
Representing Layered and Structured Data in the CoNLL-ST
Format

Pavel Straňák and Jan Štěpánek

Institute of Formal and Applied Linguistics, Charles University in Prague
Malostranské náměstí 25, 118 00 Praha, Czech Republic

E-mail: {stranak,stepanek}@ufal.mff.cuni.cz

Abstract

In this paper, we investigate the
CoNLL Shared Task format, its prop-
erties and possibility of its use for com-
plex annotations. We argue that, per-
haps despite the original intent, it is one
of the most important current formats
for syntactically annotated data. We
show the limits of the CoNLL-ST data
format in its current form and propose
several simple enhancements that push
those limits further and make the for-
mat more robust and future proof. We
analyse several different linguistic an-
notations as examples of varying com-
plexity and show how they can be effi-
ciently stored in the CoNLL-ST format.

1 Introduction

Despite the efforts to establish a standard for
representing linguistically annotated data (cf.
Linguistic Annotation Framework, (Ide and
Romary, 2004)), none has been adopted by
the community yet. Nevertheless, there are for-
mats that are used more often than others and
serve more than one purpose. One of them is so
called CoNLL Shared Task format (“CoNLL-
ST format” for short) designed to encode de-
pendency trees (Hajič et al., 2009). The idea
behind it is very simple (which is probably
why the format spread): every sentence cor-
responds to a table whose rows correspond to
words while the columns bear additional in-
formation about the words. The simplicity of
the format is its main drawback at the same
time: it limits, or almost disables, the extensi-
bility of the format. Some ways to extend the
format are investigated in this article.

We do not claim that the CoNLL-ST for-
mat is the universal and generic format to use

for all the NLP data. It is rather a good one-
purpose exchange format, but it has been used
quite a bit even as a substitute of the origi-
nal data. In fact it has become a sort of inter-
change standard for treebank data. There are
several reasons for this:

• The main users of the raw treebank data
are NLP researchers who want to process
the data. Typically with tools that accept
tables on input and produce tables on out-
put. This is not going to change in the
near future, and CoNLL-ST format is pre-
cisely such a table that can be easily pro-
cessed.

• The major treebanks in use today use
either their own XML formats, or even
other in-house solutions. Such formats are
not always easy to validate and parse and
tools to do this are not always readily
available.

• LAF or any other annotation standard
cannot supplant the CoNLL-ST format as
the de facto standard for the researchers
in parsing and other areas, who need to
work with many different treebanks, be-
cause it would still need to be processed
into a CoNLL-ST -like table in the end
and would only bring added complexity.

• Existing treebanks sometimes have addi-
tional annotations that are hard to put
together in the original formats. Let’s
take Penn Treebank (Marcus et al., 1993),
PropBank (Palmer et al., 2005) and Nom-
Bank (Meyers et al., 2004) as examples. In
the CoNLL-ST format there is the Pen-
nTreebank with NomBank tokenisation
and PropBank frames. It has been widely
distributed, so it is a de facto standard for

those who want to combine these pieces of
information.

Moreover, here are several examples of the us-
age of CoNLL-ST format outside CoNLL-ST
environment:

• The data for the ICON 2009 contest in
parsing of Indian languages have been re-
leased in the original, idiosyncratic for-
mat, as well as the CoNLL-ST format.

• A well known researcher asked for the
PDT data to test his parser. The answer
pointing to the original data was not met
with any enthusiasm. He opted for the
data from CoNLL-ST 2009 instead.

• CoNLL-ST format is used in the project
described in (Dickinson and Ragheb,
2009). The encoding used for lists is sur-
prisingly similar to that proposed in our
article.

For these reasons we do not believe CoNLL-ST
format can be replaced with any of the more
complex standards, at least in the near future.
Seeing that it gets even more use we decided
to examine its limits and propose a simple ex-
tension to make it more robust.

2 Lack of Meta-Information

In fact, there is nothing like a single CoNLL-
ST format, there are rather several similar for-
mats, each for one year of the shared task.
However, it is not easy (if even possible) to de-
tect the version of a data file: the files have no
headers nor meta-information. The number of
columns differs from version to version (more-
over, it is variable in both years 2008 and 2009)
and their meaning differs too.

