
(IN)DEPENDENCIES IN FUNCTIONAL
GENERATIVE DESCRIPTION BY

RESTARTING AUTOMATA

Martin Plátek, František Mráz, and Markéta Lopatková
Charles University in Prague, Czech Republic

Email: martin.platek@mff.cuni.cz, frantisek.mraz@mff.cuni.cz,
lopatkova@ufal.mff.cuni.cz

Abstract
We provide a formal model of a stratificational dependency approach to natural language de-
scription. This formal model is motivated by an elementary method of analysis by reduction,
which serves for describing correct sentence analysis. The model is based on enhanced restart-
ing automata that assign a set of parallel dependency structures to every reduction of an input
sentence. These structures capture the correspondence of dependency trees on different layers
of linguistic description, namely the layer of surface syntax and the layer of language mean-
ing. The novelty of this contribution consists in the formal extension of restarting automata in
order to produce tree structures with several interlinked layers and in the application of these
automata to the stratificational description of a natural language.

1. Introduction

We present a formal model of a stratificational dependency approach to natural language de-
scription. The proposed model is based on an elementary method of analysis by reduction (AR,
see [8]). The analysis by reduction is modeled by the so-called enhanced restarting automata
that assign a set of dependency structures (DR-structures) to every reduction of an input sen-
tence. DR-structures can capture a set of dependency trees representing sentence on different
layers of linguistic description in a parallel way. The novelty of this approach consists in the
formal presentation of the stepwise parallel composition of tree structures on different language
layers.

In [8], natural language description is modeled as a formal string to string translation using a
suitable model of restarting automata. [11] introduces a class of enhanced restarting automata
with an output consisting of a single DR-tree. Here we formally discuss a model able to
represent several parallel dependency structures and thus to capture relations between syntactic
structures on different layers derived from AR (see also [6]).

12 M. Plátek, F. Mráz, and M. Lopatková

1.1. Functional Generative Description

The theoretical linguistic basis for our research is provided by the Functional Generative De-
scription (FGD in the sequel), see esp. [12]. FGD is characterized by its stratificational and
dependency-based approach to the language description.

The stratificational approaches split language description into layers, each layer providing com-
plete description of a (disambiguated) sentence and having its own vocabulary and syntax. We
use the version of FGD that distinguishes four layers of description:1

t-layer (tectogrammatical layer) capturing deep syntax, which comprises language meaning in
a form of a dependency tree; the core concepts of this layer are dependency, valency, and
topic-focus articulation, see esp. [12];

a-layer (analytical layer) capturing surface syntax in a form of a dependency tree (non-
projective in general);

m-layer (morphological layer) capturing morphology (string of triples [word form, lemma,
tag]);

w-layer (word layer) capturing individual words and punctuation marks in a form of a simple
string.

There are one-to-one correspondences between individual symbols of the w- and m-layer (we
leave aside small exceptions here) and between individual symbols of m- and a-layer; individual
symbols of these three layers (surface layers in the sequel) reflect individual ‘surface’ words and
punctuation marks. On the other hand, individual symbols of t-layer reflect only lexical words
(the so-called function words, e.g. prepositions and auxiliary verbs, are captured as attributes
of lexical words); moreover, surface ellipses (e.g. elided subject in Czech) are restored as nodes
on t-layer.

Similarly as in other stratificational approaches (e.g. [9]), the layers are ordered; the lowest one
being the simplest w-layer, the highest being the most abstract t-layer.

FGD as a dependency-based approach captures both surface and deep syntactic information in
a form of dependency trees (formally delete-rewrite structures, DR-structures, see [4]). Words
(i.e. their a- and t-correlates, respectively) are represented as nodes of the respective trees, each
node being a complex unit capturing the lexical, morphological and syntactic features; relations
among words are represented by oriented edges. The dependency nature of these representations
is important particularly for languages with relatively high freedom of word order; it also
complies with the shift of focus to deep syntactic representation, for which dependency approach
is commonly used.

1We adopt the notation of the Prague Dependency Treebank [3], a large corpus of Czech sentences, which
uses FGD as its theoretical basis.

(In)dependencies in Functional Generative Description by Restarting Automata 13

1.2. Basic Principles of Analysis by Reduction

Analysis by reduction is based on a stepwise simplification of an analyzed sentence. It defines
possible sequences of reductions (deletions) in the sentence – each step of AR is represented
by (i) deleting at least one word of the input sentence, or (ii) by replacing an (in general
discontinuous) substring of a sentence by a smaller substring. Consequently, it is possible to
derive formal dependency relations between individual sentence members based on the possible
order(s) of reductions.

Using AR we analyze an input sentence (w-layer) enriched with the metalanguage information
from the m-, a- and t-layer. Symbols on different layers representing a single word of an input
sentence are processed simultaneously.

The principles of AR can be summed up in the following observations:

• The fact that a certain word (or a group of words) can be deleted implies that this word
(or group of words) depends in AR on one of the words retained in the simplified sentence;
the latter being called governing word(s) in AR.

• Two words (or groups of words) can be deleted in an arbitrary order if and only if they
are mutually independent in AR.

• In order to ensure adequate modeling of natural language meaning (on t-layer), certain
groups of words have to be deleted in a single step (e.g. valency frame evoking words
and their (valency) complementations [7]); such words are said to constitute a reduction
component. Even in such cases, it is usual to determine governing-dependent pairs on the
layer of surface syntax (a-layer). In such a case, it is necessary to define special rules for
particular language phenomena.

