Rudolf Rosa, Zdeněk Žabokrtský {rosa,zabokrtsky}@ufal.mff.cuni.cz

Delexicalized Cross-lingual Transfer of Statistical Syntactic Parsers for Automatic Analysis of Low-resourced Natural Languages

Charles University in Prague Faculty of Mathematics and Physics Institute of Formal and Applied Linguistics

CGI FIT ČVUT, Praha, 6 May 2016

Outline

- Introduction to linguistic analysis
- MSTParser and its delexicalization
- Single-source delexicalized parser transfer
 - KL_{cpos3} language similarity
- Multi-source delexicalized parser transfer
 - treebank concatenation
 - parse tree combination
 - model interpolation
- Future work: lexicalization

Outline

- Introduction to linguistic analysis
- MSTParser and its delexicalization
- Single-source delexicalized parser transfer
 - KL_{cpos3} language similarity
- Multi-source delexicalized parser transfer
 - treebank concatenation
 - parse tree combination
 - model interpolation
- Future work: lexicalization

Introduction to linguistic analysis

The boy likes travelling by train very much.

4/75

Tokenization

The boy likes travelling by train very much.

9/75

Rudolf Rosa – Cross-lingual Transfer of Syntactic Parsers for Analysis of Low-resourced Natural Languages 16/75

PUNCT

Rudolf Rosa – Cross-lingual Transfer of Syntactic Parsers for Analysis of Low-resourced Natural Languages 17/75

Rudolf Rosa – Cross-lingual Transfer of Syntactic Parsers for Analysis of Low-resourced Natural Languages 18/75

Rudolf Rosa – Cross-lingual Transfer of Syntactic Parsers for Analysis of Low-resourced Natural Languages 19/75

Outline

- Introduction to linguistic analysis
- MSTParser and its delexicalization
- Single-source delexicalized parser transfer
 - KL_{cpos3} language similarity
- Multi-source delexicalized parser transfer
 - treebank concatenation
 - parse tree combination
 - model interpolation
- Future work: lexicalization

26/75

- weighting model trained on annotated data
- features for edge nodes and their neighbours
 - lexical: word form ("likes"), word lemma ("like")
 - morphological: part-of-speech tag ("VERB")
 - signed distance of nodes (#root → likes: "+2")

Chu-Liu-Edmonds MST algorithm

Outline

- Introduction to linguistic analysis
- MSTParser and its delexicalization
- Single-source delexicalized parser transfer
 - KL_{cpos3} language similarity
- Multi-source delexicalized parser transfer
 - treebank concatenation
 - parse tree combination
 - model interpolation
- Future work: lexicalization

Semi-supervised parsing

- fully supervised dependency parsing
 - requires training data (treebank) or a grammar

Semi-supervised parsing

- fully supervised dependency parsing
 - requires training data (treebank) or a grammar
 - there are ~100 treebanks (manually annotated)
 - there are ~7 000 languages
 - + various domains, language evolution...

Semi-supervised parsing

- fully supervised dependency parsing
 - requires training data (treebank) or a grammar
 - there are ~100 treebanks (manually annotated)
 - there are ~7 000 languages
 - + various domains, language evolution...
- semi-supervised parsing
 - utilize existing resources, avoid new annotations
 - treebanks for other languages (HamleDT: 30 languages)
 - unannotated data (here: part-of-speech tagged)

Lexicalized MSTParser

Delexicalized MSTParser

Outline

- Introduction to linguistic analysis
- MSTParser and its delexicalization
- Single-source delexicalized parser transfer
 - KL_{cpos3} language similarity
- Multi-source delexicalized parser transfer
 - treebank concatenation
 - parse tree combination
 - model interpolation
- Future work: lexicalization

37/75

Single-source delex parser transfer

- (Zeman and Resnik, 2008)
- train a delexicalized parser on a source language treebank (e.g. Czech)
- apply it to a target language, without a treebank but with a POS tagger (e.g. Slovak)

Utilizing multiple treebanks

- HamleDT: 30 harmonized treebanks
- How do we choose the source treebank?
- Can we use more/all source treebanks?

