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Abstract. We explore human judgments on how well individual patterns of 29
target verbs from the Pattern Dictionary of English Verbs describe their random
KWICs. We focus on cases where more than one pattern is judged as highly
appropriate  for  a  given  KWIC  and  seek  to  estimate  the  effect  of  event
participants (arguments) being denotatively similar in two patterns, considering
all pair combinations in a given lemma. We compare this effect to the effect of
several  contextual  features  of  the  KWICs,   the  effect  of  paired  PDEV
implicatures implying each other, and the effect of belonging to a given lemma.
We show that the lemma effect is still stronger than any feature going across
lemmas  we  have  examined  so  far,  so  that  each  verb  appears  to  be  a  little
universe in its own right. 

1 Introduction

Since many verbs are perceived as highly polysemous, their senses are 
both difficult to determine when building a lexicon entry and to 
distinguish in context when performing Word Sense Disambiguation 
(WSD). An alternative to verb senses is usage patterns coined by 
Hanks in the Pattern Dictionary of English Verbs (PDEV, [1], Fig.  1).  
Previous studies ([2], [3]) have shown that PDEV represents a valuable 
lexical resource for WSD, in that annotators reach good interannotator 
agreement despite the semantically fine-grained microstructure of 
PDEV. 

Recently, we created a data set annotated with graded decisions 
(VPSGradeUp, cf. Section 2.2) from PDEVto investigate features 
suspected of blurring distinctions between the patterns [4]. We have 
been preliminarily considering features related to the KWICs 
independently of the lexicon design, such as finiteness, argument 
opacity, and factuality1 of the target verb on the one hand, and those 
related to the lexicographical design of PDEV, such as textual 
entailment between PDEV implicatures within a lemma or denotative 
1 For explanation of terms used in this section, kindly refer to Section 2.



similarity of the verb arguments on the other hand. 

This paper focuses on the denotative similarity of the verb arguments. 
We have attempted to approach it in a quantitative way by modeling it 
as  semantic distance between the corresponding syntactic slots in 
pattern definitions in a PDEV lemma (henceforth colempats), as 
comprehensively described in Section 6. We compare all colempats 
pairwise, examining their scores in the graded decision annotation (see 
Section 2.2) with respect to how much they compete to become the 
most appropriate pattern, as well as the semantic distance between their
subjects, objects, and adverbials. To quantify the comparisons, we have 
introduced a measure of rivalry for each pair of colempats. Rivalry 
increases, the more appropriate both colempats are considered for a 
given KWIC and the more similar their appropriateness scores are (see 
Sections 4.1 and 4.2). We have observed a significant association 
between high rivalry in paired colempats and their corresponding 
arguments being labeled with denotatively similar semantic labels 
(henceforth semlabels, see Section 2.1 ).

2 Related Work and Important Terms

2.1 Pattern Dictionary of English Verbs (PDEV)

This section not only gives a brief description of PDEV, but it also 
introduces key terms that will be used throughout this paper. 

PDEV's core idea is that a verb has no meaning in isolation; instead, it 
has a meaning potential, whose diverse components and their 
combinations are activated by contexts. To capture the meaning 
potential of a verb, the PDEV lexicographer manually clusters random 
KWICs into a set of prototypical usage patterns, considering the 
semantic and morphosyntactic similarity alike (Fig.  1).

Each PDEV pattern contains a pattern definition and an implicature to 
explain or paraphrase its meaning. Both are shaped as finite clause 
templates where important syntactic slots are populated with semantic 
type labels, alternatively with a set of collocates (lexical set), and, 
complementary to both, optional semantic roles. This paper merges 
them all under the umbrella term semlabels. 



2.2 Graded Decisions: an Alternative WSD Setup

The graded-decision data set used in this paper draws on Erk et al. [5], 
who experimented with the WSD setup: instead of assigning a single 
sense to a given context of the key word, the annotators indicated on a 
Likert scale2 how well each sense matched a given KWIC, allowing for
ties. The data set has two subsets: WSim with graded decisions on 
matching relations between WordNet synsets and KWICs of 11 selected
key word lemmas; and USim with graded decisions on how well two 
different words in two different KWICs paraphrase each other. Both 
displayed very good annotator correlation, suggesting graded decisions 
be a sensible alternative to the traditional WSD setup.

