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Abstract
Machine learning models have been providing promising results in many fields including natural language processing. These models
are, nevertheless, prone to adversarial examples. These are artificially constructed examples which evince two main features: they
resemble the real training data but they deceive already trained model. This paper investigates the effect of using adversarial examples
during the training of recurrent neural networks whose text input is in the form of a sequence of word/character embeddings. The effects
are studied on a compilation of eight NLP datasets whose interface was unified for quick experimenting. Based on the experiments and
the dataset characteristics, we conclude that using the adversarial examples for NLP tasks that are modeled by recurrent neural networks
provides a regularization effect and enables the training of models with greater number of parameters without overfitting. In addition,
we discuss which combinations of datasets and model settings might benefit from the adversarial training the most.
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1. Introduction
In recent years, deep learning has outperformed many of
other machine learning models in various tasks of natu-
ral language processing (Amodei et al., 2016; Wang et al.,
2017; Yin et al., 2015; Collobert and Weston, 2008). Many
of these models have been completely trained in end-to-end
manner without any need for hand-crafting.
These models are usually very complex and tend to overfit
easily, especially in cases of small datasets. For that rea-
son, regularization techniques are often employed in order
to prevent overfitting. A popular solution to the lack of data
and to model overfitting is dataset augmentation (Simard et
al., 2003). This technique automatically generates similar
training instances to the ones already present in the dataset,
which effectively results in the dataset size increase. While
augmenting the visual data is straightforward, the augmen-
tation of text data is non-trivial.
Lately, a novel method for creating so called adversarial ex-
amples was introduced Goodfellow et al. (2014b; Szegedy
et al. (2013). These examples reveal that the models do
not fulfil the smoothness assumption, i.e. the adversarial
examples are very similar to the examples in the training
dataset, but the already trained models classify them differ-
ently than the very similar ones in the training data. When
generating such examples during training and employing
them in the process of model parameters update, they func-
tion as strong regularization. Generating adversarial exam-
ples can be understood as a form of dataset augmentation.
The aim of this paper is to evaluate the effect of using
the adversarial examples during training of the deep recur-
rent neural networks which process natural language in the
form of written text. More specifically, we intend to per-
turb trainable word/character embeddings1 (Mikolov et al.,
2013) in a way the network is confused, although the new
embeddings are extremely close to the original ones.

1The vector representations of the text tokens which provide a
unified input structure for machine learning models.

Our contribution is threefold:
• We prepared, selected and preprocessed a collection

of eight distinct NLP datasets.
• Employing the collected datasets, we evaluate the ef-

fects of using the adversarial examples during the deep
learning model training. We include significance tests
in order to support our claims.

• We discuss which datasets in general can benefit most
from the adversarial examples.

2. Related Work
Neural networks are commonly regularized by a handful of
standard techniques. Apart from traditional shrinkage tech-
niques such as L2 and L1 regularization, the most used reg-
ularization technique is dropout (Hinton et al., 2012) which
randomly selects a subset of neurons that are disabled in a
following training iteration.
Additional techniques include batch normalization (Ioffe
and Szegedy, 2015) and layer normalization (Ba et al.,
2016) which normalize the layer activation. Notably, re-
current neural networks greatly benefit from the latter ap-
proach. Further techniques include weight normaliza-
tion (Salimans and Kingma, 2016), batch renormalization
(Ioffe, 2017) and self normalizing networks (Klambauer et
al., 2017).
Adversarial examples have been mostly studied in the con-
text of image processing, especially for image classifica-
tion. Goodfellow et al. (2014b), by following the work of
Szegedy et al. (2013), show that not only highly non-linear
models such as deep neural networks have adversarial ex-
amples, but also much more linear and simpler models such
as logistic regression do too.
Moosavi-Dezfooli et al. (2016a) introduce a heuristic tech-
nique which develops such a perturbation that, when ap-
plied to almost any image in the dataset, misleads the
model. They name this established perturbation as univer-
sal. In addition, the authors discover that this perturbation



