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Abstract. The paper provides linguistic observations as a motivation
for a formal study of an analysis by reduction. It concentrates on a study
of the whole mechanism through a class of restarting automata with
meta-instructions using pebbles, with delete and shift operations (DS-
automata). Four types of (in)finite sets defined by these automata are
considered as linguistically relevant: basic languages on word forms mark-
ed with grammatical categories, proper languages on unmarked word
forms, categorial languages on grammatical categories, and sets of re-
ductions (reduction languages). The equivalence of proper languages is
considered for a weak equivalence of DS-automata, and the equivalence
of reduction languages for a strong equivalence of DS-automata.

The complexity of a language is naturally measured by the number
of pebbles, the number of deletions, and the number of word order shifts
used in a single reduction step. We have obtained unbounded hierarchies
(scales) for all four types of classes of finite languages considered here,
as well as for Chomsky’s classes of infinite languages. The scales make it
possible to estimate relevant complexity issues of analysis by reduction
for natural languages.

1 Introduction

The method of analysis by reduction (AR) plays an important role in a lexicalized
syntax of natural languages. It consists in a stepwise simplification of a sentence,
which profits from the integration of the sentence syntactic structure and the
corresponding grammatical categories.

To model AR, various types of restarting automata can be found in litera-
ture [6, 7], which allow one to study dependencies in a natural language. Unfor-
tunately, these types of automata are not able to adequately cope with a word
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order freedom frequently present in Czech sentences. In this paper we present
a formal model of the analysis by reduction that is, in addition to a deletion,
enriched with a word order shift, an operation reflecting a word order freedom
of natural languages [4]. Section 2 provides a linguistic motivation and informal
description of the process.

The core sections 3 and 4 provide a formal study of the whole mechanism
through a refined class of restarting automata (DS-automata), and their descrip-
tional complexity based on the number of pebbles, on the number of deletions,
and on the number of word order shifts used within a single meta-instruction.
Using these measures, we are able to argue that natural languages (e.g. Czech)
can be described using rather simple reductions. Our paper refines the notion of
window size [5, 7] by the number of pebbles.

Four types of (in)finite sets defined by DS-automata are the most relevant:
basic languages on word forms marked with their linguistic categories, sets of
reductions on basic languages forming reduction languages, proper languages
on unmarked word forms, and categorial languages on pure categories. Inspired
by Chomsky [2], we consider the equivalence of proper languages as the weak
equivalence (close to the weak equivalence by formal automata and grammars),
and the equivalence of reduction languages as the linguistically finest strong
equivalence between DS-automata.

Formal parts of this article are based on the descriptional complexity of se-
lected classes of finite languages and traditional Chomsky classes of infinite lan-
guages. Note that the concentration on finite languages comes from the domain
of interest; we can to a certain extent claim that the core vocabulary of a nat-
ural language may be considered finite and that in a normal everyday use of a
language the comprehensible/understandable sentence may be considered finite
as well. We introduce the map- and mrp- properties of restarting automata, resp.
meta-instructions – these properties in some sense characterize the minimality
of reductions. If a correct sentence of a natural language undergoes the process
of analysis by reduction, we require that it remains correct in each step of the
reduction. The obtained results give the theoretical background for an incre-
mental transfer from finite (linguistic) observations (as in [4]) to adequate, fully
lexicalized, formal descriptions (models) of natural languages based on sentence
reductions that are applicable on infinite languages.

2 Analysis by Reduction

Analysis by reduction (AR) helps to identify syntactic structure and the corre-
sponding grammatical categories of the analyzed language. AR is based upon
a stepwise simplification of an analyzed sentence, see [4]. It defines possible se-
quences of reductions in the sentence – each step of AR consists in deleting at
least one word of the input sentence and thus its shortening. Here we allow that
a deletion of a word is accompanied by a shift of some word(s) to another word
order position(s) in the sentence.
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Let us stress the basic constraints imposed on each reduction step of AR:

(i) individual words (word forms), their morphological characteristics and/or
their syntactic categories must be preserved in the course of AR;

(ii) a grammatically correct sentence must remain correct after its simplifica-
tion;

(iii) shortening of any reduction would violate the correctness principle (ii);
(iv) a sentence which contains a correct sentence (or its permutation) as a sub-

sequence, must be further reduced;
(v) an application of the shift operation is limited only to cases when a shift

is enforced by the correctness principle (ii); i.e., a simple deletion would
result in an incorrect word order.

Note that the possible order of reductions reflects dependency relations between
individual sentence members, i.e., relations between governing and dependent
nodes, as it is described in [7].

Let us illustrate the basic principles of AR on the following example. The sen-
tence undergoing AR is represented as a string of word forms (words and punc-
tuation) enriched with their disambiguated lexical, morphological and syntactic
categories.1

Example 1.
(1) [Petr,Sb] [se,AuxT] [boj́ı,Pred] [o,AuxP] [otce,Obj] [.,AuxK]

‘Peter – REFL – worries – about – father – .’
‘Peter worries about his father.’

