Multilingual Parsing from Raw Text to Universal Dependencies

CoNLL 2017 shared task

Daniel Zeman

Institute of Formal and Applied Linguistics, Charles University

In collaboration with Martin Popel, Milan Straka, Jan Hajič, Joakim Nivre, Martin Potthast, Filip Ginter, Juhani Luotolahti, Slav Petrov and many others

Universal Dependencies and Dependency Parsing

UD Treebanks

H＝	Ancient Greek	202K	（1）$)^{\prime}$
\pm	Ancient Greek－PROIEL	211K	（1）${ }^{\text {P }}$
®	Arabic	242K	（1）
a	Arabic－NYUAD	629K	（1）${ }^{\text {P }}$
¢	Arabic－PUD	20K	（1）$\square^{\text {e }}$
ㅌ	Basque	121K	（1）${ }^{\text {e }}$
，\square	Belarusian	6K	（1）
＋	Bulgarian	156K	（1）$\square^{(1)}$
\square	Buryat	10K	（1）
＋	Catalan	530K	（1）
，	Chinese	123K	（1）
，	Chinese－PUD	21K	（4）
0	Coptic	3K	（1）${ }^{\text {c }}$
＝	Croatian	197K	（1）
\square	Czech	1，330K	（1）${ }^{\text {e }}$
	Czech－CAC	493K	（1）
$\underline{\square}$	Czech－CLTT	37K	（1）${ }^{\text {P }}$
L	Czech－PUD	18K	（L）
F	Danish	100K	（1）
，E	Dutch	209K	（1）${ }^{\text {e }}$
，$=$	Dutch－LassySmall	101 K	（L）
E	English	254K	（1）
5	English－ESL	88 K	（1）
『	English－LinES	82K	
四或	English－PUD	21K	（1）$)^{-1}$
或糸	English－ParTUT	49K	（1）${ }^{\text {e }}$
F	Estonian	47K	（1）${ }^{\text {P }}$
F	Finnish	202K	（1）${ }^{\text {P }}$
F	Finnish－FTB	159K	（1）
\＃	Finnish－PUD	15K	（1）\square°
－	French	391K	（1）
－	French－FTB	556K	（1）
II	French－PUD	24K	©
－	French－ParTUT	27K	（1）${ }^{\text {e }}$
\square	French－Sequoia	68K	（1）${ }^{\text {e }}$
\square	Galician	138K	（1）${ }^{\text {P }}$

Dependency Parsing Shared Tasks

CoNLL 2006 (13 langs: ar, cs, bg, da, de, es, ja, nl, pt, sl, sv, tr, zh)
CoNLL 2007 (10 langs: ar, ca, cs, el, en, eu, hu, it, tr, zh)

Dependency Parsing Shared Tasks

CoNLL 2006 (13 langs: ar, cs, bg, da, de, es, ja, nl, pt, sl, sv, tr, zh)
CoNLL 2007 (10 langs: ar, ca, cs, el, en, eu, hu, it, tr, zh)
CoNLL 2008: + semantic dependencies (English)
CoNLL 2009: + semantic dependencies (ca, cs, de, en, es, ja, zh)

Dependency Parsing Shared Tasks

CoNLL 2006 (13 langs: ar, cs, bg, da, de, es, ja, nl, pt, sl, sv, tr, zh)
CoNLL 2007 (10 langs: ar, ca, cs, el, en, eu, hu, it, tr, zh)
CoNLL 2008: + semantic dependencies (English)
CoNLL 2009: + semantic dependencies (ca, cs, de, en, es, ja, zh)
ICON 2009 (Hindi, Bangla, Telugu)
ICON 2010 (Hindi, Bangla, Telugu)

Dependency Parsing Shared Tasks

CoNLL 2006 (13 langs: ar, cs, bg, da, de, es, ja, nl, pt, sl, sv, tr, zh)
CoNLL 2007 (10 langs: ar, ca, cs, el, en, eu, hu, it, tr, zh)
CoNLL 2008: + semantic dependencies (English)
CoNLL 2009: + semantic dependencies (ca, cs, de, en, es, ja, zh)
ICON 2009 (Hindi, Bangla, Telugu)
ICON 2010 (Hindi, Bangla, Telugu)
SPMRL 2013 (9 languages: ar, de, eu, fr, he, hu, ko, pl, sv)
SPMRL 2014 (9 languages: ar, de, eu, fr, he, hu, ko, pl, sv)

