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Abstract
This paper presents a system for querying treebanks in a uniform way. The system is able to work with both dependency and constituency
based treebanks in any language. We demonstrate its abilities on 11 different treebanks. The query language used by the system
provides many features not available in other existing systems while still keeping the performance efficient. The paper also describes
the conversion of ten treebanks into a common XML-based format used by the system, touching the question of standards and formats.
The paper then shows several examples of linguistically interesting questions that the system is able to answer, for example browsing
verbal clauses without subjects or extraposed relative clauses, generating the underlying grammar in a constituency treebank, searching
for non-projective edges in a dependency treebank, or word-order typology of a language based on the treebank. The performance of
several implementations of the system is also discussed by measuring the time requirements of some of the queries.

1. Introduction
A treebank is a collection of texts annotated with syntactic
structures. Usually, more information than just pure struc-
ture is involved, for example POS tags and values of mor-
phological categories or lemmatization are often included;
some treebanks include further annotations (coreference,
predicate-argument annotation, named entities, etc.). Lin-
guists, who need to work with different treebanks, typi-
cally face various obstacles resulting from the differences
between the treebanks; for example:

a) Each treebank can have a different view on what “syn-
tax” is. In the first place, we can classify treebanks as
dependency or phrase structure based.

b) Values and names of the same categories are different.

c) Treebanks use various data formats, some of them based
on XML, others just single-purpose ad-hoc formats.

d) Each format can encode a tree differently (structure may
be represented by nesting or by reference and there is
also more than one way to indicate the surface word or-
der).

In this paper, we describe our experience with using a set
of diverse treebanks for evaluation of a generic annotation
format and a system for treebank querying.
Our initial setup consisted of 11 different treebanks using 5
different data formats plus some variants (see Section 3.).
We have converted all of them into a generic pivot for-
mat called PML (Section 3.2.) in such a way, that all in-
formation is preserved and unified names are used for fea-
tures that had no name in the particular source format (Sec-
tion 4.). Then, we loaded the converted treebanks into a
query system called PML Tree Query (Section 2.). In this
setup we can effectively query, visualize, and explore all of
the treebanks in a uniform way which eliminates at least the
differences of types c, d, and partially b.
A given query may still vary across the treebanks, due to the
differences of the types a and b: the same phenomenon can

be annotated in different ways in the treebanks (e.g. coordi-
nation), lexical values depend on the language, some kinds
of information might be missing in some of the treebanks
(e.g. no lemmatization in Penn Treebank), etc. We demon-
strate this on several examples of linguistically interesting
queries (Section 5.).
Finally we present some results of performance comparison
of the query system for portions of the Prague Dependency
Treebank of increasing sizes.
The treebanks used in our setup were the following: the
Prague Dependency Treebank 2.0 (Hajič et al., 2006) (train-
ing data set), Penn Treebank 3 (Marcus et al., 1993) (all
four parts, i.e. Air Traffic Information System, Brown
Corpus, Switchboard Corpus, and Wall Street Journal),
Tiger Treebank 1.0 (Brants et al., 2002), Penn CU Chi-
nese Treebank 6.0 (Xue et al., 2005), Penn Arabic Tree-
bank 2 (Maamouri et al., 2004) and several treebanks from
the CoNLL-2009 Shared Task (Hajič et al., 2009).

2. PML Tree Query
Our setup consisted of evaluation of a complex framework
for treebank(-based) development, which gradually evolved
from the tree editor TrEd (Pajas and Štěpánek, 2008). The
native data format of the framework is the Prague Markup
Language format (PML), described in Section 3.2. Our par-
ticular interest was the evaluation of a new subsystem of our
framework, called PML Tree Query (PML-TQ).
PML-TQ is a system for searching and exploring treebanks
(Pajas and Štěpánek, 2009). It offers a powerful query and
report language for the generic PML data model. The sys-
tem is driven by a modern SQL database engine or alter-
natively by an iterator-based search engine implemented in
Perl. The SQL-based implementation is very efficient but
requires the data to be first loaded into a database, which
makes it best suited for large, stable datasets, such as re-
leased treebanks. The other implementation operates di-
rectly on PML files and is therefore targeted for querying
local or work-in-progress data. PML-TQ uses the TrEd
toolkit for treebank visualization and can run from the GUI



interface of the tree editor TrEd or as a web application with
SVG-rendered trees.