Fig.  1.  PDEV entry 

2.3 Verb Finiteness

Finiteness is a morphosyntactic category associated with verbs. 
Virtually all verbs appear in finite as well as infinite forms when used 
in context. A finite verb form is such a verb form that expresses person 
and number. Languages differ in whether these categories are expressed
morphologically (e.g. by affixes or stem vowel changes) or 
syntactically (obligatorily complemented with a noun/pronoun 
expressing these categories explicitly). Finite forms are typically all 
indicative and conditional forms, as well as some imperative forms, e.g.
2 Likert scale is a psychometric scale used in opinion surveys. It enables the 
respondents to scale their agreement/disagreement with a given opinion. 



reads, are reading, (they) read, čtu, gehst, allons!. Infinite forms are 
infinitives (to read, to have read, to be heard, to have been heard) and 
participles along with gerunds and supines (reading, known, deleted, 
försvunnit). The grammars of many languages know diverse other finite
as well as infinite verb forms. Infinite forms typically allow more 
argument omissions than finite forms: to go to town vs.*went to town. 
This suggests that descriptions of events rendered by infinite verb 
forms may be more vague, and, in terms of annotation, more prone to 
match several different patterns/senses at the same time. Verb finiteness
is easy to determine, and therefore it was only annotated by one 
annotator in our data set.

2.4 Argument Opacity

Argument opacity typically, but not necessarily, relates to verb 
finiteness. By argument opacity we mean how many arguments 
relevant for disambiguation of the target verb are either omitted in the 
context (e.g. subject in infinitive) or ambiguous or vague. Ambiguous 
and vague arguments are often arguments expressed by personal 
pronouns that refer to entities mentioned distantly from the target verb, 
sometimes even not directly, but by longer chains of pronouns (so-
called coreference or anaphora chains), or arguments expressed by 
indefinite or negative pronouns. Some examples of opaque verb 
contexts: 

The Greater London Council was ABOLISHED in 1986. (Who 
abolished it?) 

The company’s ability to adapt to new opportunities and capitalize on 
them depends on its capacity to share information and involve 
everyone in the organization in a systemwide search for ways to 
improve, ADJUST, adapt, and upgrade. (Who exactly adjusts what?)

This feature, too, was annotated by a single annotator in our data set. 
The categories were  “opaque subject”, “opaque object”, “opaque 
arguments” (i.e.; more slots at the same time, including adverbials) or 
empty field. 

2.5 Textual Entailment between PDEV Implicatures

Textual Entailment, mentioned in the Introduction, is the key notion of 
Recognizing Textual Entailment (RTE), a computational-linguistic 



discipline coined by Dagan et al.[6]. The task of RTE is to determine, 
“given two text fragments, whether the meaning of one text can be 
inferred (entailed) from another text. More concretely, the applied 
notion of textual entailment is defined as a directional relationship 
between pairs of text expressions, denoted by T the entailing ‘text’ and 
by H the entailed  ‘hypothesis’. We say that T entails H if, typically, a  
human reading T would infer that H is most probably true”. So, for 
instance, the text Norway’s most famous painting, ‘The Scream’ by 
Edvard Munch, was recovered yesterday, almost three months after it 
was stolen from  an Oslo museum entails the hypothesis Edvard Munch
painted ‘The Scream’ [6]. We have pursued a double RTE annotation of
pairs of PDEV implicatures, measured the interannotator agreement, 
and investigated its effect on pattern distinctions [7].  

2.6 Word Embeddings

To compute the semantic distance between semlabels, we used word 
embeddings. Word embeddings are vector representations of the 
individual words in a corpus. Each vector dimension represents a word 
from that corpus. The more similarly words are distributed in the 
corpus, the more similar the directions of their respective vectors are; 
that is, the mutual semantic similarity of words is quantified by the 
(cosine) similarity of their vector representations. Cosine similarity 
renders the correlation coefficient between these two vectors, ranging 
from -1 to 1. Word embeddings is, loosely speaking, a quantitative 
expression of the Firthian “knowing the word by the company it 
keeps”. The embeddings used in this paper are based on Word2Vec [8], 
a neural network trained to reconstruct linguistic contexts of words. We
use its implementation for R, text2vec [9]. 

3 Graded Decisions on Verb Usage Patterns

3.1 VPS-GradeUp 

The VPS-GradeUp data set draws on Erk’s experiments with 
paraphrases (USim). It consists of both graded-decision and classic-
WSD annotation of 29 randomly selected PDEV lemmas: seal, sail, 
distinguish, adjust, cancel, need, approve, conceive, act, pack, 
embrace, see, abolish, advance cure, plan, manage, execute, answer, 
bid, point, cultivate, praise, talk, urge, last, hire, prescribe, and murder. 