Dependency Parsing Shared Tasks

CoNLL 2006 (13 langs: ar, cs, bg, da, de, es, ja, nl, pt, sl, sv, tr, zh)
CoNLL 2007 (10 langs: ar, ca, cs, el, en, eu, hu, it, tr, zh)
CoNLL 2008: + semantic dependencies (English)
CoNLL 2009: + semantic dependencies (ca, cs, de, en, es, ja, zh)
ICON 2009 (Hindi, Bangla, Telugu)
ICON 2010 (Hindi, Bangla, Telugu)
SPMRL 2013 (9 languages: ar, de, eu, fr, he, hu, ko, pl, sv)
SPMRL 2014 (9 languages: ar, de, eu, fr, he, hu, ko, pl, sv)
VarDial 2017 (cross-lingual: cs-sk, sl-hr, da/sv-no)

Dependency Parsing Shared Tasks

CoNLL 2006 (13 langs: ar, cs, bg, da, de, es, ja, nl, pt, sl, sv, tr, zh)
CoNLL 2007 (10 langs: ar, ca, cs, el, en, eu, hu, it, tr, zh)
CoNLL 2008: + semantic dependencies (English)
CoNLL 2009: + semantic dependencies (ca, cs, de, en, es, ja, zh)
ICON 2009 (Hindi, Bangla, Telugu)
ICON 2010 (Hindi, Bangla, Telugu)
SPMRL 2013 (9 languages: ar, de, eu, fr, he, hu, ko, pl, sv)
SPMRL 2014 (9 languages: ar, de, eu, fr, he, hu, ko, pl, sv)
VarDial 2017 (cross-lingual: cs-sk, sl-hr, da/sv-no)
CoNLL 2017 (45 languages + surprise + end-to-end parsing)

Languages and Treebanks

All UD 2.0 treebanks except:
Too small
Non-free

Languages and Treebanks

All UD 2.0 treebanks except:
Too small
Non-free
Arabic NYUAD: not available free of charge

Languages and Treebanks

All UD 2.0 treebanks except:
Too small
Non-free
Arabic NYUAD: not available free of charge
At least 10K test words \Rightarrow
Exclude: Belarusian, Coptic, Lithuanian, Sanskrit, Tamil Include but small training: French ParTUT, Galician TreeGal, Irish, Kazakh, Latin, Slovenian SST, Ukrainian, Uyghur

Languages and Treebanks

All UD 2.0 treebanks except:
Too small
Non-free
Arabic NYUAD: not available free of charge
At least 10K test words \Rightarrow
Exclude: Belarusian, Coptic, Lithuanian, Sanskrit, Tamil
Include but small training: French ParTUT, Galician TreeGal, Irish, Kazakh, Latin, Slovenian SST, Ukrainian, Uyghur
Surprise languages
Buryat, Kurdish, Northern Sámi, Upper Sorbian

Languages and Treebanks

All UD 2.0 treebanks except:
Too small
Non-free
Arabic NYUAD: not available free of charge
At least 10K test words \Rightarrow
Exclude: Belarusian, Coptic, Lithuanian, Sanskrit, Tamil
Include but small training: French ParTUT, Galician TreeGal, Irish, Kazakh, Latin, Slovenian SST, Ukrainian, Uyghur
Surprise languages
Buryat, Kurdish, Northern Sámi, Upper Sorbian
New parallel test set (DFKI, Google and others):
14 languages in the task, 4 others exist

Additional Data

Just one "closed" track
Registered participants were asked for suggestions

CommonCrawl + word embeddings
Word Atlas of Language Structures (WALS)
Wikipedia Dumps
Wikipedia word vectors (90 languages) by Facebook
Opus Parallel Corpora
WMT 2016 Parallel + Monolingual Data
Apertium + Giellatekno Morphological Analyzers
French Treebank UD v2 conversion

Multi-Language and Multi-Domain

English language
UD English (Web Treebank): blog, social, reviews 205K train, 25K dev, 25K test
UD English LinES: fiction, nonfiction (sw localization), spoken

