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Abstract

We define broad-coverage semantic depen-
dency parsing (SDP) as the task of recover-
ing sentence-internal predicate–argument
relationships for all content words, i.e. the
semantic structure constituting the rela-
tional core of sentence meaning.

1 Background and Motivation

Syntactic dependency parsing has seen great ad-
vances in the past decade, in part owing to rela-
tively broad consensus on target representations,
and in part reflecting the successful execution of a
series of shared tasks at the annual Conference for
Natural Language Learning (CoNLL; Buchholz &
Marsi, 2006; Nivre et al., 2007; inter alios). From
this very active research area accurate and efficient
syntactic parsers have developed for a wide range
of natural languages. However, the predominant
data structure in dependency parsing to date are
trees, in the formal sense that every node in the de-
pendency graph is reachable from a distinguished
root node by exactly one directed path.

Unfortunately, tree-oriented parsers are ill-suited
for producing meaning representations, i.e. mov-
ing from the analysis of grammatical structure to
sentence semantics. Even if syntactic parsing ar-
guably can be limited to tree structures, this is not
the case in semantic analysis, where a node will
often be the argument of multiple predicates (i.e.
have more than one incoming arc), and it will often
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be desirable to leave nodes corresponding to se-
mantically vacuous word classes unattached (with
no incoming arcs).

Thus, Task 8 at SemEval 2014, Broad-Coverage
Semantic Dependency Parsing (SDP 2014),1 seeks
to stimulate the dependency parsing community
to move towards more general graph processing,
to thus enable a more direct analysis of Who did
What to Whom? For English, there exist several
independent annotations of sentence meaning over
the venerable Wall Street Journal (WSJ) text of the
Penn Treebank (PTB; Marcus et al., 1993). These
resources constitute parallel semantic annotations
over the same common text, but to date they have
not been related to each other and, actually, have
hardly been used for training and testing of data-
driven parsers. In this task, we have used three
different such target representations for bi-lexical
semantic dependencies, as demonstrated in Figure 1
below for the WSJ sentence:

(1) A similar technique is almost impossible to apply to
other crops, such as cotton, soybeans, and rice.

Semantically, technique arguably is dependent on
the determiner (the quantificational locus), the mod-
ifier similar, and the predicate apply. Conversely,
the predicative copula, infinitival to, and the par-
ticle marking the deep object of apply can be ar-
gued to not have a semantic contribution of their
own. Besides calling for node re-entrancies and
partial connectivity, semantic dependency graphs
may also exhibit higher degrees of non-projectivity
than typical syntactic dependency trees.

In addition to its relation to syntactic dependency
parsing, the task also has some overlap with Se-

1See http://alt.qcri.org/semeval2014/
task8/ for further technical details, information on how to
obtain the data, and official results.
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(a) Partial semantic dependencies in PropBank and NomBank.

A similar technique is almost impossible to apply to other crops, such as cotton, soybeans and rice.

top
ARG2 ARG3 ARG1

ARG2mwe _and_cARG1ARG1

BV

ARG1 implicit_conjARG1

(b) DELPH-IN Minimal Recursion Semantics–derived bi-lexical dependencies (DM).
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(c) Enju Predicate–Argument Structures (PAS).
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(d) Parts of the tectogrammatical layer of the Prague Czech-English Dependency Treebank (PCEDT).

Figure 1: Sample semantic dependency graphs for Example (1).

mantic Role Labeling (SRL; Gildea & Jurafsky,
2002). In much previous work, however, target
representations typically draw on resources like
PropBank and NomBank (Palmer et al., 2005; Mey-
ers et al., 2004), which are limited to argument
identification and labeling for verbal and nominal
predicates. A plethora of semantic phenomena—
for example negation and other scopal embedding,
comparatives, possessives, various types of modi-
fication, and even conjunction—typically remain
unanalyzed in SRL. Thus, target representations are
partial to a degree that can prohibit semantic down-
stream processing, for example inference-based
techniques. In contrast, we require parsers to iden-
tify all semantic dependencies, i.e. compute a rep-
resentation that integrates all content words in one
structure. Another difference to common interpre-
tations of SRL is that the SDP 2014 task definition
does not encompass predicate disambiguation, a
design decision in part owed to our goal to focus
on parsing-oriented, i.e. structural analysis, and in
part to lacking consensus on sense inventories for
all content words.2

