
M A T E M A T I C K O - F Y Z I K Á L N Í F A K U L T A

P R A H A

U N I V E R S I T A S C A R O L I N A P R A G E N S I S

DEPFIX MANUAL

RUDOLF ROSA

ÚFAL Technical Report
TR-2014-55

ISSN 1214-5521

Copies of ÚFAL Technical Reports can be ordered from:

Institute of Formal and Applied Linguistics (ÚFAL MFF UK)

Faculty of Mathematics and Physics, Charles University

Malostranské nám. 25, CZ-11800 Prague 1

Czech Republic

or can be obtained via the Web: http://ufal.mff.cuni.cz/techrep

Depfix Manual

Rudolf Rosa,
rosa@ufal.mff.cuni.cz

Charles University in Prague,
Faculty of Mathematics and Physics,

Institute of Formal and Applied Linguistics
Malostranské náměst́ı 25, Prague, CZ-11800, Czechia

September 8, 2014

Abstract

The manual gives instructions on installing and running Depfix, our
open-source tool for automatic post-editing of machine translation. We
cover the steps required to use Depfix to process your own data. The
manual also contains a description of the Depfix pipeline, including in-
structions that will enable you to modify the operation of Depfix.

Introduction

Depfix is a tool for automatic post-editing of outputs of English-to-Czech ma-
chine translation (MT), especially phrase-based statistical machine translation
(PB-SMT). Depfix uses a pipeline of natural language processing (NLP) tools to
analyze the input sentences, such as taggers and parsers. The corrections Depfix
performs are mainly rule-based, and rely heavily on the analyses provided by
the tools.

Depfix was introduced in [1], and subsequent improvements were described
especially in [8] and [9]. In [5], Depfix has been released as an open source tool,
under the GNU GPL v2 licence. For a comprehensive description of the whole
Depfix system, please refer to [4].

In this manual, we give detailed instructions on installing and running Dep-
fix, including a documentation of all commands and settings. We also give a
general overview of the structure of the source codes, which may serve as a
starting point for modifying them, or for using them for inspiration in your own
post-editing system. Brief instructions are also bundled directly with Depfix in
a README file.

1

rosa@ufal.mff.cuni.cz

Contents

1 System requirements 3

2 Installing Depfix 3
2.1 TL;DR . 3
2.2 Introduction . 3
2.3 Installing missing packages . 4
2.4 Installing Treex . 4
2.5 Installing missing CPAN modules 4
2.6 Installing Treex models . 5
2.7 Installing MGiza++ . 5
2.8 Installing CzechMorpho . 6
2.9 Testing run of Depfix . 6

3 Running Depfix 7
3.1 The basics . 7
3.2 Running the full version of Depfix 8
3.3 Depfix commands . 9

3.3.1 Main Depfix pipeline . 10
3.3.2 Viewing the results of Depfix run 12
3.3.3 Manual evaluation . 13
3.3.4 Other commands . 14

3.4 Depfix variables . 15
3.4.1 Setting the variable values 15
3.4.2 Input and output files . 16
3.4.3 Depfix operation . 16
3.4.4 Scenarios . 17
3.4.5 Evaluation . 18

4 Delving deeper 19

5 Support 19

2

1 System requirements

You need to have at least 3.5 GB of RAM to run the default version of Depfix.
So far, Depfix has only been tested on Linux. In principle, it should be possible
to run Depfix on other operating systems as well, such as Microsoft Windows
with Cygwin1 – however, this has not been tested, and we can provide little or
no support in that area.

2 Installing Depfix

2.1 TL;DR

wget -O install.tgz http ://goo.gl/FpIOuw

tar -zxvf install.tgz

cd install

bash all.sh

Please note that running the installation script will take tens of minuted or even
hours, and some of the steps may occasionally ask you some questions – so you
should leave the script running but check it time to time.

If this works for you: congratulations, you can now skip to a test run of
Depfix – see Section 2.9 (you may try to do the test run even if the installation
prints out error messages, as these may be non-fatal). Otherwise, you may want
to inspect the error messages you get and try to find a solution yourself, or you
may refer to the following sections.

2.2 Introduction

Depfix is implemented in Treex framework and is contained in the Treex Sub-
version repository,2 in the trunk/treex/devel/depfix directory. Thus, to install
Depfix, please refer to the Treex installation manual at http://ufal.mff.

cuni.cz/treex/install.html and follow the steps 1 (Perl), 2 (Treex::Core),
3 (Treex::EN), and 5 (SVN). Step 4 (TrEd) is optional; installing TrEd will
allow you to inspect intermediate Depfix files that contain linguistic analyses of
the sentences, but is not required if you are happy with only using the input
and output, which is plaintext. Step 6 (Featurama) is not needed for Depfix.

There are several additional steps that are typically required when installing
Treex. For ease of use, we list here the whole procedure that currently seems
to work for Ubuntu 14.04. Still, please note that installing Treex is a complex
task, and you may need to perform the steps differently on your machine. Also,
some steps may not be necessary in your situation, such as installing packages
that you have already installed.

All of the codes listed in the following section can be downloaded as bash
scripts from http://ufallab.ms.mff.cuni.cz/~rosa/depfix/install.tar.

gz, e.g. in the following way:

wget -O install.tgz http ://goo.gl/FpIOuw

tar -zxvf install.tgz

cd install

1https://www.cygwin.com/
2https://public:public@svn.ms.mff.cuni.cz/projects/tectomt_devel/

3

http://ufal.mff.cuni.cz/treex/install.html
http://ufal.mff.cuni.cz/treex/install.html
http://ufallab.ms.mff.cuni.cz/~rosa/depfix/install.tar.gz
http://ufallab.ms.mff.cuni.cz/~rosa/depfix/install.tar.gz
https://www.cygwin.com/
https://public:public@svn.ms.mff.cuni.cz/projects/tectomt_devel/

Using the downloaded scripts may be more reliable then copy-pasting the codes
from the PDF file.

2.3 Installing missing packages

We recommend installing several software packages before installing Treex.

sudo apt -get install subversion libxml2 -dev zlib1g -dev g++ \

cmake libboost -all -dev

2.4 Installing Treex

This is just a very short version of the full Treex installation manual. If this
works for you, then fine. If it doesn’t, please refer to the original manual at
http://ufal.mff.cuni.cz/treex/install.html.

Prepare Perl environment

wget -O- http :// cpanmin.us | \

perl - -l ~/perl5 App:: cpanminus local::lib

eval ‘perl -I ~/perl5/lib/perl5 -Mlocal ::lib ‘

echo ’## Treex installation ##’ >> ~/. bashrc

echo ’eval ‘perl -I ~/ perl5/lib/perl5 -Mlocal ::lib ‘’ >> ~/. bashrc

grep bashrc ~/. bash_profile || echo ’source ~/. bashrc ’ \

>> ~/. bash_profile

Install part of Treex that is on CPAN

cpanm --force Treex::Core Treex ::EN

Check out current version of full Treex from its SVN repository

Password is "public"

SVN_TRUNK=https ://svn.ms.mff.cuni.cz/svn/tectomt_devel/trunk

svn --username public co $SVN_TRUNK/treex ~/ treex

svn --username public co $SVN_TRUNK/libs/other ~/treex/oldlib

echo export PATH="$HOME/treex/bin:$PATH" >> ~/. bashrc

echo export \

PERL5LIB="$HOME/treex/lib:$HOME/treex/oldlib:$PERL5LIB" \

>> ~/. bashrc

echo export TMT_ROOT=$HOME/.treex >> ~/. bashrc

source ~/. bashrc

2.5 Installing missing CPAN modules

We recommend installing several CPAN modules:

cpanm --force forks Lingua :: Interset POE Ufal:: MorphoDiTa \

App:: whichpm Class::Std Locale :: Language String ::Util \

MooseX ::Role:: AttributeOverride PerlIO ::gzip

The list of the modules may change as Treex is further developed, so please
install any other missing modules. Whenever you get an error message such as
Can’t locate Ufal/MorphoDiTa.pm in @INC (followed by many lines of garbage you
can ignore), use the cpanm installer in the following way to obtain it:

cpanm Ufal:: MorphoDiTa

In some cases, you may have to use the --force switch to overcome some errors
– for example, some of the packages seems to have errors in tests, which leads
to errors even if the package installs successfully.