50K train, 17K dev, 16K test
UD English ParTUT: legal, news, wiki
26 K train, 12 K dev, 12 K test
UD English PUD: news, wiki
roughly 20K test only!
One model for all... but different domains!
81 test files in total
Main system score:
macro-average LAS across all test sets (not languages)

End-to-End Parsing

A real-world scenario

No gold-standard processing available in the test data

End-to-End Parsing

A real-world scenario
No gold-standard processing available in the test data

Sentence segmentation

End-to-End Parsing

A real-world scenario
No gold-standard processing available in the test data

Sentence segmentation
Tokenization
Word segmentation (multi-word tokens)

End-to-End Parsing

A real-world scenario
No gold-standard processing available in the test data

Sentence segmentation
Tokenization
Word segmentation (multi-word tokens)
Morphological analysis
If your parser needs it
Exception: predicted morphology available for surprise languages

End-to-End Parsing

A real-world scenario
No gold-standard processing available in the test data

Sentence segmentation
Tokenization
Word segmentation (multi-word tokens)
Morphological analysis
If your parser needs it
Exception: predicted morphology available for surprise languages
Parsing

Baseline Models

UDPipe (ÚFAL): trained segmenter, tagger+lemmatizer, parser
Pre-processed test data (except syntax) directly available Just use that if you don't have anything better

SyntaxNet / ParseySaurus (Google)

No interest in surprise languages?
Use simple delexicalized parser.

Evaluation Metrics

Align system-output tokens to gold tokens
Al-Zaman : American forces killed Shaikh Abdullah al-Ani, the preacher at the mosque in the town of Qaim, near the Syrian border.

GOLD: Al - Zaman : American forces killed Shaikh OFFSET: $0-1 \quad 2 \quad 3-7 \quad 9 \quad 11-18 \quad 20-25 \quad 27-32 \quad 34-39$

All characters except for whitespace match => easy align!
SYSTEM: Al-Zaman : American forces killed Shaikh OFFSET: $\quad 0-7 \quad 9 \quad 11-18 \quad 20-25 \quad 27-32 \quad 34-39$

Evaluation Metrics

Align system-output tokens to gold tokens
Die Kosten sind definitiv auch im Rahmen.
GOLD: Die Kosten sind definitiv auch im Rahmen
SPLIT: Die Kosten sind definitiv auch in dem Rahmen
OFFSET: $0-2 \quad 4-9 \quad 11-14 \quad 16-24 \quad 26-29 \quad 31-32 \quad 34-39 \quad 40$

Corresponding but not identical spans?
Find longest common subsequence
SYSTEM: Kosten sind definitiv auch im Rahmen . SPLIT: Kosten sind definitiv auch im Rahmen .
OFFSET: $\quad 4-9 \quad 11-14 \quad 16-24 \quad 26-29 \quad 31-32 \quad 34-39 \quad 40$

Evaluation Metrics

Align system-output tokens to gold tokens
Die Kosten sind definitiv auch im Rahmen.
GOLD: Die Kosten sind definitiv auch im Rahmen
SPLIT: Die Kosten sind definitiv auch in dem Rahmen
OFFSET: $0-2 \quad 4-9 \quad 11-14 \quad 16-24 \quad 26-29 \quad 31-32 \quad 34-39 \quad 40$

Corresponding but not identical spans?
Find longest common subsequence

SYSTEM: auch SPLIT: auch in einem, dem alle zustimmen, Rahmen OFFSET: 26-29 31-32 34-39

Evaluation Metrics

Word IDs no longer match between gold and system files! Instead of comparing gold HEAD to system HEAD

$$
\begin{aligned}
& \text { head }_{\text {system }}(i)=\text { head }_{\text {Gold }}(i) \\
& \text { (Comparing just integers here.) }
\end{aligned}
$$

Evaluation Metrics

Word IDs no longer match between gold and system files!
Instead of comparing gold HEAD to system HEAD
head $_{\text {system }}(i)=$ head $_{\text {Gold }}(i)$
(Comparing just integers here.)
Compare aligned nodes, if alignment is found
node: Integer \rightarrow Node
align : SystemNode \rightarrow GoldNode
$\operatorname{align}\left(\right.$ head $_{\text {System }}\left(\right.$ node $\left.\left._{i}\right)\right)=$ head $_{\text {Gold }}\left(\operatorname{align(\text {node}_{i}))}\right.$
(Comparing node objects.)

