
A new parsing algorithm

Rudolf Rosa

Charles University in Prague, Faculty of Mathematics and Physics, Prague, Czechia.

Abstract. We propose a new dependency parsing algorithm, designed to allow
for any features while maintaining tractability. The main idea is to start with a
baseline parse tree rather than with no tree at all, and to transform that tree into
the correct one by repeated application of simple transformation operations. We
focus on inference, discussing anticipated issues and possible remedies. Suggestions
towards the training procedure and the feature set are also briefly presented.

1. Introduction

In many of today’s state-of-the-art dependency parsers, such as MST parser [McDonald
et al., 2005] or Malt parser [Nivre et al., 2006], features must be local with regard to the tree
context, being able to take only one edge or a small part of the parse tree into account. Because
of that, many phenomena that require a larger context, such as verb valency or coordination
structures, cannot easily be captured, let alone explicitly modelling the overall “niceness” of the
dependency tree.1

An existing way of introducing large-context and global features into parsing is n-best list
reranking [Charniak and Johnson, 2005; Collins and Koo, 2006]. In this approach, a parser
produces an n-best list of parse trees, and a reranker then uses additional features to choose the
best parse tree from these candidates. The reranker has access to the whole tree, and therefore
can use any features. There are some issues with reranking though. It may be hard to produce
an n-best list from a parser – the rise of complexity often makes this approach impractical.
Also, it may simply be better to do everything in one step by designing a parser that allows
global features to avoid error cumulation.

A well-known observation is that many languages are primarily left-branching or right-
branching;2 probably for all languages, a left branching or a right branching is generally a
very strong baseline parse tree, which is sometimes even hard to beat, especially under limited
resources scenarios. It is further well known that typically the most common edge length is 1,
i.e. edges are very often part of either the left or the right branching.

In this work, we try to combine the aforementioned observations and approaches in a novel
way into a parser that allows employment of any features. The main idea is that instead of
starting with an unparsed sentence, we initialize our parser with a baseline parse tree (a left or
right branching). The final parse tree is then obtained by performing transformations on the
tree. Thus, a whole parse tree is available at each moment, and thus any features, including
high-order or global ones, can be used. Moreover, the parser has a baseline parse tree already
at the time of initialization, and keeps having a reasonable tree all the time, which we believe
to be beneficial.

We present the suggested inference procedure in Section 2, extensively analyzing and dis-
cussing it in Section 3. We also briefly discuss possible ways of training the model (Section 4)
and envision features to be used (Section 5).

1Intuitively, this should be possible, as an experienced researcher can often easily tell that an incorrect
dependency tree looks bad, even without inspecting the actual words or their part-of-speech tags – there are
some expectations we have about the shape of the tree, its depth, node fertilities, non-projective edges, edge
lengths. . . However, current parsers can be seen as being capable of only a very limited generalization in this
respect.

2We save ourselves the discussion of to what extent this is a property of the language itself or rather of its
treebank; in this work, a language is represented by its treebank to us.



ROSA: A NEW PARSING ALGORITHM

Please note that this paper is a theoretical one. We only state our ideas, the experiments
have not been performed yet – this is the obvious and vital future work necessary to validate
or reject the ideas drafted in this paper.

2. Inference

We first describe our suggested greedy inference procedure. The goal of the inference
procedure is to efficiently find the best parse tree – according to a scoring function, described in
Section 2.1. We analyze the suggested inference procedure and suggest possible improvements
in Section 3.

1. The inference procedure starts by initializing the current tree with a baseline parse tree –
a left or right branching, depending on the prevalent characteristic of the language.3 As usually
done, we assume an artificial root node.

2. In each step, we try to transform the current tree by performing one of the following
operations:

rotate(child) a rotation; rotate the edge between child and its parent (the original grandparent
of child becomes its parent, and the original parent of child becomes its child)

attach(child,parent) a reattachment; attach child as a new child of parent

Each operation changes only 1 (attach) or 2 (rotate) edges (i.e. the nodes are moved together
with their children). Note that necessarily, not all operations all valid – the parent node in the
attach operation cannot be a descendant of the child node (as this would lead to a cycle), and
a rotation cannot be performed on a child of the artificial root node,

Each valid operation transforms the current tree into a candidate tree. If any of the can-
didate trees is judged to be better than the current tree by the scoring function, the algorithm
proceeds to a next step with the highest scoring candidate tree as the new current tree.