2A second closely related area of much current interest is
often dubbed ‘semantic parsing’, which Kate and Wong (2010)
define as “the task of mapping natural language sentences into
complete formal meaning representations which a computer

2 Target Representations

We use three distinct target representations for se-
mantic dependencies. As is evident in our run-
ning example (Figure 1), showing what are called
the DM, PAS, and PCEDT semantic dependencies,
there are contentful differences among these anno-
tations, and there is of course not one obvious (or
even objective) truth. In the following paragraphs,
we provide some background on the ‘pedigree’ and
linguistic characterization of these representations.

DM: DELPH-IN MRS-Derived Bi-Lexical De-
pendencies These semantic dependency graphs
originate in a manual re-annotation of Sections 00–
21 of the WSJ Corpus with syntactico-semantic
analyses compatible with the LinGO English Re-
source Grammar (ERG; Flickinger, 2000). Among
other layers of linguistic annotation, this resource—
dubbed DeepBank by Flickinger et al. (2012)—
includes underspecified logical-form meaning rep-
resentations in the framework of Minimal Recur-
sion Semantics (MRS; Copestake et al., 2005).

can execute for some domain-specific application.” In contrast
to most work in this tradition, our SDP target representations
aim to be task- and domain-independent, though at least part
of this generality comes at the expense of ‘completeness’ in
the above sense; i.e. there are aspects of sentence meaning
that arguably remain implicit.



Our DM target representations are derived through
a two-step ‘lossy’ conversion of MRSs, first to
variable-free Elementary Dependency Structures
(EDS; Oepen & Lønning, 2006), then to ‘pure’
bi-lexical form—projecting some construction se-
mantics onto word-to-word dependencies (Ivanova
et al., 2012). In preparing our gold-standard
DM graphs from DeepBank, the same conversion
pipeline was used as in the system submission of
Miyao et al. (2014). For this target representa-
tion, top nodes designate the highest-scoping (non-
quantifier) predicate in the graph, e.g. the (scopal)
degree adverb almost in Figure 1.3

PAS: Enju Predicate-Argument Structures
The Enju parsing system is an HPSG-based parser
for English.4 The grammar and the disambigua-
tion model of this parser are derived from the Enju
HPSG treebank, which is automatically converted
from the phrase structure and predicate–argument
structure annotations of the PTB. The PAS data
set is extracted from the WSJ portion of the Enju
HPSG treebank. While the Enju treebank is an-
notated with full HPSG-style structures, only its
predicate–argument structures are converted into
the SDP data format for use in this task. Top
nodes in this representation denote semantic heads.
Again, the system description of Miyao et al. (2014)
provides more technical detail on the conversion.

PCEDT: Prague Tectogrammatical Bi-Lexical
Dependencies The Prague Czech-English De-
pendency Treebank (PCEDT; Hajič et al., 2012)5

is a set of parallel dependency trees over the WSJ
texts from the PTB, and their Czech translations.
Similarly to other treebanks in the Prague family,
there are two layers of syntactic annotation: an-
alytical (a-trees) and tectogrammatical (t-trees).
PCEDT bi-lexical dependencies in this task have
been extracted from the t-trees. The specifics of
the PCEDT representations are best observed in the
procedure that converts the original PCEDT data to
the SDP data format; see Miyao et al. (2014). Top
nodes are derived from t-tree roots; i.e. they mostly
correspond to main verbs. In case of coordinate
clauses, there are multiple top nodes per sentence.

3Note, however, that non-scopal adverbs act as mere in-
tersective modifiers, e.g. loudly is a predicate in DM, but the
main verb provides the top node in structures like Abrams
sang loudly.