Evaluation Metrics

Word IDs no longer match between gold and system files!
Instead of comparing gold HEAD to system HEAD
head $_{\text {System }}(i)=$ head $_{\text {Gold }}(i)$
(Comparing just integers here.)
Compare aligned nodes, if alignment is found

$$
\begin{aligned}
& \text { node : Integer } \rightarrow \text { Node } \\
& \text { align : SystemNode } \rightarrow \text { GoldNode } \\
& {\text { align }\left(\text { head } \text { System }\left(\text { node }_{i}\right)\right)=\text { head }_{\text {Gold }}\left(\text { align }^{\left.\left(\text {node }_{i}\right)\right)}\right.}^{(\text {Comparing node objects. })}
\end{aligned}
$$

Cannot align? No point for attachment!

Evaluation Metrics

Word IDs no longer match between gold and system files!
Instead of comparing gold HEAD to system HEAD
head $_{\text {System }}(i)=$ head $_{\text {Gold }}(i)$
(Comparing just integers here.)
Compare aligned nodes, if alignment is found

$$
\begin{aligned}
& \text { node : Integer } \rightarrow \text { Node } \\
& \text { align : SystemNode } \rightarrow \text { GoldNode } \\
& \text { align }\left(\text { head }_{\text {System }}\left(\text { node }_{i}\right)\right)=\text { head }_{\text {Gold }}\left(\text { align }^{\left.\left(\text {node }_{i}\right)\right)}\right. \\
& (\text { Comparing node objects. })
\end{aligned}
$$

Cannot align? No point for attachment!
Wrong sentence boundary?
\Rightarrow one or more wrong relations

Labeled Attachment Score

Correct relation ... alignment of parent equals to parent of alignment, and the universal prefix of dependency relation types match on both sides

Precision: $P=\frac{\# \text { correctRelations }}{\# \text { systemNodes }}$
Recall: $R=\frac{\# \text { correctRelations }}{\# \text { goldNodes }}$
LAS (labeled attachment F_{1}-score): $L A S=\frac{2 P R}{P+R}$

Average over 81 test files \Rightarrow main system score

Blind Evaluation on TIRA

Strong recommendation of SIGNLL (new 2015):
Teams submit software, not data
TIRA evaluation platform
http://www.tira.io/

Virtual machine for each team
Configurable number of CPUs, RAM, disk space
Currently no GPUs available
OS: Ubuntu, Fedora or Windows
Participants get admin access, can install anything
\Rightarrow improved reproducibility

Blind Evaluation on TIRA

Running on test data:
"Remote control" through web interface
VM is "sandboxed", detached from internet
after the run:
Output files, STDOUT and STDERR archived in TIRA State of VM before the run is restored (including disk) Participants do not see any output
\Rightarrow prevents test data leakage

Blind Evaluation on TIRA

Running on test data:
"Remote control" through web interface
VM is "sandboxed", detached from internet after the run:

Output files, STDOUT and STDERR archived in TIRA State of VM before the run is restored (including disk) Participants do not see any output
\Rightarrow prevents test data leakage
... but also makes the task extremely difficult

\#ParsingTragedy

Debugging on development data (can see output)
but some files exist only in test data

\#ParsingTragedy

Debugging on development data (can see output)
but some files exist only in test data
On-demand unblinding of runs by moderator

\#ParsingTragedy

Debugging on development data (can see output)
but some files exist only in test data
On-demand unblinding of runs by moderator
Cannot see scores on test data

\#ParsingTragedy

Debugging on development data (can see output)
but some files exist only in test data
On-demand unblinding of runs by moderator
Cannot see scores on test data

System runs for two days
but nobody knows that it is stuck in an endless loop

\#ParsingTragedy

Debugging on development data (can see output)
but some files exist only in test data
On-demand unblinding of runs by moderator
Cannot see scores on test data

System runs for two days
but nobody knows that it is stuck in an endless loop or output files are not found
we had to stitch results from multiple runs

\#ParsingTragedy

Debugging on development data (can see output)
but some files exist only in test data
On-demand unblinding of runs by moderator
Cannot see scores on test data

