive networks, we
are able to improve over a strong textual baseline
by including the visual information in the model.
This has been proven challenging in the previous
RNN-based submissions, where there was only
a minor difference in performance between tex-
tual and multimodal models (Helcl and Libovický,
2017; Caglayan et al., 2017).

This paper is organized as follows. Section 2
summarizes the previous submissions and related
work. In Section 3, we describe the proposed
methods. The details of the datasets used for the
training are given in Section 4. Section 5 describes
the conducted experiments. We discuss the results
in Section 6 and conclude in Section 7.

2 Related Work

Currently, most of the work has been done within
the framework of sequence-to-sequence learning.
Although some of the proposed approaches use
explicit image analysis (Shah et al., 2016; Huang
et al., 2016), most methods use image representa-
tion obtained using image classification networks
pre-trained on ImageNet (Deng et al., 2009), usu-
ally VGG19 (Simonyan and Zisserman, 2014) or
ResNet (He et al., 2016a).

In the simplest case, the image can be repre-
sented as a single vector from the penultimate
layer of the image classification network. This
vector can be then plugged in at various places of
the sequence-to-sequence architecture (Libovický
et al., 2016; Calixto and Liu, 2017).



Several methods compute visual context infor-
mation as a weighted sum over the image spa-
tial representation using the attention mechanism
(Bahdanau et al., 2014; Xu et al., 2015) and com-
bine it with the context vector from the textual
encoder in doubly-attentive decoders. Caglayan
et al. (2016) use the visual context vector in a gat-
ing mechanism applied to the textual context vec-
tor. Caglayan et al. (2017) concatenate the context
vectors from both modalities. Libovický and Helcl
(2017) proposed advanced strategies for comput-
ing a joint attention distribution over the text and
image. We follow this approach in our first pro-
posed method described in Section 3.1.

The visual information can also be used as an
auxiliary objective in a multi-task learning setup.
Elliott and Kádár (2017) propose an imagination
component that predicts the visual features of an
image from the textual encoder representation, ef-
fectively regularizing the encoder part of the net-
work. The imagination component is trained us-
ing a maximum margin objective. We reuse this
approach in our method described in Section 3.2.

3 Architecture

We examine two methods of exploiting the visual
information in the Transformer architecture. First,
we add another encoder-decoder attention layer to
the decoder which operates over the image fea-
tures directly. Second, we train the network with
an auxiliary objective using the imagination com-
ponent as proposed by Elliott and Kádár (2017).

3.1 Doubly Attentive Transformer

The Transformer network follows the encoder-
decoder scheme. Both parts consist of a number
of layers. Each encoder layer first attends to the
previous layer using self-attention, and then ap-
plies a single-hidden-layer feed-forward network
to the outputs. All layers are interconnected with
residual connections and their outputs are normal-
ized by layer normalization (Ba et al., 2016). A
decoder layer differs from an encoder layer in two
aspects. First, as the decoder operates autoregres-
sively, the self-attention has to be masked to pre-
vent the decoder to attend to the “future” states.
Second, there is an additional attention sub-layer
applied after self-attention which attends to the fi-
nal states of the encoder (called encoder-decoder,
or cross attention).

The key feature of the Transformer model is the

use of attention mechanism instead of recurrence
relation in RNNs. The attention can be conceptu-
alized as a soft-lookup function that operates on
an associative array. For a given set of queries Q,
the attention uses a similarity function to compare
each query with a set of keys K. The resulting
similarities are normalized and used as weights to
compute a context vector which is a weighted sum
over a set of values V associated with the keys. In
self-attention, all the queries, keys and values cor-
respond to the set of states of the previous layer.
In the following cross-attention sub-layer, the set
of resulting context vectors from the self-attention
sub-layer is used as queries, and keys and values
are the states of the final layer of the encoder.