affects various models trained on the same dataset. There-
fore, the universality is twofold.
Nguyen et al. (2015) use a different approach by generating
the adversarial examples by an evolution algorithm instead
of by using gradient descent. This approach provides adver-
sarial examples even in the environments in which the neu-
ral network cannot be trained via back-propagation, since
the target variables remain unknown.
Vidnerová and Neruda (2016) propose a genetic algorithm
for adversarial example creation. They study robustness
and generalization power of various models including both
deep and shallow neural networks, support vector machines
(SVM) even with radial basis function kernel (RBF) and
decision trees.
Other noteworthy works regarding the adversarial examples
in image processing include the work of Fawzi et al. (2016),
Moosavi-Dezfooli et al. (2016b), Papernot et al. (2016b)
and Papernot et al. (2016a).
Regarding adversarial examples used in the context of NLP,
there is much less published research. Caswell et al.
(2016) have been, to our knowledge, the first who exper-
imented with using adversarial embedding perturbations.
The IMDB dataset (Maas et al., 2011) was used as a bi-
nary sentiment classification task. The authors introduced
visualization techniques in order to understand the effect of
constructed adversarial embeddings. Nonetheless, the re-
sults of their experiments did not support any hypothesis of
the method usefulness.
Miyato et al. (2016b) were the first who constructed adver-
sarial perturbations of word embeddings. In addition, the
authors employed a so-called virtual adversarial training
which introduces a new loss term based on KL-divergence
(Miyato et al., 2016b, Eq. 3,4). The authors evaluated five
data sources and both adversarial and virtual adversarial
learning outperformed the state-of-the-art models.2

Jia and Liang (2017) used adversarial generation of the
source text instead of embeddings. They introduced var-
ious methods fooling the models for Standford Question
Answering Dataset (Rajpurkar et al., 2016) by generating
additional sentences to the original source text.
Lu et al. (2017) aimed for adversarial examples detection
in the context of Generative Adversarial Networks (GANs)
(Goodfellow et al., 2014a). In addition, Miyato et al.
(2016a) employed RNN-based GANs to semi-supervised
text classification.
Adversarial examples are often created as a perturbation of
the original input. Goodfellow et al. (2014b) and Szegedy
et al. (2013) work with a deterministic perturbation which
“damages” the current model the most. Contrary to them,
using random perturbations has various theoretical implica-
tions and is commonly employed (Matsuoka, 1992; Bishop,
1995; Grandvalet et al., 1997).

3. Adversarial Examples
Adversarial examples are artificially constructed inputs that
are very similar to some example from the training set, but

2All experiments benefited from using a pretrained language
model, which is a substantial difference from models used in our
experiments.

they fool an already trained model. Adversarial examples
can be employed during the model training in order to sup-
ply new training data from which the model might benefit.

Let us assume a classification task. Given a trained model
representing function f and a training example (x, y), the
adversarial example is such x+∆ which fools the model,
i.e. f(x) = y while f(x + ∆) 6= y. The difference ∆
is called the perturbation and its magnitude can be limited
subject to some metric. In our case, ∆ is a determinis-
tic perturbation which is constructed subject to the gradient
updates of the network.

We focus on NLP tasks in which the input is encoded as a
sequence of word/character embeddings. The perturbation
∆ slightly modifies the embeddings of the input sequence.

The described process can be understood as a modification
of the original example text, however, the final perturbed
embedding does not correspond to a particular word (be-
sides exceptional cases), since the perturbations are arbi-
trary. Nevertheless, it is easy to find a nearest neighbor em-
bedding and its corresponding word. Understandably, such
nearest word does not necessarily behave the same as the
perturbed embedding.

Since it is expected that the nearest neighbor is the original
embedding without any perturbation applied, the adversar-
ial examples in the context of NLP are difficult to interpret.
One possible intuition is that the adversarial example re-
places each word with a “new word” which is supposed to
have a similar semantics to the original one, even though it
is uninterpretable to human.