2.1. Query Language
The PML-TQ language offers the following distinctive fea-
tures:

• selecting all occurrences of one or more nodes from
the treebanks with given properties and in given re-
lations w.r.t. the tree topology, cross-referencing, sur-
face ordering, etc.

• support for bounded or unbounded iteration (i.e. tran-
sitive closure) of relations1

• support for multi-layered or aligned treebanks with
structured attribute values

• quantified or negated subqueries (as in “find all clauses
with exactly three objects but no subject”)

• referencing among nodes (find parent and child that
have the same case and gender but different number)

• natural textual and graphical representation of the
query (the structure of the query usually corresponds
to the structure of the matched subtree)

• sublanguage for postprocessing and generating reports
(extracting values from the matched nodes and apply-
ing one or more layers of filtering, grouping, aggregat-
ing, and sorting)

• support for regular expressions, basic arithmetic and
string operations in the query and postprocessing

2.2. Other Approaches to Treebank Querying
The PML-TQ has already been compared to some other
tree-searching approaches in an earlier paper (Pajas and
Štěpánek, 2009). One of its main advantages is its uni-
versality, demonstrated in this paper: most of the existing
projects can handle exclusively phrase structure trees, but
not dependency trees (e.g. TGrep2 (Rohde, 2001), LPath+
(Lai and Bird, 2010), TigerSEARCH (König and Lezius,
2001)). Most of the features listed in section 2.1. are not
common for other projects (especially support for multi-
layered treebanks, postprocessing sublanguage and support
for regular expressions and basic arithmetic and string oper-
ations). No system has ever been tested on so many diverse
treebanks.

3. Treebank Formats
3.1. Standards
We do not use the term “standard” for any of the formats,
not even for PML to which all the treebanks were con-
verted. Merriam-Webster Online defines standard as

1For example, descendant{1,3} (iterating parent rela-
tion) or coref_gram.rf{1,} (iterating coreference pointer in
PDT), sibling{-1,1} (immediately preceding or following
sibling), order-precedes{-1,1} (immediately preceding or
following node in the ordering of the sentence)

• something established by authority, custom, or general
consent as a model or example

• something set up and established by authority as a rule
for the measure of quantity, weight, extent, value, or
quality

No authority has established PML as an model or exam-
ple of a treebank format. There is only a small number of
projects outside our institute that use the format natively,
so we cannot say it has been established as such by custom
or general consent either. We would be pleased if someone
used our format and it helped them, because that is why we
devised it. We hope that the rich framework that we have
developed for it, including tools for annotation, validation,
querying, might be attractive.
There are on-going efforts for establishing standards for lin-
guistic annotations (such as ISO/TC 37/SC4), but we fear
that authoritative declaration of a standard in still such an
evolving field might rather constitute an obstacle of the
progress and innovation. Also, there is no use for a standard
unless a variety of suitable tools implementing the standard
is available.
More practically, interoperability can be achieved by fol-
lowing good practices and sticking to fundamental stan-
dards such as XML (wherever it is possible and makes
sense). Then standard technologies, such as XSLT, can be
used to import and export data.

3.2. Prague Markup Language
The Prague Markup Language (PML) is a meta-format
based on XML, upon which the native formats of the
Prague Dependency Treebank 2.0 (PDT) are built (Pajas
and Štěpánek, 2006).
Specific PML data formats, such as those used in PDT, are
defined using so called PML Schemas and can be formed
of the following abstract data types:

Atomic: a string whose value can further be restricted to a
specific format (e.g. any, integer, date, etc.)

Enumerated: atomic type with a given set of possible val-
ues.

Structure: set of attribute-value pairs.

List: ordered or unordered list of constructs of one type.

Alternative: similar to unordered list, but with different
semantics.

Sequence: similar to ordered list, but allowing members
with diverse types and supporting mixed content.

PML Schemas can further declare some structures in the
data as nodes and specify how trees are formed from these
nodes by nesting. Nodes can carry attributes whose val-
ues can be of any of the above abstract data types; edge
labels are typically stored within the child node. Addition-
ally, PML supports ID-based inter- and cross-document ref-
erencing (used in PDT e.g. to represent coreference) and
multi-layer annotations with individual layers stored in dif-
ferent files (PDT defines four inter-connected annotation
layers).