Petr.Sb se.AuxT bojí.Pred o.AuxP otce.Obj ..AuxK

Bojí.Pred se.AuxT ..AuxK

Petr.Sb se.AuxT bojí.Pred ..AuxK

* Se.AuxT bojí.Pred ..AuxK

* Se.AuxT bojí.Pred o.AuxP otce.Obj ..AuxK

Bojí.Pred se.AuxT o.AuxP otce.Obj ..AuxK

delete delete

shift delete

shiftdelete

Fig. 1. The schema of AR for sentence (1)

Our example sentence can be simplified in two ways:
(i) either by deletion of the prepositional group o otce ‘about father’ (according
to the correctness constraint on the simplified sentence, the pair of word forms
must be deleted in a single step, see the left branch of the scheme);

1 For the simplicity, only lexical categories (i.e., original word forms and punctua-
tion like full stop in the example) as they appear in the sentence and syntactic
categories (like predicate (Pred), subject (Sb), object (Obj), auxiliary words (AuxT,
AuxP, AuxK)) are displayed in the examples; see [7] for more detailed description.
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(ii) or by deleting the subject Petr (the right part of the scheme); however, the
simple simplification would result in the incorrect word order variant starting
with the clitic se (such position of a clitic is forbidden in Czech); thus the shift
operation is enforced →shift Boj́ı se o otce. ‘(he) worries about his father.’.
The reduction proceeds in a similar way in both branches of AR until the minimal
correct simplified sentence Boj́ı se. ‘(He) worries.’ is obtained. This sentence
cannot be further correctly reduced.

3 Restarting Automata with Delete and Shift Operation

In order to model the analysis by reduction with shifts, we introduce a restart-
ing automaton that uses a limited number of pebbles, and that performs sev-
eral deletions and shifts within one meta-instruction – a DS-automaton. The
DS-automaton is a refinement of the so called sRL-automaton in [7]; here, the
automaton is enriched with the shift operation, and with categorial and basic
alphabets.

DS-automata are suitable for modeling AR – these automata make it possible
to check the whole input sentence and mark selected words with pebbles prior
to any changes. It resembles a linguist who can read the whole sentence first,
and then reduce the sentence in a correct way. To enable simulation of various
orders of reductions, we choose a nondeterministic model of the automaton.
We distinguish three alphabets (or vocabularies): a proper alphabet Σp that is
used to model individual word forms, an alphabet Σc of categories and a basic
alphabet Γ . Since only symbols from the basic alphabet can appear on a tape
of a DS-automaton, Γ is also called a tape alphabet. (In what follows, λ denotes
an empty word, N+ and N denote the set of positive and the set of nonnegative
integers, respectively.)

More formally, a DS-automaton is a tuple M = (Σp, Σc, Γ, c, $, R,A, k), where
Σp, Σc, and Γ ⊆ Σp × Σc are finite alphabets, R and A are finite sets of
restarting and accepting meta-instructions, respectively, and k ∈ N is the number
of pebbles available. M works on a flexible tape (i.e., on a string of symbols
from Γ ) delimited by the left sentinel c and by the right sentinel $ (c, $ �∈ Γ ).
Its computation is controlled by finite sets of meta-instructions R and A, and it
makes use of k pebbles p1, · · · , pk.

A projection from Γ ∗ to Σ∗
p and Σ∗

c , respectively, is convenient – we define
two homomorphisms, a proper homomorphism hp : Γ → Σp and a categorial
homomorphism hc : Γ → Σc in the obvious way: hp([a, b]) = a, and hc([a, b]) = b
for each [a, b] ∈ Γ . For technical reasons, we define hp(c) = hc(c) = c.

Each computation of a DS-automaton consists of several phases called cycles,
and a last halting phase called a tail. In each cycle, the automaton performs
three passes through the tape with symbols from Γ . During the first pass, it
marks certain symbols of a processed sentence with pebbles according to some
meta-instruction I; then during the second pass, it performs the shift opera-
tions as described by the chosen meta-instruction I; and during the third pass,
it performs the delete operations as described by the meta-instruction I. The
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operations are applied only on symbols marked by pebbles. Moreover, we allow
the left sentinel to be pebbled as well since we sometimes need to shift some
symbols just behind it. However, although pebbled, c is treated differently from
other tape symbols; it can neither be deleted nor can it be shifted.

In each accepting tail, the automaton according to a meta-instruction Iacc
from A halts and accepts the analyzed sentence.

In accordance with the linguistic motivation, the meta-instructions check only
the categorial part of tape symbols from Γ .2

Restarting Meta-instructions. Each cycle of the DS-automaton M is con-
trolled by a single restarting meta-instruction I ∈ R of the form

I = (E0, a1, E1, . . . as, Es;Osh;Od; Restart) (1)

where:

– each Ei, 0 ≤ i ≤ s is a regular language over Σc ∪ {λ}, Ei is called the i-th
context of I;

– ai ∈ Σc ∪ {c} (for 1 ≤ i ≤ s ≤ k) indicates that each ai is marked with the
pebble pi;

– Osh = o1, · · · , opsh
, oj ∈ {sh[i, l] | 1 ≤ i, j ≤ s, i �= l}, is a sequence of

shifting operations performed in the second phase: if oj = sh[i, l] then it
shifts the tape symbol marked with pi to the position behind the symbol
with pl;

– Od = d1, · · · , dpd
, dj ∈ {dl[i] | 1 ≤ i ≤ s}, is a sequence of delete operations

performed in the third phase: if dj = dl[i] then it deletes the tape symbol
marked by pi;

– c is neither deleted nor shifted within I.

We require an ‘exclusivity’ of the shift operation: each symbol ai can be shifted
only once (as a maximum); moreover, if ai is shifted then it cannot be deleted
within the same meta-instruction. Formally, if Osh contains the shift operation
sh[i, l] for some i then no other sh[i, r] can be in Osh; moreover, Od cannot
contain the dl[i] operation.