Apart from the proof of various machine learning models
instability, Goodfellow et al. (2014b) demonstrated that
employing the adversarial examples during the training of
gradient-based models functions as a regularization tech-
nique whose effect is comparable to dropout (Hinton et al.,
2012).

The main principle lies in online generation of adversarial
examples throughout the training of the model. These gen-
erated examples are similar to the training instances, which
might improve model smoothness and generalization, by
enforcing the model to behave similarly on a similar input
(Goodfellow et al., 2014b).

This modification of the training effectively extends the
training data, hence it can be understood as an augmenta-
tion technique.

Given a training pair (x, y) and current model parameters
Θ , the cost function J might be linearly approximated on
the neighborhood of Θ .

Assuming the prior conditions, gradient∇ΘJ(x, y;Θ) can
be easily estimated (e.g. by back-propagation). Based
on the explanation of (Goodfellow et al., 2014b), a pos-
sible way of perturbation computation is using the esti-
mated gradients. Considering the fact that the gradient
might be arbitrarily large and the perturbation is thought
to be small, the authors approximate the gradient by a vec-
tor of {−1, 0,+1} by applying the sign function. The total
magnitude of the perturbation might be then controlled by
a (small) multiplicative constant ε > 0. This approach was
named fast gradient sign method and is defined by Equa-



tion 1.

∆ = ε · sign
(
∇ΘJ(x, y;Θ)

)
(1)

Goodfellow et al. (2014b) proposed a modification of the
optimalization algorithm based on back-propagation which
employs the adversarial examples.
The authors define a new loss function J̃ which regards
both the original loss and the loss computed on an adver-
sarial example (based on the currently processed pattern).
The definition of J̃ for training pair (x, y) and parameters
Θ is given by Equation 2.

J̃(x, y;Θ) = αJ(x, y;Θ) + (1− α)J(x+∆, y;Θ)

= αJ(x, y;Θ) + (1− α) ·
· J(x+ ε · sign(∇ΘJ(x, y;Θ)), y;Θ)

(2)

4. Datasets
A collection of eight datasets in total was selected in order
to evaluate the adversarial training in the context of NLP.
In order to provide further complexity of the evaluation,
we selected datasets that differ in multiple characteristics.
However, due to limited resources, the selected datasets do
not cover the whole characteristic space.
All datasets were provided with a unified interface so that
they could be easily experimented with.3

At first, we selected three of the Facebook bAbI datasets
(Weston et al., 2015; Sukhbaatar et al., 2015). Each of
the datasets models a different aspect of natural language
understanding and reasoning. The typical dataset example
contains a sequence of facts regarding position of various
objects and a question testing the understanding and rea-
soning based on these facts. To be specific, we decided
to choose the English versions of bAbI tasks #1, #2 and #6,
because they represent both simple and advanced problems.
Secondly, we focused on subjectivity detection, i.e. distin-
guishing between subjective and objective texts. For this
reason, we selected Movie Review Data (originally evalu-
ated by Pang and Lee (2004)). This dataset contains short
texts (typically single sentences), which were automatically
mined either from the official movie description provided
by the distributor or from the user reviews. It is assumed
that the prior texts are objective and the latter subjective.
This process of automatic mining naturally introduces a
noise in the generated annotations, i.e. some objective sen-
tences are probably classified as subjective and vise-versa.
In order to evaluate also non-English datasets, we selected
three Czech/Slovak datasets. All of them aim to test senti-
ment analysis, i.e. the goal of the model is to distinguish
among positive, negative, bipolar and neutral texts. The
three selected datasets (Social Media Dataset, Movie Re-
view Dataset and Product Review Dataset, all described by
Habernal et al. (2013)) represent texts regarding various
topics and were automatically collected from the internet.