<LM id="a-147-p1s1">
<afun>AuxS</afun>
<ord>0</ord>
<children>
<LM id="a-147-p1s1w2">
<form>nevylučuje</form>
<lemma>vylučovat_:T</lemma>
<tag>VB-S---3P-NA---</tag>
<afun>Pred</afun>
<ord>2</ord>
<children>
<LM id="a-147-p1s1w1">
<form>Privatizace</form>
<lemma>privatizace</lemma>
<tag>NNFS1-----A----</tag>
<afun>Sb</afun>
<ord>1</ord>

</LM>
<LM id="a-147-p1s1w3">
<form>bankroty</form>
<lemma>bankrot</lemma>
<tag>NNIP4-----A----</tag>
<afun>Obj</afun>
<ord>3</ord>

</LM>
</children>

</LM>
</children>
</LM>

Figure 1: The sentence “Privatizace nevylučuje bankroty”
in the PML format for the PDT a-layer, merged (knitted)
and simplified for brevity.

3.3. Penn Format

( (SBARQ
(WHNP-1 (WP Who) )
(SQ

(NP-SBJ (-NONE- *T*-1) )
(VP (VBZ cares) ))

(. ?) ))

Figure 2: The sentence “Who cares?” in Penn Format.

The Penn Format is a plain text format introduced in Penn
Treebank and adopted by some other projects for capturing
phrase structure trees by means of bracketing. Nontermi-
nal nodes can carry a category label and optionally a set of
function labels while terminals are formed by the surface
word forms optionally augmented by POS tags. Both types
of nodes can also include numerical coindexes for cross-
referencing. There are several dialects and extensions to
this format (in fact, each part of the Penn Treebank 3 uses
a slightly different variant and the Penn CU Chinese Tree-
bank 6.0 uses this format enclosed in an SGML-like enve-
lope). Penn Format is very concise and comprehensible,
but possibly due to the lack of standard tools for its valida-
tion, we have discovered a few errors in bracketing and/or
coindexing in all of the examined treebanks that were using
it.

3.4. Tiger XML Format

<s id="s36784">
<graph root="s36784_501">
<terminals>
<t id="s36784_1" word="Es" pos="PPER" />
<t id="s36784_2" word="ist" pos="VAFIN" />
<t id="s36784_3" word="eine" pos="ART" />
<t id="s36784_4" word="Zwickmühle"

pos="NN" />
<t id="s36784_5" word="." pos="$." />

</terminals>
<nonterminals>
<nt id="s36784_500" cat="NP">
<edge label="NK" idref="s36784_3" />
<edge label="NK" idref="s36784_4" />

</nt>
<nt id="s36784_501" cat="S">
<edge label="SB" idref="s36784_1" />
<edge label="HD" idref="s36784_2" />
<edge label="PD" idref="s36784_500" />

</nt>
</nonterminals>
</graph>
</s>

Figure 3: The sentence “Es ist eine Zwickmühle.” in Tiger
XML Format (Tiger Treebank 1.0).

The Tiger Treebank introduced an XML format for phrase
structure treebanks; unlike in Penn Treebank, terminals,
nonterminals, and even edges can carry arbitrary number
of string-valued attributes, whose domains can be enumer-
ated. Trees are formed as graphs defined as an ordered list
of terminal nodes and a set of nonterminal nodes, where
each nonterminal enumerates the edges which connect it to
its children.

3.5. CoNLL-2009 ST Format

1 What WP 3 OBJ _ _ R-A1
2 to TO 0 ROOT _ _ _
3 do VB 2 IM Y do.02 _
4 ? . 2 P _ _ _

Figure 4: The sentence “What to do?” in CoNLL-2009 ST
format (some columns removed to fit the page).

CoNLL Shared Tasks traditionally use simple tabular plain-
text formats, where each row represents a node, trees are
represented by references to parents based on row num-
bers; further columns represent attribute values, which can
be either strings or lists of strings using certain characters
as delimiters. The format is easy to process, but cannot be
reused, most notably because it lacks any header describing
the meaning of the individual columns.

3.6. Penn Arabic Treebank Format
The Penn Arabic Treebank 2 uses a rather obscure mix
of SGML (for the original text), Annotation Graph (AG)
format (Bird and Liberman, 1999) (as an overly complex
way of encoding lemmatization, morphological analysis,



and English glosses for the stream of input tokens), into
which a plain-text bracketing similar to the Penn Format is
embedded (with phrase trees whose terminals are numbers
referring to XML elements in the AG annotation).

