Translating Short Segments with NMT: A Case Study in English-to-Hindi

Shantipriya Parida and Ondřej Bojar
Charles University, Faculty of Mathematics and Physics Institute of Formal and Applied Linguistics

Prague, Czech Republic
Email: \{parida,bojar\}@ufal.mff.cuni.cz

Introduction

Visual Genome: Dataset of images, captions and relations potentially useful for many text and image processing applications.
108k images with 5.4M short captions in English.
Motivation for Hindi Visual Genome

- The Hindi version of Visual Genome would allow researchers to study multi-modal NLP for the world's fourth most spoken language. - Parallel to the English original, this resource would serve in multi-modal MT research.
- In this work: Set up a solid baseline MT.
- Next step: Find ambiguous segments where image or surrounding captions could help.

Context Disambiguates

Caption 1: Two lambs lying in the sun. Hindi MT: दो भेड़ के बच्चे सूरज में झूठ बोल रहे है Gloss: Two baby sheep are telling lies in the sun. Selected surrounding captions:
2. Sheep standing in the grass
3. Sheep with black face and legs
4. Sheep eating grass
5. Lamb sitting in grass.

Experiments

- Training and Evaluation Data:

Dataset	\#Sentences	\#Tokens	
		En	Hi
	273.9 k	3.8 M	5.6 M
Train (HindEnCorp)	1492.8 k	20.8 M	31.4 M
Train (IITB)	898	4519	6219
Dev (Visual Genome)	1000	4909	6918
Test (Visual Genome)	10		

- NMT Toolkit: Marian (C++ implementation of several models)

- MT Models tested

- Marian's nematus Model (Bi-RNN), used shallow. - Marian's Sequence-to-Sequence (s2s) Model, used deep. - Marian's transformer Model.

Common Settings: Tokenized with Moses tokenizer, joint BPE trained on HindEnCorp, 30k merge operations. Trained on four GeForce GTX 1080 Ti GPUs for 14 hours (best score)
Baseline: Moses Phrase-Based MT with 5-gram language model.

Results

Transformer fastest and best in BLEU.

BLEU (dev set). Black dots indicate the iteration used for test set translation and evaluation.

Manual Evaluation

Deep S2S better for small data: more flawless outputs.

(a) HindEnCorp-trained models

(b) IITB-trained models

Further Analysis

No clear tendency in translation quality across on source lengths.

- PBMT a little better in small data setting (lengths of 1-3, 4, and 7+).
- Transformer wins for all lengths with large data.

(c) HindEnCorp-trained models

(d) IITB-trained models

Target length varies across segments and NMT models.

Source and candidate translation lengths for individual segments (sorted by source length)
This work has been supported by the grants 18-24210S of the Czech Science Foundation,SVV 260 453 and "Progress" $18+$ P+44 of Charess Univesity and d sing language resources distributed by the INDAT/LLARIN proiect of the Ministy of Education, Youth and Sports of