Each lemma comes with 50 KWICs processed by three annotators in 
parallel.  

In the graded-decision part, the annotators judged for each pattern how 
well it described a given KWIC, on a Likert scale. In the WSD part, 
each KWIC was assigned one best-matching pattern. The entire data set
contains WSD judgments on 1,450 KWICs, corresponding to 11,400 
graded decisions. A more detailed description of VPS-GradeUp is given
by Baisa et al. [4]. Fig.  2 presents the most essential annotation 
elements.

Fig.  2. Human judgments in Graded-Decisions and WSD tasks. Each line contains one graded 
judgment by all annotators. The WSD judgments repeat as many times as there are patterns to 
judge for each KWIC. 

4 Measures of Appropriateness and Rivalry

4.1 Appropriateness

The appropriateness of a pattern for a given KWIC line is based on the 
triple of annotation judgments and conflates their sum and  standard 
deviation in this formula:

A p pr o pri a t e ne ss=∑ ( x)−sd ( x )
3.5



The function returns values in the range of 3 to 21. The 3.5 coefficient 
is roughly the maximum standard deviation (sd) possible with three 
judgments ranging from 1 to 7. (The x value must be a natural number 
ranging from 1 to 7 and the sum must be the sum of exactly 3 such x.)  
Appropriateness reflects both the mean and the dispersion of the 
judgments, unlike mere mean or median. 

4.2 Rivalry

To compare the competition between PDEV patterns in pairs, we have 
introduced rivalry. Rivalry always concerns the appropriateness rates 
for a pair of patterns of one lemma (colempats, see Section 1), being 
computed for all pairs. Rivalry increases with the appropriateness of 
each colempat (Section 4.1) and with decreasing difference between the
appropriateness values in the given colempat pair: the higher  the 
rivalry, the more the two patterns compete for becoming selected as the 
best match in the WSD annotation. The rivalry function is simple: 

R iv a l r y=max (a p pr pai r)−max ((a p pr pai r)−min (a p pr pai r ))=min(appr pair)

Under apprpair we understand the two computed appropriateness values 
of patterns in a colempat pair: max (a p pr pa i r )  and  ”; mi n(a p pr pa i r ) . 

They represent the higher and the lower appropriateness, respectively. 
Hence, rivalry is defined as the difference between the higher 
appropriateness value and the difference between that and the lower 
appropriateness value, which boils down to the lower appropriateness.

It is to be emphasized that rivalry is always computed on a given 
KWIC. Hence we cannot tell e.g. the rivalry between abandon_1 and 
abandon_3 in general, but we get one rivalry value of this colempat 
pair for each of the 50 KWICs. 

Measuring rivalry is interesting, even though we have not yet 
abstracted from individual KWICs; it enables us to quickly and 
consistently identify cases of pattern overlap for further analysis of both
the design of the patterns and of contextual features in the KWICs 
affected.  



5 Lemma-wise Cluster Analysis of Patterns and Concordances 
according to Appropriateness

The appropriateness function allows us a first visual overview of the 
individual lemmas regarding how well and how many colempats 
matched each individual KWIC. Using a standard clustering algorithm, 
we created a heatmap diagram for each lemma. Fig.  4 shows heatmaps 
for six selected lemmas. The heatmaps revealed striking differences 
between the individual lemmas, leaving the impression that each verb 
behaves in its own way. Nonetheless, we hazarded a coarse division 
into three groups: 
Unproblematic lemmas, such as murder and hire, represent verbs 
whose PDEV patterns are distinct. For murder, the data contained only 
usages covered by Pattern 1. Two KWICs were not covered well by any
pattern, although Pattern 1 marginally matched in the second last 
KWIC (white). In case of hire, the PDEV patterns were also distinct, 
with all three even occurring.
Lemmas with competing patterns. The lemmas approve and last reveal 
high pattern rivalry – an indication that something either in the entry 
design or in the contexts makes sharp distinction impossible and is 
potentially harmful for the WSD-interannotator agreement outcome. 
We carried out a manual analysis of these cases, which yielded a pool 
of possible features that increase rivalry, on one of which we focus in 
this paper.
Lemmas with many KWICs uncaptured by the current PDEV patterns. 
For instance, the lemmas pack and seal contain a non-trivial proportion 
of KWICs in which all patterns display low appropriateness by the 
current PDEV patterns. This suggests a problem in the entry. Two 
preliminary explanations are that either the KWICs contain unknown 
usages and that the entry ought to be complemented with new 
pattern(s), or that a number of patterns contain a relevant interpretation 
aspect, but not the ones perceived as important.