4

http://ufal.mff.cuni.cz/treex/install.html

2.6 Installing Treex models

Many parts of Depfix require model files to run. There is a set of models that are
required in the current version and seem not to be downloaded automatically.3

Thus, we recommend downloading them beforehand:

for m in \

mst_parser/cs/pdt20_train_autTag_golden_latin2_pruned_0 .02. model \

morpho_analysis/cs/b2800a.f2o \

morpho_analysis/cs/config_a.cfg \

morpho_analysis/cs/config_g.cfg \

morpho_analysis/cs/CZ100404ac.txt \

morpho_analysis/cs/CZ100404ad.in \

morpho_analysis/cs/CZ100404ad.out \

morpho_analysis/cs/CZ100404ae.cpd \

morpho_analysis/cs/CZ100404af.sgm \

morpho_analysis/cs/CZ100404ag.txt \

morpho_analysis/cs/CZ100404ak \

morpho_analysis/cs/CZ100404am.x \

morpho_analysis/cs/CZ100404at.x \

morpho_analysis/cs/CZ100404au.cpd \

morpho_analysis/cs/CZ100404aw.cpd \

morpho_analysis/cs/CZ100404ax \

morpho_analysis/cs/CZ100404ax.README \

morpho_analysis/cs/gmon.out \

morpho_analysis/cs/hgddCZ.cpd \

morpho_analysis/cs/morfo_a.log \

morpho_analysis/cs/morfo_g.log \

morpho_analysis/cs/unhandled_a.log \

morpho_analysis/cs/unhandled_g.log

do

wget -O - \

http :// ufallab.ms.mff.cuni.cz/tectomt/share/data/models/$m \

| install -D /dev/stdin ~/. treex/share/data/models/$m

done

Whenever Treex dies because it cannot find a required model file, it will
report the path to the missing file; the error message will look something like
this:

Cannot find ~/. treex/share/data/models/some/model

In such case, please download the missing file from:

http :// ufallab.ms.mff.cuni.cz/tectomt/share/data/models/some/model

Probably the easiest way to do that is using wget:

wget -O - \

http :// ufallab.ms.mff.cuni.cz/tectomt/share/data/models/some/model \

| install -D /dev/stdin ~/. treex/share/data/models/some/model

2.7 Installing MGiza++

You may need to install the MGiza++ word-aligner if this is indicated by er-
ror messages. To do so, you should visit the webpage of MGiza++, http:

//sourceforge.net/projects/mgizapp/, and follow the instructions. Cur-
rently, the easiest way to install MGiza++ seems to be the following:

3 Treex supports automatic download of missing files, but it may fail for various reasons.

5

http://sourceforge.net/projects/mgizapp/
http://sourceforge.net/projects/mgizapp/

Use any directory you wish (and have write access to).

MGIZA_DIR=$HOME/mgizapp -code

svn checkout http ://svn.code.sf.net/p/mgizapp/code/trunk $MGIZA_DIR

cd $MGIZA_DIR/mgizapp/

cmake .

make

make install

Next, you need to ensure that Treex finds your MGiza++ installation:

mkdir -p ~/. treex/share/installed_tools/mgizapp

ln -s $MGIZA_DIR/mgizapp/inst \

~/. treex/share/installed_tools/mgizapp/install

When running Depfix, it may happen that you will get an error message
that looks like this:

~/. treex/share/installed_tools/mgizapp/install contains binaries

compiled for ’x86_64 -linux ’ but you are using

’x86_64 -linux -thread -multi ’

Most likely, if you edit the Treex wrapper for MGiza++ (Treex::Block::
Align::A::MGiza) and disable the architecture check, MGiza++ will run just
fine. To do so, open ~/treex/lib/Treex/Block/Align/A/AlignMGiza.pm in a
text editor (such as vim, emacs or gedit), and delete the line which looks like
this (in current version it is line 34):

log_fatal "$mgizadir contains binaries compiled for ’x86_64 -linux ...

2.8 Installing CzechMorpho

You may need to install CzechMorpho if this is indicated by error messages.
This is a Perl module which is not present on CPAN, so you will have to run
the following commands to install it:

svn export $SVN_TRUNK/libs/packaged/CzechMorpho/ /tmp/CzechMorpho/

cd /tmp/CzechMorpho/

perl Build.PL

./Build

./Build test

./Build install

2.9 Testing run of Depfix

Once you have everything installed, go to the treex/devel/depfix directory of the
SVN checkout using the command-line:

cd ~/treex/devel/depfix

Depfix is operated using make targets (which are called commands in this doc-
ument). To test if you have installed Depfix correctly and to download several
required models, invoke the test command:

make test

6

This will try to run Depfix on 1 testing sentence and will take about 5 minutes
to run, plus time to download required files (several hundreds of MB).

When it finishes, the end of the standard output should look approximately
like that (the lines have been shortened here to fit on page):

DEPFIX [2014 -08 -27_20 -44-21 _2952406743_small_test]: eval_show ...

chgd NIST_0 NIST_1 diff BLEU_0 BLEU_1 diff ...

1 2.5483 3.2433 69.49 0.3349 0.4625 12.76 ...

make [1]: Leaving directory ‘/home/rur/treex/devel/depfix ’

If the test ends successfully, printing out BLEU and other scores, you have
Depfix installed and running. If not, please refer to the preceding steps, the
Treex installation manual, your common sense, the Internet, and, if nothing
helps, feel free to contact us (see Section 5).

3 Running Depfix

3.1 The basics

You can run the whole Depfix pipeline by invoking the default target:

make

This is equivalent to invoking all the commands corresponding to main Depfix
processing steps:

make init totreex tag run_giza ner_en parse \

fix deepfix write_sentences eval

Without any settings, this is very similar to running make test, as the default
input to Depfix is the 1 testing sentence.

The init command creates a new experiment directory and copies the input
files into it. It is therefore wise to specify several settings when invoking it
(Makefile variables are used for this):

DIRLABEL the label to use for the new experiment directory

DATA EN the source English data, i.e. the input of the SMT system

DATA CS the Czech data to be processed, i.e. the output of the SMT system

REFERENCE CS the reference Czech translation to be used for evaluation4

The format of the input data is plaintext in UTF-8 encoding, one sentence
per line. Depfix expects the sentences to be in “human” format (e.g. not
lowercased or tokenized).