The easiest way to rectify this is to intro-
duce a comment character, for example #. The
comment character would be allowed only at
the beginning of a line, thus making the com-
ment lines easily recognisable from data lines
that start with a number, and empty lines that
separate sentences. It also makes the conver-
sion to the “comment-less” form simple—just
by removing all the comment lines. The first
line of a data file might then look like this:

CoNLL-ST-2006

which is just a shorthand for this:

ID FORM LEMMA CPOSTAG POSTAG FEATS
HEAD DEPREL PHEAD PDEPREL

To define a set of columns (as ARG in 2008
and APRED in 2009 Shared Task), some meta-
character must be used, since the number of
columns is variable. For example, “+” could be
used:

ID FORM LEMMA PLEMMA POS PPOS FEAT
PFEAT HEAD PHEAD DEPREL PDEPREL
FILLPRED PRED APRED+

Note that “+” can be used just once on a line:
if there were two sets of columns of variable
length, there would be no way how to tell
which column belongs to a set and which does
not when parsing the data. The set, on the
other hand, does not have to be the last in the
list, but if it is not, the columns following it
must be parsed right-to-left. See Section 3 on
how to represent several lists in the CoNLL-ST
format.

The comment character can be used for a
wider range of purposes, though. Let us imag-
ine we need to refer to surrounding sentences to
annotate some context information (e.g. coref-
erence). We can either use integers (zero for
the current sentence, negative numbers for pre-
ceding sentences, and positive numbers for the
following ones) or sentence identifiers. The lat-
ter approach is more robust—if the sentences
are to be shuffled or some of them removed,
the identifier reference would still point to the
same target (or none if it was removed) while in
case of integers the references would get mud-
dled. Each sentence can be assigned an iden-
tifier just by prepending this line to its repre-
sentation:

ID S134

If the comment character is followed by un-
recognised text, it is considered a proper com-
ment.

3 Lists

There already are two ways how to represent a
list in the CoNLL-ST format. The first one was
introduced in CoNLL-ST 2006 for the FEATS
column (morphological features), it uses verti-
cal bar “|” to separate members of the list. The
format of a member was not specified, but we
can find two possibilities in the data: either

the members are just values (“sg”), or pairs of
a name and value (“num=sg”).1

The second way of representing a list was
introduced in CoNLL-ST 2008: each member
corresponds to a column (the “+” notation in
Section 2). Note that such a list of columns can
be used just once on a line (cf. ibid.) But the
impossibility to have more than one list is not
the only disadvantage of this approach.

In CoNLL-ST 2008, the first column in the
list corresponds to the first predicate, the sec-
ond column to the second predicate, and so
on. The number of columns of a sentence thus
corresponds to the number of predicates in
the sentence. Thanks to this semantics of the
columns, the number of columns in the data
is the same for all the lines of a sentence.
Different sentences, though, can have a differ-
ent number of columns. As a consequence, the
columns are rather “sparse”, but their number
is high. In CoNLL-ST 2009 data, the “widest”
sentence in the English data has 36 columns
(25 of them making the list) and the widest
Czech sentence has 138 columns (127 in the
list). However, 99.3% of the Czech predicates
and 93.7% of the English predicates have none
or one argument. To make the data denser and
to lower the number of columns, a different ap-
proach has to be chosen: for every predicate, its
arguments would form a list on the argument’s
line. The maximal number of arguments is 10
in the English data and just 6 in the Czech
data. Moreover, the list of arguments can be
represented in one column with vertical bar as
a separator, making the table even thinner. See
the difference between Tables 1 and 2.

When using columns to represent list mem-
bers, one can even arrive to a situation where
the number of columns will be different for
each line. This is not possible with lists sep-
arated by vertical bar, which in our opinion
makes them the option to choose.

Lists of n-tuples can be represented by n
columns, the first column containing the (“|”-
separated) list of first members of the tuples,
the second column containing the list of sen-
cond members of the tuples and so on. The
n has to be fixed and known beforehand. For
n = 2, just one column can be used if the

1The pairs can still be treated as single values if
there is no need to parse them, or even the whole list
can be treated as a single value.

FEATS syntax is adopted (see also Quotes in
Section 4.1.2).