6 Semantic Distance between Semlabels in PDEV

6.1  Selectional Preferences of Verb Uses Modeled by Synslots and Semlabels 

The manual inspection of clusters (Section 5) revealed that KWICs 
often contain objects that happen to match two semantic types at the 
same time, due to regular polysemy [10] or semantic coercion [11]. 
These semantic types can be the only aspect in which two pattern 



definitions differ. When, moreover, the implicatures of these two 
pattern definitions entail one another (see Section 2.5), the two patterns
(colempats) become intuitively hard to distinguish, as is repeatedly 
illustrated by high rivalry scores of such colempat pairs. In our sample, 
this happened most prominently in colempats cancel_2/cancel_6 and 
approve_2/approve_1. (see Fig.3). 

Fig.  3.  PDEV entry of the verb approve. Both the two colempats are transitive, and their 
subjects are populated with the semantic types Human and Institution. Their pattern 
definitions differ only in the semantic types of their direct objects (Plan/System/Rule vs. 
Document). Whenever a KWIC contains a noun such as contract, agreement, and treaty as 
its direct object, these two colempats become indistinguishable, since Plan/System/Rule are
more often than not semantically associated with Document, and the implicatures entail 
each other, too.  

Therefore, when considering factors potentially increasing rivalry, the 
similarity of selectional preferences is among the most prominent 
suspects. We introduce a measure of semantic distance, which 
operationalizes the similarity of selectional preferences to quantify its 
effect on colempat rivalry. 

The concept of semantic distance between corresponding synslots in a 
colempat pair is based on the following understanding of the PDEV 
entry, as already sketched out in Section 2.1: each PDEV entry consists 
of patterns. Patterns consist of pattern definitions and implicatures. 
Each pattern definition consists of a main predicate constituted by the 
target verb (entry lemma) and a number of arguments (syntactic slots, 
synslots, with different syntactic functions), which are populated by 
semlabels. The lemma-pattern combination (e.g. abandon_1) is called 
lempat. Lempats with the same lemma are called colempats. A 
colempat pair is a pair thereof. Verb arguments are called synslots. 
Semlabels populating each synslot along with the syntactic functions of
the synslots represent the selectional preferences of the target verb in a 
given pattern. Selectional preferences in verbs describe “knowledge 
about possible and plausible fillers for a predicate’s argument 
positions” ([12], p. 723). Any clustering of verb occurrences according 
to their semantic similarity is bound to rely on the selectional 
preferences, and PDEV entries capture them explicitly. Based on the 
Distributional Hypothesis ([13]), we can assume that the more similar 



the selectional preferences of two colempats, the more semantically 
related the colempats are. Consequently, more similar colempats should
display higher rivalry than less similar colempats.

6.2 Semlabels in Synslots and Corresponding Synslot Pairs  

When modeling the selectional preferences of the target verb in 
colempats by semlabels in synslots, the corresponding synslots were 
easily extracted by their syntactic labels provided in PDEV. The actual 
problem was the semantic distance between a pair of corresponding 
synslots in itself: synslots are often populated with more than one 
semlabel (cf. Object in Pattern 6, Fig.  1), whereas we needed a one-
number summary. First we computed a semantic-distance score for 
each possible pair of semlabels (more in Section 6.3) and mapped these
scores on observed pairs of semlabels populating the pairs of 
corresponding synslots. For instance, in a pair of colempats where the 
subject of Colempat A was populated by HUMAN and ANIMAL, while
that of Colempat B by INSTITUTION, LAND, and ANIMAL, we used
the semantic-distance scores for the following semlabel pairs: 
HUMAN-INSTITUTION, HUMAN-LAND, HUMAN-ANIMAL, 
ANIMAL-INSTITUTION, ANIMAL-LAND, and ANIMAL- 
ANIMAL. From these 6 scores, we needed a one-number summary to 
render the semantic distance between the entire corresponding synslots,
which we computed as described in Section 6.4.