The Transformer uses scaled dot-product as a
similarity metric for both self-attention and cross-
attention. For a query matrix Q, key matrix K and
value matrix V , and the model dimension d, we
have:

A(Q,K, V ) = softmax

(
QK>√

d

)
V. (1)

The attention is used in a multi-head setup. This
means that we first linearly project the queries,
keys, and values into a number of smaller matri-
ces and then apply the attention function A inde-
pendently on these projections. The set of result-
ing context vectors C is computed as a sum of the
outputs of each attention head, linearly projected
to the original dimension:

C =
h∑

i=1

A(QWQ
i ,KW

K
i , V W

V
i )WO
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where (WO
i )>, WQ

i , WK
i , and W V

i ∈ Rd×dh

are trainable parameters, d is the dimension of the
model, h is the number of heads, and dh is a di-
mension of a single head. Note that despite K
and V being identical matrices, the projections are
trained independently.

In this method, we introduce the visual informa-
tion to the model as another encoder via an addi-
tional cross-attention sub-layer. The keys and val-
ues of this cross-attention correspond to the vec-
tors in the last convolutional layer of a pre-trained
image processing network applied on the input im-
age. This sub-layer is inserted between the tex-
tual cross-attention and the feed-forward network,
as illustrated in Figure 1. The set of the context
vectors from the textual cross-attention is used as
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Figure 1: One layer of the doubly-attentive Trans-
former decoder with 4 sub-layers connected with resid-
ual connections.

queries, and the context vectors of the visual cross-
attention are used as inputs to the feed-forward
sub-layer. Similarly to the other sub-layers, the
input is linked to the output by a residual connec-
tion. Equation 3 shows the computation of the vi-
sual context vectors given trainable matrices ZQ

i ,
ZK
i , ZV

i , and ZO
i for i = 1, . . . , h; the set of tex-

tual context vectors is denoted by Ctxt and the ex-
tracted set of image features as F :

Cimg =
h∑

i=1

A(CtxtZ
Q
i , FZ

K
i , FZ

V
i )ZO

i . (3)

3.2 Imagination
We use the imagination component of Elliott and
Kádár (2017) originally proposed for training mul-
timodal translation models using RNNs. We adapt
it in a straightforward way in our Transformer-
based models.

The imagination component serves effectively
as a regularizer to the encoder, making it consider
the visual meaning together with the words in the
source sentence. This is achieved by training the
model to predict the image representations that
correspond to those computed by a pre-trained im-
age classification network. Given a set of encoder
states hj , the model computes the predicted image
representation as follows:

ŷimg =WR
2 max(0,WR

1

∑
jhj) (4)

where WR
1 ∈ Rr×d and WR

2 ∈ Rn×r are trainable
parameter matrices, d is the Transformer model
dimension, r is a hidden layer dimension of the

en de fr cs

Training 29,000 sentences

Tokens 378k 361k 410k 297k
Average length 13.0 12.4 14.1 10.2
# tokens range 4–40 2–44 4–55 2–39

Validation 1,014 sentences

Tokens 13k 13k 14k 10k
Average length 13.1 12.7 14.2 10.2
# tokens range 4–30 3–33 5–36 4–27

OOV rate 1.28% 3.09% 1.20% 3.95%

Table 1: Multi30k statistics on training and validation
data – total number of tokens, average number of to-
kens per sentence, and lengths of the shortest and the
longest sentence.

imagination component, and n is the dimension
of the image feature vector. Note that Equation 4
corresponds to a single-hidden-layer feed-forward
network with a ReLU activation function applied
on the sum of the encoder states.

We train the visual feature predictor using an
auxiliary objective. Since the encoder part of the
model is shared, additional weight updates are
propagated to the encoder during the model opti-
mization w.r.t. this additional loss. For the gen-
erated image representation ŷ and the reference
representation y, the error is estimated as margin-
based loss with margin parameter α:

Limag = max (0, α+ d(ŷ, y)− d(ŷ, yc)) (5)

where yc is a contrastive example randomly drawn
from the training batch and d is a distance function
between the representation vectors, in our case the
cosine distance.

Unlike Elliott and Kádár (2017), we sum both
translation and imagination losses within the train-
ing batches rather than alternating between train-
ing of each component separately.

