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Abstract. We present a MIRA-based labeller designed to assign de-
pendency relation labels to edges in a dependency parse tree, tuned for
Czech language. The labeller was created to be used as a second stage to
unlabelled dependency parsers but can also improve output from labelled
dependency parsers. We evaluate two existing techniques which can be
used for labelling and experiment with combining them together. We
describe the feature set used. Our final setup significantly outperforms
the best results from the CoNLL 2009 shared task.
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1 Introduction

Dependency trees have for a long time been the primary structure to represent
Czech syntax, as well as in other, especially highly non-projective, languages.
In recent years, dependency trees have proven to be a valuable alternative to
phrase-structure trees even for relatively projective languages, and much effort
has been invested into creating various dependency parsers, such as the MST
Parser [1] or the MALT Parser [2].

As opposed to phrase-structure trees, assigning a correct label to each de-
pendency relation is often an important task as well. Some parsers perform joint
parsing and labelling, producing a labelled dependency tree as their output.
Others produce only an unlabelled tree, requiring a standalone labeller to assign
the labels in a second step. We present such a labeller in our paper.

In Section 2, we review two existing techniques which can be used to assign
labels to dependency relations and try to combine them together. Section 3
contains a description of our feature set. We evaluate our results in Section 4.

2 Labelling Methods

We make use of several algorithms that can be used and combined in various
ways in the task of dependency relations labelling, building upon [3] and [4].

A labelling L of a dependency tree is a mapping L : E → L, which assigns
a label l ∈ L to each edge e ∈ E of the dependency tree. The general approach



that we follow to find the best labelling is using edge-based factorization, i.e. to
assign a score to each possible pair [e, l], and to try to find a labelling with a
maximum overall score. Based on the scoring method used, the score can be a
probability or an additive score.

Following [3], we treat the dependency relations labelling as a sequence la-
belling problem. Starting at the root node of the tree, we label all edges going
from the current node to its children from left to right (these adjacent edges
form a sequence), and then continue in the same way on lower levels of the tree.
This implies that at each step we have already processed all ancestor edges and
left sibling edges. We utilize this fact in designing the feature set.

To label the sequence, we use the well-known Viterbi algorithm, as described
in [3].

Let e = (e1, e2, ..., en) be a sequence of edges and l = (l1, l2, ..., ln) one of its
possible labellings. The score Se,l of e being labelled by l, which Viterbi tries
to maximize, is defined differently for additive scores and for probabilities. For
additive scores, it is computed as a sum:

Se,l =

n∑
i=1

score(ei, li) (1)

whereas for probabilities, it is computed as a product:

Se,l =

n∏
i=1

p(ei, li) (2)

We use n-best Viterbi, which always keeps n best partial labellings at each
step, selecting the best scoring labelling at the end.

2.1 Maximum Likelihood Estimate

We use Maximum Likelihood Estimate (MLE) as a simple baseline method,
trying to estimate the probability distribution of labels that can be assigned to
an edge, based on its features and the previously assigned labels.

Suppose that we want to find the probability of an edge e with binary features
F to be labelled with the label l from the set of all labels L.

We use MLE to estimate the probability distribution of various labels that
can be assigned to an edge, based on its features.

We estimate the emission probability as an average probability of an edge
being labelled by label l given the set of the features F of the edge:

pem(l|F ) =
1

|F |
∑
f∈F

pem(l|f) where pem(l|f) =
count(f ∧ l)
count(f)

(3)

where count() refers to number of occurrences of the feature f or pair of the
feature f and the label l in the training data. The averaging can be regarded as
lambda smoothing with all lambdas equal to 1/|F |.



We estimate the transition probability as a conditional probability of a label
l given the previous label lprev, smoothed together with marginal probability of
the label l and a constant parameter:

ptr(l|lprev) = λ2 · pbi(l|lprev) + λ1 · puni(l) + λ0 (4)

where

pbi(l|lprev) =
count(l ∧ lprev)

count(lprev)
and puni(l) =

count(l)

|L|
(5)

The smoothing parameters λ2, λ1 and λ0 are estimated using the Expectation
Maximization (EM) algorithm on held-out data.

MLE is very fast and also very easy to implement. However, it did not perform
well enough.

2.2 Margin Infused Relaxed Algorithm

Following [4] and [3], we decided to use the Margin Infused Relaxed Algorithm
(MIRA), described in [5]. MIRA is an online learning algorithm for large-margin
multiclass classification, successfully used in [1] for dependency parsing and sug-
gested to be used for dependency relations labelling in a second stage labeller.

