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Language Models – basics

P(s) = ?

P(                            )The dog barked again
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Language Models – basics

P(s) = ?

P(                            )  >  P(                             )The dog barked again The dock barked again
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Language Models – basics

P(s) = P(w1, w2, ... wm)

P(                            ) =

P(w1=       , w2=         , w3=            , w4=          )The dog barked again

The dog barked again
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Language Models – basics

P(s) = P(w1, w2, ... wm) = P(w1) P(w2|w1) … P(wm|w1,...,wm-1)

P(                            ) =

P(w1=       ) ·

P(w2=            | w1=        ) ·

P(w3=            | w1=        , w2=         ) ·

P(w4=            | w1=        , w2=         , w3=             )

The

dog

barked

again

The

The

The

dog

dog barked

The dog barked again

Chain rule
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Language Models – basics

P(s) = P(w1, w2, ... wm) = P(w1) P(w2|w1) … P(wm|w1,...,wm-1)

P(                            ) =

P(wi=            | i=1) ·

P(wi=            | i=2, wi-1=        ) ·

P(wi=            | i=3, wi-2=        , wi-1=         ) ·

P(wi=            | i=4, wi-3=        , wi-2=         , wi-1=             )

The

dog

barked

again

The

The

The

dog

dog barked

The dog barked again

Changed notation
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Language Models – basics

P(s) = P(w1, w2, ... wm) = P(w1) P(w2|w1) … P(wm|w1,...,wm-1)

P(                            ) =

P(wi=            | i=1, wi-1=         ) ·

P(wi=            | i=2, wi-2=         , wi-1=        ) ·

P(wi=            | i=3, wi-3=         , wi-2=       , wi-1=       ) ·

P(wi=            | i=4, wi-4=         , wi-3=       , wi-2=       , wi-1=           )

The

dog

barked

again

The

The

The

dog

dog barked

The dog barked again

Artificial start-of-sentence token

NONE

NONE

NONE

NONE
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Language Models – basics

P(s) = P(w1, w2, ... wm) = P(w1) P(w2|w1) … P(wm|w1,...,wm-1)

P(                            ) ≈

P(wi=            |        wi-1=         ) ·

P(wi=            |        wi-2=         , wi-1=        ) ·

P(wi=            |        wi-3=         , wi-2=       , wi-1=       ) ·

P(wi=            |        wi-4=         , wi-3=       , wi-2=       , wi-1=           )

The

dog

barked

again

The

The

The

dog

dog barked

The dog barked again

Position backoff

NONE

NONE

NONE

NONE
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Language Models – basics

P(s) = P(w1, w2, ... wm) ≈ Πi=1..m P(wi | wi-1)

P(                            ) ≈

P(wi=            |        wi-1=         ) ·

P(wi=            |                          wi-1=        ) ·

P(wi=            |                                           wi-1=       ) ·

P(wi=            |                                                            wi-1=           )

The

dog

barked

again

The

dog

barked

The dog barked again

History backoff (bigram LM)

NONE
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Language Models – basics

P(s) = P(w1, w2, ... wm) ≈  Πi=1..m P(wi | wi-2, wi-1)

P(                            ) ≈

P(wi=            |        wi-2=         , wi-1=         ) ·

P(wi=            |        wi-2=         , wi-1=        ) ·

P(wi=            |                          wi-2=       , wi-1=       ) ·

P(wi=            |                                           wi-2=       , wi-1=           )

The

dog

barked

again

The

The dog

dog barked

The dog barked again

NONE

NONE

History backoff (trigram LM)

NONE
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Language Models – basics

P(s) = P(w1, w2, ... wm) ≈  Πi=1..m P(wi | wi-2, wi-1)

In general:                        Πi=1..m P(wi | hi)

hi  … context (history) of word wi
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Language Models – design decisions

1) How to factorize P(w1, w2, ... wm) into Πi=1..m P(wi | hi),

     i.e. what word-positions will be used as the context hi ?

2) What additional context information will be used

     (apart from word forms),

     e.g.  stems, lemmata, POS tags, word classes,... ?

3) How to estimate P(wi | hi) from the training data?

     Which smoothing technique will be used?

     (Good-Turing, Jelinek-Mercer, Katz, Kneser-Ney,...)