Choosing the source treebank

- src should be as similar to tgt as possible
 - World Atlas of Language Structures (WALS)
 - language family, word order properties...

Choosing the source treebank

- src should be as similar to tgt as possible
 - World Atlas of Language Structures (WALS)

language family, word order properties...

 KL_{cpos 3} (tgt, src): Kullback-Leibler divergence of POS trigram distributions

$$cpos^{3} = \langle cpos_{i-1}, cpos_{i}, cpos_{i+1} \rangle$$

$$f(cpos^{3}) = \frac{count(cpos^{3})}{|corpus|}$$

$$KL_{cpos^{3}}(tgt, src) = \sum_{\forall cpos^{3} \in tgt} f_{tgt}(cpos^{3}) \cdot \log\left(\frac{f_{tgt}(cpos^{3})}{f_{src}(cpos^{3})}\right)$$

Sample of results (HamleDT)

Target lang.	KL _{cpos 3} selected src		Oracle (best
	lang.	UAS	possible src)
Bengali	Telugu	66.7	\checkmark
Czech	Slovak	65.8	\checkmark
Danish	Slovenian	42.1	+13.3 English
German	English	56.8	\checkmark
Slovak	Slovenian	58.4	+ 3.3 Czech
Tamil	Turkish	31.1	+22.4 Hindi

Outline

- Introduction to linguistic analysis
- MSTParser and its delexicalization
- Single-source delexicalized parser transfer
 - KL_{cpos3} language similarity

Multi-source delexicalized parser transfer

- treebank concatenation
- parse tree combination
- model interpolation
- Future work: lexicalization

44/75

Multi-source delex parser transfer

- treebank concatenation
 - concatenate all source treebanks
 - train one delexicalized parser on the multi-treebank
 - apply the parser to the target text

Multi-source delex parser transfer

- treebank concatenation (baseline)
 - train a parser on concatenation of all treebanks
- parse tree combination
 - train a separate parser for each source treebank
 - separately apply each parser to target text
 - use parser voting and MST algorithm to find the final analysis

Parse tree combination

Parse tree combination

Parse tree combination

Weighted parse tree combination

Weighted parse tree combination

Multi-source delex parser transfer

- treebank concatenation (baseline)
 - train a parser on concatenation of all treebanks
- parse tree combination
 - combine separate src parsers via voting and MST
- parser model interpolation
 - train a parser for each source treebank
 - interpolate the trained models into a combined model
 - apply the parser with the combined model to the target text

- motivation: maybe the parser is more sure with some edges than other?
- the score assigned to the edge might show that
 - MSTParser before running the MST algorithm:

- motivation: maybe the parser is more sure with some edges than other?
- the score assigned to the edge might show that
 - MSTParser before running the MST algorithm:

Weighted parser model interpol.

multiply each edge score with KL_{cpos3}-4 (tgt,src)

 KL_{cpos3}^{-4} (tgt, src1) = 0.5

Weighted parser model interpol.

multiply each edge score with KL_{cpos3}-4 (tgt,src)

 KL_{cpos3}^{-4} (tgt, src1) = 0.5

MSTParser edge score = w · f

- MSTParser edge score = w · f
- unweighted model interpolation
 - edge score = $\sum_{src} (\mathbf{w}_{src} \cdot \mathbf{f})$

- MSTParser edge score = w · f
- unweighted model interpolation
 - edge score = $\sum_{src} (\mathbf{w}_{src} \cdot \mathbf{f}) = (\sum_{src} \mathbf{w}_{src}) \cdot \mathbf{f}$