4See http://kmcs.nii.ac.jp/enju/.
5See http://ufal.mff.cuni.cz/pcedt2.0/.

3 Graph Representation

The SDP target representations can be character-
ized as labeled, directed graphs. Formally, a se-
mantic dependency graph for a sentence x =
x1, . . . , xn is a structure G = (V,E, `V , `E) where
V = {1, . . . , n} is a set of nodes (which are in
one-to-one correspondence with the tokens of the
sentence); E ⊆ V × V is a set of edges; and `V
and `E are mappings that assign labels (from some
finite alphabet) to nodes and edges, respectively.
More specifically for this task, the label `V (i) of a
node i is a tuple consisting of four components: its
word form, lemma, part of speech, and a Boolean
flag indicating whether the corresponding token
represents a top predicate for the specific sentence.
The label `E(i→ j) of an edge i→ j is a seman-
tic relation that holds between i and j. The exact
definition of what constitutes a top node and what
semantic relations are available differs among our
three target representations, but note that top nodes
can have incoming edges.

All data provided for the task uses a column-
based file format (dubbed the SDP data format)
similar to the one of the 2009 CoNLL Shared Task
(Hajič et al., 2009). As in that task, we assume gold-
standard sentence and token segmentation. For
ease of reference, each sentence is prefixed by a
line with just a unique identifier, using the scheme
2SSDDIII, with a constant leading 2, two-digit sec-
tion code, two-digit document code (within each
section), and three-digit item number (within each
document). For example, identifier 20200002 de-
notes the second sentence in the first file of PTB
Section 02, the classic Ms. Haag plays Elianti. The
annotation of this sentence is shown in Table 1.

With one exception, our fields (i.e. columns in
the tab-separated matrix) are a subset of the CoNLL
2009 inventory: (1) id, (2) form, (3) lemma, and
(4) pos characterize the current token, with token
identifiers starting from 1 within each sentence. Be-
sides the lemma and part-of-speech information, in
the closed track of our task, there is no explicit
analysis of syntax. Across the three target represen-
tations in the task, fields (1) and (2) are aligned and
uniform, i.e. all representations annotate exactly
the same text. On the other hand, fields (3) and (4)
are representation-specific, i.e. there are different
conventions for lemmatization, and part-of-speech
assignments can vary (but all representations use
the same PTB inventory of PoS tags).

The bi-lexical semantic dependency graph over



id form lemma pos top pred arg1 arg2

#20200002
1 Ms. Ms. NNP − + _ _
2 Haag Haag NNP − − compound ARG1
3 plays play VBZ + + _ _
4 Elianti Elianti NNP − − _ ARG2
5 . . . − − _ _

Table 1: Tabular SDP data format (showing DM).

tokens is represented by two or more columns start-
ing with the obligatory, binary-valued fields (5)
top and (6) pred. A positive value in the top
column indicates that the node corresponding to
this token is a top node (see Section 2 below). The
pred column is a simplification of the correspond-
ing field in earlier tasks, indicating whether or not
this token represents a predicate, i.e. a node with
outgoing dependency edges. With these minor dif-
ferences to the CoNLL tradition, our file format can
represent general, directed graphs, with designated
top nodes. For example, there can be singleton
nodes not connected to other parts of the graph,
and in principle there can be multiple tops, or a
non-predicate top node.

To designate predicate–argument relations, there
are as many additional columns as there are pred-
icates in the graph (i.e. tokens marked + in the
pred column); these additional columns are called
(7) arg1, (8) arg2, etc. These colums contain
argument roles relative to the i-th predicate, i.e. a
non-empty value in column arg1 indicates that
the current token is an argument of the (linearly)
first predicate in the sentence. In this format, graph
reentrancies will lead to a token receiving argument
roles for multiple predicates (i.e. non-empty argi
values in the same row). All tokens of the same sen-
tence must always have all argument columns filled
in, even on non-predicate words; in other words,
all lines making up one block of tokens will have
the same number n of fields, but n can differ across
sentences, depending on the count of graph nodes.