In order to represent nested lists (i.e. lists
of lists), we can add grouping characters. For
example, this is a list of three lists, of which the
first has one member, the second one is empty
and the third one has two members:

<sem1=ACT>|<>|<sem1=PAT|sem2=EFF>

Any other pair of characters can be picked
up to group lists, there should also be a “quot-
ing” character to allow including of the group-
ing character into lists in their literal mean-
ing. Quoting character would be also useful
for including the underscore (“_”) as a lit-
eral, i.e. not denoting the empty string. All
the special characters can be also (re-)defined
in the header of the file on the second com-
ment line. . . Let us stop here. This way we are
going to change CoNLL-ST format into some-
thing like reinvented SGML. It would be so
complex, unreadable, and would need so much
documentation, that it is arguably better to
use the original format that was designed to
represent this information in the first place.
Such format is usually well documented, can
be validated, has a handful of existing tools,
etc.

The CoNLL-ST format is popular mainly for
its simplicity. If we do not keep that we get just
another arbitrary format with no benefit over
the others.

4 A Problem of Units

Most treebanks have one “basic” layer that de-
fines the basic units, their attributes and re-
lations between them. Other annotations are
then “additional”, meaning they are defined in
terms of these “basic” units and usually do not
cover the whole sentence. There may however
be treebanks with several distinct layers of an-
notation that each cover the whole sentence
but their units differ. In the most interesting
(i.e. worst) case the mapping of units of differ-
ent layers is M to N.

CoNLL-ST format has only one “layer”,
which requires us to choose one layer of anno-
tation as “basic”, setting the units of CoNLL-
ST representation. Then the problem of map-
ping the units, attributes and relations of other
layers to these CoNLL-ST units needs to be
solved.

ID FORM PRED APRED1 APRED2 APRED3 APRED4 APRED5 APRED6
1 A _ _ _ _ _ _ _
2 widening widening.01 _ _ A0 _ _ _
3 of _ A1 _ _ _ _ _
4 the _ _ _ _ _ _ _
5 deficit _ _ _ _ _ _ _
6 , _ _ _ _ _ _ _
7 if _ _ _ AM-ADV _ _ _
8 it _ _ A1 _ _ _ _
9 were _ _ _ _ _ _ _
10 combined combine.01 _ _ _ _ _ _
11 with _ _ A2 _ _ _ _
12 a _ _ _ _ _ _ _
13 stubbornly _ _ _ _ _ _ _
14 strong _ _ _ _ _ _ _
15 dollar _ _ _ _ _ _ _
16 , _ _ _ _ _ _ _
17 would _ _ _ AM-MOD _ _ _
18 exacerbate exacerbate.01 _ _ _ _ _ _
19 trade _ _ _ _ A2 _ _
20 problems problem.01 _ _ A1 _ _ _
21 – _ _ _ _ _ _ _
22 but _ _ _ _ _ _ _
23 the _ _ _ _ _ _ _
24 dollar _ _ _ _ _ A1 _
25 weakened weaken.01 _ _ _ _ _ _
26 Friday _ _ _ _ _ AM-TMP _
27 as _ _ _ _ _ AM-ADV _
28 stocks _ _ _ _ _ _ A1
29 plummeted plummet.01 _ _ _ _ _ _
30 . _ _ _ _ _ _ _

Table 1: Predicates and arguments in CoNLL-ST 2008 format.

4.1 Representing PDT 2.0 in
CoNLL-ST Format

We decided to illustrate the problem of basic
units on an example of Prague Dependency
Treebank 2.0 (PDT, (Hajič et al., 2006)), be-
cause it contains two layers that each contains
a different tree for each sentence and the units
on each of these layers differ. A-layer (analyt-
ical, “shallow syntax”) trees are relatively sim-
ple: each node in a tree corresponds to one to-
ken in the (tokenised) sentence. T-layer (tec-
togrammatical, “deep syntax”, (Mikulová et al.,
2006)) contains trees in which nodes might rep-
resent several tokens of a sentence (and a-layer,
e.g. compound verbs, preposition + nount etc.)
as well as nodes that do not have any corre-
sponding token in the sentence (and a-layer,
e.g. dropped subjects, elided words). Thus the
mapping of a-nodes to t-nodes is M to N.

