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Abstract

We present our contribution to The First

Shared Task on Extrinsic Parser Evalua-

tion (EPE 2017). Our participant system,

the UDPipe, is an open-source pipeline

performing tokenization, morphological

analysis, part-of-speech tagging, lemma-

tization and dependency parsing. It is

trained in a language agnostic manner for

50 languages of the UD version 2. With a

relatively limited amount of training data

(200k tokens of English UD) and with-

out any English specific tuning, the sys-

tem achieves overall score 56.05, placing

as the 7th participant system.

1 Introduction

Language syntax has been a topic of interest and

research for hundreds of years. Syntactical anal-

ysis, most commonly in form of constituency or

dependency trees, has therefore been one of the

long-standing goals of computational linguistics.

Syntactic analysis was considered crucial to un-

derstand the semantics of a message. Lately,

statistical and especially neutral network models

have achieved superb results in natural language

processing without explicit syntax recognition, by

considering sentences to be merely a sequence of

words. However, quite recently, syntactic trees

have been shown to improve performance com-

pared to the sequential models, especially in tasks

requiring deeper understanding of text, like text

summarization (Kong et al., 2017) or textual en-

tailment (Hashimoto et al., 2016).

Consequently, syntactic parsing has its merit

both as a standalone application and as a prepro-

cessing step for further language processing, re-

sulting in two kinds of evaluation methods – ei-

ther intrinsic or extrinsic. While the intrinsic eval-

uation is straightforward and commonly used, ex-

trinsic evaluation is much more complex, and to

our best knowledge, there had been no standard-

ized set of tasks serving as extrinsic evaluation.

Recently, performance of raw text parsing has

been evaluated in the CoNLL 2017 Shared Task:

Multilingual Parsing from Raw Text to Univer-

sal Dependencies (Zeman et al., 2017),1 provid-

ing a rich intrinsic evaluation of 33 systems across

81 treebanks in 49 languages of the latest ver-

sion of UD, the Universal Dependencies project

(Nivre et al., 2016), which seeks to develop cross-

linguistically consistent treebank annotation of

morphology and syntax.

The First Shared Task on Extrinsic Parser Eval-

uation (EPE 2017) (Oepen et al., 2017)2 pro-

poses an extrinsic parser evaluation metric, by

means of three downstream applications that are

known to depend heavily on syntactic analysis.

All tasks, the biological event extraction (Björne

et al., 2017), negation scope resolution (Lapponi

et al., 2017) and fine-grained opinion analysis (Jo-

hansson, 2017), require pre-processing of raw En-

glish texts into the EPE interchange format, which

is a general format encoding arbitrary dependency

graphs. Each such graph represents a sentence

and consists of several nodes, which correspond

to substrings of the original document and include

POS tags, lemmas and arbitrary morphological

features. The aforementioned tasks then process

these graphs and compute individual evaluation

metrics, whose unweighted combination is the fi-

nal EPE score.

This paper describes performance of the UD-

Pipe system in the EPE 2017 shared task. UDPipe

(Straka and Straková, 2017)3 is an open-source

1
http://ufal.mff.cuni.cz/conll-2017-shared-task

2http://epe.nlpl.eu
3http://ufal.mff.cuni.cz/udpipe



tool which automatically performs sentence seg-

mentation, tokenization, POS tagging, lemmatiza-

tion and dependency trees, using UD version 2

treebanks as training data. This system has been

used both as a baseline system and also a partici-

pant system in CoNLL 2017 shared task, ranking

8
th in the official (intrinsic) evaluation (Straka and

Straková, 2017).

Even if the EPE 2017 shared task is only in En-

glish, the submitted UDPipe system is trained in

a strictly language-agnostic manner without any

specific handling of English, using UD 2.0 train-

ing data only. It is therefore interesting to compare

it to other English-tailored participating systems.

In Section 2, we briefly discuss related work.

The UDPipe system including chosen hyperpa-

rameters for English is described in Section 3.

The extrinsic evaluation results of UDPipe are pre-

sented in Section 4, together with intrinsic metrics

and discussion of observed performance. Finally,

we conclude in Section 5.