Depfix comes with a sample WMT10 dataset, so you can run the following
command to initialize a new experiment directory with that dataset:

make init DIRLABEL=wmt10_test DATA_CS=data/wmt10_bojar -2012. cs \

DATA_EN=data/wmt10_src.en REFERENCE_CS=data/wmt10_ref.cs

The output of the init command will look something like this:

4Currently, Depfix requires that REFERENCE_CS is provided, so if you do not have the refer-
ence translation, fill in the same value as for DATA_CS.

7

DEPFIX [2014 -09 -08_11 -38-38 _1255015118_wmt10_test]: init

REFERENCE_CS=data/wmt10_ref.cs DATA_EN=data/wmt10_src.en

DATA_CS=data/wmt10_bojar -2012. cs

Working directory:

2014 -09 -08_11 -38-38 _1255015118_wmt10_test

A new working directory is generated for the experiment (and the input files are
copied into it). The name of the directory is printed to the standard output, as
shown in the example above.5

The next step is running Depfix on this directory. As you have already
invoked the init target, you now need to run all but the first step. It is of course
possible to list the steps manually, but an easier way is to use the default_ni

target, which is identical to the default target except for not containing the init

step (its name stands for “default, no init”).
Whenever you are invoking a target which does not create a new experiment

directory, but uses an already existing experiment directory, you must always
specify the experiment directory using the DIRNAME setting.

Thus, to run Depfix on the experiment directory created in the previous
step, it suffices to use:

make default_ni DIRNAME=2014-09-08 11-38-38 1255015118 wmt10 test

The sample WMT10 dataset has 2489 sentences; expect Depfix to run for
about 2 hours on it. Once it is finished, it will print our automatic evaluation
results and exit.

Depfix output can be found in the output.txt file in the experiment directory,
or displayed using the view target:

make view DIRNAME=2014-09-08 11-38-38 1255015118 wmt10 test

To see what has been changed by Depfix, use the compare target (or compare_log

to also see details about the fixes applied):

make compare DIRNAME=2014-09-08 11-38-38 1255015118 wmt10 test

There are many other commands available, although the already mentioned
ones are sufficient for basic operation of Depfix. For a full documentation, see
Section 3.3.

There are also many settings available, most of them specifying which Treex
scenario should be used for each processing step. Two more are detailed in the
next section; the other can usually be left at their default values. For a full
documentation, see Section 3.4.

3.2 Running the full version of Depfix

By default, only a basic version of Depfix is run. The full state-of-the-art version
differs from the basic version in several aspects:

• it uses a parser adapted to parsing SMT outputs

• it uses a statistical fixing component

5The experiment directory name format is y-m-d_h-m-s_random_DIRLABEL.

8

• it requires about 20 GB of RAM to run

• it runs about twice as long as the basic version

• it achieves slightly better results – e.g. on the sample WMT10 data,
applying the full version leads to an improvement of 0.45 BLEU point,
while the basic version achieves a 0.37 BLEU point improvement

The parser used by default for Czech is a version of the Maximum Span-
ning Tree (MST) parser [2], adapted for standard Czech [3], but not for SMT
outputs. If you have more than 20 GB of RAM, you should use the MSTperl
parser adapted for SMT outputs [7, 6] instead, which is more robust to various
grammatical errors commonly occurring in SMT outputs, and uses additional
features that have shown to be useful in that setting (such as features based on
the source English sentence parse tree). To switch to this parser, use the follow-
ing additional setting when running Depfix (more specifically, when invoking
the parse target):

CS_ANALYSIS_2_SCEN=cs_analysis_2_boost_model_025.scen

You can also enable the statistical fixing component [9], which targets errors
in valency of verbs and nouns. It requires at least 15 GB RAM to run. We do
use it in our setups, but please note that evaluation of the effect of using the
component has brought inconclusive results – it usually improves the results, but
only very slightly. To enable the component, use the following setting (relevant
for the deepfix target):

TFIX_SCEN=tfix_cut_ChgCase2.scen

If you want to use full Depfix by default, you can make these (as well as any
other) settings default by using the settings.mak file; instructions are included
in the file itself (edit the file using a plaintext editor).

3.3 Depfix commands

Depfix commands are Makefile targets – you may inspect them by viewing
the source code of depfix/Makefile. This section documents the current set of
available commands. Please note that Depfix is an experimental software in
active development, and commands may be added, removed or modified; also,
some commands may become temporarily unusable.

Most of the commands are parametrized with variables, listed in the follow-
ing section. In this section, we give the names of the variables with their default
values wherever applicable – e.g. OUTPUT_TXT=output.txt refers to a variable called
OUTPUT_TXT whose default value is output.txt.

As already mentioned, the most important variable is DIRNAME, which specifies
the working directory to be used, and must be set for any command that does not
create a new directory. Do not set DIRNAME if you invoke the default command,
the init command, or the clone command. For any other target, you must set
DIRNAME – e.g.:

make view DIRNAME=2014-09-08 11-38-38 1255015118 wmt10 test

Most of other variables specify scenarios to use for the commands – their
value is always a name of a file in the depfix/scenarios subdirectory – or filenames

9

to use. You do not have to set these variables unless you want to modify the
way Depfix behaves, their default values are just fine.

While running, Depfix prints brief information to the standard output, listing
the command currently being run (including subcommands), the experiment
directory, and some of the settings. More detailed information is printed to the
standard error output.

3.3.1 Main Depfix pipeline

The main Depfix pipeline is invoked by the default command, which invokes a set
of subcommands that correspond to individual steps of the processing pipeline.
Invoking those commands explicitly is useful if you need to run only a part of the
pipeline – for example, if you want to play with the fixing rules, you may run the
analysis up to the parse step, make several copies of the experiment directory,
and then run the rest of the pipeline on each of the directories separately with
different fixing scenarios.

At end of the parse step, the intermediate files are backed-up in a parsed

subdirectory of the working directory, and they are restored at beginning of
the fix step. Thus, if you run the fix step on an already fixed directory, the
intermediate files will first be restored to the state in which they were after the
parse step. This is generally not true for the other steps, so running them more
than once on one directory may lead to errors. Still, if a step dies, it is often safe
to try to run it again – e.g. if the pipeline dies while performing the run_giza

step, it is worth trying to rerun the pipeline again by explicitly listing all the
steps starting at run_giza.

default Run the whole Depfix pipeline on the input data (see init for important
variables to set). Typing make without specifying any command will also
invoke the default command. default invokes the following commands:
init totreex tag run_giza ner_en parse fix deepfix write_sentences eval

default ni Identical to default except for not invoking the init command. The
DIRNAME variable must be specified. To be used if you prefer to init your
working directory in a separate step, and then run Depfix on it later.6

init Create a new experiment directory and copy input data into it. Set
a name for the new directory using DIRLABEL.7 Specify the input data
using DATA_CS, DATA_EN and REFERENCE_CS; the value of each of these vari-
ables must be a path to a text file (UTF-8, one sentence per line). The
default values correspond to the sample 1-sentence input used in test

(DATA_CS=data/csw.txt DATA_EN=data/en.txt REFERENCE_CS=data/cs.txt); to use
a larger sample input, you may use the following setting:

DATA_CS=data/wmt10_bojar -2012. cs

DATA_EN=data/wmt10_src.en

REFERENCE_CS=data/wmt10_ref.cs

6This is quite a common practice – you may want to prepare your experiment directories
by running init fully manually, as this involves setting a lot of variables and takes very little
time to run, and then let run default_ni without paying attention to it in parallel for several
experiments, as this can be fully automated and usually takes hours.