4 Data Sets

All three target representations are annotations of
the same text, Sections 00–21 of the WSJ Cor-
pus. For this task, we have synchronized these
resources at the sentence and tokenization levels
and excluded from the SDP 2014 training and test-
ing data any sentences for which (a) one or more of
the treebanks lacked a gold-standard analysis; (b) a
one-to-one alignment of tokens could not be estab-
lished across all three representations; or (c) at least

DM PAS PCEDT

(1) # labels 51 42 68
(2) % singletons 22.62 4.49 35.79
(3) # edge density 0.96 1.02 0.99
(4) %g trees 2.35 1.30 56.58
(5) %g projective 3.05 1.71 53.29
(6) %g fragmented 6.71 0.23 0.56
(7) %n reentrancies 27.35 29.40 9.27
(8) %g topless 0.28 0.02 0.00
(9) # top nodes 0.9972 0.9998 1.1237

(10) %n non-top roots 44.71 55.92 4.36

Table 2: Contrastive high-level graph statistics.

one of the graphs was cyclic. Of the 43,746 sen-
tences in these 22 first sections of WSJ text, Deep-
Bank lacks analyses for close to 15%, and the Enju
Treebank has gaps for a little more than four per-
cent. Some 500 sentences show tokenization mis-
matches, most owing to DeepBank correcting PTB
idiosyncrasies like 〈G.m.b, H.〉, 〈S.p, A.〉, and
〈U.S., .〉, and introducing a few new ones (Fares
et al., 2013). Finally, 232 of the graphs obtained
through the above conversions were cyclic. In total,
we were left with 34,004 sentences (or 745,543
tokens) as training data (Sections 00–20), and 1348
testing sentences (29,808 tokens), from Section 21.

Quantitative Comparison As a first attempt at
contrasting our three target representations, Table 2
shows some high-level statistics of the graphs com-
prising the training data.6 In terms of distinctions
drawn in dependency labels (1), there are clear dif-
ferences between the representations, with PCEDT
appearing linguistically most fine-grained, and PAS
showing the smallest label inventory. Unattached
singleton nodes (2) in our setup correspond to
tokens analyzed as semantically vacuous, which
(as seen in Figure 1) include most punctuation
marks in PCEDT and DM, but not PAS. Further-
more, PCEDT (unlike the other two) analyzes some
high-frequency determiners as semantically vacu-
ous. Conversely, PAS on average has more edges
per (non-singleton) nodes than the other two (3),

6These statistics are obtained using the ‘official’ SDP
toolkit. We refer to nodes that have neither incoming nor
outgoing edges and are not marked as top nodes as singletons;
these nodes are ignored in subsequent statistics, e.g. when
determining the proportion of edges per nodes (3) or the per-
centages of rooted trees (4) and fragmented graphs (6). The
notation ‘%n’ denotes (non-singleton) node percentages, and
‘%g’ percentages over all graphs. We consider a root node any
(non-singleton) node that has no incoming edges; reentrant
nodes have at least two incoming edges. Following Sagae and
Tsujii (2008), we consider a graph projective when there are
no crossing edges (in a left-to-right rendering of nodes) and
no roots are ‘covered’, i.e. for a root j there is no edge 〈i, k〉
such that i < j < k.



Directed Undirected

DM PAS PCEDT DM PAS PCEDT

DM − .6425 .2612 − .6719 .5675
PAS .6688 − .2963 .6993 − .5490

PCEDT .2636 .2963 − .5743 .5630 −

Table 3: Pairwise F1 similarities, including punctu-
ation (upper right diagonals) or not (lower left).

which likely reflects its approach to the analysis of
functional words (see below).

Judging from both the percentage of actual trees
(4), the proportions of projective graphs (5), and
the proportions of reentrant nodes (7), PCEDT
is much more ‘tree-oriented’ than the other two,
which at least in part reflects its approach to the
analysis of modifiers and determiners (again, see
below). We view the percentages of graphs without
at least one top node (8) and of graphs with at least
two non-singleton components that are not inter-
connected (6) as candidate indicators of general
well-formedness. Intuitively, there should always
be a ‘top’ predicate, and the whole graph should
‘hang together’. Only DM exhibits non-trivial (if
small) degrees of topless and fragmented graphs,
and these may indicate room for improvement in
the conversion from full MRSs to bi-lexical de-
pendencies, but possibly also exceptions to our
intuitions about semantic dependency graphs.