2 Related Work

Deep neural networks have achieved remarkable

results in many areas of machine learning. In

NLP, end-to-end approaches were initially ex-

plored by Collobert et al. (2011). With a prac-

tical method for precomputing word embeddings

(Mikolov et al., 2013) and utilization of recur-

rent neural networks (Hochreiter and Schmid-

huber, 1997; Graves and Schmidhuber, 2005)

and sequence-to-sequence architecture (Sutskever

et al., 2014; Cho et al., 2014), deep neural net-

works achieved state-of-the-art results in many

NLP areas like POS tagging (Ling et al., 2015),

named entity recognition (Yang et al., 2016) or

machine translation (Vaswani et al., 2017).

The wave of neural network parsers was started

recently by Chen and Manning (2014), who pre-

sented a fast and accurate transition-based parser.

The proposed neural network architecture is sim-

ple, consisting of only an input layer, one hidden

layer and an output softmax layer, without any re-

current connections. The UDPipe parser (Straka

and Straková, 2017) is based on this architecture,

and adds partially non-projective and fully non-

projective transition systems, as well as a search-

based oracle (Straka et al., 2015).

Many other parser models followed, employing

various techniques like stack LSTM (Dyer et al.,

2015), global normalization (Andor et al., 2016),

contextualization of embeddings using bidirec-

tional LSTM (Kiperwasser and Goldberg, 2016),

biaffine attention (Dozat and Manning, 2017)

or recurrent neural network grammars (Kuncoro

et al., 2016), improving LAS score in English and

Chinese dependency parsing by more than 2 points

in 2016.

2.1 Motivation For Structured Sentence

Processing

Although the sequence-to-sequence architecture

provides overwhelming performance compared to

traditional methods, there have been several at-

tempts to enhance it utilizing syntactic informa-

tion. Many such designs employ dependency trees

not merely as features, but either to encode an in-

put sentence according to syntactic tree (Tai et al.,

2015; Li et al., 2017; Chen et al., 2017) or gener-

ate an output sentence as a dependency tree (Wu

et al., 2017; Rabinovich et al., 2017).

A comprehensive comparison of processing in-

put sentence either as a sequence or as a tree

was performed by Yogatama et al. (2016). Ad-

ditionally, the authors also considered the even-

tuality of utilizing task-specific syntax trees, both

in semi-supervised manner (i.e., bootstrapping the

task-specific syntax with manually annotated trees

and allowing their change later) and in unsuper-

vised manner. While the supervised syntax did

not demonstrate much improvement, both semi-

supervised and unsupervised approach (i.e., learn-

ing task-specific syntax) yielded substantial gains

in all four examined tasks.

3 UDPipe

UDPipe4 is an open-source pipeline which per-

forms tokenization, morphological analysis, part-

of-speech tagging, lemmatization and dependency

parsing. It is a simple-to-use tool consisting of one

binary and one model (per language) and can be

easily trained using solely data in CoNLL-U for-

mat, without additional linguistic knowledge on

the users’ part. Precompiled binaries for Win-

dows, Linux and OS X are available, as are bind-

ings for Python,5 Perl,6 Java and C#. Source code

is available on GitHub7 under MPL license.

The initial UDPipe 1.0 release (Straka et al.,

2016) processed CoNLL-U v1 files and was dis-

4http://ufal.mff.cuni.cz/udpipe
5PyPI package ufal.udpipe
6CPAN package UFAL::UDPipe
7http://github.com/ufal/udpipe



tributed with 36 pretrained models8 on UD 1.2

data. Updated UDPipe 1.1 and UDPipe 1.2

versions (Straka and Straková, 2017) process

CoNLL-U v2 files and were employed in CoNLL

2017 shared task, with UDPipe 1.1 serving as a

baseline system and UDPipe 1.2 attending as a

participant system. Recently, pretrained models

for 50 languages were released based on UD 2.0

data.9

All UDPipe models, especially the ones partici-

pating in the CoNLL 2017 shared task, have been

evaluated using several intrinsic metrics (Zeman

et al., 2017). Therefore, we employed these ex-

act models to participate in EPE 2017, in order to

facilitate comparison between the extrinsic and in-

trinsic measurements.