3We implemented and employed deep learning framework
cxflow (v0.4) for all our experiments (https://cxflow.org)
as it supports quick experiment creation, logging and result man-
agement.

Their sentiment was automatically derived based on the rat-
ing assigned to the reviewed item (number of stars).
The final selected dataset is the one introduced as Discrimi-
nating between Similar Language (DSL) Shared Task 2015
at LT4VarDial - Joint Workshop on Language Technology
for Closely Related Languages, Varieties and Dialects in
2015 (Zampieri et al., 2015). The goal of the dataset is to
demonstrate the language discrimination among 13 differ-
ent languages and dialects and one additional category. The
provided dataset contains approximately 200 thousand ex-
amples, which enable us to restrict the training set to a spec-
ified number of examples. We use the restricted versions of
this dataset in order to evaluate the effects of various dataset
sizes on adversarial training.
In order to evaluate the effect of adversarial examples, we
consider the following dataset features that aim to cover
distinct types of NLP datasets. We use the characteristics
for discussion of the relation between the regularization ef-
fect of adversarial examples and the dataset features.
• Dataset size: number of the training examples.
• Dataset language: input text language.
• Vocabulary size: number of distinct tokens.
• Text length: distribution of the text lengths in the train-

ing dataset.
• Annotation quality: noise amount in the gold labels.
• Input text structure: distribution of the token fre-

quency; number of sentences.
• Dataset artificiality: real-world dataset vs. artificially

constructed one.

5. Evaluation
Each dataset was split into three distinct parts: training,
validation and testing. The training part was used for the
model parameter estimation, the validation for the best
model selection and the testing for the final result reports.
We employ the testing losses in order to perform signifi-
cance of the performance improvement.

5.1. Model Selection
The neural networks are typically trained in several epochs.
After each epoch, the model loss is evaluated both on train-
ing and validation data. While the validation loss represents
an independent estimation of the model generalization ca-
pability, both losses are used together for overfitting detec-
tion.
In order to select the epoch in which the model achieved the
best performance, we select the one in which the loss was
the least on the validation data. The final performance is
then reported on testing dataset, which is completely held-
out until the final model is selected.
Since the validation and test datasets were constructed by
randomly choosing examples, the test performance on the
model is conditionally independent on the validation per-
formance given the model parameters. However, the test
performance is expected to be slightly worse in comparison
to the validation performance since the model was chosen
to achieve the best validation performance regardless the
test evaluation.
The use of loss instead of other metrics such as accuracy
or F-measure is supported by the fact that the loss itself

https://cxflow.org


models the actual behavior of the model. In contrast, in a
classification problem, the accuracy of the model does not
express its behavior in a sufficient detail.

5.2. Testing Significance
In order to evaluate whether the adversarial training has a
significantly positive effect on model performance, we per-
form the paired t-test on the testing losses as follows.
Comparing two experiments given a single dataset, we train
appropriate network architectures independently with the
same train/valid/test data split. Then, we select the best
models using the validation dataset. Finally, we evaluate
and compare the testing losses between the corresponding
testing examples. This leads to a paired t-test using these
two sets of losses pairs.

5.3. Experiment Setup
A model processes tokenized4 text with special tokens indi-
cating the beginning and the ending of a sequence. In case
there is a token in the validation or testing dataset which
was not present in the training dataset, it is replaced with
the unknown token symbol. In order to adapt to texts con-
taining such unknown tokens, the tokens used for training
are usually uniformly randomly replaced with the unknown
token during each training epoch. The uniformity is em-
ployed since many of the datasets were collected automati-
cally and contain various typing errors, which are believed
to be distributed uniformly.
Afterwards, each token is translated into its corresponding
embedding. The embeddings are uniformly randomly ini-
tialized without any pretraining and being updated during
the model training. In some experiments, we apply dropout
with 50% keep probability to the embeddings.
Once the sequence of embeddings is constructed, a recur-
rent cell is applied to it. We employ either GRU (Cho et al.,
2014) or LSTM (Hochreiter and Schmidhuber, 1997) cells
in the following experiments. We use the last output of the
cell (the concatenation of both last outputs in the case of
bi-directional RNN) as the input to a multilayer perceptron
(MLP) which contains a single hidden layer. In some exper-
iments, we apply apply dropout with 50% keep probability
to the hidden layer of the MLP.
By using a fully connected layer, we transform the output
vector cell so that the final dimension matches the desired
number of output neurons.