Each computation of M on the input w ∈ Γ ∗ starts with the tape inscription
cw$. After a nondeterministic choice of a cycle C realizing the guessed restarting
meta-instruction I, M nondeterministically marks tape symbols b1, . . . , bs by
pebbles in accordance with I: it finds a factorization w = v0b1v1b2 . . . vs−1bsvs,
0 ≤ i ≤ s, 1 ≤ j ≤ s such that hc(vi) ∈ Ei, hc(bj) = aj in the first pass.
Then M applies the implied sequence of shifts Osh during the second pass, and
the implied sequence of deletions during the third pass. If the factorization is
not found within the first pass, the automaton gets stuck (and thus it rejects
w). Notice that due to regularity of individual Ei’s the instruction I can be
(nondeterministically) identified within one pass over cw$.

2 When considering only categorial symbols as a context we avoid both the problem of
data sparsity and the problem of a very large alphabet Σp (i.e., lexicon with hundred
of thousands word forms for a natural language).
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At the end of each cycle, the Restart operation removes all pebbles from the
new tape inscription w′ and places the head on the left sentinel. We write w �I

w′.
Remember that none of the sentinels can be deleted/shifted and that M is

required to execute at least one delete operation during each (restarting) cycle.
If no further cycle is performed, each accepting computation necessarily fin-

ishes in a tail performed according to one of the accepting meta-instructions.

Accepting Meta-instructions. Tails of accepting computations are described
by a set of accepting meta-instructions A, each of the form:

Iacc = (a1 . . . as,Accept), (2)

where ai are symbols from Σc.
The tail performed by the meta-instruction Iacc starts with the inscription on

the tape cz$; if hc(z) = a1 · · · as then M accepts z (we write z �Iacc Accept), and
the whole computation as well. Otherwise, the computation halts with rejection.

We denote by u �M v the reduction of u into v performed during one cy-
cle of M (that begins with the tape inscription cu$ and ends with the tape
inscription cv$) and by �∗

M the reflexive and transitive closure of �M . We say
that u1, u2, . . . , un,Accept is an accepting computation of M if u �M u1, u1 �M

u2, · · · , un−1 �M un, un �M Accept.
A string w ∈ Γ ∗ is accepted by M , if w �∗

M u with (u,Accept) ∈ A. By L(M)
we denote the language of words accepted by M ; we say that M recognizes
(accepts) the basic (tape) language L(M). We say that L(M,p) = {hp(w) ∈ Σ∗

p |
w ∈ L(M)} is the proper language of M . Analogously, L(M, c) = {hc(w) ∈ Σ∗

p |
w ∈ L(M)} is called the categorial language of M .

Since the number of reductions performed within an accepting computation
is of (linguistic) interest, we denote by Ln(M) the language of all sentences
accepted by at most n cycles of M ; L0(M) is the set of sentences accepted
directly by accepting meta-instructions.

Further, we define the reduction language of M as RED(M) = {u → v | u �M

v, u, v ∈ L(M)}, and REDn(M) = {u → v ∈ RED(M) | v ∈ Ln−1(M)}. Note
that Ln(M) and REDn(M) are finite for any n ∈ N.

The notations Ln(M,p) and Ln(M, c) denote the proper and categorial vari-
ants of Ln(M), respectively.

Backward Correctness Preserving Property (bcpp) Realize that each
meta-instruction I of the DS-automaton M is backward correctness preserving :

(
v ∈ L(M) and u �I v

) ⇒ (u ∈ L(M))

We will see that this bcpp property plays a crucial role in the study of analysis
by reduction.

We naturally suppose that any restarting meta-instruction of M can be associ-
ated with some reduction from RED(M). Two conditions formulated below, the
map- and mrp- properties, reflect the linguists’ preference of reductions being as
simple as possible.
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Minimal Accepting Property (map-): If w ∈ L0(M) then neither proper
subsequence of w nor any permutation of such subsequence belongs to L0(M).

Minimal Reduction Property (mrp-): Let u �M v for a cycle C realiz-
ing the restarting meta-instruction controlled by the sequence of operations
O = o1, o2, · · · , op. Let ṽ be obtained from u by a (new) restarting meta-

instruction controlled by a proper subsequence Õ of O. Then ṽ /∈ L(M). The
property implies that a meta-instruction is in some sense minimal as none of
the deletions/shifts performed by u → v can be left out in order to obtain a
reducible or acceptable sentence.

If M fulfils the map- and mrp- conditions then RED(M) is said to create a
normalized reduction language of M , and that M is normalized. We will show
in Section 4 that every DS-automaton can be transformed to a normalized one
that recognizes the same proper language.

Example 2. The notions of restarting and accepting meta-instructions are illus-
trated on the analysis of our example sentence (1) from Section 2. The respective
DS-automaton Mex is described by two restarting meta-instructions Ir1 and Ir2 ,
and one accepting meta-instruction Iacc. It formalizes both branches of AR of
the sentence [Petr,Sb] [se,AuxT] [boj́ı,Pred] [o,AuxP] [otce,Obj] [.,AuxK] ‘Peter
worries about his father.’, (see the scheme in Section 2).

Ir1 = (E1
0 , a

1
1, E

1
1 , a

1
2, E

1
2 , a

1
3, E

1
3 ; o

1
1, o

1
2;Restart), where o11 = dl[2], o12 = dl[3],

E1
0 = {Sb AuxT, λ}, a11 = Pred, E1

1 = {λ,AuxT}, a12 = AuxP, E1
2 = {λ},

a13 = Obj, E1
3 = {AuxK};

Ir2 = (E2
0 , a

2
1, E

2
1 , a

2
2, E

2
2 , a

2
3, E

2
3 ; o

2
1; o

2
2;Restart), where o21 = sh[2, 3]; o22 = dl[1],

E2
0 = {λ}, a21 = Sb, E2

1 = {λ}, a22 = AuxT, E2
2 = {λ}, a23 = Pred,

E2
3 = {AuxK,AuxP Obj AuxK};