We now briefly describe the most recent ver-

sion, UDPipe 1.2, together with the chosen hy-

perparameters for the English model (according

to performance on the development set). More

detailed language-independent description of the

system and its gradual updates are available in

Straka and Straková (2017) and in Straka et al.

(2016).

3.1 Tokenizer

The tokenizer performing sentence segmentation

and tokenization is trained purely with the UD

training data. The CoNLL-U format allows for the

reconstruction of the original pre-tokenized text

using the SpaceAfter=No feature, which in-

dicates that a given token was not followed by a

space separator in the original text. This facilitates

training a model which predicts the probability of

a token break after every character in a given plain

text.

Sentence breaks can be trained analogously.

However, the CoNLL-U v1 format does not pro-

vide markup for paragraph and document bound-

aries. These are often indicated by visual layout

and/or spacing, but if not annotated in the data,

a sentence segmenter has to predict the sentence

boundary at the end of a paragraph only from the

raw text. Considering the examples from the En-

glish UD data presented in Figure 1, such sentence

breaks confuse the segmenter and prompt it to split

sentences more often than necessary.

The CoNLL-U v2 format has been updated to in-

clude markup for paragraph and document bound-

8http://hdl.handle.net/11234/1-1659
9http://hdl.handle.net/11234/1-2364

Keep in touch, / Mike / Michael J. McDermott

i have two options / using the metro or the air france
bus / can anybody tell me if the metro runs directly ...

Figure 1: Examples of sentence breaks (denoted

with slash) in English UD data which are hard to

predict without inter-sentence spacing and layout.

aries. Unfortunately, only document boundaries

are marked in English UD 2.0 data, resulting in the

segmenter still being trained on sentence bound-

aries marked in Figure 1.

Technically, the UDPipe tokenizer predicts for

each character whether it is followed by a token

break, sentence break or none of above. Each

character is represented using randomly initial-

ized embedding of dimension d and a bidirectional

GRU (Cho et al., 2014) network is employed dur-

ing the prediction. The details of the architecture,

training and inference are explained in Straka et al.

(2016).

For English, embedding and GRU dimension

are set to 64. The network is trained using dropout

rate of 10% before and after the GRU cells for

100 epochs, each consisting of 200 batches con-

taining 50 segments of 50 characters. The network

weights are updated using Adam (Kingma and Ba,

2014) with initial learning rate of 0.002. Addition-

ally, space is assumed to always separate tokens

(due to no training token containing a space) and

the network is therefore trained to only predict to-

ken breaks which do not precede a space character.

3.2 Tagger

Part-of-speech tagging is performed in two steps:

firstly, a set of candidate (UPOS, XPOS, FEATS)

triples are generated for each token using its suf-

fix of length at most 4, and secondly, these candi-

dates are disambiguated on a sentence-level using

averaged perceptron (Collins, 2002) with Viterbi

decoding of order 3.

To facilitate the candidate generation, a guesser

dictionary with a predefined number of most com-

mon candidate triples for every possible suffix of

length 4 is constructed according to the training

data. When searching the guesser dictionary, en-

tires with longer suffix match are always preferred.

Additionally, for every token in the training data,

all its appearing (UPOS, XPOS, FEATS) analyses

are kept.

In order to generate candidates for a given to-

ken, two cases are considered. If the token was



present in the training data, all its analyses ap-

pearing in the training data are returned, together

with 6 another (differing) most common candi-

dates from the guesser dictionary. If the tokes was

not present in the training data, 10 most common

candidates from the guesser dictionary are gener-

ated.

The candidates are disambiguated using aver-

aged perceptron utilizing a predefined rich set of

feature templates based on classification features

developed by Spoustová et al. (2009) for Czech.

A lemmatizer is nearly identical to the above de-

scribed part-of-speech tagger. For every token, the

candidates are (UPOS, lemma rule) pairs, where

the lemma rule is the shortest formula for generat-

ing a lemma from a given token, using any com-

bination of “remove a specific prefix“, “remove a

specific suffix“, “append a prefix“ and “append a

suffix“ operations. For the English lemmatizer, at

most 4 candidates are generated for every token,

because of the smaller number of lemmas (com-

pared to XPOS and morphological features).