4 Data

The participants were provided with the Multi30k
dataset (Elliott et al., 2016), an extension of the
Flickr30k dataset (Plummer et al., 2017) which
contains 29,000 train images, 1,014 validation im-
ages and 1,000 test images. The images are ac-
companied with six captions which were inde-
pendently obtained through crowd-sourcing. In



Multi30k, each image is accompanied also with
German, French, and Czech translations of a sin-
gle English caption. Table 1 shows statistics of the
captions contained in the Multi30k dataset.

Since the Multi30k dataset is relatively small,
we acquired additional data, similarly to our last
year submission (Helcl and Libovický, 2017). The
overview of the dataset structure is given in Ta-
ble 2.

First, for German only, we prepared synthetic
data out of the WMT16 MMT Task 2 training
dataset using back-translation to English (Sen-
nrich et al., 2016). This data consists of five addi-
tional German descriptions of each image. Along
with the data for Task 1 which is the same as the
training data this year, the back-translated part of
the dataset contains 174k sentences.

Second, for Czech and German, we selected
pseudo in-domain data by filtering the available
general domain corpora. For both languages, we
trained a character-level RNN language model on
the corresponding language parts of the Multi30k
training data. We use a single layer bidirectional
LSTM (Hochreiter and Schmidhuber, 1997) net-
work with 512 hidden units and character em-
beddings with dimension of 128. For Czech, we
compute perplexities of the Czech sentences in
the CzEng corpus (Bojar et al., 2016b). We se-
lected 15k low-perplexity sentence pairs out of
64M sentence pairs in total by setting the perplex-
ity threshold to 2.5. For German, we used the
additional data from the last year (Helcl and Li-
bovický, 2017), which was selected out of several
parallel corpora (EU Bookshop (Skadiņš et al.,
2014), News Commentary (Tiedemann, 2012) and
CommonCrawl (Smith et al., 2013)).

Third, also for Czech and German, we applied
the same criterion on monolingual corpora and
used back-translation to create synthetic parallel
data. For Czech, we took 333M sentences of
CommonCrawl and 66M sentences of News Crawl
(which is used in the WMT News Translation
Task; Bojar et al., 2016a) and extracted 18k and
11k sentences from these datasets respectively.

Finally, we use the whole EU Bookshop as an
additional out-of-domain parallel data. Since the
size of this dataset is large relative to the sizes
of the other parts, we oversample the rest of the
data to balance the in-domain and out-of-domain
portions of the training dataset. The oversampling
factors are shown in Table 2.

de fr cs

Multi30k 29k
– oversampling factor 273× 366× 9×

Task 2 BT 145k — —
in-domain parallel 3k — 15k
in-domain BT 30k — 29k
– oversampling factor 39× — 7×

EU Bookshop 9.3M 10.6M 445k

COCO (English only) 414k

Table 2: Overview of the data used for training our
models with oversampling factors. The EU Book-
shop data was not oversampled. BT stands for back-
translation.

For the unconstrained training of the imagina-
tion component, we used the MSCOCO (Lin et al.,
2014) dataset which consists of 414k images along
with English captions.

5 Experiments

In this year’s round, two variants of the MMT
tasks were announced. As in the previous years,
the goal of Task 1 is to translate an English cap-
tion into the target language given the image. The
target languages are German, French and Czech.
In Task 1a, the model receives the image and its
captions in English, German, and French and is
trained to produce the Czech translation. In our
submission, we focus only on Task 1.

In our submission, we experiment with three
distinct architectures. First, in textual architec-
tures, we leave out the images from the train-
ing altogether. We use this as a strong baseline
for the multimodal experiments. Second, multi-
modal experiments use the doubly attentive Trans-
former decoder described in Section 3.1. Third,
the experiments referred to as imagination employ
the imagination component as described in Sec-
tion 3.2.