4. Conversion to PML
Compared e.g. to the concise plain-text formats, PML may
seem quite heavy-weighted; on the other hand it is certainly
the most versatile format among the formats considered.
In order to evaluate our PML-based framework and the
query system, we first needed to convert the treebanks into
the PML format. However, it should be noted that it was
not our goal nor did we attempt to unify the actual labeling
and tagging schemes of these treebanks. We simply wanted
to create a common formal representation of the treebanks,
using PML as a pivot format.
Therefore, for each of the treebanks, we have created a spe-
cialized PML schema which captures all information avail-
able in the original data. Nevertheless, the PML Schemas
for phrase-based (and likewise for dependency) trees are all
very similar: they all define nodes of three types (technical
root, nonterminal and terminal), each of which carries some
attributes; the main differences were only in the attributes
or the enumerations of their possible values. During the
conversion to PML, edge labels from Tiger XML Format
were transformed to attributes of the child nodes and coin-
dexes (occurring in most of the treebanks) were realized as
ID-based references (every node in the PML format was as-
signed a unique ID if no original IDs were available). All
of the conversion scripts were written in Perl, except for the
conversion from Tiger XML, where we conveniently used
XSLT.

5. Query Examples
The simplest way to demonstrate the query power of PML-
TQ and the differences between treebanks is to provide ex-
ample queries and their results.

5.1. Verb Clause without a Subject
All verb clauses without a subject can be easily identified
in most treebanks with a query similar to Fig. 5. To under-
stand the query language, one should note that nontermi-
nal is just a node type identifier with no a priori semantics
(but referring to type declarations in PML schema); * is a
wild-card matching any node type, 0x is a quantifier (zero
times), and cat and label are node attributes; square brack-
ets contain comma separated constraints on a given node,
so the string [. . . ] usually reads “node which has . . . ” or
“with . . . ”; the default relation between nodes in the query
is “child”. Thus, the query, translates from the PML-TQ
syntax into English as follows: “Find all nonterminal nodes
which has category ’S’, zero child nodes with label ’Sb’ and
a nonterminal child node with category ’VP’ ”.
In TIGER, the query has 1155 matches, which can be
easily counted by appending a postprocessing instruction
“>> count()” to the end of the query.
In Penn CU Treebank, the head category is IP and subject
function is SBJ, it can only be assigned to a nonterminal,
see Fig. 6. Note that the attribute functions contains a list,

nonterminal [
cat = ’S’,
0x * [
label = ’SB’

],
nonterminal [
cat = ’VP’

]
]

0x
* 

label = 'SB'

nonterminal 
cat = 'S'

nonterminal 
cat = 'VP'

Dazu
PROAV

MO

wird
VAFIN

HD

S

VP

OC

mit
APPR

AC

PP

CVC

Partnern
NN

NK

geredet
VVPP

HD

Figure 5: Query 5.1., its visualization, and a result tree from
Tiger Treebank 1.0.

nonterminal [
cat=’IP’,
0x nonterminal [

functions=’SBJ’ ],
nonterminal [

cat=’VP’
] ]

0x
nonterminal 

functions = 'SBJ'

nonterminal 
cat = 'IP'

nonterminal 
cat = 'VP'

Figure 6: Query 5.1. for Penn CU Treebank.

and the constraint functions=’SBJ’ is true if any of the val-
ues in the list equals SBJ. Apart from these details, the
query is the same as the one for Tiger Treebank 1.0.

nonterminal
[ cat = ’S’,

0x nonterminal [
functions = ’SBJ’ ],

nonterminal [
cat = ’VP’,
coindex.rf nonterminal [
cat = ’VP’,
sibling nonterminal [

functions = ’SBJ’
] ] ] ]

0x

0x

nonterminal 
functions = 'SBJ'

nonterminal 
cat = 'S'

nonterminal 
functions = "SBJ"

nonterminal 
cat = 'VP'

nonterminal 
cat = 'VP'

Figure 7: Query 5.1. for Penn Treebank 3 (WSJ part).