Iacc = (Pred AuxT AuxK, Accept).
The computation corresponding to the left branch consists in two cycles. Within
the first cycle driven by the meta-instruction Ir1 , Mex puts pebbles p1, p2, and
p3 on the symbols containing the words [boj́ı,Pred] (with the left (tape) context
[Petr,Sb][se,AuxT] and empty right context), on [o,AuxP], and on [otce,Obj], re-
spectively; the operations dl[2] and dl[3] delete the words [o,AuxP] (marked with
the pebble p2) and [otce,Obj] (marked with the pebble p3), respectively. Then the
automaton restarts and removes the pebbles from the processed sentence. Sim-
ilarly in the second cycle realizing restarting meta-instruction Ir2 , Mex marks
the respective words and then in the second pass the operation sh[2, 3] shifts
the word [se,AuxT] with the pebble p2 to the right of the word [boj́ı,Pred] (with
the pebble p3); in the third pass, the operation dl[1] deletes the word [Petr,Sb]
(marked with p1). Finally, accepting instruction Iacc just accepts the remaining
words. Similarly for the right branch (starting with Ir2 and followed by Ir1 and
Iacc instructions).

For the sake of simplicity, let α0, α1, α2, and β1 be defined as follows:

α0= [boj́ı,Pred] [se,AuxT] [.,AuxK];
α1= [Petr,Sb] [se,AuxT] [boj́ı,Pred] [.,AuxK];
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β1= [boj́ı,Pred] [se,AuxT] [o,AuxP] [otce,Obj] [.,AuxK], and
α2= [Petr,Sb] [se,AuxT] [boj́ı,Pred] [o,AuxP] [otce,Obj] [.,AuxK].

Applying the relevant definitions we get:

L0(Mex) = {α0} as α0 �Iacc Accept;
L1(Mex) = {α0, α1, β1}, as α1 �Ir2 α0, and β1 �Ir1 α0;
L2(Mex) = {α0, α1, β1, α2} since α2 is the only word not in L1(Mex) for
which α2 �Mex α, α ∈ L1(M) (as α2 �Ir1 α1, or α2 �Ir2 β1);
L(Mex) = L2(Mex) as no α ∈ L2(Mex) and β /∈ L2(Mex) exist for which
β �Mex α holds.

The proper homomorphism of Mex removes linguistic categories Sb, AuxT, Pred,
AuxP, Obj, and AuxK; so the sentence [Petr,Sb] [se,AuxT] [boj́ı,Pred] [o,AuxP]
[otce,Obj] [.,AuxK] (from the basic language of Mex) is mapped onto the sentence
Petr se boj́ı o otce. ‘Peter worries about his father.’ (from the proper language
of Mex). Similarly, the string Sb AuxT Pred AuxP Obj AuxK is a sentence of the
categorial language of Mex.

4 Results

With respect to the linguistic motivation, we focus on the number of deletions
and/or shifts in individual restarting meta-instructions and we use particular
abbreviations for automata/languages with a restriction on these complexity
measures. In particular, prefix DS- is used to identify the delete-shift automata
without any restrictions, and D- is used for automata with deletions only. Fur-
ther, the prefix (k)- is used to indicate that at most k pebbles are available in one
meta-instruction. As a special case, (0)- means that the automaton contains only
accepting meta-instructions and thus it accepts in tail computations only. We use
the syllable d(i)- for automata with at most i deletions in one meta-instruction
and s(j)- for automata with at most j shifts in a single meta-instruction. The
requirements for normalized reduction languages are denoted by map-, and mrp-.

For each type X of restarting automata, we use L(X), LP(X), LC(X) to denote
the class of all basic, proper and categorial languages, recognizable by automata
of this type. Analogously, RED(X) denotes the class of all reduction languages
of these automata. Further, Ln(X), LPn(X), LCn(X) denote the classes of basic,
proper, and categorial languages defined by at most n reductions of X-automata;
REDn(X) denotes analogical notion for reduction languages. Proper inclusions
are denoted by ⊂.

FIN, REG, (D)CFL, and CSL are used for classes of finite, regular, (deter-
ministic) context-free, and context-sensitive languages, respectively, and FINR,
REGR, (D)CFR, and CSR for the classes of reduction languages defined by DS-
automata for which their basic languages are from FIN, REG, (D)CFL, and CSL,
respectively.

First part of our results is devoted to the map- and mrp- properties, their
influence on the delete and shift complexities and on the computational power.
Then we show delete, shift and pebble hierarchies.
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Let Mex be the automaton (implicitly) given in Example 2. Let us recall that
L(Mex) = L2(Mex). Analyzing its meta-instructions we see that automaton Mex

is in fact map-mrp-s(1)-d(2)-DS-automaton implying L(Mex) = L2(Mex) ∈ FIN.
Relaxing the conditions map- and mrp-, the finite language L(Mex) can obviously
be recognized by accepting tails only. The situation changes when the automaton
recognizing L(Mex) is required to fulfil the condition map-. Then, not only that
it cannot accept this finite language by accepting tails only; it requires (at least)
two pebbles and two deletions in one restarting meta-instruction. Thus, it can
be used for separation.