4.1.1 A-layer as the Starting Point

The choice of a-layer as the starting point gives
a familiar CoNLL-ST table in which we can
read the sentence in the second column (see
Table 3). It is a good solution in many aspects:
For one it is easily readable, because the lines
correspond to tokens and they keep the surface
word order, so the sentence can be easily read.
This representation is a matter of course for
the treebanks that only contain one syntactic

layer. For PDT, though, it is not so simple.
Representing the information from t-layer

however poses a serious problem: where should
be put the information related to t-nodes that
do not have any equivalent on the surface of a
sentence, i.e. they have no lines in the CoNLL-
ST table. Common examples of this type of
nodes are dropped subjects of many Chinese,
Czech, or Japanese sentences, and other zero
anaphoras.2

We can solve this problem by resolving the
coreference and using the “original” node. That
poses problems of its own though: there is often
a coreference chain, so we must decide whether
to use the closed antecedent, or the first. Then
we must refer to it (e.g. as a subject of a pred-
icate, as mentioned above). How to refer to a
node that is not in the same sentence is dis-
cussed in Section 2. In the current CoNLL-ST
format it would mean that sentences can not
be shuffled or simply cut from files without los-
ing information.

Also this solution would result in overload-
ing a “resolved” node with information: it could
be a member of quite a few valency frames in
several roles.

We could talk about other deficiencies of this
solution, for instance loosing a distinction be-

2An English example of zero anaphora: “There are
two ways: the short [] and the long [].”

ID FORM PRED ARGS
1 A _ _
2 widening widening.01 A1=3
3 of _ _
4 the _ _
5 deficit _ _
6 , _ _
7 if _ _
8 it _ _
9 were _ _
10 combined combine.01 A1=8 |A2=11
11 with _ _
12 a _ _
13 stubbornly _ _
14 strong _ _
15 dollar _ _
16 , _ _
17 would _ _
18 exacerbate exacerbate.01 A0=2|AM-ADV=7|AM-MOD=17|A1=20
19 trade _ _
20 problems problem.01 A2=19
21 – _ _
22 but _ _
23 the _ _
24 dollar _ _
25 weakened weaken.01 A1=24|AM-TMP=26|AM-ADV=27
26 Friday _ _
27 as _ _
28 stocks _ _
29 plummeted plummet.01 A1=28
30 . _ _

Table 2: Predicates and arguments in the modified denser CoNLL-ST format.

ID FORM LEMMA POS HEAD DEPREL PRED APRED1 APRED2 APRED3
1 Neither neither DT 3 AuxY _ _ _ _
2 they they PRP 3 Sb.member _ _ PAT _
3 nor nor CC 6 Coord _ _ _ _
4 Mr. Mr. NNP 5 Atr _ RSTR _ _
5 McAlpine McAlpine NNP 3 Sb.member McAlpine _ PAT _
6 could can MD 0 Pred _ _ _ _
7 be be VB 8 AuxV _ _ _ _
8 reached reach VBN 6 Obj reach _ _ _
9 for for IN 8 AuxP _ _ _ _
10 comment comment NN 9 Adv comment _ AIM _
11 . . PUNC 0 AuxK _ _ _ _

Table 3: Neither they nor Mr. McAlpine could be reached for comment. Sentence represented in
a format similar to Czech CoNLL-ST 2009 (some columns removed to save space).

tween t-nodes that can be somehow resolved
via coreference and duplicated nodes, that can-
not (in the English zero-anaphora example).
We believe that it is quite clear that CoNLL-
ST format based on the surface layer units is
suitable for relatively simple data that above
else do not use additional (“newly established”)
nodes in trees. Once these are used, the repre-
sentation should be different.

4.1.2 T-layer as the Starting Point

Starting the CoNLL-ST representation with t-
layer does not provide us with such a straight-
forward representation of the original sentence.
On the other hand it provides means to ac-

curately represent significantly more informa-
tion from t-layer while still keeping everything
from a-layer, even though in somewhat modi-
fied representation.3

If we base the format on t-layer, we take
its units and represent them and their as-
sociated information just like we do it with
token-based CoNLL-ST format currently. The
result is illustrated by Table 4. Compare it
with Table 3. The example sentence was ex-
tracted from PDT-like Prague Czech-English
Dependency Treebank (still in development)

3Keeping everything from both (or generally all)
layers is of course possible, but the result would be-
come too complex, as illustrated in Section 4.2.