System runs for two days
but nobody knows that it is stuck in an endless loop
or output files are not found
we had to stitch results from multiple runs
System finishes "successfully"
but when the results are announced you find out that it picked a wrong model

Participants

111 registrations

Participants

111 registrations
56 teams got virtual machine

Participants

111 registrations

56 teams got virtual machine
38 logged in the TIRA interface (plus 2 org. accounts, and 2 extra VMs)

Participants

111 registrations

56 teams got virtual machine
38 logged in the TIRA interface (plus 2 org. accounts, and 2 extra VMs)
34 ran something (plus 1 org. account: baseline)

Participants

111 registrations

56 teams got virtual machine
38 logged in the TIRA interface (plus 2 org. accounts, and 2 extra VMs)
34 ran something (plus 1 org. account: baseline)
32 reached non-zero score on test data

Participants

111 registrations

56 teams got virtual machine
38 logged in the TIRA interface (plus 2 org. accounts, and 2 extra VMs)
34 ran something (plus 1 org. account: baseline)
32 reached non-zero score on test data
27 reached non-zero on each of the 81 files
(CoNLL 2006 had 17 participants)
(CoNLL 2007 had 23 participants)

Results: Macro LAS F1

各 Team	LAS	Files	
1.	Stanford (Stanford)	76.30	[OK]
2.	C2L2 (Ithaca)	75.00	[OK]
3.	IMS (Stuttgart)	74.42	[OK]
4.	HIT-SCIR (Harbin)	72.11	[OK]
5.	LATTICE (Paris)	70.93	[OK]
6.	NAIST SATO (Nara)	70.14	[OK]
7.	Koç University (ístanbul)	69.76	[OK]
8.	ÚFAL - UDPipe 1.2 (Praha)	69.52	[OK]
9.	UParse (Edinburgh)	68.87	[OK]
10.	Orange - Deskiñ (Lannion)	68.61	[OK]
11.	TurkuNLP (Turku)	68.59	[OK]
12.	darc (Tübingen)	68.41	[OK]
13.	BASELINE UDPipe 1.1 (Praha)	68.35	[OK]

Unofficial Results \#ParsingTragedy

Team		LAS	Files
1.	Stanford (Stanford)	76.30	[OK]
2.	C2L2 (Ithaca)	75.00	[OK]
3.	IMS (Stuttgart)	74.42	[OK]
4.	HIT-SCIR (Harbin)	72.11	[OK]
5.	LATTICE (Paris)	70.93	[OK]
6.	ParisNLP (Paris)	70.35	[OK]
7.	NAIST SATO (Nara)	70.14	[OK]
8.	Koç University (istanbul)	69.76	[OK]
9.	Uppsala (Uppsala)	69.66	[OK]
10.	ÚFAL - UDPipe 1.2 (Praha)	69.52	[OK]
11.	LyS-FASTPARSE (A Coruña)	69.15	[OK]
12.	LIMSI (Paris)	68.90	[OK]
13.	UParse (Edinburgh)	68.87	[OK]
14.	RACAI (Bucureşti)	68.79	[OK]
15.	Orange - Deskiñ (Lannion)	68.63	[OK]
16.	TurkuNLP (Turku)	68.59	[OK]

Results: Word Segmentation

Team	F_{1}
1. IMS (Stuttgart)	98.81
2. LIMSI (Paris)	98.68
3. ÚFAL - UDPipe 1.2 (Praha)	98.63
4. HIT-SCIR (Harbin)	98.62
5. ParisNLP (Paris)	98.58
6. Wanghao-ftd-SJTU (Shanghai)	98.55
darc (Tübingen)	98.55
8. BASELINE UDPipe 1.1 (Praha)	98.50
C2L2 (Ithaca)	98.50
IIT Kharagpur (Kharagpur)	98.50
Koç University (İstanbul)	98.50
LATTICE (Paris)	98.50
LyS-FASTPARSE (A Coruña)	98.50
METU (Ankara)	98.50
MQuni (Sydney)	98.50
NAIST SATO (Nara)	

CLAS: a UD-specific Weighted Metric (Experimental)