6.3 Computing the Semantic Distance between Individual Semlabels   

To determine the semantic distance between the individual semlabels 
used in PDEV, we exploited the Distributional Hypothesis ([13]) by 
transforming a corpus of pattern definitions and implicatures from the 
entire PDEV into a vector space with each token represented by a 
vector, whose dimensions reflected the co-occurrence with other tokens
in the space. To render tokens as vectors, we used tex2vec ([9]), an 
implementation of word embeddings [8] for R. Although text2vec offers
a large general-language vector space, we preferred to train our own on 
the text of PDEV patterns , since we were interested in the 
distributional similarity of the words (e.g. HUMAN) used as PDEV 
labels rather than in their regular usage. 

Before training the corpus, we cleaned the PDEV data to capture all 
semlabels and minimize their variants. Markup variation was less a 
problem in the approx. 200 semantic types listed in the PDEV 



documentation than in lexical sets, semantic roles, and diverse 
grammatical markers. First we cleared the text of punctuation, 
converted all tokens to lower case, and erased numerical indices (e.g.  
HUMAN 1). We also had the corpus lemmatized using MorphoDiTa 
[14]. Then we extracted all multi-word semlabels (e.g. HUMAN 
GROUP) and collapsed their strings into one token with underscores 

Fig.  4. Heatmaps of selected lemmas. The lines and columns represent the KWICs and the 
PDEV patterns, respectively. The color appropriateness scores range from turquoise (low 
appropriateness) to purple (high appropriateness). Each line is indexed with a unique KWIC ID 
on the right and is therefore easily tracked back in the corpus for a more detailed analysis.   

(obtaining e.g. human_group). This cleaned and lemmatized corpus 
was put into text2vec to obtain vector representations for each token.

When computing the vector space of PDEV with text2vec, we set a 
minimum frequency threshold to 5 and limited the number of vector 
dimensions to 50. Having obtained a 50-dimension vector for each 
token, we computed their pairwise similarities with cosine. Cosine 
ranges between -1 and 1 and expresses the angle between the two 
vectors. The more the angle differs from 0, the more dissimilar the two 
vectors are. We transformed the results into a range between 0 and 1 by 
adding 1 to each cosine value and dividing the result by 2. The resulting
structure was a distance matrix for almost all pairs of semlabels (for 



exceptions see Section 6.4).  

At this point, we had a mutual-similarity score for nearly each possible 
pair of PDEV semlabels, and thus we could establish the mutual 
similarity of all semlabel pairs within a corresponding synslot pair (cf. 
the example in Section 6.2 – we would have 6 cosine similarity scores 
to characterize the relation between the subjects of the Colempat A & 
Colempat B pair). 

6.4 Determining the Semantic Distance between Entire Synslots

At that point, we needed a one-number summary for each pair of 
corresponding synslots in a pair of colempats to be derived from the 
cosine similarities of individual semlabels. We defined it as the 
Hausdorff distance between the first corresponding synslot and the 
second corresponding synslot. The Hausdorff distance is commonly 
used to model the distance between two subsets of a metric space, in 
our case the two synslots, if we pretend that the semlabels that each of 
them contains are points in the metric space. To compute the Hausdorff 
distance between Colempat A and Colempat B, we took one semlabel 
of Colempat A after another; for each we computed its distance to each 
semlabel in Colempat B and saved the shortest distance. From these 
distances we took the maximum. For this computation we adapted the 
HD function from the polydect R package [15] to immediately process 
distances between points across the subsets instead of deriving them 
from coordinates of each point as the original function would have 
done. Before we had to solve three minor issues:

1. Transformation of the individual cosine similarities to render 
distance rather than similarity to conform to the concept of 
Hausdorff distance; that is, have high score mean dissimilarity;

2. Model cases of only one colempat having the given synslot;

3. Dealing with semlabels for which we had not obtained a cosine 
similarity score. 

Transformation of similarity into distance. We subtracted the cosine 
similarity value from 1 to get a number that would decrease with 
growing similarity instead of increasing. The resulting structure was a 
distance matrix for semlabel pairs, required by the adapted HD 
function. 

Synslot mismatch between colempats. In many pairs, the inventory of 



synslots was different for each colempat; e.g. one colempat had a direct
object while the other not. We modeled the syntactic mismatch as a 
tenfold of the maximum distance observed in the matrix. This is an 
approximation of the common annotator experience that differences in 
argument structure usually help distinguish patterns at the first sight, 
while distinctions based on semlabels in corresponding synslots are 
often blurred – especially when each synslot is populated by several 
semlabels and some of them are present in both, or when they are very 
general (e.g. PHYSICAL OBJECT), or if it is difficult to find for them 
a reasonable hyperonym (one-word and not too general).   