7 The experiment directory name format is y-m-d_h-m-s_rand_DIRLABEL and the name of
the newly created directory, together with other information, is printed to standard output.

10

The reference Czech translation is only used in the last step – it is not
analyzed by NLP tools and is not used in the fixing.

totreex Read the input text data into Treex files and perform tokenization pro-
jection. The resulting files are called translation001.treex.gz,
translation002.treex.gz, etc., and each contains 100 sentences (or, more
precisely, 100 source English sentences + 100 Czech machine translation
sentences + 100 Czech reference translation sentences). The following
steps operate on these files – each step reads them from disk when it
starts and saves them modified back to disk when it ends. The files are
in PML, which is an XML format, and can be viewed by the TrEd edi-
tor. The tokenization projection is performed by the scenario specified in
PROJECT_TOKENIZATION_SCEN=project_tokenization.scen.

tag Tokenize the sentences and run morphological analyses on them.
(EN_ANALYSIS_1_SCEN=en_analysis_1.scen,
CS_ANALYSIS_1_SCEN=cs_analysis_1_morphodita.scen). After that step, each sen-
tence is represented by a set of nodes, corresponding to the tokens, and
each of the nodes has the following three attributes filled: form, lemma, and
tag. The tokens are contained in an a-tree (although the tree is flat at this
moment – all nodes are children of the technical root node).

run giza Word-align the sentences (RUN_GIZA_SCEN=run_mgiza.scen) and run heuris-
tics to add missing alignment links
(ADD_MISSING_LINKS_SCEN=add_missing_links.scen). The word-alignment used
is of the intersection type, i.e. for each token there is at most one aligned
token. The alignment links are stored in attributes of the English nodes.8

ner en Run named entity recognizer for English (NER_EN_SCEN=ner_en.scen). This
creates an n-tree which contains named entities found in the sentence.

parse Run a dependency parser on the sentences
(EN_ANALYSIS_2_SCEN=en_analysis_2.scen,
CS_ANALYSIS_2_SCEN=cs_analysis_2_msta.scen). After this step, the a-trees cre-
ated in the tag step are no more flat but instead represent the dependency
structure of the sentence. This step consists of two substeps: parse_only,
which does the parsing, and parse_backup, which copies the treex files into
the parsed subdirectory.

fix Run the Depfix fix rules. This step consists of four substeps. First,
restore_parsed replaces the current treex files by the files from the parsed

subdirectory. Next, fix_prepare prepares the files for Depfix by copying
the a-trees into a new T zone, so that the files will contain both the orig-
inal and the fixed sentences for easy observation of the fixes performed
(FIX_PREPARE_SCEN=fix_prepare.scen). After that, ner_cs runs a named entity
recognizer for Czech (NER_CS_SCEN=ner_cs.scen). And finally, fix_run runs
the actual fix rules (FIX_SCEN=fix.scen).

deepfix Run the fixes that operate on t-layer. This command consists of
four subcommands. a2t creates a t-layer analysis (A2T_CS_SCEN=a2t_cs.scen,

8However, this is not very practical for operation of Depfix, which operates on the Czech
nodes. Therefore, the alignment will be stored in attributes of the Czech nodes in near future.

11

A2T_EN_SCEN=a2t_en.scen). tfix_prepare adds word alignment links from a-
layer (TFIX_PREPARE_SCEN=tfix_prepare.scen). tfix performs the t-layer fixes
(TFIX_SCEN=tfix_rules.scen); the fixes are immediately projected to a-layer.
refix_after_tfix runs the a-layer fixes again especially in order to fix agree-
ment that may have been violated while performing t-fixes (REFIX_SCEN, by
default identical to FIX_SCEN).

write sentences Write the fixed sentences into OUTPUT_TXT=output.txt

(WRITE_SENTENCES_SCEN=write_sentences.scen). Also calls a write_fixlog sub-
step that writes a log containing the fixes performed into fixlog.txt.

eval Perform automatic evaluation, storing the result into
AUTOEVAL_OUT=autoeval.out. This step consists of several substeps, each of
which computes a different characteristic and stores it. You may spec-
ify a different reference translation file to be used (REF_CS_TXT=ref_cs.txt).
eval_dirname stores the name of the working directory. eval_lines computes
the number of sentences modified by Depfix. eval_bleu computes BLEU
and NIST scores. eval_ter computes PER and TER scores. eval_show

processes the contents of the AUTOEVAL_OUT file and prints out the results
formatted as tab separated values.

3.3.2 Viewing the results of Depfix run

Most of the commands in this section can be parametrized using the following
variables, specifying the names of files in the experiment directory to use (but
typically the default values, given in brackets, are what you want, so you usually
do not need to set these):

ORI Original Czech translation (data_cs.txt)

NEW Depfix output (OUTPUT_TXT)

REF Reference Czech translation (REF_CS_TXT)

EN Source English sentences (data_en.txt)

The names of these variables are also used as labels for the sentences in the
compare* commands.

The following commands are available for displaying the results of Depfix in
various ways:

view Show the output of Depfix, stored in file specified by OUTPUT_TXT. Only the
resulting sentences are show, one sentence per line.

compare Show the output of Depfix together with the inputs. For each sen-
tence, the original Czech sentence (ORI) and the fixed sentence (NEW) are
compared, the differences are highlighted, and the sentences are printed
together with the source English sentence (EN) and the reference Czech
translation (REF). If there is no difference between the original and the
fixed sentence, the sentences are not printed.

compare log Similar to compare, but also showing a fix log, which contains a
list of fixes that were applied on the sentence.

12

compare ci Similar to compare, but the search for differences is done case-
insensitively – differences that are only in casing are not highlighted,
and sentences in which Depfix changed only casing are not considered
as changed (and therefore not printed).

compare log ci Similar to compare_log, but the search for differences is done
case-insensitively as in compare_ci.

comparehtml Similar to compare, but the output is in HTML format (differ-
ences are highlighted by bold font). The resulting HTML file is printed
to standard output – use stdout redirection to save it into an HTML file.

compare2 Compare results of two experiments run on the same input data –
differences between the two outputs of Depfix are highlighted, instead of
differences between the input and output. The two experiment directories
are to be specified by DIRNAME and DIRNAME2:

make compare2 \

DIRNAME =2014 -07 -15_17 -37 -21 _4908631573_wmt10_test \

DIRNAME2=2014-09-08 11-38-38 1255015118 wmt10 test

compare2html Similar to compare2, but the output is in HTML format as in
comparehtml.

3.3.3 Manual evaluation

There is a set of commands for carrying out manual evaluation of Depfix pro-
cessing (maneval_prepare, maneval_eval, cross_annot_agree, cross_annot_agree_matrix,
and other). As the needs for manual evaluation are typically different every time
the evaluation is performed, we suggest you use these commands as inspiration
when performing manual evaluation – please inspect the source code of the
Makefile for the code used.

The commands make use of a simple manual evaluation tool by Ondřej
Bojar, called QuickJudge.9 The tool is bundled with Depfix, as it consists of
one Perl script, and resides in depfix/scripts/quickjudge.pl. It generates
text files with randomized order of outputs of various MT systems or setups,
which makes blind evaluation possible. When annotators have marked in the
text files which translations are better, the tool then processes the annotations,
which makes it possible to compute evaluation results.