Finally, in Table 3 we seek to quantify pairwise
structural similarity between the three representa-
tions in terms of unlabeled dependency F1 (dubbed
UF in Section 5 below). We provide four variants
of this metric, (a) taking into account the direc-
tionality of edges or not and (b) including edges
involving punctuation marks or not. On this view,
DM and PAS are structurally much closer to each
other than either of the two is to PCEDT, even more
so when discarding punctuation. While relaxing
the comparison to ignore edge directionality also
increases similarity scores for this pair, the effect
is much more pronounced when comparing either
to PCEDT. This suggests that directionality of se-
mantic dependencies is a major source of diversion
between DM and PAS on the one hand, and PCEDT
on the other hand.

Linguistic Comparison Among other aspects,
Ivanova et al. (2012) categorize a range of syntactic
and semantic dependency annotation schemes ac-
cording to the role that functional elements take. In
Figure 1 and the discussion of Table 2 above, we al-
ready observed that PAS differs from the other rep-

resentations in integrating into the graph auxiliaries,
the infinitival marker, the particle (or case-marking
preposition) introducing the argument of apply (to),
and most punctuation marks;7 while these (and
other functional elements, e.g. complementizers)
are analyzed as semantically vacuous in DM and
PCEDT, they function as predicates in PAS, though
do not always serve as ‘local’ top nodes: For ex-
ample, the infinitival marker in Figure 1 takes the
verb as its argument, but the ‘upstairs’ predicate
impossible links directly to the verb, rather than to
the infinitival marker as an intermediate.

At the same time, DM and PAS pattern alike
in their approach to modifiers, e.g. attributive ad-
jectives, adverbs, and prepositional phrases. Un-
like in PCEDT (or common syntactic dependency
schemes), these are analyzed as semantic predi-
cates and, thus, contribute to higher degrees of
node reentrancy and non-top (structural) roots.
Roughly the same holds for determiners, but here
our PCEDT projection of Prague tectogrammatical
trees onto bi-lexical dependencies leaves ‘vanilla’
articles (like a and the) as singleton nodes.

The analysis of coordination is distinct in the
three representations, as also evident in Figure 1.
By design, DM opts for what is often called
the Mel’čukian analysis of coordinate structures
(Mel’čuk, 1988), with a chain of dependencies
rooted at the first conjunct (which is thus consid-
ered the head, ‘standing in’ for the structure at
large); in the DM approach, coordinating conjunc-
tions are not integrated with the graph but rather
contribute different types of dependencies. In PAS,
the final coordinating conjunction is the head of the
structure and each coordinating conjunction (or in-
tervening punctuation mark that acts like one) is a
two-place predicate, taking left and right conjuncts
as its arguments. Conversely, in PCEDT the last
coordinating conjunction takes all conjuncts as its
arguments (in case there is no overt conjunction, a
punctuation mark is used instead); additional con-
junctions or punctuation marks are not connected
to the graph.8

7In all formats, punctuation marks like dashes, colons, and
sometimes commas can be contentful, i.e. at times occur as
both predicates, arguments, and top nodes.

8As detailed by Miyao et al. (2014), individual con-
juncts can be (and usually are) arguments of other predicates,
whereas the head conjunction only has incoming edges in
nested coordinate structures. Similarly, a ‘shared’ modifier
of the coordinate structure as a whole would take as its argu-
ment the head of the coordination in DM or PAS (i.e. the first
conjunct or final conjunction, respectively), whereas it would
depend as an argument on all conjuncts in PCEDT.
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Figure 2: Analysis of nominal compounding in DM, PAS, and PCEDT, respectively .