For Penn Treebank 3 (WSJ part), in addition, we have to
exclude common subjects for parallel structures (e.g. “he
joined CBS Sports (. . . ) and, five years later, became its
president”, see Fig. 7.)2 In the original format, the common

2This query still returns one match, a parallel structure with
missing auxiliary verb “if schedules were reduced and the games



subject is captured by a co-index, which we translated into
PML as a relation named coindex.rf; we can thus directly
connect the nodes in the query by this relation.

nonterminal [
cat=’VP’,
0x nonterminal [
cat=’VP’
or
functions=’SBJ’

] ]

functions
=

'SBJ'

cat
=

'VP'

0x

OR

nonterminal 

nonterminal 
cat = 'VP'

Figure 8: Query 5.1. for Penn Arabic Treebank.

In Penn Arabic treebank, except for 8 cases, a subject is
dominated not by an S but by a VP that has no VP child; it
therefore suffices to test those (see Fig. 8).

a-node [
$$ = $aux and m/tag ~ ’^V[^fs]’

or $$ != $aux and m/tag ~ ’^V[sf]’,
0x echild a-node [ afun = ’Sb’ ],

? echild a-node $aux := [
afun = ’AuxV’, m/tag ~ ’^V[^f]’ ] ]

0x

$$
=

$aux

m/tag
~

'^V[^fs]'

$$
!=

$aux

m/tag
~

'^V[sf]'

?
a-node 

afun = 'Sb'

a-node 

AND

OR

AND

a-node $aux 
afun = 'AuxV'
m/tag ~ '^V[^f]'

Figure 9: Query 5.1. for Prague Dependency Treebank 2.0
($$ means this node).

In dependency treebanks, the query is quite different. For
example, in Prague Dependency Treebank 2.0, it looks like
Fig. 9. We are interested in finite verbs with no subject, but
in Czech, even an infinitive or passive verb can function
as finite, if it is accompanied by an auxiliary finite verb,
matched in the query by so called optional node. An op-
tional node (marked in the query by ?) is either disregarded
(in which case the associated name, $aux, is identified with
the parent node in the query), or matched normally accord-
ing to its constraints. A custom relation echild, counting

returned to the students”.

for coordinations and appositions, is used instead of the de-
fault child relation.

5.2. Grammar Extraction

nonterminal $p := [ * $ch := [ ] ]
>> give $p, $p.cat,

first_defined($ch.cat,$ch.pos),
lbrothers($ch)

>> give $2 & " -> "
& concat($3," " over $1 sort by $4)

>> for $1 give count(),$1 sort by $1 desc

Figure 10: Grammar extracting query for Penn Treebank 3
(WSJ part).

From phrase structure treebanks, their underlying grammar
can be easily extracted. For example, in Penn Treebank 3
(WSJ part), we just look for a nonterminal parent and its
child; we output the internal unique identifier and the cate-
gory of the nonterminal, a label of the child (category if it
is a nonterminal, or part of speech if it is a terminal) and its
order among siblings (number of brothers on the left); we
group this list by the parent, so all children of one parents
get to one group; we then concatenate the children’s labels
in each group in the appropriate order to produce a gram-
mar rule for each group, and finally, we simply compute the
frequency of each rule in the list and sort by it (see Fig. 10).
Table 1 lists the top 10 lines of the generated grammar (non-
terminals set in bold face).

189856 PP → IN NP
128140 S → NP VP

87402 NP → NP PP
72106 NP → DT NN
65508 S → NP VP .
45995 NP → -NONE-
36078 NP → DT JJ NN
31916 VP → TO VP
28796 NP → NNP NNP
23272 SBAR → IN S

. . .

Table 1: The grammar generated from Penn Treebank 3
(WSJ part). Each rule is preceded by number of applica-
tions.

5.3. Non-projective Edges
Classical phrase structure trees are projective by definition
(traces are used to deal with crossing brackets). Tiger Tree-
bank uses a hybrid approach with nonterminal constituent
nodes, but with crossing branches and no traces. In de-
pendency treebanks, non-projectivity is being studied as an
important phenomenon (cf. (Havelka, 2007)).
For all the dependency treebanks a query similar to Fig. 11
can be used to find all the non-projective edges (just the
names of the node types can be different). Table 2 shows
how frequent non-projectivity is in several dependency
treebanks. It displays the percentage of non-projective



node $upper := [
same-tree-as $between,
node $lower := [ ] ];

node $between := [ ! ancestor $upper,
( (order-precedes $upper

and order-follows $lower)
or (order-follows $upper

and order-precedes $lower) ) ]

node $between 
((order-precedes $upper
       and order-follows $lower)
  or (order-follows $upper
       and order-precedes $lower))

node $lower 

node $upper 

Figure 11: Query 5.3. for CoNLL 2009 dependency tree-
banks.

edges among all the edges, an average number of non-
projective edges in a tree, and a real percentage of non-
projective trees among all the trees. In Spanish CoNLL
training data, all the edges are projective, which is proba-
bly not a feature of the language, but rather a feature of the
formalism used.