Missing cosine similarity/distance for a pair of semlabels. The 
automatic cleaning of the PDEV corpus before training the vector space
by text2vec (Section 6.3) captured virtually all PDEV semantic types, 
but even so the vector space missed many members of lexical sets and 
semantic roles (see Section 2.1), because they were too rare to pass the 
frequency threshold. We set the cosine similarity/distance of pairs 
consisting of one or two unmatched semlabels to the mean cosine 
similarity/distance observed in the data set. 

We computed the Hausdorff distances for each syntactic function of 
synslots separately. As a last step, we computed their sum for each 
colempat pair. This number rendered the semantic distance between the
entire colempats.      

7 Association between Rivalry and Semantic Distance of 
Corresponding Syntactic Slots

As a first approximation, we have run the Pearson correlation test with 
rivalry and the semantic distance between colempats (i.e. the sum of the
semantic distances of all observed synslots in the colempat pair). The 
test detected a statistically significant negative correlation (p-value ≈ 
0.005).  This conforms to our intuition: the larger the semantic distance,
the smaller the rivalry between patterns.  However, the effect is very 
small (95% confidence interval between -0.002 and  -0.004). 

We also examined possible correlations between rivalry and the 
semantic distance in the individual syntactic functions of synslot pairs 
(i.e. subjects, objects, etc.), but the results were not statistically 
significant for any of them.



8 Discussion and Future Work

We have observed a statistically significant but tiny effect of the 
semantic distance of colempats on pattern rivalry – a far smaller one 
than we had expected. The annotator intuition certainly suggests that, 
when considering a verb as an event with participants, the cognitive 
characteristics of event participants are important for the perception of 
the event itself, and we may believe that we are able to compare how 
similar or different the typical participants of two events are, but there 
is no straightforward way to operationalize this perception. We decided 
to rely on text2vec as a robust state-of-the art device for lexical 
semantic analysis, which goes beyond simple distributional similarity 
yielded by binary distance matrices, but we naturally do not know what
exactly happens behind the scenes of the neural network. Then, even if 
a vector representation had been the most adequate approach, we might 
have lost much of the actual effect size by observing the vectors of 
labels in the pattern definitions instead of vectors of the actual words 
populating the KWICs in the corresponding synslots. Labels were 
easily extracted from PDEV, while the extraction of words populating  
relevant synslots would have been much more complex, involving 
coreference resolution, dealing with coordinated elements, extensive 
manual checks, etc. Also, our approach to mismatches in the argument 
structure between patterns has been rather crude. In fact, our approach 
assigns the tenfold of the largest semantic distance to all cases where 
the Hausdorff distance could not be computed, which includes a synslot
present in one but absent in the other colempat as well as a synslot 
missing in both and thus clearly blurs an important difference which 
could have added to the effect.  

Apart from the semantic distance, we have been preliminarily 
examining other features suspect of increasing rivalry, such as the 
explicite presence/absence of relevant arguments (argument opacity) 
and finiteness of the target verb in the KWICs, along with a very 
preliminary manual annotation of mutual implications of paired pattern
implicatures (only 2 annotators, 0.45 Cohen's κ). A statistically 
significant linear model predicting rivalry (Table 1) finds all these 
predictors significant, but the semantic distance focused in this paper 
turns out weakest. Interestingly, verb finiteness (promising more 
explicit contexts) does not help distinguish between patterns but in fact 
increases rivalry. Considering the argument opacity, the model grows 
slightly more powerful when the opacity of subjects and objects is 



singled out, with opaque object being the most rivalry increasing 
predictor from the opacity family (coeff. 1.42). The most effective 
rivalry increaser turns out to be implicatures implying each other, 
raising each rivalry unit by 2.55 (to the extent we can believe averaged 
triple human judgments on entailment). We have also been considering 
the factuality of the target predicates (for which we have used verb 
finiteness here as a primitive proxy), but a pilot annotation has yielded 
poor interannotator agreement, making results based on such data 
highly speculative.  

All the aforementioned predictors are apparently not general enough to 
beat the effects of individual lemmas, as Table 2 reveals: most lemmas 
are significant, have high coefficients, and increase the predictive 
power of the model (cf. R-squared in both): despite efforts to find 
universal features, each verb appears to remain a little universe in its 
own right.

Table 1: Linear model predicting rivalry from semantic distance, verb finiteness, argument
opacity and mutual implications between paired implicatures



Table 2: Linear model from Table 1 enriched with lemmas as predictors
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