MIRA assigns a score for each label that can be assigned to a dependency
relation. Feature-based factorization is used, thus the score of a label l to be
assigned to an edge e which has the features F is computed as follows:

To find the probability of an edge e with features F to be labelled with the
label l from the set of all labels L, we compute a score:

score(l, e) =
∑
f∈F

score(l, f) (6)

where score(l, f), also called the weight of the feature (l, f), is computed by
MIRA, trying to minimize the classification error on the training data, iterating
over the whole dataset several times. The final scores are then averaged to avoid
overtraining.

We used the single-best MIRA variant in our experiments.

2.3 MLE & MIRA

Having already implemented both MLE and MIRA, we also tried to combine
them together. We have observed that the emission probabilities are crucial for
assigning the correct label, whereas the transition probabilities have a rather
small impact. We therefore decided to use MLE to estimate transition probabil-
ities the same way as in MLE approach, but to use MIRA to estimate emission
scores instead of MLE emission probabilities (this time not using features based
on left sibling’s label). However, a major issue with this approach is to combine
the transition probabilities and emission scores correctly.



Product. Our first attempt was to simply use

score(l, e) = ptr(l|lprev) · scoreMIRA(l, e) (7)

as in MLE approach, and to sum these together in Viterbi as in MIRA approach.
Although being severely mathematically incorrect (there are grave issues with
ordering of the scores and even greater issues with negative scores), this approach
did lead to competitive results.

Sigmoid. We then tried to use a mathematically sound way by recomputing
the emission score into a probability-like number using the sigmoid function:

score(l, e) = ptr(l|lprev) · 1

1 + e−scoreMIRA(l,e)
(8)

Interestingly, the results of this approach were significantly worse than these
of the Product approach. However, as the MIRA-only method proved to outper-
form both of these combination methods, we did not investigate this further.

3 Feature Set

We construct the feature set by combining features suggested in [1], [3], [6] and
[7] and tuning it to maximize performance on Czech data.

Our input for labelling is the parsed sentence, together with its morphological
analysis – i.e., for each word, we know its form, lemma and morphological tag.
We use coarse Czech tags as described in [8].

We join these fields (and feature functions defined in following sections) in
various ways to form feature templates for the labeller. For example, feature tem-
plate that consists of the parent and child word forms and coarse tag of the child
is defined as “FORM|form|coarse tag”. We denote a field of the parent node of
the edge by using uppercase; the child node is indicated by using lowercase.

Each of the feature values is then joined with its feature template and the
label of the edge.

For example, for an edge “Rudolf/N1 ← relaxuje/VB” (Rudolph ← relaxes)
with a label “Sb” (subject), the feature template “FORM|form|coarse tag”
would return the value “FORM|form|coarse tag:relaxuje |Rudolf |N1 :Sb”.

Most of the feature templates are created by joining one or more fields or
feature functions with the COARSE TAG and coarse tag fields, as this has been
observed to lead to the best results. For instance, feature templates incorporating
attachment direction feature function attrdir() have the following shapes:

– attdir()|coarse tag,

– attdir()|COARSE TAG,

– attdir()|coarse tag|COARSE TAG



Also the feature functions that can take a field as a parameter are usually de-
clared with coarse tag being the parameter. The complete feature set is avail-
able in the TectoMT Share repository.1

Thanks to the fact that we get the whole dependency tree on input, we do
not have to limit ourselves to local features computed over the edge; we can
easily include information about any nodes in the tree.

3.1 First-order Features

Our basic feature set is based on the first order features described in [1] (first-
order features are defined as features on single edges), which were designed
for unlabelled parsing but proved to be useful for labelling as well. However,
we do not conjoin our feature templates with distance of words or attachment
direction, as these are more relevant for parsing than for labelling. Also we use
morphological lemmas instead of 5-gram prefixes. The combinations of features
were modified a little to maximize performance on development data.

The first-order feature templates consist of the basic fields available on input,
and of several context features, providing information about nearby words.

– COARSE TAG / coarse tag

– FORM / form

– LEMMA / lemma

– PRECEDING(field ) / preceding(field ) – a field of the word immediately
preceding the parent/child node, e.g. PRECEDING(coarse tag) – the coarse
tag of the word which precedes the parent node of the edge

– FOLLOWING(field ) / following(field ) – a field of the word immediately
following the parent/child node

– between(field ) – a field of each of the words between the parent node
and the child node; this function can return multiple values, creating several
features from one feature template

– attdir() – the direction of attachment of the child to the parent

3.2 Non-local Features

Based on non-local features described in [3], we extend our feature set with
labelling-specific features, which make use of knowledge of potentially the whole
parse tree:

– CHILDNO() / childno() – number of child nodes of the parent/child node

– isfirstchild() / islastchild() – whether the child node is the first/last
child of the parent node

1 http://ufallab.ms.mff.cuni.cz/tectomt/share/data/models/labeller mira/cs/
pdt labeller best.config



3.3 Higher-order Features

Higher order features are based on multiple edges. These can be sibling features
as described in [6], parent-child-grandchild features as described in [7], or other
variations and conjunctions of these concepts.