3. If no better tree is found, the algorithm stops, returning the current tree as the result.

2.1. Scoring

We propose a scoring function in the general form of score(tree) = ~W · ~F , where ~F is
the vector of values of the binary features and ~W is a vector of their weights. ~W is to be
obtained by training a model using machine learning techniques, see Section 4; ~F is to be
defined appropriately to the given language and tuned according to performance, as discussed
in Section 5.

We distinguish three types of features:

local computed for each edge, its value depends on the current tree only locally (e.g. number
of children of the parent node)

semilocal computed for each edge, its value depends on the current tree globally (e.g. depth
of the child node in the tree)

global computed only once for the whole tree (e.g. average node depth)

Thus, the score can be decomposed as follows:

• score(tree) = scorelocal(tree) + scoresemilocal(tree) + scoreglobal(tree)

• scorelocal(tree) =
∑N

j=1

∑L
i=1wli li(nodej)

• scoresemilocal(tree) =
∑N

j=1

∑S
i=1wsisi(nodej)

3The prevalent characteristic of each language can be easily determined from the treebank beforehand.



ROSA: A NEW PARSING ALGORITHM

• scoreglobal(tree) =
∑G

i=1wgigi(tree)

where l1, . . . lL are the local features, s1, . . . sS are the semilocal features, g1, . . . gG are the global
features, w are their weights and node1, . . . nodeN are the nodes corresponding to tokens of the
sentence (each node uniquely identifies the edge to its parent node).

3. Inference analysis and discussion

In this section, we analyze the algorithm, its strengths and its weaknesses, we discuss
several design decisions, and we provide several possible improvements that may be necessary
if issues that we forsee as possible are encountered in practice.

3.1. Initialization

The initialization step is simple and efficient, ensuring that the parser starts with an already
reasonably good tree. It is conceivable to use an even better baseline parse tree, such as
one where the first verb becomes the root, all preceding tokens create a left branching and
all following tokens create a right branching. However, the more this is tuned, the more it
becomes a rule-based (and also language-specific) parser, which has not been intended and
would require a lot of manual work (while the prevalence of left or right branching can be
determined automatically from a treebank).

Alternatively, a baseline parser could be used to provide the initial parse tree, thus using
our proposed parser rather as a parse post-processor, similarly to the reranking approach (but
without the need of the baseline parser to produce n-best parses). The proposed parser is well
suited for being initialized with any reasonable parse tree, leading to a proportional reduction
of steps needed to achieve the final parse.4 However, in this case, we expect it would be fruitful
to add a feature indicating whether a given edge was part of the baseline parse tree or not.

Of course, the exact way in which the parser will be initialized should be reflected already
in the training.

3.2. Operations

In each step, there are at most N2 possible operations that may be performed on the current
tree. While the number of steps is theoretically O(NN ) if the algorithm was to subsequently
reach all possible trees, this is very unlikely to happen in practice. In the optimal case, there
will be at most N steps (each step will transform the tree into one that has at least one more
correct edge), and we believe that if the algorithm is trained properly, the average number of
steps will be about N .

It is easy to show that the attach() operation would by itself be sufficient to obtain the
correct parse tree in at most N steps (although more steps can be taken in practice, since the
parser is allowed to rethink its decisions) – in each step, there is always at least one node that
has an incorrect parent and can be attached to its correct parent (i.e. its correct parent is
not among its descendants), or the parse tree is correct. However, we propose the “additional”
rotate() operation for several reasons:

• it is a one-step transformation of an edge between the two possible branching directions;
in many languages, edges corresponding to both of the branching types are quite common,
so it seems reasonable to have an easy way of going from one to the other

• it reduces the number of necessary steps (a rotate() operation can be achieved by two
attach() operations)

4We believe this approach could also be used for transforming sentence parse trees from one annotation style
to another.



ROSA: A NEW PARSING ALGORITHM

• it may help avoid the algorithm being stuck in a local optimum (see Section 3.4)

• it has little effect on time complexity, as there are at most N − 1 possible rotations in
each step, while there can be as many as N · (N − 1) possible reattachments

As we introduce the rotations as a way of switching between left and right branching, we believe
that it may be sufficient to allow only rotations of edges of length 1.5

Our original suggestion is to consider all possible O(N2) reattachments in each step. How-
ever, this is not in accord with the observation that most edges are short, and thus short-range
reattachments will be much more common than long-range reattachments; moreover, the bene-
fit of starting with a reasonable baseline parse tree would not be fully exploited. Therefore, we
propose an alternative approach, which leads to an increased number of steps and an increased
number of reconsiderations (i.e. nodes reattached multiple times), but the number of operations
considered in each step is much lower.