Proposition 1. Let Mex be the automaton implicitly given in Example 2. Then

1. L(Mex) ∈ L2(map-d(2)-DS)� L(map-d(1)-DS),
2. RED(Mex) ∈ RED2(map-d(2)-DS)�RED((1)-DS),
3. L1(Mex) ∈ L1(map-s(1)-d(1)-DS)� L(map-(1)-DS),
4. L(Mex) ∈ L((0)-D).
Proof. Take the sentence [Petr,Sb] [se,AuxT] [boj́ı,Pred][.,AuxK] from L1(Mex).
The single reduction of the sentence follows the map-principle, as boj́ı se is a per-
mutation of a correct subsequence se boj́ı. The reduction consists of one delete
and one shift operations; they are unambiguously given by the backward cor-
rectness preserving property (bcpp). Two operations on two different positions
imply automaton with at least two pebbles, thus L1(Mex) /∈ L(map-(1)-DS), and
RED(Mex) /∈ RED((1)-DS). Similarly for assertions 3, and 4 is obvious. �

Consider shifts and deletions being the only operations allowed on (a set of)
words. Based on these operations, we can naturally define the partial order �L

on the set L of words. We say that u syntactically precedes v in L and write
u �L v iff:

1. u, v ∈ L, |u| > |v|;
2. v can be obtained from u by a sequence O of deletions and shifts applied on

u; u
O→ v;

3. the application of any proper subsequence O′ of O on u would end up with
a word outside L.

By �+
L we denote the transitive, nonreflexive closure of �L. Obviously, for a DS-

automaton M , u → v ∈ RED(M) implies u �+
L(M) v and hp(u) �+

L(M,p) hp(v).

We define the set Lmin
�L

= {v ∈ L | ¬∃u ∈ L : v �L u} as the set of minimal
words in L. Then, for the map-DS-automaton M :

L0(M) = Lmin
�L(M)

.

For w ∈ L we denote by σ(w) any sequence σ(w) = w0, w1, . . . , wn such that
w = w0, wi−1 �L wi, 1 ≤ i ≤ n and wn ∈ Lmin

�L
. We call σ(w) the �L-sequence

of w. Realize that �L-sequence of w needs not be uniquely given by L,w.
Note that every pair u, v with u �L v implicitly defines one or more sequences

O of deletions and shifts that transforms u into v. For technical reasons, we will
only work with sequences of minimal length and will, for every pair u �L v,
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denote one of them as O(u, v). Since the number of deletions and shifts in O(u, v)
is determined unambiguously by the length of it, we denote by S(u �L v) the
number of shifts, and by D(u �L v) the number of deletions of O(u, v). Let us
stress that the minimal number of shifts and deletions needed to transform u
into v is a kind of edit-distance between words u, v. Not surprisingly, it will be
shown that these numbers are related to the numbers of deletions and shifts used
in meta-instructions of the corresponding DS-automaton. For that, we introduce
several delete and shift complexities.

By Dω(L) = max{D(u �L v);u, v ∈ L} we denote the delete upper bound of
L (or of �L). Analogously, Sω(L) = max{S(u �L v);u, v ∈ L} denotes the shift
upper bound of L.

For any word w and its �L-sequence σ(w) = w0, w1, . . . , wn we define
D(σ(w)) = maxi{D(wi−1 �L wi)} and the delete lower bound of w with respect
to L as D�(L,w) = minσ(w){D(σ(w))}. For shifts, S(σ(w)) and S�(L,w) are
defined analogously.

For L1 ⊆ L2 the delete and shift lower bounds of L1 with respect to L2 are de-
fined in the following way: D�(L1, L2) = maxw∈L1{D�(L2, w)} and S�(L1, L2) =
maxw∈L1{S�(L2, w)}.

We call the DS-automaton reduced if each of its meta-instruction uses exactly
as many pebbles as it is needed to realize the involved sequence of operations.

A close relation between the complexity of meta-instructions of map- and/or
mrp-DS-automata and the above defined upper and lower bounds is formulated
in the following Theorem 1.

Theorem 1. Let M be a reduced map-mrp-s(i)-d(j)-DS-automaton, and LM ∈
{L(M), L(M, c)}. Then the following holds:

1. u → v ∈ RED(M) implies u �L(M) v;

2. S�(LM,LM) ≤ i ≤ Sω(LM), and D�(LM,LM) ≤ j ≤ Dω(LM);

3. (L ⊆ LM and r ≤ D�(L,LM)− 1) implies LM /∈ L(map-d(r)-DS);

4. (L ⊆ LM and r ≤ S�(L,LM)− 1) implies LM /∈ L(map-s(r)-DS).

Notice that without the mrp- condition the assertion 1. of Theorem 1 would not
hold.

Proof. Assertion 1. directly follows from the definition of the mrp- condition;
together with the map- property it implies the lower bounds in assertion 2. The
upper bounds in 2. follow from the definition of Dω and Sω. To get 3. and 4.,
realize that M is reduced map-DS-automaton and that u �M v implies u �+

M v.
�

As shown in Theorem 2, map-D-automata are powerful enough for catego-
rial recognition of deterministic CF-languages and proper recognition of all CF-
languages. As a corollary of Theorem 3 we even get that every CF-language is a
proper language of some map-mrp-DS-automaton.

Theorem 2. DCFL ⊂ LC(map-D), CFL ⊂ LP(map-D).
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Proof. To make use of two useful results from [6], we need to introduce an
extended class of D-automata. By Dreg, we denote a class of D-automata whose
accepting meta-instructions are of the form Ia = (Lr,Accept), where Lr is a
regular language. Ia accepts each v ∈ Lr.

1. Proof of DCFL ⊂ LC(map-D). The relevant assertion from Proposition 3.8.
in [6] can be reformulated as DCFL ⊂ LC(Dreg). To prove our proposition
it is therefore sufficient to transform the given Dreg-automaton to a map-D-
automaton. Thus, let M be a Dreg-automaton such that L(M, c) ∈ DCFL. Based
on the size of |L0(M, c)| we distinguish two cases:

(a) If L0(M, c) is a finite language then it is easy to check whether it fulfils the
condition map-. If not, then there obviously exists map-D-automaton A0 recog-
nizing exactly the language L0(M, c). The automaton A0 simulates the leftmost
branch of the syntactic precedence �L0(M,c). Then, it suffices to substitute orig-
inal accepting meta-instructions of M by all of A0’s restarting and accepting
meta-instructions.