We train the models in constrained and uncon-
strained setups. In the constrained setup, only the
Multi30k dataset is used for training. In the uncon-
strained setup, we train the model using the addi-
tional data described in Section 4. We run the mul-
timodal experiments only in the constrained setup.

In the unconstrained variant of the imagina-
tion experiments, the dataset consists of exam-
ples that can miss either the textual target values
(MSCOCO extension), or the image (additional



en-cs en-fr en-de
single averaged single averaged single averaged

Caglayan et al. (2017) N/A 54.7/71.3 56.7/73.0 37.8/57.7 41.0/60.5
C

on
s. Textual 29.6/28.9 30.9/29.5 59.2/73.7 59.7/74.4 38.1/56.2 38.3/56.0

Imagniation 29.8/29.4 30.5/29.6 59.4/74.2 59.7/74.4 38.8/56.4 39.2/56.8
Multimodal 30.5/29.7 31.0/29.9 60.6/75.0 60.8/75.1 38.4/53.1 38.7/57.2

U
nc

. Textual 31.2/30.1 32.3/30.7 62.0/76.7 62.5/76.7 39.6/58.7 40.4/59.0
Imagination 36.3/32.8 35.9/32.7 62.8/77.0 62.8/77.0 42.7/59.1 42.6/59.4

Table 3: Results on the 2016 test set in terms of BLEU score and METEOR score. We compare our results with
the last year’s best system (Caglayan et al., 2017) which used model ensembling instead of weight averaging.

parallel data). In these cases, we train only the de-
coding component with specified target value (i.e.
imagination component on visual features, or the
Transformer decoder on the textual data). As said
in Section 3.2, we train both components by sum-
ming the losses when both the image and the target
sentence are available in a training example.

In all experiments, we use the Transformer net-
work with 6 layers with model dimension of 512
and feed-forward hidden layer dimension of 4096
units. The embedding matrix is shared between
the encoder and decoder and its transposition is
reused as the output projection matrix (Press and
Wolf, 2017). For each language pair, we use a
vocabulary of approximately 15k wordpieces (Wu
et al., 2016). We extract the vocabulary and train
the model on lower-cased text without any further
pre-processing steps applied. We tokenize the text
using the algorithm bundled with the tensor2tensor
library (Vaswani et al., 2018). The tokeniza-
tion algorithm splits the sentence to groups of al-
phanumeric and non-alphanumeric groups, throw-
ing away single spaces that occur inside the sen-
tence. We conduct the experiments using the Neu-
ral Monkey toolkit (Helcl and Libovický, 2017).1

For image pre-processing, we use ResNet-50
(He et al., 2016a) with identity mappings (He
et al., 2016b). In the doubly-attentive model, we
use the outputs of the last convolutional layer be-
fore applying the activation function with dimen-
sionality of 8 × 8 × 2048. We apply a trainable
linear projection to the maps into 512 dimensions
to fit the Transformer model dimension. In the
imagination experiments, we use average-pooled
maps with 2048 dimensions. Following Elliott and
Kádár (2017), we set the margin parameter α from
Equation 5 to 0.1.

1https://github.com/ufal/neuralmonkey

For each model, we keep 10 sets of parameters
that achieve the best BLEU scores (Papineni et al.,
2002) on the validation set. We experiment with
weight averaging and model ensembling. How-
ever, these methods performed similarly and we
thus report only the results of the weight averag-
ing, which is computationally less demanding.

In all experiments, we use the Adam opti-
mizer (Kingma and Ba, 2014) with initial learn-
ing rate 0.2, and Noam learning rate decay scheme
(Vaswani et al., 2017) with β1 = 0.9, β2 = 0.98
and ε = 10−9 and 4,000 warm-up steps.

6 Results

We report the quantitative results of measured on
the Multi30k 2016 test set in Table 3.

The Transformer architecture achieves gener-
ally comparable or better results than the RNN-
based architecture. Adding the visual informa-
tion has a significant positive effect on the system
performance, both when explicitly provided as a
model input and when used as an auxiliary ob-
jective. In the constrained setup which used only
the data from the Multi30k dataset, the doubly-
attentive decoder performed best.