- MSTParser edge score = w · f
- unweighted model interpolation
 - edge score = $\sum_{src} (\mathbf{w}_{src} \cdot \mathbf{f}) = (\sum_{src} \mathbf{w}_{src}) \cdot \mathbf{f}$
 - interpolated model $\mathbf{w}_{int} = (\sum_{src} \mathbf{w}_{src})$
 - edge score = $\mathbf{w}_{int} \cdot \mathbf{f}$

- MSTParser edge score = w · f
- unweighted model interpolation
 - edge score = $\sum_{src} (\mathbf{w}_{src} \cdot \mathbf{f}) = (\sum_{src} \mathbf{w}_{src}) \cdot \mathbf{f}$
 - interpolated model $\mathbf{w}_{int} = (\sum_{src} \mathbf{w}_{src})$
 - edge score = $\mathbf{w}_{int} \cdot \mathbf{f}$
- weighted model interpolation: KL_{cpos3}⁻⁴ (tgt, src)
 - edge score = $\sum_{src} (KL_{src} \cdot \mathbf{w}_{src} \cdot \mathbf{f}) = (\sum_{src} KL_{src} \cdot \mathbf{w}_{src}) \cdot \mathbf{f}$
 - interpolated model $\mathbf{w}_{int} = (\sum_{src} KL_{src} \cdot \mathbf{w}_{src})$

Average UAS over 18 test TBs

Outline

- Introduction to linguistic analysis
- MSTParser and its delexicalization
- Single-source delexicalized parser transfer
 - KL_{cpos3} language similarity
- Multi-source delexicalized parser transfer
 - treebank concatenation
 - parse tree combination
 - model interpolation

Future work: lexicalization

Future work: lexicalization

- lexical features (words) are important
 - supervised parsers UAS: ~85% lex, ~75% delex
 - but they are language-specific (unlike POS tags)

Machine translation lexicalization

- parse tree transfer
 - translate target sentence to source language
 - parse translated sentence by source parser
 - transfer source parse tree to target sentence
- treebank transfer
 - translate source treebank to target language
 - transfer parse trees from source treebank to translated treebank
 - train target parser on transferred treebank

Machine translation lexicalization

- parse tree transfer
 - transfer translated source parse tree to target sentence
- treebank transfer
 - train target parser on transferred translated source TB

Problem 1: translation

- parse tree transfer
 - transfer translated source parse tree to target sentence
- treebank transfer
 - train target parser on transferred translated source TB
- problems with machine translation
 - high-quality often available only to/from English
 - for low-resourced languages often low quality
 requires large amounts of bilingual texts

Problem 2: transfer

- parse tree transfer
 - transfer translated source parse tree to target sentence
- treebank transfer
 - train target parser on transferred translated source TB

Solution (to both): morphs?

- morphs could get closer to 1:1 correspondence
 - especially if segmentation and alignment done jointly
- translation via morphs could do with less data
 - split rare complex words into frequent simple morphs

72/75
Joint segmentation and alignment?

- given a corpus of bilingual sentences
- morph segmentation and alignment, so that
 - alignment is close to 1:1
 - aligned morphs have similar meaning
- Bayesian approach?
 - maximize probability of bilingual morphs

P("-em : by") ~ count("-em : by")

 also account for alignment fertility, alignment fluency, lexical roots vs auxiliary morphs distinction

Conclusion

- Parsing of low-resourced natural languages
- Single-/Multi-source delexicalized parser transfer
 - parse tree combination
 - MSTParser model interpolation
 - KL_{cpos3}: language similarity for src selection/weighting
- Future work: Lexicalization
 - machine translation
 - morph splitting and alignment

Thank you for your attention

Rudolf Rosa, Zdeněk Žabokrtský {rosa,zabokrtsky}@ufal.mff.cuni.cz

Delexicalized Cross-lingual Transfer of Statistical Syntactic Parsers for Automatic Analysis of Low-resourced Natural Languages

Charles University in Prague Faculty of Mathematics and Physics Institute of Formal and Applied Linguistics

http://ufal.mff.cuni.cz/rudolf-rosa/