The possibility to use some of the features depends on the order of assigning
labels to edges in the dependency tree. Following [3], we express the task as a
sequence labelling problem, with a sequence defined as a sequence of adjacent
edges, i.e. edges sharing the same parent node. This enables us to use the infor-
mation about the label assigned to sibling edges which are on the left from the
current edge.

Furthermore, we decided to go through the tree in a top-down direction, i.e.
first labelling the sequence of edges whose parent is the root node, continuing to
their children. Thus we can also make use of the knowledge of the label assigned
to the edge between the parent and the grandparent of the child node, and we
even make use of the label assigned to the edge between the grandparent and
the great-grandparent.

The grandparent features belong to features with the biggest influence on
accuracy. Their inclusion in the feature set immediately led to an improvement
of accuracy by 2%, whereas most of the other features contribute with less than
0.5%. They are especially useful for e.g. prepositional and coordination struc-
tures.

– LABEL() – label assigned to the edge between the parent and the grandparent
of the child node

– l.label() – label assigned to the left sibling edge, i.e. the edge between the
parent and the left sibling of the child node

– r.coarse tag – coarse tag of the right sibling of the child node
– G.coarse tag – coarse tag of the grandparent of the child node
– G.label() – label assigned to the edge between the grandparent and the

great-grandparent of the child node
– G.attdir() – whether the grandparent node precedes or follows the child

node in the sentence

4 Experiments and Results

We use the Prague Dependency Treebank 2.0 [9] for training and testing. We
use 68500 sentences as training data, 4500 sentences as development data and
4500 sentences as test data.

In Table 1, we present a comparison of the methods that we tried to use for
labelling. We measure labelling accuracy on golden trees. MIRA clearly outper-
forms all the other methods.

To reliably compare our results with results of other existing labelled parsers,
we used the datasets from the CoNLL 2009 Shared Task [10]. On the website2 of

2 http://ufal.mff.cuni.cz/conll2009-st/



Table 1. Comparison of several labelling methods. The results obtained on the test-
data golden trees using the feature set tuned on the developement data.

labelling method labelling accuracy [%]

MLE 65.7
MLE + MIRA (sigmoid) 89.0
MLE + MIRA (product) 91.9
MIRA 94.1

the task, the training and test data are available, together with outputs of the
participating systems.

We decided to compare our results with the four best-performing systems.
We trained our labeller on the official training data and then used it to relabel
the outputs of the four systems. Labelled Attachment Score (LAS) was then
measured by comparing the results with the golden test data.

The results in Table 2 show that, although we did not improve LAS of each
of the systems, we managed to improve LAS of the che system [11] by 1.2%,
leading to a LAS of 81.2%, which significantly outperforms all of the four original
systems, leading to a state-of-the-art labelling – that is, at least on this task.

Manual inspection of the original and the relabelled outputs of the che system
showed that most of the differences are in differentiating between the Attribute,
Adverbial and Object, and between the Object and Subject.

Table 2. Labelled Attachment Scores on CoNLL2009 shared task best systems outputs

system LAS original [%] LAS relabelled [%]

merlo 80.4 79.9
bohnet 80.1 81.0
che 80.0 81.2
chen 79.7 79.5

5 Conclusion

We created a labeller which provides to our knowledge state-of-the-art depen-
dency relations labelling for Czech language. It is a standalone labeller and
therefore can be used as a second-stage to any unlabelled dependency parser.
Moreover, it might even improve the accuracy of a labelled parser by relabelling
its output. It uses the Margin Infused Relaxed Algorithm, which makes it pos-
sible to use a large number of features, both first- and higher-order.

In future we are planning to experiment with using labels assigned by another
labelled parser as input features for the labeller, which might lead to even better
results.



It would be favourable to reduce the feature set and prune the model if
possible to achieve lower time and memory consumption with similar accuracy.
We leave this for our future work as well.

The labeller is published on CPAN3 as a part of the MSTperl package. Vari-
ous trained models for the labeller can be obtained in the TectoMT Share repos-
itory.4
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