     Generalized Parallel Backoff etc.
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Language Models – design decisions

1) How to factorize P(w1, w2, ... wm) into Πi=1..m P(wi | hi),

     i.e. what word-positions will be used as the context hi ?

2) What additional context information will be used

     (apart from word forms),

     e.g.  stems, lemmata, POS tags, word classes,... ?

3) How to estimate P(wi | hi) from the training data?

     Which smoothing technique will be used?

     (Good-Turing, Jelinek-Mercer, Katz, Kneser-Ney,...)

     Generalized Parallel Backoff etc.

this
work

Linear interpolation
Weights trained by EM
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Language Models – design decisions

1) How to factorize P(w1, w2, ... wm) into Πi=1..m P(wi | hi),

     i.e. what word-positions will be used as the context hi ?

2) What additional context information will be used

     (apart from word forms),

     e.g.  stems, lemmata, POS tags, word classes,... ?

3) How to estimate P(wi | hi) from the training data?

     Which smoothing technique will be used?

     (Good-Turing, Jelinek-Mercer, Katz, Kneser-Ney,...)

     Generalized Parallel Backoff etc.

hi = wi-n+1, ..., wi-1

(n-gram-based LMs)

other
papers

this
work

Linear interpolation
Weights trained by EM
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Post-ngram LM

In general: P(s) = P(w1, w2, ... wm) ≈ Πi=1..m P(wi | hi)

 hi  … context (history) of word wi

left-to-right factorization order

Bigram LM: hi = wi-1 (one previous word)

Trigram LM: hi = wi-2, wi-1 (two previous words)
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Post-ngram LM

In general: P(s) = P(w1, w2, ... wm) ≈ Πi=1..m P(wi | hi)

 hi  … context (history) of word wi

left-to-right factorization order

Bigram LM: hi = wi-1 (one previous word)

Trigram LM: hi = wi-2, wi-1 (two previous words)

right-to-left factorization order

Post-bigram LM: hi = wi+1 (one following word)

Post-trigram LM: hi = wi+1, wi+2 (two following words)
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Post-ngram LM

In general: P(s) = P(w1, w2, ... wm) ≈ Πi=1..m P(wi | hi)

 hi  … context (history) of word wi

left-to-right factorization order

Bigram LM: hi = wi-1 (one previous word)

Trigram LM: hi = wi-2, wi-1 (two previous words)

right-to-left factorization order

Post-bigram LM: hi = wi+1 (one following word)

P(                             ) = P(         |         ) · P(           |         ) ·

                                      P(       |           ) · P(       |       )

The dog barked again

dog Thebarked

again NONE againbarked

dog
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Dependency LM

● exploit the topology of dependency trees 

The dog barked again
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Dependency LM

● exploit the topology of dependency trees

The

dog

barked

again

MALT parser
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Dependency LM

● exploit the topology of dependency trees

                                 
P(                             ) = P(       |       ) · P(       |           ) · 

                                      P(            |         ) · P(          |            )

hi = parent( wi )

The

dog

barked

again

The dog barked again dogThe barked

NONE againbarked

dog

barked
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Dependency LM
Long distance dependencies

The dog I heard last night barked again

The

dog

I

heard

last

night

barked

again
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Dependency LM
Motivation for usage

● How can we know the dependency structure

without knowing the word-forms?
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Dependency LM
Motivation for usage

● How can we know the dependency structure

without knowing the word-forms?
● For example in tree-to-tree machine translation.

The

dog

barked

again

Ten

pes

štěkal

znovu

Ten pes štěkal znovu The dog barked again

ANALYSIS

TRANSFER

SYNTHESIS
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● Model wp

word form of parent

                                 
P(                             ) =

  P(            |                        ) ·

  P(            |                        ) ·

  P(            |                        ) ·

  P(            |                        )

The

dog

barked

again

The dog barked again

dogThe

barked

NONE

again

barked

dog

barked

Dependency LM
Examples
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● Model wp,wg

word form of parent, word form of grandparent

                                 
P(                             ) =

  P(            |        ,               ) ·

  P(            |            ,           ) ·

  P(            |          ,             ) ·

  P(            |            ,           )

The

dog

barked

again

The dog barked again

dogThe

barked

NONE

again

barked

dog

barked

NONE

NONE

NONEbarked

Dependency LM
Examples
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● Model E,wp

edge direction, word form of parent

                                 
P(                             ) =

  P(            | right,               ) ·

  P(            | right,               ) ·

  P(            | left,                 ) ·

  P(            | left,                 )