A linguistic difference between our representa-
tions that highlights variable granularities of anal-
ysis and, relatedly, diverging views on the scope
of the problem can be observed in Figure 2. Much
noun phrase–internal structure is not made explicit
in the PTB, and the Enju Treebank from which
our PAS representation derives predates the brack-
eting work of Vadas and Curran (2007). In the
four-way nominal compounding example of Fig-
ure 2, thus, PAS arrives at a strictly left-branching
tree, and there is no attempt at interpreting seman-
tic roles among the members of the compound ei-
ther; PCEDT, on the other hand, annotates both the
actual compound-internal bracketing and the as-
signment of roles, e.g. making stock the PAT(ient)
of investment. In this spirit, the PCEDT annota-
tions could be directly paraphrased along the lines
of plans by employees for investment in stocks. In
a middle position between the other two, DM dis-
ambiguates the bracketing but, by design, merely
assigns an underspecified, construction-specific de-
pendency type; its compound dependency, then,
is to be interpreted as the most general type of de-
pendency that can hold between the elements of
this construction (i.e. to a first approximation either
an argument role or a relation parallel to a prepo-
sition, as in the above paraphrase). The DM and
PCEDT annotations of this specific example hap-
pen to diverge in their bracketing decisions, where
the DM analysis corresponds to [...] investments
in stock for employees, i.e. grouping the concept
employee stock (in contrast to ‘common stock’).

Without context and expert knowledge, these de-
cisions are hard to call, and indeed there has been
much previous work seeking to identify and anno-
tate the relations that hold between members of a
nominal compound (see Nakov, 2013, for a recent
overview). To what degree the bracketing and role
disambiguation in this example are determined by
the linguistic signal (rather than by context and
world knowledge, say) can be debated, and thus the
observed differences among our representations in
this example relate to the classic contrast between
‘sentence’ (or ‘conventional’) meaning, on the one
hand, and ‘speaker’ (or ‘occasion’) meaning, on
the other hand (Quine, 1960; Grice, 1968). In

turn, we acknowledge different plausible points of
view about which level of semantic representation
should be the target representation for data-driven
parsing (i.e. structural analysis guided by the gram-
matical system), and which refinements like the
above could be construed as part of a subsequent
task of interpretation.

5 Task Setup

Training data for the task, providing all columns in
the file format sketched in Section 3 above, together
with a first version of the SDP toolkit—including
graph input, basic statistics, and scoring—were
released to candidate participants in early Decem-
ber 2013. In mid-January, a minor update to the
training data and optional syntactic ‘companion’
analyses (see below) were provided, and in early
February the description and evaluation of a sim-
ple baseline system (using tree approximations and
the parser of Bohnet, 2010). Towards the end of
March, an input-only version of the test data was
released, with just columns (1) to (4) pre-filled; par-
ticipants then had one week to run their systems on
these inputs, fill in columns (5), (6), and upwards,
and submit their results (from up to two different
runs) for scoring. Upon completion of the testing
phase, we have shared the gold-standard test data,
official scores, and system results for all submis-
sions with participants and are currently preparing
all data for general release through the Linguistic
Data Consortium.

Evaluation Systems participating in the task
were evaluated based on the accuracy with which
they can produce semantic dependency graphs for
previously unseen text, measured relative to the
gold-standard testing data. The key measures for
this evaluation were labeled and unlabeled preci-
sion and recall with respect to predicted dependen-
cies (predicate–role–argument triples) and labeled
and unlabeled exact match with respect to complete
graphs. In both contexts, identification of the top
node(s) of a graph was considered as the identifi-
cation of additional, ‘virtual’ dependencies from
an artificial root node (at position 0). Below we
abbreviate these metrics as (a) labeled precision,
recall, and F1: LP, LR, LF; (b) unlabeled precision,