Theoretically, both the part-of-speech tagging

and lemmatizing could be performed jointly us-

ing candidate quadruples, but such approach re-

sults in lower performance (we hypothesise that

the required number of candidate quadruples is too

high for the disambiguation step to be performed

effectively).

3.3 Dependency Parser

UDPipe utilizes fast transition-based neural de-

pendency parser inspired by Chen and Manning

(2014). The parser is based on a simple neural net-

work with just one hidden layer and without any

recurrent connections, using locally-normalized

scores.

The parser offers several transition systems,

from projective and partially non-projective to

fully non-projective. For English, a projective

arc-standard system (Nivre, 2008) with both a dy-

namic oracle (Goldberg et al., 2014) and a search-

based oracle (Straka et al., 2015) yield the best

performance. It is possible to combine both ora-

cles, because the search-based oracle employs an

arbitrary transition-based parser – even the one uti-

lizing a dynamic oracle.

Even if a projective transition system is used,

non-projective trees are used during training, with

the parser trying to predict a (projective) subset of

dependency edges.

The parser employs FORM, UPOS, FEATS and

DEPREL embeddings. The form embeddings of

dimension 64 are precomputed with word2vec on

the training data only, with the following options:

word2vec -cbow 0 -size 64 -window 10 -negative 5

-hs 0 -sample 1e-1 -iter 15 -min-count 2

The precomputed embeddings are used only for

forms occurring at least twice in the training data;

forms appearing only once are considered un-

known forms and used to train the (initially ran-

dom) embedding of unknown words. The UPOS,

FEATS and DEPREL embeddings have dimension

20 and are initialized randomly. All embeddings

are updated during training.

The size of the hidden layer is 200. The network

is trained using SGD with minibatches of size 10,

starting with learning rate 0.01 and gradually de-

caying it to the final 0.001. L2 regularization with

weight 1.5e-6 is applied to reduce overfitting.

3.4 Training UDPipe

UDPipe is trained without any language specific

knowledge. Even if we have so far described spe-

cific hyperparameter values used by the English

models, the hyperparameters for each treebank are

extensively tuned on the development set.

The UD 2.0 data contain three English tree-

banks. Consequently, in addition to training

treebank-specific models, we also experiment with

training a model using a union of all these tree

treebanks. Even if the treebanks use different

XPOS tags and there are annotation inconsisten-

cies among the treebanks (which are observable

using the intrinsic evaluation of the merged model

on the individual treebanks’ test sets), we hypoth-

esise that the larger training data should benefit

real-word applications.

3.5 Example Parse Tree

To illustrate the UD-style trees with universal de-

pendency relations and universal POS tags, we

provide an example of a (correctly parsed) tree in

Figure 2.

4 Experiments and Results

We submitted five different UDPipe configura-

tions to the EPE 2017 shared tasks. These runs

are described in Table 1. The run 0 is the English

treebank model of UDPipe 1.2 from the CoNLL

2017 shared task (Zeman et al., 2017). The exactly

same model is used as a run 1, but using the tok-



Run name Run Description Tokens
UD2.0 En/UDPipe/20 0 UDPipe 1.2, UD 2.0 English data, UDPipe tokenizer, beam size 20 204.5k
UD2.0 En/EPE/20 1 UDPipe 1.2, UD 2.0 English data, EPE provided tokenizer, beam size 20 204.5k
UD2.0 EnMerged/UDPipe/20 2 UDPipe 1.2, UD 2.0 English + English LinES + English ParTUT data,

UDPipe tokenizer, beam size 20
292.2k

UD2.0 EnMinus/UDPipe/5 3 UDPipe 1.1, first 95% of UD 2.0 English data, UDPipe tokenizer, beam size 5 192.5k
UD1.2 En/UDPipe/5 4 UDPipe 1.0, UD 1.2 English data, UDPipe tokenizer, beam size 5 204.5k
Stanford-Paris 6 UD v1 enhanced dependencies, WSJ+Brown+GENIA data 1692.0k

Table 1: Description of employed systems
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Figure 2: An example parse tree from UD 2.0 En-

glish data. For every word, its form, dependency

relation and universal POS tag is displayed.

enization and segmentation of the data provided

by the EPE 2017 organizers. The consequent run

is the CoNLL 2017 shared task model trained on

all three English treebanks. The last two runs are

the English treebank models of UDPipe 1.1 and

UDPipe 1.0. The first four runs are based on UD

2.0, and only the last run utilizes UD 1.2 data.