ID T-LEMMA HEAD SEMREL A-LEMMA A-AUX A-FORM COREF-TEXT
1 #PersPron 3 PAT.member they _ they -1=4
2 neither_nor 2 CONJ nor neither neither_nor _
3 mr. 4 RSTR Mr. _ Mr. _
4 mcalpine 2 PAT.member McAlpine _ McAlpine _
5 reach 0 PRED reach can_be could_be_reached _
6 #Gen 5 ACT _ _ _ _
7 comment 5 AIM comment for for_comment _

Table 4: Neither they nor Mr. McAlpine could be reached for comment. Sentence represented in
a format based on tectogrammatical layer (many columns removed to save space).

by PML-TQ, the query engine for treebanks in
PML format. The query is shown in Figure 1.

t-node $n4 :=
[ancestor t-root []];

t-root
[descendants() < 10,

t-node [coref_text.rf $n4],
t-node [bbn_tag ~ ’.’],
t-node [is_generated = 1],
t-node [a/aux.rf a-node [],

a/aux.rf a-node []]];

q-09-09-04_155723

t-root

t-node $n4

Tree Query

t-node t-node
bbn_tag ~ '.'

t-root
descendants() < 10

t-node
is_generated = 1

a-node

t-node

a-node

a/aux.rf
ancestor
coref_text.rf
descendant

Figure 1: Query in PML-TQ used to find the
sentence from Table 3.

It is basically just like the format of CoNLL-
ST 2009, except now we do not need the
APRED columns. Semantic role labels are in
the column SEMREL and their dependency
structure is defined by the HEAD column.
Most attributes and relations of t-layer can
be represented in equally straightforward way,
with a few notable exceptions:

Coreference can lead to another sentence.
Either relative indices, or sentence IDs are
required, as explained in Section 2.

Quotes form subtrees and can be embedded
in other quotes. The quotes (sets of nodes)
are also typed. The easiest way to repre-
sent a set of typed sets is a column con-
taining a list of pairs:

1 = typeA | 2 = typeD | .. | N = typeM

Bridging Anaphora4 is a relation between
subtrees, possibly in different sentences.
It is thus similar to quotes, with two dif-
ferences: a) the set is identified by its first
node (no node is a part of two or more
sets). b) There are relations between the
sets. So one more column is needed, that
contains for each node that represents a
set an ID of a node that represents its an-
tecedent. Again, if the antecedent is in a
different sentence, it must be marked ei-
ther with a relative index, or with a sen-
tence ID.

Named Entities5 are contiguous subtrees
just like multiword lexemes (only in de-
pendency trees, of course). They can in
fact be considered a special type of mul-
tiword expressions. They have the same
properties, so they are also best identified
on t-layer. What makes them more inter-
esting from the point of annotation is their
hierarchical structure, for instance a per-
sonal name can be composed like this:

(title ((first name + middle name) +
(last name + maiden name)))

This hierarchy needs to be represented ei-
ther by lists of list as defined in Section 3,
or in the manner used in CoNLL-ST un-
til 2005 (Carreras and Màrquez, 2005) for
representation of non-terminals of phrase
trees. Neither is very elegant and easily
readable.

The most obvious drawback of this represen-
tation is that we can not simply represent the
surface syntactic structure, since some units,
like prepositions or auxiliaries, are not repre-
sented by a node.

4Not present in published PDT 2.0. Currently being
annotated.

5Not present in published PDT 2.0, either.

The other drawback is also apparent: even
the t-layer itself, with its typed sets of nodes
and relations above these sets, requires com-
plex representation. That means also complex
documentation, validators, parsers, etc.

4.2 Two or More Layers of Annotation
in CoNLL-ST

We have shown that representing several lay-
ers of annotation based on different units is
not straightforward in the CoNLL-ST format.
Either we have to drop some information, or
it must be represented in a complex way that
is not easy to understand and even harder to
validate, parse and use.

For instance, using the examples from Sec-
tion 4.1.1 and Section 4.1.2 above, let us see
both approaches:

• The lossy approach has been used in
CoNLL-ST 2009. There were only two
things from t-layer used: semantic role la-
bels and their dependency structures (ar-
gument structures). Even so, the “newly
established” nodes were simply dropped
and all information on them was lost. See
for example the node with ID = 6 and
lemma #Gen, stating it is a generic actor,
from Table 4 and Figure 2.6

Coreferences have also been considered for
CoNLL-ST 2009 (although they have been
dropped in the end). Their representation
would be again lossy, as described in Sec-
tion 4.1.1.