The general idea behind the suggested approach is to try out the a priori most likely
operations first, and only continue with the less likely ones once no further improvement can
be gained. Thus, run the algorithm as defined, but allowing only rotations and reattachments
of length 1. When a local optimum is reached, increase the maximum allowed reattachment
length to 2.6 Keep running the algorithm and incrementing the maximum reattachment length
until it reaches N , then stop.

We expect that most of the steps will happen in the earlier phases and the later slower
phases will only take a few steps, thus leading to a lower number of total transformations
considered.

3.3. Scoring

Typical parsers only allow local features. We allow two other feature types (see Section 2.1),
which is a strength of our parser, but it has implications on complexity: While computing
scoreglobal is O(G) and computing scorelocal can be easily reduced from O(N · L) to O(L) by
dynamic programming, computing scoresemilocal is O(N ·S) and cannot be easily reduced. Thus,
computing the score of each candidate tree is O(N ·S +L+G). This may be rather costly, and
it is therefore preferable not to use a large number of semilocal features.

Still, the need to compute the score for possibly very many candidate trees in each step is
expected to make the parser significantly slower than other existing parsers, and it may be of
interest to try to reduce the number of steps and/or the number of candidate trees considered
in those steps, as discussed in the previous section. Further smaller optimizations may be
performed as well, such as disregarding candidate trees corresponding to a reattachment of a
node that has just been reattached.

3.4. Search and stopping

Our original proposition is to perform a simple hill climbing, stopping whenever a local
optimum is reached. While it may be that with a good training procedure, such an approach
will prove to be sufficient, we anticipate possible issues and suggest remedies.

One of the problems of simple hill climbing is the danger of taking an incorrect step.
However, we believe that this will not be a grave issue with our approach, as our algorithm is
able to reconsider its decisions.7 Still, if this were to become an issue, beam search can be used.

5However, this would not be true if the baseline parse tree were not a branching.

6Note that we need to always allow all shorter-range reattachments in each step, as the algorithm may
reconsider some of its decisions after long-range reattachments are performed.

7Only going back to a tree that had already been the current tree is not even theoretically possible; however,
this would be a score error, not a search error.



ROSA: A NEW PARSING ALGORITHM

A more serious threat is the danger of being caught in a local optimum different from
the global optimum. This is easily imaginable, as the locally optimal parse tree might look
rather good by itself, but to reach the correct one, the algorithm might have to perform a set of
operations that will make the tree worse at first, only to make it even better after a few steps.
If this turns out to be an issue, we suggest trying to perform a deeper search, e.g. trying out a
sequence of two operations instead of one operation to reach the next tree instead of stopping
once a local optimum is reached. This change is not expected to slow down the algorithm
significantly, as we expect the inference to land in a local optimum only very few times.

4. Training

We suggest to treat the task as a classification problem. In this approach, we closely
follow the inference in learning the scoring function. Each step is a separate classification task,
in which we try to classify each candidate tree into one of two classes: better or not better
than the current tree. As the inference procedure actually considers only the highest scoring
candidate tree, it may be sufficient to also take only the currently highest scoring tree into
account in the training phase. For space reasons, we do not discuss that here in more detail,
nor do we present reasons for which we do not treat the task as a regression problem (predicting
tree UAS) instead.

As for the actual learning algorithm, we suggest using e.g. the Margin Infused Relaxed
Algorithm (MIRA) [Crammer and Singer, 2003], which has been successfully employed in NLP
several times, including the MST parser [McDonald et al., 2005].

5. Feature set

A natural starting point for designing the feature set is taking the edge-local features from
standard parsers, such as MST parser [McDonald et al., 2005], looking at edge direction and
length, word forms, lemmas and part-of-speech tags of the child and parent node, as well as
neighbouring words. While the MST parser looks at sentence-wise neighbouring words, our
parser may look at tree-wise neighbouring words as well (or instead). It is easy to integrate
any higher order features, both ones already used in parsers [Carreras, 2007], as well as ones
previously impossible to employ – sibling features, grandparent/grandchild features, cousin
features, uncle features, etc. Of course, care has to be taken not to run into serious data
sparseness issues, especially with lexicalized features.8

A further place to look for features are rerankers [Charniak and Johnson, 2005; Collins and
Koo, 2006] and unsupervised parsers [Mareček and Straka, 2013; Spitkovsky et al., 2013]. These
already include some features that try to capture the “niceness” of a tree, but we believe that
more can be used, both local and global – e.g. node fertility (i.e. number of children), node
depth, subtree depth, edge non-projectivity. . . Many of these could also be factored according
to lemma or part-of-speech – e.g. the number of noun children of a given verb could be a useful
feature for modelling verb valency.