Note that the run 3 uses only a subset of the train-

ing data, because the models were released for the

CoNLL 2017 shared task before the release of the

test data, using official development data for eval-

uation. For comparison, we additionally include

the overall best participant system of the shared

task.

The overall results of UDPipe in the EPE 2017

shared task are presented in Table 2. According to

the overall score, UDPipe placed 7th out of 8 par-

ticipants of the shared task, by a large margin com-

pared to the best participating system. The perfor-

mance on the three individual tasks are detailed in

Tables 3, 4 and 5.

To enable interpretation of the results, we also

provide the intrinsic evaluation of the employed

models on the UD test sets in Table 6.

Overall Results

With the overall score of 56.05, UDPipe lacks

behind nearly all other participant systems. The

overall scores of the systems ranking immedi-

ately above UDPipe are 56.23, 56.24, 56.65, 56.81

and 58.57, with the best system achieving a re-

spectable score of 60.51. The best overall UD-

Pipe score is achieved by the English-only CoNLL

2017 UDPipe 1.2 model with EPE-provided tok-

enization.

One of the probable cause of our lower perfor-

mance is the size of the training data – while the

UD 2.0 data offer training data of 200k tokens

(290k if all three English treebanks are merged),

most other participants use Wall Street Journal

corpus (Marcus et al., 1993) with 800k tokens,

sometimes also together with Brown corpus (Fran-

cis and Kucera, 1979) an GENIA corpus (Ohta

et al., 2002), resulting in circa 1700k tokens.

Furthermore, we emphasize that even though

the EPE 2017 shared task focused on English lan-

guage only, UDPipe is trained in a language ag-

nostic manner for 50 languages without any adap-

tation for English other than setting up the hyper-

parameters of the artificial neural networks.

Tokenization Issues

The overall results in Table 2 indicate that the

UDPipe tokenization is of lower quality – using

the EPE-provided tokenizer improves the overall

score by 2 points. By contrast, the evaluation

on the UD 2.0 data (the Words and Sentences

columns of Table 6) show opposite results, with

the EPE-provided tokenizer substantially degrad-

ing performance on UD 2.0 test sets.

We therefore hypothesise that the lower extrin-

sic performance of UDPipe tokenization is a con-

sequence of the tokenization and sentence seg-

mentation annotated in the UD data. We argue that

to improve the annotation, one possible course of

action is to indicate paragraph boundaries in En-

glish UD 2.0 data, which might improve the per-

formance of trained sentence segmenter.