Although lossy, the approach of CoNLL-
ST 2009 is also a bit complex and hard
to read because of the use of APRED
columns but that can be improved by us-
ing lists, as we have shown in Section 3.

• The lossless but complex approach
can be executed in several ways. The eas-
iest would be to use t-layer as the starting
point but using lists for A-LEMMA and
A-AUX (see Table 4), that would contain
DEPREL as values, and then referring to
the list members in a SYNHEAD column.

6This is true also for Penn Treebank (Marcus et al.,
1993) and possibly other treebanks: see the trace *-38
in Figure 2 corresponding to the newly established t-
node #Gen.

5 Discussion

We can see that it is possible to represent all
information from a complex treebank with sev-
eral layers of annotation in the CoNLL-ST for-
mat. But the way to do it is arguably neither
simpler, nor very easy to read, and it certainly
is not easier to parse or validate, than using
XML. So it seems to deny the reason, why the
CoNLL-ST format was invented and became
popular in the first place.

Yet at the same time after many years of
having the PDT 2.0 in a well documented XML
format we can say that to our knowledge no-
body has ever used the data format in all its
complexity. Nobody wants to spend time learn-
ing complex data formats and adapting their
tools to work with them. If someone really
has to use the original XML format, they only
parse as little as possible, effectively ignoring
much information. Possibly much more than is
present in the current, by no means perfect,
CoNLL-ST format.

Using a new generic XML annotation stan-
dard may be a good solution for some appli-
cations but not for others. In the long run, it
should be beneficial for annotation tools, query
engines, and other “user” applications. When a
standardised format is able to represent all the
treebanks in the complexity of theories they
follow and when there is support of the stan-
dard in the annotation tools, there will be tree-
banks converted into such a standard or pro-
duced in it.

On the other hand for the machine learning
toolkits and many other “programming” uses
of data by researchers, the “table” is the way
to go and anything else ends up converted into
a table in the end. Thus it is in the interest
of data providers to provide a good, standard-
ised “table format”, so that their data are used
in the research as much as possible and the
research is comparable. It is perhaps not cru-
cial to export each and every attribute of the
original data into this format, but it is possi-
ble to represent quite a bit in a surprisingly
simple table. In many respects simpler than in
CoNLL-ST 2009.

6 Conclusion

We argue that while the linguistic annotation
standards like LAF might be useful, they have

DT
Neither

PRP
they

NP

NP SBJ

CC
nor

NNP
Mr.

NP

NNP
McAlpine
PERSON

S

MD
could

VP

VB
be

VP

VBN
reached

VP

-NONE-
*-38

NP

IN
for

PP PRP

NN
comment

NP

.

.

EnglishT-wsj_0027-s12
root

#PersPron
PAT member
complex

neither_nor
CONJ
coap

mr.
RSTR
complex

mcalpine
PAT member
complex

reach
PRED
complex

#Gen
ACT
qcomplex

comment
AIM
complex

 stronach
. .

Figure 2: Phrasal and tectogrammatical tree of the English sentence from Tables 3 and 4.

a different use than CoNLL-ST format. We
show why CoNLL-ST is the format of choice
of the research community.

We point to its weakest points and propose
simple enhancements that make it more read-
able, easier to parse and allow to represent
more complex annotations. We demonstrate
representation of these complex annotations on
several examples.

The idea that complex linguistic annotation
can be fully represented in a generic simple
data format is naïve. To make the data sim-
ple, one must sacrifice complexity, losing some
details or pieces of information (e.g. the case
of PDT data at CoNLL-ST 2009). But this
is not necessarily a bad thing, as long as the
data format evolves in details to suite the needs
of target applications as has been the case of
CoNLL-ST format.

We have hopefully shown that the CoNLL-
ST format is highly suited for its original pur-
pose: simplified representation of tree struc-
tures with flat attributes for machine-learning
toolkits. And with small additions that do not
compromise its simplicity (notably the com-
ment character, header line, and sentence iden-
tifiers) it can well incorporate additional re-
lations, even between sentences, and be also

more readable and flexible. May it serve many
future tasks.