(b) If L0(M, c) is not a finite language then L0(M, c) is still ∈ REG and
there is a deterministic finite automaton A recognizing L0(M, c). From A we
can construct deterministic D-automaton A0 whose restarting meta-instructions
always delete by the simulating of a rightmost cycle of A and accepting meta-
instructions accepts only cycle-free words. Here, by a cycle in a word w we mean
such subword u of w that – based on pumping lemma – could be iterated (within
the computation on w, the automaton starts reading u in the same state as it
leaves it). Replacing accepting meta-instructions ofM by all meta-instructions of
A0, we get a D-automaton that according to (a) can be modified to an equivalent
map-D-automaton recognizing L(M, c).

2. Proof of CFL ⊂ LP(map-D). It directly follows from Proposition 3.4. in [6]
that CFL ⊂ LP(Dreg) which – based upon the above given construction for
DCFL – implies CFL ⊂ LP(map-D) . �

Adopting the above given constructions we show in the next theorem that as
for the proper languages, the linguistic requirement of normalization preserves
the power of DS-automata.

Theorem 3. Let X ∈ {DS, D}. Then LP(X) = LP(map-mrp-X).

Proof. Let us prove the theorem by explaining how a DS-automaton for a proper
language can be transformed onto one with the map- and mrp- properties. We
will show the construction for D-automata first and secondly we will explain how
the construction can be adopted for automata with shifts. Note that based on
the proof of Theorem 2 we can suppose that the original D-automaton already
posseses the map- property.

Let us start with the proof of LP(D) = LP(map-mrp-D). It is obvious that
LP(map-mrp-D) ⊆ LP(D). To show the opposite inequality we start with a
map-D-automaton M = (Σp, Σc, Γ, c, $, R,A, k) and we construct a map-mrp-D-
automaton MD = (Σp, Σ

D
c , ΓD, c, $, RD, AD, kD) with an enriched set of cate-

gories ΣD
c and a new basic alphabet ΓD.
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Based on any individual accepting computation CA ofM on w, where hc(w) =
w1 . . . wn, each symbol wj can be unambiguously associated with either restart-
ing or accepting meta-instruction I(j) and with an index pj identifying either
the pebble that is within realization of the restarting meta-instruction I(j) put
on it or that identifies the position of wj within the accepting meta-instruction
I(j); if wj is deleted within CA then I(j) is that restarting meta-instruction
that has deleted it, otherwise I(j) is the accepting meta-instruction applied in
CA. To be able to insert this information into w we enrich the categorial al-
phabet Σc of M : ΣD

c = {[x, i, r] : x ∈ Σc, i ∈ {1, . . . |R ∪ A|}, r ≤ �, where
� = max{k,max{s; (a1, . . . as; Accept) ∈ A}}.

The order of meta-instructions in R ∪ A: If I = (E0, a1, E1, . . . as, Es;Osh;Op;
Restart) ∈ R is i-th in the ordering then put I(i) = (E0, [a1, i, 1], E1, . . . [as, i, s],
Es; Osh;Op Restart) into RD. Analogously, if Iacc = (a1, . . . as; Accept) is j-th
then put the accepting meta-instruction Iacc(j) = ([a1, j, 1], . . . [as, j, s]; Accept)
to AD.

Realize that the proper alphabet Σp has not been changed, thus L(M,p) =
L(M2, p):

– if u �MD v then there are x, y such that x �M y, and hp(x) = hp(u), hp(y) =
hp(v);

– ∀x, y ∈ L(M), x �M y there are x2, y2 ∈ L(MD) such that x2�MDy2, and
hp(x2) = hp(x), hp(y2) = hp(y)

Due to the index of the instruction and the position in that instruction asso-
ciated with individual symbols as described above, the obtained D-automaton
M2 fulfills both the mrp- and map- conditions.

To finish the proof of the theorem LP(DS) = LP(map-mrp-DS), we explain
how information about shifts can be handled using the idea of the above given
construction. Let M = (Σp, Σc, Γ, c, $, R,A, k) be the map-DS-automaton. We
will construct map-mrp-DS-automaton MDS = (Σp, Σ

DS
c , ΓDS , c, $, RDS, ADS ,

kDS) with an enriched set of categories ΣDS
c = {[x, i, r] : x ∈ Σc, i ∈ {1, . . . |R∪

A|}, r ≤ �, where � = max{k,max{s; (a1, . . . as; Accept) ∈ A}}.
Within a restarting meta-instruction I some pebbles are put on symbols that

are to be deleted and some of them on those moved by I. As described earlier,
the index r in the triple [x, i, r] is associated either with pebble put on the
original symbol x within the meta-instruction that deletes the symbol or with
the position of x in the accepting meta-instruction. Thus, to realize restarting
meta-instruction I that involves shifts, we will simply ignore the index in those
triples that are moved by I.

Fix any ordering of meta-instructions in R ∪ A. If Iacc = (a1, . . . as; Accept)
is j-th in that ordering then put accepting meta-instruction Iacc(j) = ([a1, j, 1],
. . . [as, j, s]; Accept) to ADS .