For many features, it is also possible to design cumulative features computed on the whole
tree, such as total number of non-projective edges, left/right edge ratio, average node fertility,
maybe even node fertility variance, etc.

As usual, we propose to use bucketing to turn numerical features into categorial, bina-
rization to turn categorial features into binary, and feature conjunctions to capture interesting
phenomena.

We would like to note here our belief that in a harmonized setting, i.e. one where treebanks
for multiple languages follow the same annotation style, as in Zeman et al. [2012], many of the

8An explicit way of modelling out-of-vocabulary items may be necessary, e.g. by replacing infrequent word
forms and lemmas by their suffix only (so e.g. “platypus” might become “-us”).



ROSA: A NEW PARSING ALGORITHM

features (e.g. node fertilities) are likely to be largely language-independent; we plan to further
investigate this in future.

6. Conclusion and future work

We suggest a new algorithm for syntactic dependency parsing. The algorithm differs from
existing parsing algorithms by allowing any features, including global features. This leads to
an increased time complexity; however, we discuss several possible ways of treating this issue,
and we believe that eventually, inference might be fast enough for the parser to be practical.

The main focus of this paper is the novel inference algorithm, including its possible varia-
tions that we suggest be tried out. We also present suggestions towards the training procedure
and the feature set.

This work is only theoretical so far. A vital next step is to evaluate the usefulness of our
ideas in practice by implementing the parser and evaluating its performance.

If our approach proves to be useful, we further plan to extend it to perform labelled parsing
(joint parsing and labelling) in a similar way – i.e. starting with a baseline labelling (all nouns
are objects, all adjectives are attributes. . . ) and iteratively relabelling the nodes to increase the
overall score of the labelled tree.

We also intend to follow the aforementioned possible research path of using our approach
for treebank harmonization. For this task, some changes to our method will be necessary. Most
importantly, we will need to account for a cross-lingual setting, where the parser (now in the role
of a “transformer”) will have to be trained on one or multiple already harmonized treebanks,
and then applied to a treebank of a different language; we believe that a delexicalized approach
and/or employment of word-based machine translation techniques may be used to achieve this
goal. Also, semi-lexicalized features may be useful, such as word length (probably normalized
across languages), word affix identity (for a pair of nodes), word/lemma frequency (in the
treebank or another corpus), etc.

Acknowledgments. This research was supported by the grants GAUK 1572314 and SVV 260 104.

References

Carreras, X., Experiments with a higher-order projective dependency parser, in Proceedings of the CoNLL
Shared Task Session of EMNLP-CoNLL, 2007.

Charniak, E. and Johnson, M., Coarse-to-fine n-best parsing and maxent discriminative reranking, in
Proceedings of ACL, 2005.

Collins, M. and Koo, T., Discriminative reranking for natural language parsing, Comp. Ling., 2006.

Crammer, K. and Singer, Y., Ultraconservative online algorithms for multiclass problems, The Journal
of Machine Learning Research, 2003.

Mareček, D. and Straka, M., Stop-probability estimates computed on a large corpus improve unsupervised
dependency parsing, in Proceedings of ACL, 2013.

McDonald, R., Crammer, K., and Pereira, F., Online large-margin training of dependency parsers, in
Proceedings of ACL, 2005.

Nivre, J., Hall, J., and Nilsson, J., Maltparser: A data-driven parser-generator for dependency parsing,
in Proceedings of LREC , 2006.

Spitkovsky, V. I., Alshawi, H., and Jurafsky, D., Breaking out of local optima with count transforms and
model recombination: A study in grammar induction, in Proceedings of EMNLP , 2013.

Zeman, D., Mareček, D., Popel, M., Ramasamy, L., Štěpánek, J., Žabokrtský, Z., and Hajič, J., Ham-
leDT: To parse or not to parse?, in Proceedings of LREC , 2012.