5.4. Model Training
The final output vector is trained to minimize categorical
cross-entropy error function, in which the index of the tar-
get class is provided as the ground truth. The models are
trained via mini-batch gradient descent with Adam gradi-
ent update (Kingma and Ba, 2014). The learning rates have
been chosen from the interval 0.001–0.003 without major
performance influence.
We experimented also with additional loss functions such
as mean-square error applied to the sigmoid of the final out-
put vector and one-hot encoded ground truth, however, we
observed no major difference.

4The text is tokenized by the popular tokenized twokenize
(https://github.com/brendano/tweetmotif).

5.5. Results
During the evaluation, we focus on the testing loss improve-
ment in comparison with the original vanilla model. We do
not aim to compare our results with state-of-the-art results
that usually employ additional (possibly hand-crafted) tech-
niques during the training. All our results are presented in
Table 1.
At least two models differing in the number of parameters
(referred to as the big and small models) were trained for
each experiment. Throughout our experiments, the smaller
models tend to underfit the given task and the use of ad-
versarial examples had no effect. In contrast, the bigger
models tend to overfit massively which made regulariza-
tion methods such as dropout or the adversarial examples
effective. In the following text, we report only the results
of the big models.
In addition, we experimented with both LSTM and GRU
recurrent cells which, to our knowledge, did not affect the
overall model performance. The presented results repre-
sent the models which employ bidirectional GRU recurrent
cells.
All experiments compare four models (see Table 1):

1. the vanilla model (without any regularization),
2. the same model trained with dropout (embedding

layer, MLP hidden layer),
3. the same model trained with adversarial examples,
4. the same model trained with both adversarial exam-

ples and dropout.
We start by evaluating the bAbI datasets, namely bAbI #1,
#2 and #6. In all bAbI experiments we use a model which
employs embeddings of dimension 100, which we experi-
mentally discovered to be sufficient (increasing the dimen-
sion does not affect training). The GRU dimension is set to
400 and MLP hidden layer dimension is set to 512.
Focusing mainly on the test performance which represents
the actual model generalization, we observe that the em-
ployment of the adversarial perturbations together with
dropout provides approximately 22% accuracy improve-
ment5 in the case of bAbI #6. On the contrary, the em-
ployment of dropout provides only approximately 10% ac-
curacy gain.
In contrast with the previous experiment, the employment
of the adversarial examples damaged the model perfor-
mance in the case of bAbI #1. However, the dataset ac-
curacy benefited from using both adversarial training and
dropout by approximately 4%.
For both experiments, we tested the testing loss differ-
ence between the vanilla model and the one employing the
adversarial training. All measurements indicate that the
testing losses significantly differ at the significance level
α = 0.05, which was set in advance (p-values 0.003 and
0.001, respectively).
Both datasets outperformed the baselines set by Weston et
al. (2015) when evaluating the weakly supervised cases.
The final selected bAbI dataset (#2) which represents more

5All reported improvements are absolute. The testing accura-
cies and losses are presented in Table 1. The baseline provided by
Weston et al. (2015) yielded 48% when using the weakly super-
vised LSTM.

https://github.com/brendano/tweetmotif


Task Type Dataset Vanilla Dropout Adversarial
Examples

Advers. examples.
+ Dropout

Perf Loss Perf Loss Perf Loss Perf Loss

Question
Reasoning

bAbI #1 73.8% 0.592 73.8% 0.603 68.3% 0.925 77.5% 0.528
bAbI #2 30.8% 1.408 30.6% 1.435 30.8% 1.399 29.9% 1.428
bAbI #6 47.9% 0.694 56.5% 0.662 67.2% 0.636 69.8% 0.585