Let I = (E0, a1, E1, . . . as, Es;Osh;Od; Restart) ∈ R be a restarting meta-
instruction of M and Od = {dl[j1], . . . , dl[jd]} is the set of all delete operations
involved in I. If I is j-th in the ordering then add the set of restarting meta-
instructions I(j) = {(E0, [a1, i1, 1], E1, . . . [as, is, s], Es;Osh;Od; Restart) | ij =
j for j ∈ {j1, . . . , jd}} into RDS .
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Realize that the set of restarting meta-instructions of MDS is larger than
that of M if at least one of M ’s restarting meta-instructions involves shift.
However, fixing the accepting computation CA of M on w, the transformation of
w = w1 . . . wn ∈ Γ ∗ to W = W1 . . .Wn = [w1, i1, r1] . . . [wn, in, rn] ∈ Γ ∗

DS such
that hp(w) ∈ L(M,p) ⇐⇒ hp(W ) ∈ L(MDS , p) can be done by a deterministic
algorithm:

1. initialize W = w;
2. let I1, I2, . . . , It be a sequence of meta-instructions corresponding to CA,

I1, . . . , It−1 ∈ R, It ∈ A;
3. let It = (a1 . . . as; Accept) be jt-th in the ordering of R ∪ A, where a1 =

wi1 , . . . , as = wis ; set Wim to [wim , jt,m];
4. for q = t − 1 downto 1 let Iq = (E0, a1, E1, . . . as, Es;Osh;Od; Restart) be

jq-th in the ordering of R ∪ A, where a1 = wi1 , . . . , as = wis and p1, . . . , pd
are the pebbles put on those symbols deleted by Iq; set Wipi

to [wipi
, qt, pi].

Thanks to this deterministic process the indices i, r in triples [x, i, r] guarantee
both the map- and mrp- property of the constructed DS-automaton MDS. �

Corollary 1. CFL ⊂ LP(map-mrp-D)

It is easy to see that LC(X) is a subset of LP(X) for X ∈ {D,DS} and that
every computation of restarting automaton can directly be simulated in linear
space implying LC(X) ⊆ LP(X) ⊆ CSL. These inequalities are shown as valid
with the help of separation languages Le and La2b (see Proposition 2). The
lower bound parts of both Propositions are mainly based on counting argument
combined with consequences of pumping lemma for regular languages.

Proposition 2. Le = { a2n | n ∈ N } ∈ CSL \ LP(DS),
La2b = { anbn | n ≥ 1 } ∪ { anbm | m > 2n > 0 } ∈ LP((3)-D) \ LC(DS)
Corollary 2. Let X ∈ {DS, D}. Then LC(X) ⊂ LP(X) ⊂ CSL.

In order to show the delete and shift hierarchies, we define two classes of sample
languages. Let j ∈ N+, i ∈ N, Σ = {P, b, s}, Δj = {c, a1, a2, . . . , aj}, Λ = {λ}:

LS(j, i) = { Psi{bj}+, {bj}+si, si}, Le(j) = { an1an2 · · · anj | n > 0 }.

The construction of relevant DS-automata and delete and shift complexities
of these languages are given in Lemma 1. It is easy to see that all above de-
fined classes of languages belong to CSL, languages LS(j, i) are infinite regular,
Le(2) ∈ CFL, and Le(j) ∈ CSL \ CFL for j ≥ 3.

Lemma 1. Let X = map-mrp, LX ∈ {LC,LP}, j ∈ N+, i ∈ N. Then:

(a) LS(j, i) ∈ LX (d(j)-s(i)-X-DS) (b) LS(j, i) ∈ LX ((max{j, i+2})-X-DS)
(c) Le(j) ∈ LX (d(j)-X-D) (d) Le(j) ∈ LX ((j)-X-D)
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Proof. The proof is done by an informal construction of DS-automata.
(a) We describe a d(j)-s(i)-map-mrp-DS-automatonMS(j, i) such that LS(j, i) =
L(MS(j, i), c) = L(MS(j, i), p), and it uses max{j, i+2} pebbles. MS(j, i) works
with the basic alphabet {[P,P], [b,b], [s,s]}, and categorial and proper alphabets
equal to {P, b, s}. The automaton MS(j, i) simulates the leftmost syntactic
precedence of any word of LS(j, i)); we have three possibilities for one cycle:

– the word [P, P ][s, s]i{[b, b]j}n is changed to {[b, b]j}n[s, s]i; for this, i + 2
pebbles are used to mark the symbol [P, P ], all symbols [s, s]i and the last
symbol [b, b] first; then [s, s]i are shifted after [b, b]’s and [P, P ] is deleted;

– the prefix [b, b]j is marked with pebbles and deleted;
– the word [s, s]i is accepted in a tail computation.

(b) Here we describe a d(j)-map-mrp-D-automaton Me(j) such that Le(j) =
L(Me(j), c) = L(Me(j), p), and it uses j pebbles. The automatonMe(j) it simu-
lates always the leftmost syntactic precedence for any word from Le(j); in one cy-
cle the automaton marks by pebbles and deletes one copy of [a1, a1], [a2, a2], . . . ,
[aj , aj ] in a word longer then j and accepts the word [a1, a1][a2, a2] . . . [aj, aj ] in
a tail computation.

It is not hard to see that the described automata fulfill the map- and mrp-
conditions. �
Now we are ready for our separation results; the very robust pebble hierarchy is
dealt with in the following part, shift and delete hierarchies are given afterwards.

Theorem 4. Let i > 0, X ∈ {DS, D}, Y ∈ {λ,map, map-mrp},
LX ∈ {L,LC,LP ,RED}. Then LX (Y-(i)-X) ⊂ LX (Y-(i+1)-X).

Proof. To prove the proposition, we consider the sequence of above defined
languages Le(j) = { an1an2 · · · anj | n > 0}, j > 1.

For the upper bound consider the automaton Me(j) from the proof of
Lemma 1b. Its categorial and proper languages are both equal to Le(j) and
the automaton uses exactly j deletions and pebbles in a cycle.