Treebank NPE/edge NPE/tree NPT
German CoNLL 2.33% 41.99% 28.10%
PDT 2.0 1.88% 32.14% 22.98%
English CoNLL 0.39% 9.48% 7.63%
Spanish CoNLL 0.00% 0.00% 0.00%

Table 2: Number of non-projective edges (NPE) and non-
projective trees (NPT) in dependency treebanks.

5.4. Word Order Typology
The word order typology classifies languages according to
the basic word order in transitive sentences. Query 12 ex-
tracts the facts from the German CoNLL-2009 Shared Task
data. Depending on the exact definition, one might want
to remove sentences with more than one object etc., but
the query still can be used as a base. We just remove all
the lines that do not contain both O and S. The results are
shown in Table 3, the first two columns (capital “V”) repre-
sent main clauses, the second two subordinate (small “v”).
The difference between the two types of clauses is clearly
visible. For other dependency treebanks, the query would
be almost the same.

5.5. Extraposed Relative Clauses
Using the dependency approach, we can say that the rela-
tive clause normally follows its governing noun from which
it can be separated only by other dependents of the noun. In
constituent approach jargon, this can be rephrased as “The
relative clause is normally a constituent of the noun phrase
containing the head noun it modifies”. Mirroring this dif-
ference between the two approaches, the queries searching

node $p := [ substr(pos,0,1) = ’V’,
? node $ch := [

deprel in {’SB’,’OA’,’OC’,’OA2’,’OP’}
] ];
>> give $p.xml:id,

if($p=$ch,
if($p.deprel = ’ROOT’,’V’,’v’),
substr($ch.deprel,0,1)),

$ch.order
>> give distinct $1,

concat($2,’’ over $1 sort by $3)
>> give

substitute($2,’([OS])\\1+’,’\\1’,’g’)
>> filter ($1 ~ ’O’ and $1 ~ ’S’)
>> for $1 give $1,count() sort by $2 desc

Figure 12: Word order typology (query 5.4.) for German
CoNLL data.

Main Num. of Dependent Num. of
clause occurrences clause occurrences
SVO 11267 SOv 7556
VSO 7111 SvO 2273
OVS 2209 vSO 1113
VOS 625 OSv 606
SOV 110 OvS 109
OVSO 91 vOS 64
VOSO 64 SOvO 37
OVOS 31 OSOv 34

. . .

Table 3: Word order typology for German calculated by
query 5.4. from German CoNLL data. Lines not containing
both subject and object removed.

for extraposed relative clauses (the “non normal” case) are
quite different for dependency and constituency treebanks.
Two examples are given in Fig. 13.
In Penn Treebank, a special terminal ICH (Interpret con-
stituent here) is used in the place where the relative clause
would have been placed but for the extraposition. In Prague
Dependency Treebank, we are looking for an attribute
(Atr) expressed by a verb that is separated from its par-
ent by a word that does not belong to the parent’s subtree.

6. Comparison and Performance
Table 4 shows various quantitative differences between the
treebanks, easily computed using PML-TQ queries. The
meaning of particular columns can be found in the follow-
ing list, the queries are shown in Fig. 14.

a. Total number of nodes: All types of nodes were
counted (roots, terminals, nonterminals). In case of
Prague Dependency Treebank, a-layer nodes were
used.

b. Maximal rank: By the rank we mean the number of
sons.

c. Median rank: The rank of the middle tree from trees
sorted by rank.



total max median max median max max nodes
Treebank # nodes rank rank tree tree depth breadth / term.
PDT 1.59M 85 3 195 12 24 85 –
Tiger 0.95M 17 2 237 7 23 53 1.55
WSJ 2.28M 51 3 441 10 37 159 1.82
Atis 0.01M 8 2 81 10 16 17 2.13
Brown 0.92M 24 2 347 14 36 53 1.89
SWBD 2.73M 26 6 272 63 37 54 1.91
Chinese (Penn) 1.86M 64 2 558 4 30 169 2.18
Arabic 0.36M 25 2 602 173 52 73 2.16
Catalan 0.4M 37 9 215 23 24 56 –
Chinese (CoNLL) 0.63M 35 3 243 30 20 114 –
Spanish 0.44M 62 2 150 17 28 64 –