Still, if you need to perform a manual evaluation of Depfix and do not want
to bother with tweaking the commands, the basic procedure that works out-of-
the-box is the following:

1. Run the maneval_prepare command. You must set DIRNAME, and you may set
other variables: the number of lines to be annotated (ANNOT_LINES=3003), the
number of chunks to split these lines into (ANNOT_NUM=20), and the prefix to
use for the newly created manual evaluation directory
(MAN_PREFIX=depfix_maneval). So, the command you run may look like that
if you want to evaluate 500 sentences by 5 annotators:

9http://ufal.mff.cuni.cz/euromatrix/quickjudge/

13

http://ufal.mff.cuni.cz/euromatrix/quickjudge/

make maneval_prepare ANNOT_LINES =500 ANNOT_NUM =5 \

DIRNAME=2014-09-08 11-38-38 1255015118 wmt10 test

The manual evaluation directory will have a name following the pattern
MAN_PREFIX_DIRNAME and will contain a number of generated files. Please
note that the maneval_prepare command splits the files before looking at the
changes, so if you e.g. want to evaluate the first 500 sentences
(ANNOT_LINES=500), you may expect to obtain about 300 sentences for an-
notation, as many sentences are not changed by Depfix and there is noth-
ing to annotate on them. For the same reason, if you split these into 5
chunks, (ANNOT_NUM=5), each chunk will contain a different number of sen-
tences (e.g. the third chunk will contain sentences from 201st to 300th
that were changed by Depfix).

2. Take the *.anot files from the manual evaluation directory and give them to
your annotators with appropriate instructions. Files are to be annotated
by adding any one character (e.g. 1, *, y...) to the beginning of the line
which is BETTER than the other line, e.g.:

EN_ORIG A big role in the film is played by Matt Damon.

CS_REF Velkou roli roli hraje herec Matt Damon.

* Velkou roli ve filmu hraje Matt Damon.

Velkou roli ve filmu hrajou Matt Damon.

Do not do anything with the line which is not the good one. If quality of
the lines is equal, do not add anything anywhere, just leave it as it is. The
lines start with a TAB character, which must be kept. The lines marked
EN_ORIG and CS_REF are just for information. Do not add any newlines!

3. Put the annotated files back into the manual evaluation directory (over-
write their unannotated versions, these are not needed any more), and run
maneval_eval (you need to specify DIRNAME; if you used a custom MAN_PREFIX,
you need to specify that as well).

3.3.4 Other commands

test Run the whole Depfix pipeline on a sample input, consisting of only one
sentence. You do not need to set any variables for this command, every-
thing is already preset.

help Display the README file, which contains brief instructions on running Depfix.

clone Copy an experiment directory (OLDDIRNAME) to a new one (created accord-
ing to DIRLABEL). Similar to performing cp -r, but including the generation
of a new DIRNAME as in init, i.e. containing the date and time. As the
clone command fills the name of the generated directory into the DIRNAME

variable, it can be followed by other Depfix commands.

make clone DIRLABEL=experiment_2 \

OLDDIRNAME=2014-09-08 11-38-38 1255015118 wmt10 test

14

bootstrap eval Run bootstrap resampling significance test to estimate whether
the difference in BLEU score achieved by Depfix post-editing (as com-
puted by eval) is statistically significant. The number of samples is set by
SAMPLES=1000, the significance level by ALPHA=0.05. Use with caution, as some
authors do not regard the results of bootstrap resampling as credible.

Several technical or experimental commands are not described in this man-
ual.

3.4 Depfix variables

Depfix commands can be parametrized by using variables (these are standard
Makefile variables). All of the variables are set to default values, so in most cases
you will not need to set them explicitly. However, there are several variables
that must be always specified:

• the variables for the init target, which specify the input files and the label
for the new experiment directory (DATA_CS, DATA_EN, REFERENCE_CS, DIRLABEL),

• the OLDDIRNAME variable for the clone target,

• and, most importantly, the DIRNAME variable, which specifies the experiment
directory to be used, and must be specified for any set of commands that
does not start with one of the following commands: init, default, clone.

Several technical or experimental variables are not described in this manual
– we focus on variables that may be worth changing in some situations.

3.4.1 Setting the variable values

Depfix variables may be set on the command line when invoking a Depfix com-
mand:

make init DIRLABEL=wmt14_bojar

Moreover, the default settings of the variables can be overridden by editing
the settings.mak file in a plaintext editor. The file is loaded after the Makefile, so
settings in settings.mak have priority over the defaults specified in the Makefile;
however, you can still override these by setting the variables on the command
line, which has always the highest priority.

The settings.mak file contains information on how to use it; generally, you set
a new default value for a variable in the following way – e.g. to use a different
scenario for writing out the sentences without performing detokenization:

WRITE_SENTENCES_SCEN=write_sentences_no_detok.scen

If a setting appears multiple times in the file, the last occurrence is the one that
is valid.

The file also contains prepared settings for running the full version of Depfix
(see Section 3.2), and for running Treex on an SGE cluster (these settings are
commented out by default).

15

3.4.2 Input and output files

The specification of input files is detailed in the decryption of the init com-
mand in Section 3.3.1 – DATA_EN is the source English text (input of an MT
system), DATA_CS is its Czech machine translation (output of the MT system),
and REFERENCE_CS is a reference Czech translation of the source English text by
a human translator.

The default values correspond to the sample one-sentence input used for the
test command:

DATA_CS=data/csw.txt DATA_EN=data/en.txt REFERENCE_CS=data/cs.txt

You can also use the larger sample input which is bundled with Depfix:

DATA_CS=data/wmt10_bojar -2012. cs DATA_EN=data/wmt10_src.en

REFERENCE_CS=data/wmt10_ref.cs

The format of the input files must be plain text in UTF-8 encoding, one
sentence per line. All of the input files must have the same number of lines.
Currently, Depfix requires you to provide a reference translation file; if you do
not have one, please set REFERENCE_CS to any other file (which has the correct
number of lines); we recommend setting to the same value as DATA_CS.

The input files get copied into the experiment directory under the following
filenames: data_cs.txt, data_en.txt, and ref_cs.txt. The output of the Dep-
fix pipeline is stored into a text file in the experiment directory, specified by
OUTPUT_TXT (the default is output.txt); the log which contains information on
fixes that were applied is stored in fixlog.txt.

The compare* commands (see Section 3.3.2) operate on the inputs and outputs
of Depfix by default, but can be parametrized to behave differently by setting
the following variables:

ORI original Czech translation (defaults to data_cs.txt)

NEW Depfix output (defaults to OUTPUT_TXT)

REF reference Czech translation (defaults to REF_CS_TXT, which defaults to
ref_cs.txt)

EN source English sentences (defaults to data_en.txt)

The output of automatic evaluation is stored into a text file specified by
AUTOEVAL_OUT; the default is autoeval.out.

3.4.3 Depfix operation

DIRLABEL is the label to use for the new directory created by init (or
default, or clone).

TREEX is the command to invoke Treex (defaults to treex); you may add
some Treex options in special cases

TREEXP is the command to invoke Treex in parallel, i.e. to perform com-
mands that can be run independently on individual Treex files (generally,
all commands except those that work with text files – these use TREEX in-
stead of TREEXP). It defaults to treex, which means that Treex is never run

16

in parallel by default. If you have an SGE cluster, you may use settings
such as the following to run Treex in parallel by default (it is reasonable
to set these in the settings.mak file, as described in Section 3.4.1):

JOBS =10

MEM =30G

WORKDIR=$$(mktemp -d --tmpdir=$(DIRNAME))

TREEXP=treex -p --survive --jobs=$(JOBS) --mem=$(MEM) \

--workdir=$(WORKDIR)

3.4.4 Scenarios

Most of the settings specify scenarios to use for various commands, as de-
scribed in the previous section. The scenarios themselves are contained in the
depfix/scenarios subdirectory. In many cases, there are alternative scenarios
available that you may use in some situations to modify the way Depfix op-
erates, such as to use a different parser or to omit some processing steps; the
name of an alternative scenario typically has an identical prefix to that of the
default scenario.