Subjectivity
Detection

Movie Review 64.4% 0.600 61.6% 0.617 63.5% 0.619 64.7% 0.606

Cz/Sk Sentiment
Analysis

Social Media 42.5% (F1) 1.012 42.4% 1.024 43.0% (F1) 1.010 42.8% (F1) 1.010
Movie Review 41.9% (F1) 1.071 41.4% 1.076 42.0% (F1) 1.071 40.6% (F1) 1.076
Product Review 74.3% 0.606 73.4% 0.619 72.1% 0.725 57.7% 1.098

Language
Detection

DSL 10k 55.3% 0.840 55.9% 0.891 57.0% 0.812 53.0% 0.863
DSL 70k 71.8% 0.594 63.8% 0.694 70.8% 0.579 70.4% 0.611
DSL 130k 73.4% 0.539 71.6% 0.567 66.7% 0.620 66.6% 0.600
DSL 190k 77.8% 0.453 75.1 0.509 78.6% 0.444 67.4% 0.579

Table 1: The first and second columns describe the task type and the dataset name, respectively. The final four columns
demonstrate the testing accuracies or F1-scores and the mean testing losses. The bold formatting indicates the loss which
is the best among the dataset experiment.

challenging questions has not significantly benefited from
the employment of the adversarial examples.
The next evaluated dataset is the Movie Review dataset
for subjectivity detection. We use a model which employs
embeddings of dimension 200; the GRU dimension is set
to 200 and MLP hidden layer dimension is set to 256.
We observe that employing both adversarial examples and
dropout during training stabilizes it. Approximately 0.3%
increase in accuracy is achieved, however, the testing loss
is significantly smaller (p-value 0.039) than the testing loss
yielded by the model with only dropout. We suggest that
the model is more confident of its responses.
Then, we evaluated the three Czech/Slovak sentiment anal-
ysis datasets. We used all four classes (positive, negative,
neutral, bi-polar) and trained models using the their pho-
netic transcriptions. We have experimented also with stem-
ming instead of phonetic transcriptions, however, the per-
formance was poor and all models tended to overfit in early
epochs.
The Social Media dataset benefited from the adversarial
training by 0.05% increase in F1-score and the testing loss
significantly decreases either with or without using dropout
(p-values 0.009 and 0.026, respectively). We observe sim-
ilar gain in F1-score (+0.15%) in the case of omitting the
bi-polar class. For these experiments we employ embed-
dings of dimension 200; the GRU dimension is set to 400
and MLP hidden layer dimension is set to 512.
The sentiment analysis dataset (Movie Review) has not sig-
nificantly benefited from the adversarial examples.
The performance of the final sentiment analysis dataset
(Product Review) surprisingly decreased in all our exper-
iments when using the adversarial examples even though it
is similar to the previous two datasets. The main difference
is the size of the dataset as the Product Reviews contains
much more training examples. We experiment also with
character-level models (presented in Table 1) for which we
employ embeddings of dimension 15; the GRU dimension
is set to 400 and MLP hidden layer dimension is set to 512.
The last dataset that we evaluate is the Discriminating be-
tween Similar Language (DSL) dataset which we attempt to
model also on a character level. We evaluated this dataset

multiple-times with various training set size limits (10, 70,
130 and 170 thousand of examples).
In all DSL experiments we use a model which employs em-
beddings of dimension 20. The GRU dimension is set to
200 and MLP hidden layer dimension is set to 256.
The results of the experiments which were trained us-
ing the smallest training set and regularized by adversar-
ial examples indicate that the use of adversarial examples
significantly improves the training loss (relative drop of
4%). At the same time, the model accuracy is improved
as well. Contrary to this observation, the experiments
with the larger training sets have not benefited in accuracy
when employing adversarial examples either with or with-
out dropout. Nevertheless, the average testing losses have
(except the 130k training set) significantly decreased. We
conclude that the greater the training set is, the smaller im-
pact the adversarial training makes.