UDPipe run
Event Negation Opinion Overall

extraction resolution analysis score

0-UD2.0 En/UDPipe/20 43.58 58.83 59.79 54.07

1-UD2.0 En/EPE/20 45.54 61.62 61.00 56.05

2-UD2.0 EnMerged/UDPipe/20 44.25 59.95 58.71 54.30

3-UD2.0 EnMinus/UDPipe/5 42.70 59.95 58.90 53.85

4-UD1.2 En/UDPipe/5 43.22 50.85 58.53 50.86

Stanford-Paris, run 6 50.23 66.16 65.14 60.51

Table 2: Overall EPE evaluation results

UDPipe run
Approximate span & recursive mode

Precision Recall F1-score

0-UD2.0 En/UDPipe/20 53.84 36.61 43.58

1-UD2.0 En/EPE/20 56.35 38.21 45.54

2-UD2.0 EnMerged/UDPipe/20 53.22 37.87 44.25

3-UD2.0 EnMinus/UDPipe/5 51.91 36.27 42.70

4-UD1.2 En/UDPipe/5 51.71 37.12 43.22

Stanford-Paris, run 6 58.36 44.09 50.23

Table 3: Event extraction evaluation results

UDPipe run
Scope match Scope tokens Event match Full negation

P R F P R F P R F P R F
0-UD2.0 En/UDPipe/20 99.39 65.73 79.13 90.12 86.76 88.41 66.23 61.82 63.95 99.10 41.83 58.83
1-UD2.0 En/EPE/20 98.77 64.26 77.86 88.58 87.75 88.16 70.44 66.67 68.50 99.16 44.70 61.62
2-UD2.0 EnMerged/UDPipe/20 99.40 67.34 80.29 91.45 87.49 89.43 65.81 61.82 63.75 99.12 42.97 59.95
3-UD2.0 EnMinus/UDPipe/5 99.38 64.92 78.54 90.84 85.48 88.08 66.46 63.25 64.82 99.12 42.97 59.95
4-UD1.2 En/UDPipe/5 97.81 54.03 69.61 90.40 83.36 86.74 62.11 59.88 60.97 98.90 34.22 50.85
Stanford-Paris, run 6 99.44 70.68 82.63 93.06 85.48 89.11 72.33 68.45 70.34 99.24 49.62 66.16

Table 4: Negation resolution evaluation results

UDPipe run
Expressions Holders Polarity Holders (in vitro)

P R F P R F P R F P R F
0-UD2.0 En/UDPipe/20 64.32 55.07 59.33 49.03 41.71 45.08 54.44 45.36 49.49 62.61 57.21 59.79
1-UD2.0 En/EPE/20 63.57 55.15 59.06 48.81 44.31 46.46 53.68 45.93 49.50 62.31 59.74 61.00
2-UD2.0 EnMerged/UDPipe/20 64.57 54.58 59.15 50.01 39.79 44.32 54.93 45.22 49.60 63.45 54.63 58.71
3-UD2.0 EnMinus/UDPipe/5 64.15 54.43 58.89 48.20 41.25 44.46 54.30 44.82 49.11 61.26 56.72 58.90
4-UD1.2 En/UDPipe/5 63.98 54.46 58.84 48.38 40.99 44.38 53.99 44.50 48.79 61.00 56.25 58.53
Stanford-Paris, run 6 63.90 56.07 59.73 54.14 46.41 49.98 54.04 45.87 49.62 68.86 61.81 65.14

Table 5: Opinion analysis evaluation results

Row Data
Plain text processing Using gold tokenization

Words Sents UPOS XPOS UAS LAS UPOS XPOS UAS LAS

0-UD2.0 En/UDPipe/20
UD 2.0 En 99.0 75.3 93.5 92.9 80.3 77.2 94.4 93.8 84.6 81.3
UD 2.0 EnMerged 98.9 79.5 91.8 —- 78.4 73.9 92.7 —- 81.4 76.6
UD 1.2 En 99.0 75.3 87.9 92.9 75.7 63.7 88.8 93.8 79.1 66.8

1-UD2.0 En/EPE/20
UD 2.0 En 96.2 59.9 90.7 90.0 74.6 71.8 94.4 93.8 84.6 81.3
UD 2.0 EnMerged 97.8 71.0 90.6 —- 75.8 71.4 92.7 —- 81.4 76.6
UD 1.2 En 96.2 59.9 85.1 90.0 70.3 58.7 88.8 93.8 79.1 66.8

2-UD2.0 EnMerged/UDPipe/20
UD 2.0 En 99.0 75.3 93.4 92.6 79.8 76.7 94.4 93.6 84.0 80.6
UD 2.0 EnMerged 98.9 79.5 92.0 —- 79.1 74.9 92.9 —- 82.2 77.7
UD 1.2 En 99.0 75.3 87.8 92.6 75.6 63.4 88.7 93.6 78.9 66.3

3-UD2.0 EnMinus/UDPipe/5
UD 2.0 En 98.7 73.2 93.1 92.4 78.9 75.8 94.5 93.9 83.8 80.7
UD 2.0 EnMerged 98.8 78.6 91.6 —- 77.7 73.1 92.8 —- 81.1 76.3
UD 1.2 En 98.7 73.2 87.5 92.4 74.6 62.6 88.9 93.9 78.6 66.3

4-UD1.2 En/UDPipe/5
UD 2.0 En 98.4 72.3 87.3 92.2 73.9 62.0 88.8 93.8 78.8 66.3
UD 2.0 EnMerged 98.7 77.8 86.5 —- 73.9 60.1 87.6 —- 77.2 63.0
UD 1.2 En 98.4 72.3 92.9 92.2 78.3 75.1 94.5 93.8 84.2 80.7

Table 6: Intrinsic evaluation of UDPipe runs on the Universal Dependencies test data (Nivre et al., 2017).