Acknowledgement

This paper was written with the support of
post-doc grant 406/10/P193 of Grant Agency
of the Academy of Science of the Czech
Republic, grant FP7-ICT-2007-3-231720 (Eu-
roMatrix Plus) of the Seventh Framework
Programme of the European Union, grant
1ET201120505 of Grant Agency of the
Academy of Science of the Czech Republic, and
grant GAUK 4307/2009 of the Grant Agency
of Charles University in Prague.

References

[Carreras and Màrquez2005] Xavier Carreras and
Lluís Màrquez. 2005. Introduction to the
CoNLL-2005 shared task: Semantic role label-
ing. In Proceedings of the Ninth Conference
on Computational Natural Language Learning
(CoNLL-2005), pages 152–164, Ann Arbor,
Michigan, June. Association for Computational
Linguistics. 4.1.2

[Dickinson and Ragheb2009] Markus Dickinson
and Marwa Ragheb. 2009. Dependency anno-
tation for learner corpora. In Proceedings of the
Eighth International Workshop on Treebanks

and Linguistic Theories (TLT8), pages 59–70,
Milan, December. EDUCatt. 1

[Hajič et al.2009] Jan Hajič, Massimiliano Cia-
ramita, Richard Johansson, Daisuke Kawahara,
Maria Antònia Martí, Lluís Màrquez, Adam
Meyers, Joakim Nivre, Sebastian Padó, Jan
Štěpánek, Pavel Straňák, Mihai Surdeanu, Ni-
anwen Xue, and Yi Zhang. 2009. The CoNLL-
2009 shared task: Syntactic and semantic depen-
dencies in multiple languages. In Proceedings
of the 13th Conference on Computational Natu-
ral Language Learning (CoNLL-2009), June 4-5,
Boulder, Colorado, USA. 1

[Hajič et al.2006] Jan Hajič, Jarmila Panevová, Eva
Hajičová, Petr Sgall, Petr Pajas, Jan Štěpánek,
Jiří Havelka, Marie Mikulová, Zdeněk Žabokrt-
ský, and Magda Ševčíková Razímová. 2006.
Prague Dependency Treebank 2.0. CD-ROM.
Linguistic Data Consortium. 4.1

[Ide and Romary2004] Nancy Ide and Laurent Ro-
mary. 2004. International standard for a linguis-
tic annotation framework. Natural Language
Engineering, 10(3-4):211–225. 1

[Marcus et al.1993] Mitchell P. Marcus, Beatrice
Santorini, and Mary Ann Marcinkiewicz. 1993.
Building a large annotated corpus of English:
The Penn Treebank. Computational Linguistics,
19(2):313–330. 1, 6

[Meyers et al.2004] A. Meyers, R. Reeves,
C. Macleod, R. Szekely, V. Zielinska, B. Young,
and R. Grishman. 2004. The Nombank project:
An interim report. In A. Meyers, editor,
HLT-NAACL 2004 Workshop: Frontiers in
Corpus Annotation, pages 24–31, Boston, Mas-
sachusetts, USA, May 2 - May 7. Association
for Computational Linguistics. 1

[Mikulová et al.2006] Marie Mikulová, Alevtina Bé-
mová, Jan Hajič, Eva Hajičová, Jiří Havelka,
Veronika Kolářová, Lucie Kučová, Markéta
Lopatková, Petr Pajas, Jarmila Panevová,
Magda Razímová, Petr Sgall, Jan Štěpánek,
Zdeňka Urešová, Kateřina Veselá, and Zdeněk
Žabokrtský. 2006. Annotation on the tec-
togrammatical level in the Prague Dependency
Treebank. Annotation manual. Technical Re-
port 30, ÚFAL MFF UK, Prague, Czech Rep.
4.1

[Palmer et al.2005] Martha Palmer, Daniel Gildea,
and Paul Kingsbury. 2005. The Proposi-
tion Bank: An annotated corpus of semantic
roles. Computational Linguistics, 31(1):71–105,
March. 1

	Introduction
	Lack of Meta-Information
	Lists
	A Problem of Units
	Representing PDT 2.0 in CoNLL-ST Format
	A-layer as the Starting Point
	T-layer as the Starting Point

	Two or More Layers of Annotation in CoNLL-ST

	Discussion
	Conclusion

