Querying Diverse Treebanks in a Uniform Way

Jan Štěpánek, Petr Pajas

Charles University in Prague, MFF ÚFAL

What is "syntax"?

- Different names of categories and their values
- Various data formats
- Different tree encoding (by structure \times by reference)

Word-order typology (German CoNLL)

node $\$ \mathrm{p}:=\left[\right.$ substr $($ pos, 0,1$)={ }^{\prime} V^{\prime}$,

>> give \$p.xml:id,
if (\$p=\$ch,
if(\$p.deprel = 'R00T', $\left.\mathrm{V}^{\prime},{ }^{\prime} \mathrm{V}^{\prime}\right)$, substr(\$ch.deprel,0,1)),
\$ch.order
>> give distinct \$1,
>> give
 \gg filter ($\$ 1$ ~ '0' and $\$ 1$ ~ 'S')
\gg for $\$ 1$ give $\$ 1$, count () sort by $\$ 2$ desc

| Main Num. of Dependent Num. of |
:---	:---	:---	clause occurences clause occurences	SVO	11267	SOv	7556	
VSO	7111	SvO	2273		VSO	7111	SvO	2273
:---	:---	:---	:---					
OVS	2209	vSO	1113		OVS	2209	vSO	1113
:---	---:	:---	---:					
VOS	625	OSv	606	VOS				

SOV OVSO VOSO OVOS \qquad 110
91
64

31	VOS
SOvO	

Grammar extraction (constituent trees)
nonterminal $\$ p:=[$ * \$ch := []]
\gg give $\$ p, \$ p . c a t$,
first_defined(\$ch.cat, \$ch.pos),
lbrothers(\$ch)
\gg give $\$ 2$ \& \gg "
$\&$ concat($\$ 3, "$ over $\$ 1$ sort by $\$ 4)$
\gg for $\$ 1$ give $\operatorname{count()~\$ 1~}$

Grammar extraction (constituent trees)
nonterminal \$p := [* \$ch := []]
\gg give \$p, \$p.cat,
first_defined(\$ch.cat, \$ch.pos),
lbrothers(\$ch)
\gg give $\$ 2$ \& $->"$
\& concat($\$ 3, "$ " over $\$ 1$ sort by $\$ 4$)
for $\$ 1$ give count(),\$1 sort by $\$ 1$ desc

- PostgreSQL 8.4
- Oracle 10 g XE
- Perl

Non-projective edges

Treebank	Total num. of nodes	$\begin{aligned} & \max \\ & \operatorname{rank} \end{aligned}$	median rank	$\max _{\text {tree }}$	median tree	max depth b	max eadth	$\begin{aligned} & \text { des / } \\ & \text { ninals } \end{aligned}$
PDT	1.59 M	85	3	3195	12	24	85	--
Tiger	0.95M	17		237	7	23	53	1.55
WSJ	2.28M	51		3441	10	37	159	1.82
Atis	0.01M	8	2	81	10	16	17	2.13
Brown	0.92M	24		247	14	36	53	1.89
SWBD	2.73 M	26		6272	63	37	54	1.91
Chinese (Penn)	1.86 M	64		558	4	30	169	2.18
Arabic	0.36M	25		262	173	52	73	2.16
Catalan	0.4M	37		9215	23	24	56	--
Chinese (CoNLL)	0.63M	35		343	30	20	114	--
Spanish	0.44 M	62	2	2150	17	28	64	--

Prague Markup Language

PML Schema can define the following types:

- Atomic: a string, its value can further be restricted to a specific format (e.g. any, integer, date...)
- Enumerated: atomic type with a given set of possible values.
- Structure: set of attribute-value pairs.
- List: ordered or unordered list of constructs of one type.
- Alternative: similar to unordered list, but with different semantics.
- Sequence: similar to ordered list, but allowing members with diverse types and supporting mixed content.

PML-TQ
- selecting all occurrences of nodes from the
treebanks with given properties and in given
relations w.r.t. the tree topology, cross-
referencing, surface ordering, etc.
- bounded or unbounded iteration (i.e. transitive
closure) of relations
- multi-layered or aligned treebanks with
structured attribute values
- quantified or negated subqueries
- referencing among nodes
- natural textual and graphical representation of
the query (the structure of the query corresponds
to the structure of the matched subtree)
- sublanguage for postprocessing and generating
reports (filtering, grouping, aggregating, and
sorting)
- support for regular expressions, basic arithmetic
and string operations