Merged English Treebanks

Although the model trained on the three merged

UD 2.0 English treebanks provide inconsistent

XPOS tags and shows slight performance drop on

the main English UD 2.0 treebank (cf. Table 6),

the extrinsic evaluation of this model shows no-

ticeable improvement. The improvement may be

attributed both to the increased size and diversity

of the training data, but also to the different anno-

tation, which might serve as a regularization.

According to the extrinsic results, the merged

model used together with the EPE-provided tok-

enizer should surpass the overall score of the best

submitted UDPipe run.

Negation Resolution Results Drop of Run 4

The Table 2 indicates a surprising drop of perfor-

mance of the run 4 (UDPipe 1.0 English model

trained using UD 1.2 data) on the Negation reso-

lution task, without a corresponding change on the

two other tasks.

Note that the three EPE tasks are able to use

only one kind of POS tags, i.e., either UPOS or

XPOS in case of UDPipe. The decision on the type

of POS tags used is performed by the EPE organiz-

ers according to the performance on the develop-

ment set. For the UDPipe systems, XPOS tags are

utilized overwhelmingly, with the UPOS tags be-

ing used only once – by the run 4 on the Negation

resolution task. Therefore, we initially hypothe-

sised that the drop is caused by the fact that the

UPOS tags are much more coarse than the XPOS

tags.

However, after evaluating the results on both

XPOS and UPOS tags, we found out that XPOS

tags are in fact used, and the information about

used UPOS tags in the official results is incorrect.

After further investigation, we found out that

the Negation resolution task texts are the only

one containing non-ASCII characters (i.e., Uni-

code quotation marks, apostrophes and hyphens)

and that the UDPipe 1.0 tokenizer does not cor-

rectly process them, resulting in poor tokenization

and segmentation.

5 Conclusions and Future Work

We described the UDPipe systems used in the EPE

2017 shared task, presented the extrinsic and in-

trinsic evaluation of the submitted models, dis-

cussed the results and offered several hypotheses

to interpret the data. For the immediate future

work, we will carry out several experiments to

support the hypotheses:

• When the paragraph boundaries are anno-

tated in the UD data, does the trained sen-

tence segmenter achieve better performance?

• Can a rule-based English tokenizer also im-

prove the results?

• What effect would larger training data (like

WSJ) have?

• What performance would a state-of-the-art

dependency parser attain using the UD 2.0

data only?
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Hajič jr. 2015. Parsing universal dependency tree-
banks using neural networks and search-based or-
acle. In Proceedings of Fourteenth International
Workshop on Treebanks and Linguistic Theories
(TLT 14).

Milan Straka and Jana Straková. 2017. Tokeniz-
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Kira Droganova, Hěctor Martı́nez Alonso, Hans
Uszkoreit, Vivien Macketanz, Aljoscha Burchardt,
Kim Harris, Katrin Marheinecke, Georg Rehm,
Tolga Kayadelen, Mohammed Attia, Ali Elkahky,
Zhuoran Yu, Emily Pitler, Saran Lertpradit, Michael
Mandl, Jesse Kirchner, Hector Fernandez Alcalde,
Jana Strnadova, Esha Banerjee, Ruli Manurung, An-
tonio Stella, Atsuko Shimada, Sookyoung Kwak,
Gustavo Mendonça, Tatiana Lando, Rattima Nitis-
aroj, and Josie Li. 2017. CoNLL 2017 Shared Task:
Multilingual Parsing from Raw Text to Universal
Dependencies. In Proceedings of the CoNLL 2017
Shared Task: Multilingual Parsing from Raw Text to
Universal Dependencies. Association for Computa-
tional Linguistics.