Also, there is the empty.scen scenario, which does not do anything, so you
may use it to bypass some scenario completely (although this will fail in some
cases, as many of the steps are vital for the operation of the subsequent steps).
For example, to skip running Czech named entity recognizer, you may use the
following setting:

NER_CS_SCEN=empty.scen

We list here the settings, their default values, and some of the alternatives in
cases where we find it useful. The names of the settings are rather informative,
and they are given in the order in which they are used in the default Depfix
pipeline; to see exactly where they are used, see Section 3.3.

PROJECT TOKENIZATION SCEN Default value: project_tokenization.scen

EN ANALYSIS 1 SCEN Default value: en_analysis_1.scen. Alternative value:
en_analysis_1_old.scen to use the Morče tagger

CS ANALYSIS 1 SCEN Default value: cs_analysis_1_morphodita.scen. Al-
ternative values: cs_analysis_1_featurama_fme.scen to use the Featurama
tagger, or cs_analysis_1_morce.scen to use the Morče tagger

RUN GIZA SCEN Default value: run_mgiza.scen. Alternative value:
run_mgiza_ufal.scen to be used on machines of our institute (ÚFAL); the
important difference is tmp_dir=/COMP.TMP instead of tmp_dir=/tmp – if your
/tmp directory is on a network drive, you should use a similar modification
so that a local directory is used instead

ADD MISSING LINKS SCEN Default value: add_missing_links.scen

NER EN SCEN Default value: ner_en.scen

EN ANALYSIS 2 SCEN Default value: en_analysis_2.scen

17

CS ANALYSIS 2 SCEN Default value: cs_analysis_2_msta.scen. Alterna-
tive value: cs_analysis_2_boost_model_025.scen to use the MSTperl parser
adapted for parsing SMT outputs (see Section 3.2)

NER CS SCEN Default value: ner_cs.scen

FIX PREPARE SCEN Default value: fix_prepare.scen

NER CS SCEN Default value: ner_cs.scen

BEFORE FIX Default value: empty. May be used to run a scenario before
running fix.scen in the fix_run command

FIX SCEN Default value: fix.scen

A2T CS SCEN Default value: a2t_cs.scen

A2T EN SCEN Default value: a2t_en.scen

TFIX PREPARE SCEN Default value: tfix_prepare.scen

TFIX SCEN Default value: tfix_rules.scen. Alternative values:
tfix_cut_ChgCase2.scen to also run statistical fixes (see Section 3.2);
tfix_stat.scen to run only the statistical fixes, i.e. not running the rules
based ones.

REFIX SCEN Default value: $(FIX_SCEN)

WRITE SENTENCES SCEN Default value: write_sentences.scen. Alter-
native value: write_sentences_no_detok.scen not to perform detokenization,
i.e. to write out individual tokens separated by spaces.

3.4.5 Evaluation

The following variables are used for manual evaluation (see Section 3.3.3):

ANNOT LINES The number of sentences to be selected for evaluation (in-
cluding unchanged ones, so the final number of sentences is likely to be
lower). Default value: 3003

ANNOT NUM Number of annotation files to generate – usually should be a
multiple of the annotators you have, as each of the generated files is to be
given to one of your annotators. Default value: 20

MAN PREFIX Prefix to use for the directory created for manual evaluation
files. Default value: depfix_maneval

The following variables are used for bootstrap significance tests in automatic
evaluation (see Section 3.3.4):

SAMPLES The number of repetitions of the experiment. Default value: 1000

ALPHA The significance level. Default value: 0.05

18

4 Delving deeper

If you want to modify Depfix operation more than what is allowed by changing
the settings of the variables, you need to go into the source codes – the Makefile,
the scenarios, and/or the Treex blocks.

One possibility you have is modifying the scenarios used by Depfix; we sug-
gest that you do that by copying an existing scenario, modifying it, and then
calling Depfix with the corresponding value set to the filename of such new sce-
nario. All the scenarios are plaintext files that reside in the depfix/scenarios

subfolder; do put even your new scenarios in that folder for smooth operarion.
A scenario typically sets several global arguments, and then invokes a pipeline
of Depfix blocks, sometimes with arguments set. See the Treex manual for more
information about Treex scenarios.

You may also need to edit the Makefile to suit your modified scenarios; see
a make manual if you need to.

The key scenario which invokes most of the fixes is fix.scen. The fixes are
Treex blocks, and thus can be found in subdirectories of treex/lib/Treex/Block;
most of them are in the treex/lib/Treex/Block/A2A/CS directory (but not every-
thing in this directory are Depfix blocks; Depfix block names typically start
with the word Fix).

There are also several Depfix-specific Treex tools used; you will find them
in treex/lib/Treex/Tool/Depfix. These are mainly wrappers for existing tools to
enable easy operation from within Depfix.

Many Treex blocks and tools contain documentation in POD (Plain Old
Documentation) format and can be viewed using the perldoc tool,10 e.g.:

perldoc Treex::Block::A2A::CS:: FixGenitive

Moreover, the source codes are usually commented.

5 Support

If you encounter any issues you are unable to solve yourself, or if you have any
questions regarding Depfix, feel free to contact the author at rosa@ufal.mff.

cuni.cz. Issues and questions that concern Treex (and not specifically Depfix)
should preferably be directed to treex@ufal.mff.cuni.cz.

Acknowledgements

Depfix is supported by the grants FP7-ICT-2013-10-610516 (QTLeap), GAUK
1572314, and SVV 260 104. This work has been using language resources devel-
oped, stored and distributed by the LINDAT/CLARIN project of the Ministry
of Education, Youth and Sports of the Czech Republic (project LM2010013).

References

[1] David Mareček, Rudolf Rosa, Petra Galuščáková, and Ondřej Bojar. Two-
step translation with grammatical post-processing. In Chris Callison-Burch,

10http://perldoc.perl.org/perldoc.html

19

rosa@ufal.mff.cuni.cz
rosa@ufal.mff.cuni.cz
treex@ufal.mff.cuni.cz
http://perldoc.perl.org/perldoc.html

Philipp Koehn, Christof Monz, and Omar Zaidan, editors, Proceedings of
the Sixth Workshop on Statistical Machine Translation, pages 426–432, Ed-
inburgh, UK, 2011. University of Edinburgh, Association for Computational
Linguistics.

[2] Ryan McDonald, Fernando Pereira, Kiril Ribarov, and Jan Hajič. Non-
projective dependency parsing using spanning tree algorithms. In HLT ’05:
Proceedings of the conference on Human Language Technology and Empirical
Methods in Natural Language Processing, pages 523–530, Vancouver, British
Columbia, Canada, 2005.

[3] Václav Novák and Zdeněk Žabokrtský. Feature engineering in maximum
spanning tree dependency parser. In Václav Matoušek and Pavel Maut-
ner, editors, Lecture Notes in Artificial Intelligence, Proceedings of the 10th
International Conference on Text, Speech and Dialogue, Lecture Notes in
Computer Science, pages 92–98, Pilsen, Czech Republic, 2007. Springer Sci-
ence+Business Media Deutschland GmbH.