DM PAS PCEDT

LF LP LR LF LM LP LR LF LM LP LR LF LM

Peking 85.91 90.27 88.54 89.40 26.71 93.44 90.69 92.04 38.13 78.75 73.96 76.28 11.05
Priberam 85.24 88.82 87.35 88.08 22.40 91.95 89.92 90.93 32.64 78.80 74.70 76.70 09.42
Copenhagen-Malmö 80.77 84.78 84.04 84.41 20.33 87.69 88.37 88.03 10.16 71.15 68.65 69.88 08.01
Potsdam 77.34 79.36 79.34 79.35 07.57 88.15 81.60 84.75 06.53 69.68 66.25 67.92 05.19
Alpage 76.76 79.42 77.24 78.32 09.72 85.65 82.71 84.16 17.95 70.53 65.28 67.81 06.82
Linköping 72.20 78.54 78.05 78.29 06.08 76.16 75.55 75.85 01.19 60.66 64.35 62.45 04.01

DM PAS PCEDT

LF LP LR LF LM LP LR LF LM LP LR LF LM

Priberam 86.27 90.23 88.11 89.16 26.85 92.56 90.97 91.76 37.83 80.14 75.79 77.90 10.68
CMU 82.42 84.46 83.48 83.97 08.75 90.78 88.51 89.63 26.04 76.81 70.72 73.64 07.12
Turku 80.49 80.94 82.14 81.53 08.23 87.33 87.76 87.54 17.21 72.42 72.37 72.40 06.82
Potsdam 78.60 81.32 80.91 81.11 09.05 89.41 82.61 85.88 07.49 70.35 67.33 68.80 05.42
Alpage 78.54 83.46 79.55 81.46 10.76 87.23 82.82 84.97 15.43 70.98 67.51 69.20 06.60
In-House 75.89 92.58 92.34 92.46 48.07 92.09 92.02 92.06 43.84 40.89 45.67 43.15 00.30

Table 4: Results of the closed (top) and open tracks (bottom). For each system, the second column (LF)
indicates the averaged LF score across all target representations), which was used to rank the systems.

recall, and F1: UP, UR, UF; and (c) labeled and
unlabeled exact match: LM, UM.

The ‘official’ ranking of participating systems, in
both the closed and the open tracks, is determined
based on the arithmetic mean of the labeled depen-
dency F1 scores (i.e. the geometric mean of labeled
precision and labeled recall) on the three target rep-
resentations (DM, PAS, and PCEDT). Thus, to be
considered for the final ranking, a system had to
submit semantic dependencies for all three target
representations.

Closed vs. Open Tracks The task was sub-
divided into a closed track and an open track, where
systems in the closed track could only be trained
on the gold-standard semantic dependencies dis-
tributed for the task. Systems in the open track, on
the other hand, could use additional resources, such
as a syntactic parser, for example—provided that
they make sure to not use any tools or resources
that encompass knowledge of the gold-standard
syntactic or semantic analyses of the SDP 2014
test data, i.e. were directly or indirectly trained or
otherwise derived from WSJ Section 21.

This restriction implies that typical off-the-shelf
syntactic parsers had to be re-trained, as many data-
driven parsers for English include this section of
the PTB in their default training data. To simplify
participation in the open track, the organizers pre-
pared ready-to-use ‘companion’ syntactic analyses,
sentence- and token-aligned to the SDP data, in
two formats, viz. PTB-style phrase structure trees
obtained from the parser of Petrov et al. (2006) and
Stanford Basic syntactic dependencies (de Marn-

effe et al., 2006) produced by the parser of Bohnet
and Nivre (2012).

6 Submissions and Results

Test runs were submitted for nine systems. Each
team submitted one or two test runs per track. In
total, there were ten runs submitted to the closed
track and nine runs to the open track. Three teams
submitted to both the closed and the open track.
The main results are summarized and ranked in
Table 4. The ranking is based on the average LF
score across all three target representations, which
is given in the LF column. In cases where a team
submitted two runs to a track, only the highest-
ranked score is included in the table.