Relations between content words are more important cross-linguistically

Attachment of function word = morphology in other languages
Weighted scoring of correct relations:
Weight = 1 for root, nsubj, obj, iobj, csubj, ccomp, xcomp, obl, vocative, expl, dislocated, advcl, advmod, discourse, nmod, appos, nummod, acl, amod, conj, fixed, flat, compound, list, parataxis, orphan, goeswith, reparandum, dep Weight = 0 for aux, case, cc, clf, cop, det, mark Weight = 0 for punct

Results: Macro CLAS

Team	CLAS $_{1}$	LAS F $_{1}$	
1.	Stanford (Stanford)	72.57	76.30
2.	C2L2 (Ithaca)	70.91	75.00
3.	IMS (Stuttgart)	70.18	74.42
4.	HIT-SCIR (Harbin)	67.63	72.11
5.	LATTICE (Paris)	66.16	70.93
6.	NAIST SATO (Nara)	65.15	70.14
7.	Koç University (istanbul)	64.61	69.76
8.	ÚFAL - UDPipe 1.2 (Praha)	64.36	69.52
9.	Orange - Deskiñ (Lannion)	64.15	68.61
10.	TurkuNLP (Turku)	63.61	68.59
11.	UParse (Edinburgh)	63.55	68.87
12.	darc (Tübingen)	63.24	68.41
13.	BASELINE UDPipe 1.1 (Praha)	63.02	68.35

Results: Surprise Languages

Team	LAS $_{1}$	
1.	C2L2 (Ithaca)	47.54
2.	IMS (Stuttgart)	45.32
3.	HIT-SCIR (Harbin)	42.64
4.	Stanford (Stanford)	40.57
5.	ParisNLP (Paris)	39.23
6.	UParse (Edinburgh)	39.17
7.	Koç University (istanbul)	38.81
8.	Orange - Deskiñ (Lannion)	38.72
9.	LIMSI (Paris)	37.57
10.	IIT Kharagpur (Kharagpur)	37.17
11.	BASELINE UDPipe 1.1 (Praha)	37.07

Results: Treebank Ranking by LAS

	Treebank	Max	MaxTeam	Avg	StDev
1.	ru_syntagrus	92.60	Stanford	71.64	± 15.20
2.	hi	91.59	Stanford	73.41	± 25.06
3.	sl	91.51	Stanford	69.70	± 23.96
4.	pt_br	91.36	Stanford	72.58	± 21.58
5.	ja	91.13	TRL	64.99	± 23.45
6.	ca	90.70	Stanford	73.55	± 21.10
7.	it	90.68	Stanford	74.06	± 21.09
8.	cs_cac	90.43	Stanford	71.20	± 12.07
9.	pl	90.32	Stanford	69.11	± 21.59
10.	cs	90.17	Stanford	69.62	± 12.34
11.	es_ancora	89.99	Stanford	72.53	± 11.16
12.	no_bokmaal	89.88	Stanford	70.73	± 20.97
13.	bg	89.81	Stanford	74.40	± 20.46
14.	no_nynorsk	88.81	Stanford	66.81	± 23.54
15.	fi_pud	88.47	Stanford	62.75	± 19.28

Results: Treebank Ranking by CLAS

	Treebank	Max	MaxTeam	Avg	StDev
1.	ru_syntagrus	90.11	Stanford	67.83	± 14.94
2.	sl	88.98	Stanford	65.77	± 23.26
3.	cs	88.44	Stanford	66.98	± 12.27
4.	cs_cac	88.31	Stanford	67.92	± 11.89
5.	pl	87.94	Stanford	65.30	± 20.61
6.	hi	87.92	Stanford	68.23	± 24.29
7.	no_bokmaal	87.67	Stanford	67.18	± 20.55
8.	pt_br	87.48	Stanford	66.36	± 21.42
9.	f_pud	86.82	Stanford	60.88	± 18.25
10.	ca	86.70	Stanford	67.55	± 20.36
11.	bg	86.53	Stanford	69.61	± 20.13
12.	no_nynorsk	86.41	Stanford	62.92	± 22.96
13.	it	86.18	Stanford	68.18	± 19.79
14.	es_ancora	86.15	Stanford	66.90	± 11.73
15.	nl_lassysmall	85.22	Stanford	63.61	± 22.73

Thank You

http://universaldependencies.org/conll17/