6. Discussion
The conducted experiments lead us to the following claims.
Firstly, we observe that the employment of adversarial ex-
amples improves the model loss on majority of datasets of
our collection.6

We conclude that the models whose capacity is sufficient
so that they overfit the training data (the number of their
parameters is large) can benefit from using adversarial ex-
amples. In these cases, we claim that employing adversarial
examples during training acts as a regularization technique.
Furthermore, our preliminary hypotheses on the trends be-
tween the dataset characteristics and the effect of using the
adversarial examples are as follows. Note that a wider col-
lection of datasets would be required to make our proposi-
tions more credible.
English datasets exhibited better performance from the ad-
versarial examples than the Czech or Slovak ones. We hy-
pothesize that this effect might be caused by the fact that
the Slavic languages feature a more complex morphology

6We support the claim of Caswell et al. (2016) and Miyato et
al. (2016b) who suggest that the use of adversarial examples dur-
ing the training might be beneficial even for recurrent networks.



and a greater number of distinct words (tokens). Neverthe-
less, even though strict stemming was employed, we did
not achieve such performance improvement compared to
the one we have observed in other English datasets.
Furthermore, we claim that the networks trained on artifi-
cial data (such as bAbI tasks (Weston et al., 2015)) with
a rather small number of distinct tokens are more likely to
be vulnerable to adversarial examples and their use during
training prevents the model from overfitting particularly ef-
ficiently.
Based on our experiments, we observe that the impact of
the studied technique decreases as the size of the training
dataset increases. We conclude that this phenomenon sup-
ports the hypothesis that adversarial training serves as a reg-
ularization technique, which is usually less effective in case
more training data is available.
We provide novel evidence that the adversarial perturbation
of character embeddings can also lead to performance im-
provement when used in the process of training character-
level models.

7. Conclusion
This paper focuses on employing adversarial examples dur-
ing training of deep recurrent neural networks. The contri-
bution of this paper is threefold.
Firstly, we compiled a collection of eight datasets for which
a unified stream interface was created. The datasets were
chosen in order to represent a distinct set of characteristics
which were chosen in advance.
Secondly, the employment of adversarial examples during
the network training was evaluated in various settings. We
focused on embeddings which are randomly initialized at
the beginning of the training.
Finally, we have proposed several hypotheses about rela-
tions between the dataset characteristics and the effect of
model training when using adversarial examples. In some
cases, we outperformed the baselines provided by the au-
thors of the dataset publications.
We conclude that the adversarial training can function as a
regularization for RNNs processing natural text. This is a
direct extension of the work of Miyato et al. (2016a) who
have experimented with pretrained embeddings.

7.1. Future Work
We consider the following possible research directions in
our future work regarding the adversarial examples.
Firstly, additional datasets might be evaluated in order to
provide more detailed study. In particular, tasks such as
machine translation, which do not aim to classify the in-
put, could be studied. For this purpose, supplementary ar-
chitectures such as sequence-to-sequence models shall be
evaluated.
Secondly, our further research will focus on the embedding
structure analysis, primarily on the changes caused by em-
ploying the adversarial examples. Even though we have
not been able to prove a significant change in their struc-
ture yet, we hope the interpretation of the embedding dif-
ferences might be found. In addition, we will study the
stability of training when using adversarial examples.

Furthermore, supplementary techniques for adversarial ex-
ample creation will be analyzed, notably Generative Ad-
versarial Networks (Goodfellow et al., 2014a). Another
approach could employ genetic algorithms for embedding
perturbations.
Finally, additional types of machine learning, such as
(deep) reinforcement learning (RL) could be examined. Fo-
cusing on NLP, the end-to-end neural dialogue systems are
suitable for further analysis.
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