Table 4: Basic characteristics of the treebanks.

nonterminal [
cat=’NP’,
functions=’SBJ’,
nonterminal [

cat=’SBAR’,
terminal [
form ~ ’ICH’

] ] ]
terminal 

form ~ 'ICH'

nonterminal 
cat = 'SBAR'

nonterminal 
cat = 'NP'
functions = 'SBJ'

a-node $n2 := [
! afun in {’Coord’,’Apos’},
order-precedes a-node [

! ancestor $n2,
order-precedes $n3

],
a-node $n3 := [

afun ~ ’Atr’,
m/tag ~ ’^V’ ] ]

a-node 

a-node $n2 
!afun in {'Coord','Apos'}

a-node $n3 
afun ~ 'Atr'
m/tag ~ '^V'

Figure 13: Query 5.5. for Penn Treebank 3 and PDT 2.0.

d. Maximal tree: The maximal number of nodes in a
tree.

e. Median tree: Similar to median rank (c).

f. Maximal depth: The longest path from a root to a
leaf node.

g. Maximal breadth: Maximal level size.

h. Nodes to terminals ratio: The query makes
sense only in constituent treebanks. It reports
both the nodes-to-terminals ratio and the nodes-to-
nonterminals ratio.

We have collected various measurements of the system per-
formance. For example, we ran the queries a–h over all the
examined treebanks indicates high correlation between the
treebank size and the running time of the query. For most
treebanks, the running time for one query averaged over this

a. * [ ] >> count()

b. * $n := [ sons()>1 ]
>> sons($n) >> max()

c. * $n := [ sons()>1 ]
>> sons($n)
>> $1, row_number(sort by $1),

count(over all)
>> filter $2=($3 div 2) >> $1

d. * $r := [ 0x parent * [ ] ]
>> descendants($r)+1 >> max()

e. * $r := [ 0x parent * [ ] ]
>> descendants($r)+1
>> $1, row_number(sort by $1),

count(over all)
>> filter $2=($3 div 2) >> $1

f. * $n := [ sons()=0 ]
>> depth($n)+1 >> max()

g. * $root := [ depth()=0,
? descendant * $n := [ ] ]

>> for $root,depth($n) give count()
>> max()

h. * $n := [ ];
>> give if(sons($n)>0,’n’,’t’)
>> for $1 give $1,count()
>> for $1,$2

give $1,sum($2 over all) div $2

Figure 14: Basic quantitative queries.

set of queries was 2.3±0.2 seconds per 1 million of nodes;
the exception was treebanks with less than half a million
nodes, where the average was 1.1 ± 0.2 seconds (proba-
bly due to better use of caches and memory buffers for disk
reads).
Another measurement shown in Fig. 15 illustrates the aver-
aged performance of the system over a set of 50 linguisti-
cally meaningful queries (not listed in this paper) of vary-
ing complexity spanning over all four annotation layers of
PDT 2.0. We run the queries over portions of the treebank
of increasing sizes. The Oracle 10g XE engine appears to
be the fastest by average, but we have noted several queries
where it was outperformed by the PostgreSQL engine.
The Perl-driven engine is running in time linear to the size
of the corpus. The times presented in Fig. 15 for the Perl-
driven engine do not include loading the treebank data into
memory, which adds additional linear overhead. The per-



formance of this engine can be highly accelerated by par-
allelization of the searching phase (independent documents
can be processed in parallel). We have not yet developed an
algorithm to parallelize the filter phase.
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Figure 15: Comparison of average performance of two
SQL-driven and the Perl-driven PML-TQ engines over 50
queries of varying complexity for all four annotation layers
of PDT.

7. Conclusion
We have presented a system for querying treebanks in a uni-
form way. The abilities of the system are demonstrated on
11 different treebanks converted to its XML-based format
without losing any information and loaded into the system.
The query language used by the system provides many fea-
tures not available in any other existing system.
We showed several examples of linguistically interesting
queries and discussed briefly the performance of the sys-
tem.
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