The lower bound parts are based on Theorem 1. For each DS-automaton
M recognizing Le(j), the set L0(M) is finite, thus RED(M) is nonempty; any
reduction from RED(M) is forced by some syntactic precedences from �Le(j).
Realize that if u �Le(j) v then |u| = |v| + j; v can be obtained from u by
j deletions for which M uses at least j pebbles. This way we get the desired
hierarchies for basic, categorial and reduction languages.

For proper languages hierarchy realize that for any DS-automaton M with
proper homomorphism hp, each relation u �L(M) v implies the existence of at

least one relation of the form hp(u) �+
L(M,p) hp(v); from this, D�(L(M), L(M))

≥ D�(L(M,p), L(M,p)) follows. This means that the pebble complexity of every
DS-automaton with the proper language Le(j) is at least D�(Le(j), Le(j)) and
thus at least j. �
The subsequent results show the existence of infinite pebble hierarchies even
on classes of finite sub-languages of DS-automata. Note that the hierarchies for
reduction languages are more robust than for the other types of languages; they
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hold also without the map- and mrp- conditions. The language Le(j) represents
a core of the corresponding proofs.

Theorem 5. Let n > 0, i > 0, X ∈ {D, DS}, Y ∈ {map, map-mrp},
LX ∈ {L,LC,LP ,RED}.
Then LX n(Y-(i)-X) ⊂ LXn(Y-(i+1)-X), and REDn((i)-X) ⊂ REDn((i+1)-X).

Theorem 6. For i > 2, j ≥ 0, Y ∈ {FIN, REG� FIN, CFL� REG, CSL� CFL},
X ∈ {map, map-mrp}, LX ∈ {L,LC,LP} we have the following proper inclu-
sions:

(a) Y ∩ LX (d(i)-s(j)-X-DS) ⊂ Y ∩ LX (d(i+1)-s(j)-X-DS),

(b) Y ∩ LX (d(i)-s(j)-X-DS) ⊂ Y ∩ LX (d(i)-s(j+1)-X-DS).

Proof. To separate LX (map-d(i)-s(j)-DS) from LX (map-d(i+1)-s(j)-DS) and
LX (map-d(i)-s(j+1)-DS) we use the languages LS(i, j), and their syntactic prece-
dences. The number of shift operations is forced by the map- property, otherwise
the language LS(i, j) could also be recognized with a D-automaton without shifts
simply by deleting the sufix [b, b]i from [P, P ][s, s]j{[b, b]i}n, for n > 1, instead.
The number of deletions in one restarting instruction is also determined by the
map- property that forces the instruction to delete [b, b]i from the proper prefix
of {[b, b]i}n[s, s]j . Since LS(i, j) is infinite regular, the proof for Y = REG� FIN
follows.

For remaining classes we use the languages obtained by a small modification
of LS(i, j): LFIN(i, j) = {Psjbi, bisj, sj}, LCFL�REG(i, j) = LS(i, j) ∪ Le(2), and
LCSL�CFL(i, j) = LS(i, j) ∪ Le(3). �

The automata from the previous theorem can be used to prove the similar
hierarchical results for reduction languages even with the absence of the map-
and mrp- conditions. Moreover, hierarchies similar to those in Theorems 5 and
6 hold also for finite languages defined by n reductions.

Conclusion and Perspectives

We have presented a class of restarting automata (DS-automata), which formal-
ize lexicalization in a similar way as categorial grammars (see e.g. [1, 2]). This
class of automata – similarly as categorial grammars – allows us to introduce (in
a natural way) basic languages (on word forms marked with categories), proper
languages (on unmarked word forms), and categorial languages (on grammatical
categories). Further, they allow to introduce reduction languages – this concept
is quite natural for DS-automata and the analysis by reduction.

We have introduced also the minimalist map- and mrp- properties, which were
used for the normalization of DS-automata; these properties ensure similar and
transparent hierarchies for classes of finite and infinite languages. Note that re-
laxation of these minimalist properties often leads to different results for classes
of finite and infinite languages. The normalized DS-automata formalize the no-
tion of analysis by reduction.
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Reduction languages allow for explicit description of the integration of in-
dividual (disambiguated) word forms into a sentence structure. While proper
languages play the role of input languages for weak equivalence of DS-automata
(and other types of automata or grammars), reduction languages serve for lin-
guistically more relevant strong equivalence of DS-automata.

Based on [4], we estimate that roughly seven deletions in one reduction step suf-
fice to analyze adequately any sentence (not containing coordination in its struc-
ture) from the Prague Dependency Treebank [3]. As for the shift complexity, we
have only been able to find reductions of Czech sentences with at most one shift
in a single reduction step. From this point of view, normalized reductions in nat-
ural languages are quite simple. The information stored in morphological lexicons
of individual natural languages is in fact modeled by the information contained in
the basic (tape) alphabet of DS-automata. On the other hand, meta-instructions
model syntactic potential of individual words (i.e., information stored in valency
lexicons and a grammar component of a natural language description).

We have already used the analysis by reduction for explaining the basics of
dependency syntax of Czech (see e.g. [7]). However, it can be used for explanation
of basic issues of lexicalized syntax based on (even discontinuous) constituents
as well – in such a case, individual (restarting) meta-instructions of a normalized
description correspond to individual types of constituents. The proposed type of
strong equivalence and three proposed types of very robust complexity measures
can serve for both types of syntactic methods.

Finally, we strongly believe that for linguistic applications, (relatively simple)
star-free languages are sufficient as contexts in meta-instructions since the main
information contained in a context is that the context cannot contain some
special subwords (or some simple symbols as, eg., punctuation symbols).
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