In the closed track, the average LF scores across
target representations range from 85.91 to 72.20.
Comparing the results for different target represen-
tations, the average LF scores across systems are
85.96 for PAS, 82.97 for DM, and 70.17 for PCEDT.
The scores for labeled exact match show a much
larger variation across both target representations
and systems.9

In the open track, we see very similar trends.
The average LF scores across target representations
range from 86.27 to 75.89 and the corresponding
scores across systems are 88.64 for PAS, 84.95
for DM, and 67.52 for PCEDT. While these scores
are consistently higher than in the closed track,
the differences are small. In fact, for each of the
three teams that submitted to both tracks (Alpage,

9Please see the task web page at the address indicated
above for full labeled and unlabeled scores.



Team Track Approach Resources

Linköping C extension of Eisner’s algorithm for DAGs, edge-factored
structured perceptron

—

Potsdam C & O graph-to-tree transformation, Mate companion
Priberam C & O model with second-order features, decoding with dual decom-

position, MIRA
companion

Turku O cascade of SVM classifiers (dependency recognition, label
classification, top recognition)

companion,
syntactic n-grams,
word2vec

Alpage C & O transition-based parsing for DAGs, logistic regression, struc-
tured perceptron

companion,
Brown clusters

Peking C transition-based parsing for DAGs, graph-to-tree transforma-
tion, parser ensemble

—

CMU O edge classification by logistic regression, edge-factored struc-
tured SVM

companion

Copenhagen-Malmö C graph-to-tree transformation, Mate —
In-House O existing parsers developed by the organizers grammars

Table 5: Overview of submitted systems, high-level approaches, and additional resources used (if any).

Potsdam, and Priberam) improvements due to the
use of additional resources in the open track do not
exceed two points LF.

7 Overview of Approaches

Table 5 shows a summary of the systems that sub-
mitted final results. Most of the systems took
a strategy to use some algorithm to process (re-
stricted types of) graph structures, and apply ma-
chine learning like structured perceptrons. The
methods for processing graph structures are clas-
sified into three types. One is to transform graphs
into trees in the preprocessing stage, and apply con-
ventional dependency parsing systems (e.g. Mate;
Bohnet, 2010) to the converted trees. Some sys-
tems simply output the result of dependency pars-
ing (which means they inherently lose some depen-
dencies), while the others apply post-processing
to recover non-tree structures. The second strat-
egy is to use a parsing algorithm that can directly
generate graph structures (in the spirit of Sagae &
Tsujii, 2008; Titov et al., 2009). In many cases
such algorithms generate restricted types of graph
structures, but these restrictions appear feasible for
our target representations. The last approach is
more machine learning–oriented; they apply classi-
fiers or scoring methods (e.g. edge-factored scores),
and find the highest-scoring structures by some de-
coding method.

It is difficult to tell which approach is the best;
actually, the top three systems in the closed and
open tracks selected very different approaches. A
possible conclusion is that exploiting existing sys-
tems or techniques for dependency parsing was
successful; for example, Peking built an ensemble

of existing transition-based and graph-based depen-
dency parsers, and Priberam extended an existing
dependency parser. As we indicated in the task de-
scription, a novel feature of this task is that we have
to compute graph structures, and cannot assume
well-known properties like projectivity and lack of
reentrancies. However, many of the participants
found that our representations are mostly tree-like,
and this fact motivated them to apply methods that
have been well studied in the field of dependency
parsing.

Some more findings are listed below.

• Three teams participated in both closed and
open tracks, and all of them reported that
adding external resources improved accuracy
by a little more than 1 point.

• Systems with (only) open submissions exten-
sively use syntactic features (e.g. dependency
paths) from external resources, and they are
shown effective even with simple machine
learning models.

• Existing dependency parsers are effective, es-
pecially when combined with graph-to-tree
transformation.

• Scores have a tendency PAS > DM > PCEDT,
indicating relative levels of ‘parsability’.

8 Conclusions and Outlook

We have described the design and outcomes of the
2014 shared task in Semantic Dependency Pars-
ing, i.e. retrieving bi-lexical predicate-argument
relations between all content words within an En-
glish sentence. We converted to a common format



three existing annotations (DM, PAS and PCEDT)
of the same text. Building on our experience with
this year’s task, we are going to organize a similar
(slightly modified) task at SemEval 2015.
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