[4] Rudolf Rosa. Automatic post-editing of phrase-based machine translation
outputs. Master’s thesis, Charles University in Prague, Faculty of Mathe-
matics and Physics, Praha, Czechia, 2013.

[5] Rudolf Rosa. Depfix, a tool for automatic rule-based post-editing of SMT.
The Prague Bulletin of Mathematical Linguistics, 102:47–56, 2014.

[6] Rudolf Rosa. MSTperl parser, 2014. http://hdl.handle.net/11858/00-097C-
0000-0023-7AEB-4.

[7] Rudolf Rosa, Ondřej Dušek, David Mareček, and Martin Popel. Using par-
allel features in parsing of machine-translated sentences for correction of
grammatical errors. In Proceedings of Sixth Workshop on Syntax, Semantics
and Structure in Statistical Translation (SSST-6), ACL, pages 39–48, Jeju,
Korea, 2012. Association for Computational Linguistics.

[8] Rudolf Rosa, David Mareček, and Ondřej Dušek. DEPFIX: A system for
automatic correction of Czech MT outputs. In Proceedings of the Sev-
enth Workshop on Statistical Machine Translation, pages 362–368, Montréal,
Canada, 2012. Association for Computational Linguistics.

[9] Rudolf Rosa, David Mareček, and Aleš Tamchyna. Deepfix: Statistical post-
editing of statistical machine translation using deep syntactic analysis. In
51st Annual Meeting of the Association for Computational Linguistics Pro-
ceedings of the Student Research Workshop, pages 172–179, Sofija, Bulgaria,
2013. Bălgarska akademija na naukite, Association for Computational Lin-
guistics.

20

THE ÚFAL/CKL TECHNICAL REPORT SERIES

ÚFAL

ÚFAL (Ústav formální a aplikované lingvistiky; http://ufal.mff.cuni.cz) is the Institute of Formal and Applied

linguistics, at the Faculty of Mathematics and Physics of Charles University, Prague, Czech Republic. The Institute

was established in 1990 after the political changes as a continuation of the research work and teaching carried out by

the former Laboratory of Algebraic Linguistics since the early 60s at the Faculty of Philosophy and later the Faculty of

Mathematics and Physics. Together with the “sister” Institute of Theoretical and Computational Linguistics (Faculty

of Arts) we aim at the development of teaching programs and research in the domain of theoretical and computational

linguistics at the respective Faculties, collaborating closely with other departments such as the Institute of the Czech

National Corpus at the Faculty of Philosophy and the Department of Computer Science at the Faculty of Mathematics

and Physics.

CKL

As of 1 June 2000 the Center for Computational Linguistics (Centrum komputační lingvistiky; http://ckl.mff.cuni.cz)

was established as one of the centers of excellence within the governmental program for support of research

in the Czech Republic. The center is attached to the Faculty of Mathematics and Physics of Charles University

in Prague.

TECHNICAL REPORTS

The ÚFAL/CKL technical report series has been established with the aim of disseminate topical results of research

currently pursued by members, cooperators, or visitors of the Institute. The technical reports published in this Series

are results of the research carried out in the research projects supported by the Grant Agency of the Czech Republic,

GAČR 405/96/K214 (“Komplexní program”), GAČR 405/96/0198 (Treebank project), grant of the Ministry of

Education of the Czech Republic VS 96151, and project of the Ministry of Education of the Czech Republic

LN00A063 (Center for Computational Linguistics). Since November 1996, the following reports have been published.

ÚFAL TR-1996-01 Eva Hajičová, The Past and Present of Computational Linguistics at Charles University
Jan Hajič and Barbora Hladká, Probabilistic and Rule-Based Tagging of an Inflective Language
– A Comparison

ÚFAL TR-1997-02 Vladislav Kuboň, Tomáš Holan and Martin Plátek, A Grammar-Checker for Czech

ÚFAL TR-1997-03 Alla Bémová at al., Anotace na analytické rovině, Návod pro anotátory (in Czech)

ÚFAL TR-1997-04 Jan Hajič and Barbora Hladká, Tagging Inflective Languages: Prediction of Morphological
Categories for a Rich, Structural Tagset

ÚFAL TR-1998-05 Geert-Jan M. Kruijff, Basic Dependency-Based Logical Grammar

ÚFAL TR-1999-06 Vladislav Kuboň, A Robust Parser for Czech

ÚFAL TR-1999-07 Eva Hajičová, Jarmila Panevová and Petr Sgall, Manuál pro tektogramatické značkování (in
Czech)

ÚFAL TR-2000-08 Tomáš Holan, Vladislav Kuboň, Karel Oliva, Martin Plátek, On Complexity of Word Order

ÚFAL/CKL TR-2000-09 Eva Hajičová, Jarmila Panevová and Petr Sgall, A Manual for Tectogrammatical Tagging
of the Prague Dependency Treebank

ÚFAL/CKL TR-2001-10 Zdeněk Žabokrtský, Automatic Functor Assignment in the Prague Dependency Treebank

ÚFAL/CKL TR-2001-11 Markéta Straňáková, Homonymie předložkových skupin v češtině a možnost jejich
automatického zpracování

ÚFAL/CKL TR-2001-12 Eva Hajičová, Jarmila Panevová and Petr Sgall, Manuál pro tektogramatické značkování
(III. verze)

ÚFAL/CKL TR-2002-13 Pavel Pecina and Martin Holub, Sémanticky signifikantní kolokace

ÚFAL/CKL TR-2002-14 Jiří Hana, Hana Hanová, Manual for Morphological Annotation

ÚFAL/CKL TR-2002-15 Markéta Lopatková, Zdeněk Žabokrtský, Karolína Skwarská and Vendula Benešová,
Tektogramaticky anotovaný valenční slovník českých sloves

ÚFAL/CKL TR-2002-16 Radu Gramatovici and Martin Plátek, D-trivial Dependency Grammars with Global Word-
Order Restrictions

ÚFAL/CKL TR-2003-17 Pavel Květoň, Language for Grammatical Rules

ÚFAL/CKL TR-2003-18 Markéta Lopatková, Zdeněk Žabokrtský, Karolina Skwarska, Václava Benešová, Valency
Lexicon of Czech Verbs VALLEX 1.0

ÚFAL/CKL TR-2003-19 Lucie Kučová, Veronika Kolářová, Zdeněk Žabokrtský, Petr Pajas, Oliver Čulo, Anotování
koreference v Pražském závislostním korpusu

ÚFAL/CKL TR-2003-20 Kateřina Veselá, Jiří Havelka, Anotování aktuálního členění věty v Pražském závislostním
korpusu

ÚFAL/CKL TR-2004-21 Silvie Cinková, Manuál pro tektogramatickou anotaci angličtiny

ÚFAL/CKL TR-2004-22 Daniel Zeman, Neprojektivity v Pražském závislostním korpusu (PDT)

ÚFAL/CKL TR-2004-23 Jan Hajič a kol., Anotace na analytické rovině, návod pro anotátory

ÚFAL/CKL TR-2004-24 Jan Hajič, Zdeňka Urešová, Alevtina Bémová, Marie Kaplanová, Anotace na
tektogramatické rovině (úroveň 3)

ÚFAL/CKL TR-2004-25 Jan Hajič, Zdeňka Urešová, Alevtina Bémová, Marie Kaplanová, The Prague Dependency
Treebank, Annotation on tectogrammatical level