The biggest gain in performance was achieved
by training on the additional parallel data. The
imagination architecture outperforms the purely
textual models.

As the performance of single models increases,
the positive effect of weight averaging diminishes.
The effect of checkpoint averaging is smaller than
the results reported by Caglayan et al. (2017) who
use ensembles of multiple models trained with a
different initialization – we use only checkpoints
from a single training run.

During the qualitative analysis, we noticed that
mostly for Czech target language, the systems are

https://github.com/ufal/neuralmonkey


often incapable of capturing morphology. In or-
der to quantify this, we also measured the BLEU
scores using the lemmatized system outputs and
references. The difference was around 4 BLEU
points for Czech, less than 3 BLEU points for
French, and around 2 BLEU points for German.
These differences were consistent among different
types of models.

We hypothesize that in the imagination exper-
iments, the visual information is used to learn a
better representation of the textual input, which
eventually leads to improvements in the transla-
tion quality. In the multimodal experiments, the
improvements can come from the refining of the
textual representation rather than from explicitly
using the image as an input.

In order to determine whether the visual in-
formation is used also at the inference time, we
performed an adversarial evaluation by providing
the trained multimodal model with randomly se-
lected “fake” images. In French and Czech, BLEU
scores dropped by more than 1 BLEU point. This
suggests that the multimodal models utilize the
visual information at the inference time as well.
The German models seem to be virtually unaf-
fected. We hypothesize this might be due to a dif-
ferent methodology of acquiring the training data
for German and the other two target languages (El-
liott et al., 2016).

7 Conclusions

In our submission for the WMT18 Multimodal
Translation Task, we experimented with the Trans-
former architecture for MMT. The experiments
show that the Transformer architecture outper-
forms the RNN-based models.

Experiments with a doubly-attentive decoder
showed that explicit incorporation of visual infor-
mation improves the model performance. The ad-
versarial evaluation confirms that the models also
take into account the visual information.

The best translation quality was achieved by ex-
tending the training data by additional image cap-
tioning data and parallel textual data. It this un-
constrained setup, the best scoring model employs
the imagination component that was previously
introduced in RNN-based sequence-to-sequence
models.
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Ondřej Bojar, and Pavel Pecina. 2016. CUNI sys-
tem for WMT16 automatic post-editing and multi-
modal translation tasks. In Proceedings of the First
Conference on Machine Translation, pages 646–
654, Berlin, Germany. Association for Computa-
tional Linguistics.

Tsung-Yi Lin, Michael Maire, Serge J. Belongie,
Lubomir D. Bourdev, Ross B. Girshick, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and
C. Lawrence Zitnick. 2014. Microsoft COCO: com-
mon objects in context. CoRR, abs/1405.0312.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of
40th Annual Meeting of the Association for Com-
putational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Bryan A. Plummer, Liwei Wang, Chris M. Cervantes,
Juan C. Caicedo, Julia Hockenmaier, and Svet-
lana Lazebnik. 2017. Flickr30k entities: Col-
lecting region-to-phrase correspondences for richer
image-to-sentence models. Int. J. Comput. Vision,
123(1):74–93.

Ofir Press and Lior Wolf. 2017. Using the output em-
bedding to improve language models. In Proceed-
ings of the 15th Conference of the European Chap-
ter of the Association for Computational Linguistics:
Volume 2, Short Papers, pages 157–163. Association
for Computational Linguistics.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Improving neural machine translation mod-
els with monolingual data. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
86–96, Berlin, Germany. Association for Computa-
tional Linguistics.

Kashif Shah, Josiah Wang, and Lucia Specia. 2016.
Shef-multimodal: Grounding machine translation
on images. In Proceedings of the First Conference
on Machine Translation, pages 660–665, Berlin,
Germany. Association for Computational Linguis-
tics.

Karen Simonyan and Andrew Zisserman. 2014. Very
deep convolutional networks for large-scale image
recognition. CoRR, abs/1409.1556.
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