The

dog

barked

again

The dog barked again

dogThe

barked

NONE

again

barked

dog

barked

Dependency LM
Examples
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● Model C,wp

number of children, word form of parent

                                 
P(                             ) =

  P(            | 0,                    ) ·

  P(            | 1,                    ) ·

  P(            | 2,                    ) ·

  P(            | 0,                    )

The

dog

barked

again

The dog barked again

dogThe

barked

NONE

again

barked

dog

barked

Dependency LM
Examples
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● Model N,wp

the word is Nth child of its parent, word form of parent

                                 
P(                             ) =

  P(            | 1,                    ) ·

  P(            | 1,                    ) ·

  P(            | 1,                    ) ·

  P(            | 2,                    )

The

dog

barked

again

The dog barked again

dogThe

barked

NONE

again

barked

dog

barked

Dependency LM
Examples
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Dependency LM
Examples of additional context information

● Model tp,wp

POS tag of parent, word form of parent

                                 
P(                             ) =

  P(            | NN,                 ) ·

  P(            | VBD,               ) ·

  P(            | NONE,            ) ·

  P(            | VBD,               )

The

dog

barked

again

The dog barked again

dogThe

barked

NONE

again

barked

dog

barked
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● Model tp,wp

POS tag of parent, word form of parent

                                 
P(                             ) =

  P(            | NN,                 ) ·

  P(            | VBD,               ) ·

  P(            | NONE,            ) ·

  P(            | VBD,               )

The

dog

barked

again

The dog barked again

dogThe

barked

NONE

again

barked

dog

barked

naïve tagger
assignes the most

 frequent tag
 for a given word

Dependency LM
Examples of additional context information
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● Model Tp,wp

coarse-grained POS tag of parent, word form of parent

                                 
P(                             ) =

  P(            | N,                   ) ·

  P(            | V,                    ) ·

  P(            | x,                    ) ·

  P(            | V,                    )

The

dog

barked

again

The dog barked again

dogThe

barked

NONE

again

barked

dog

barked

Dependency LM
Examples of additional context information
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● Model E,C,wp,N

edge direction, # children, word form of parent,

word is Nth child of its parent                                 
P(                             ) =

  P(            | right, 0,           , 1) ·

  P(            | right, 1,           , 1) ·

  P(            | left,   2,           , 1) ·

  P(            | left,   0,           , 2)

The

dog

barked

again

The dog barked again

dogThe

barked

NONE

again

barked

dog

barked

Dependency LM
Examples of additional context information
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● Language Models (LM)

     – basics
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● Evaluation
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Evaluation

● Train and test data from CoNLL 2007 shared task
● 7 languages: Arabic, Catalan, Czech,

English (450 000 tokens, 3 % OOV), Hungarian,

Italian (75 000 tokens), and Turkish (26 % OOV)

● Cross-entropy = −(1/|T |) Σi=1..|T | log2 P(wi | hi ),

measured on the test data T
● Perplexity = 2 Cross-entropy 

● Lower perplexity ~ better LM

● Baseline … trigram LM
● 4 experimental settings: PLAIN, TAGS, DEP, DEP+TAGS
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ar ca cs en hu it tr
40,00%

50,00%

60,00%

70,00%

80,00%

90,00%

100,00%

110,00%

w-1,w-2  (BASELINE)
w+1,w+2  (PLAIN)
T+1,t+1,l+1,w+1,T+2,t+2,l+2,w+2  
(TAGS)
E,C,wp,N,wg  (DEP)
E,C,Tp,tp,N,lp,wp,Tg,tg,lg  
(DEP+TAGS)

Evaluation
normalized
perplexity



 39

Conclusion

Improvement over baseline

for English

● Post-trigram better than trigram   PLAIN     8 %

Post-bigram better than bigram

● Additional context (POS & lemma) helps       TAGS   20 %

● Dependency structure helps even more           DEP   24 % 

● The best perplexity achieved with         DEP+TAGS   31 %

Findings confirmed

for all seven languages



 40

Future plans

● Investigate the reason for better post-ngram LM perplexity

● Extrinsic evaluation
● Post-ngram LM in speech recognition
● Dependency LM in tree-to-tree machine translation

● Better smoothing using Generalized Parallel Backoff

● Bigger LM for real applications
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Thank you
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