ÚFAL/CKL TR-2004-26 Martin Holub, Jiří Diviš, Jan Pávek, Pavel Pecina, Jiří Semecký, Topics of Texts.
Annotation, Automatic Searching and Indexing

ÚFAL/CKL TR-2005-27 Jiří Hana, Daniel Zeman, Manual for Morphological Annotation (Revision for PDT 2.0)

ÚFAL/CKL TR-2005-28 Marie Mikulová a kol., Pražský závislostní korpus (The Prague Dependency Treebank)
Anotace na tektogramatické rovině (úroveň 3)

ÚFAL/CKL TR-2005-29 Petr Pajas, Jan Štěpánek, A Generic XML-Based Format for Structured Linguistic
Annotation and Its application to the Prague Dependency Treebank 2.0

ÚFAL/CKL TR-2006-30 Marie Mikulová, Alevtina Bémová, Jan Hajič, Eva Hajičová, Jiří Havelka, Veronika
Kolařová, Lucie Kučová, Markéta Lopatková, Petr Pajas, Jarmila Panevová, Magda Razímová,
Petr Sgall, Jan Štěpánek, Zdeňka Urešová, Kateřina Veselá, Zdeněk Žabokrtský, Annotation on
the tectogrammatical level in the Prague Dependency Treebank (Annotation manual)

ÚFAL/CKL TR-2006-31 Marie Mikulová, Alevtina Bémová, Jan Hajič, Eva Hajičová, Jiří Havelka, Veronika
Kolařová, Lucie Kučová, Markéta Lopatková, Petr Pajas, Jarmila Panevová, Petr Sgall, Magda
Ševčíková, Jan Štěpánek, Zdeňka Urešová, Kateřina Veselá, Zdeněk Žabokrtský, Anotace na
tektogramatické rovině Pražského závislostního korpusu (Referenční příručka)

ÚFAL/CKL TR-2006-32 Marie Mikulová, Alevtina Bémová, Jan Hajič, Eva Hajičová, Jiří Havelka, Veronika
Kolařová, Lucie Kučová, Markéta Lopatková, Petr Pajas, Jarmila Panevová, Petr Sgall,Magda
Ševčíková, Jan Štěpánek, Zdeňka Urešová, Kateřina Veselá, Zdeněk Žabokrtský, Annotation on
the tectogrammatical level in the Prague Dependency Treebank (Reference book)

ÚFAL/CKL TR-2006-33 Jan Hajič, Marie Mikulová, Martina Otradovcová, Petr Pajas, Petr Podveský, Zdeňka
Urešová, Pražský závislostní korpus mluvené češtiny. Rekonstrukce standardizovaného textu z
mluvené řeči

ÚFAL/CKL TR-2006-34 Markéta Lopatková, Zdeněk Žabokrtský, Václava Benešová (in cooperation with Karolína
Skwarska, Klára Hrstková, Michaela Nová, Eduard Bejček, Miroslav Tichý) Valency Lexicon of
Czech Verbs. VALLEX 2.0

ÚFAL/CKL TR-2006-35 Silvie Cinková, Jan Hajič, Marie Mikulová, Lucie Mladová, Anja Nedolužko, Petr Pajas,
Jarmila Panevová, Jiří Semecký, Jana Šindlerová, Josef Toman, Zdeňka Urešová, Zdeněk
Žabokrtský, Annotation of English on the tectogrammatical level

ÚFAL/CKL TR-2007-36 Magda Ševčíková, Zdeněk Žabokrtský, Oldřich Krůza, Zpracování pojmenovaných entit
v českých textech

ÚFAL/CKL TR-2008-37 Silvie Cinková, Marie Mikulová, Spontaneous speech reconstruction for the syntactic and
semantic analysis of the NAP corpus

ÚFAL/CKL TR-2008-38 Marie Mikulová, Rekonstrukce standardizovaného textu z mluvené řeči v Pražském
závislostním korpusu mluvené češtiny. Manuál pro anotátory

ÚFAL/CKL TR-2008-39 Zdeněk Žabokrtský, Ondřej Bojar, TectoMT, Developer's Guide

ÚFAL/CKL TR-2008-40 Lucie Mladová, Diskurzní vztahy v češtině a jejich zachycení v Pražském závislostním
korpusu 2.0

ÚFAL/CKL TR-2009-41 Marie Mikulová, Pokyny k překladu určené překladatelům, revizorům a korektorům textů

z Wall Street Journal pro projekt PCEDT

ÚFAL/CKL TR-2011-42 Loganathan Ramasamy, Zdeněk Žabokrtský, Tamil Dependency Treebank (TamilTB) – 0.1
Annotation Manual

ÚFAL/CKL TR-2011-43 Ngụy Giang Linh, Michal Novák, Anna Nedoluzhko, Coreference Resolution in the
Prague Dependency Treebank

ÚFAL/CKL TR-2011-44 Anna Nedoluzhko, Jiří Mírovský, Annotating Extended Textual Coreference and

Bridging Relations in the Prague Dependency Treebank

ÚFAL/CKL TR-2011-45 David Mareček, Zdeněk Žabokrtský, Unsupervised Dependency Parsing

ÚFAL/CKL TR-2011-46 Martin Majliš, Zdeněk Žabokrtský, W2C – Large Multilingual Corpus

ÚFAL TR-2012-47 Lucie Poláková, Pavlína Jínová, Šárka Zikánová, Zuzanna Bedřichová, Jiří Mírovský,

Magdaléna Rysová, Jana Zdeňková, Veronika Pavlíková, Eva Hajičová,

Manual for annotation of discourse relations in the Prague Dependency Treebank

ÚFAL TR-2012-48 Nathan Green, Zdeněk Žabokrtský, Ensemble Parsing and its Effect on Machine Translation

ÚFAL TR-2013-49 David Mareček, Martin Popel, Loganathan Ramasamy, Jan Štěpánek, Daniel Zemana,
Zdeněk Žabokrtský, Jan Hajič Cross-language Study on Influence of Coordination Style on
Dependency Parsing Performance

ÚFAL TR-2013-50 Jan Berka, Ondřej Bojar, Mark Fishel, Maja Popović, Daniel Zeman,
Tools for Machine Translation Quality Inspection

ÚFAL TR-2013-51 Marie Mikulová, Anotace na tektogramatické rovině.
Dodatky k anotátorské příručce (s ohledem na anotování PDTSC a PCEDT)

ÚFAL TR-2013-52 Marie Mikulová, Annotation on the tectogrammatical level.
Additions to annotation manual (with respect to PDTSC and PCEDT)

ÚFAL TR-2013-53 Marie Mikulová, Eduard Bejček, Jiří Mírovský, Anna Nedoluzhko, Jarmila Panevová,
Lucie Poláková, Pavel Straňák, Magda Ševčíková, Zdeněk Žabokrtský,
Úpravy a doplňky Pražského závislostního korpusu (Od PDT 2.0 k PDT 3.0)

ÚFAL TR-2013-54 Marie Mikulová, Eduard Bejček, Jiří Mírovský, Anna Nedoluzhko, Jarmila Panevová,
Lucie Poláková, Pavel Straňák, Magda Ševčíková, Zdeněk Žabokrtský,
From PDT 2.0 to PDT 3.0 (Modifications and Complements)

ÚFAL TR-2014-55 Rudolf Rosa, Depfix Manual