When simplifying an input sentence, it is necessary to apply certain elementary principles
assuring adequate analysis:

• principle of correctness: a grammatically correct sentence must be after its simplifi-
cation correct as well; this principle is applied on all layers of language description;

• principle of completeness: a complete sentence after its simplification must be com-
plete with respect to its valency structure as well, i.e. each frame evoking word must be
‘saturated’ on the t-layer [7];

• principle of shortening: at least one ‘surface’ word (i.e. its correlates on w-, m- and
a-layer) must be deleted in each step of AR;

• principle of minimality: each step of AR must be ‘minimal’: any potential reduction
step concerning less symbols in the sentence would violate the principle of completeness
on the t-layer or the principle of correctness on the w-layer.

14 M. Plátek, F. Mráz, and M. Lopatková

These principles imply that in a single reduction step, either (case 1) item(s) representing a
single free modification or (case 2) items representing valency complementations of a single
frame evoking word together with their governing word are processed on the t-layer. The
sentence is simplified until the so-called core predicative structure is reached (typically formed
by sentence predicate and its valency complementations). Let us consider the following Czech
sentence.

Sídlo dnes mohla mít ve státě Texas.
residence - today - could - have - in - state - Texas
Eng: She (= elided Sb) could reside in the state of Texas today .

In [6], the basic principles of AR for the previous sample Czech sentence are exemplified on
several reduction steps; namely, the step by step simplification of the sentence is described as
well as the incremental building of its DR-structure (a- and t-trees). Similar stepwise reduction
of other sample sentence can be found in [11].

Pred

Pred

Adv

Atr

AuxKAdv

t-tree

a-tree

m-string

f_PRED
Frame1
poss.

ind.ant
c_PAT

neutr.sg
t_ACT
fem.sg

t_TWHEN

AuxP

f_ID
inan.sg

Obj

.
Z:

Texas
NNIS6

v-1
RV--6

stát-1
NNIS6

moci
VpYS-

mít
Vf---

sídlo
NNNS4

dnes
Db---

w-string

f_LOC
inan.sg

Figure 1: Parallel representation on t-, a-, m- and w-layers of the sample sentence according to FGD

Figure 1 shows the resulting structure corresponding to the previous sentence. It consists of the
t-tree (deep syntactic tree representing the meaning), of the surface non-projective syntactic

(In)dependencies in Functional Generative Description by Restarting Automata 15

a-tree, of the string of triples [word form, lemma, tag] on the m-layer and of the string of
wordforms on w-layer. The dotted lines interconnect corresponding nodes. Let us focus on the
non-trivial asymmetric relation between the a-layer and t-layer here: (i) the preposition ve ‘in’
as well as the noun státě ‘state’ in the a-tree are linked to the single t-symbol representing
the lexical word stát ‘state’; (ii) on the other hand, both the modal verb mohla ‘could’ and
the lexical verb mít ‘to have’ are represented as the single t-node mít ‘to have’ (information
on the modality is preserved as the attribute ‘poss’); as a result, the non-projective a-tree is
transformed to the projective t-tree; (iii) moreover, subject elided in the surface sentence is
restored in the t-tree (the node with the symbol starting with #PersPron); thus this node has
no counterpart on the a-layer.

Let us formulate basic requirements imposed on a DR-structure representing a natural language
sentence:

• If a word w1 depends on a word w2 in a sentence u, then there is a path from w1 to w2

in the DR-structure D representing u.

• If words w1 and w2 are mutually independent in a sentence u, then they are not connected
by a path in the corresponding DR-structure D.

In this paper, we focus mainly on the phenomena of valency, dependency and independency.
We leave aside such phenomena as coordination, apposition and ellipsis in our model (such
phenomena require a further enhancement of the model).

2. Restarting automata

First, we introduce a relevant type of a simple restarting automaton – sRL-automaton – rather
informally. For technical reasons, we do it in a bit different way than in [10] and [11].

An sRL-automaton M is (in general) a nondeterministic machine with a finite-state control Q,
a finite characteristic alphabet Γ, and a head (window of size 1) that works on a flexible tape
delimited by the left sentinel c and the right sentinel $ (c, $ 6∈ Γ). For an input w ∈ Γ∗, the
initial tape inscription is cw$. To process this input, M starts in its initial state q0 with its
window over the left end of the tape, scanning the left sentinel c. According to its transition
relation, M performs the following operations in the individual steps:

• moves to the right or to the left – shifts the head one position to the right or left;

• dl – deletes the visited symbol and shifts the head on its right neighbor;

• wr[b] – rewrites the visited symbol by the symbol b;

• pb – serves for marking (putting a numbered pebble on) the visited item only: marked
items are used as nodes in DR-structures (in any other aspect it is an empty operation,
see below);

16 M. Plátek, F. Mráz, and M. Lopatková

• accept – halts the computations and accepts the input word.

Of course, neither the left sentinel c nor the right sentinel $ must be deleted. At the right end
of the tape, M either halts and accepts, or it halts and rejects, or it restarts, that is, it places
its window over the left end of the tape and reenters the initial state. It is required that prior
to the first restart step and also between any two restart steps, M executes at least one delete
operation. During each step, M can change its internal state.

We can see that any finite computation of M consists of certain phases. A phase, called a
cycle, starts in a restarting configuration, the window is moved along the tape by performing
its operations until a restart operation is performed and thus a new restarting configuration
is reached. If no further restart operation is performed, each finite computation necessarily
finishes in a halting configuration – such a phase is called a tail. We assume that no delete and
rewrite operation is executed in a tail computation.

The notation u `c
M v denotes a reduction performed during a cycle of M that begins with the

tape inscription cu$ and ends with the tape inscription cv$; the relation `c∗
M is the reflexive and

transitive closure of `c
M .

A string w ∈ Γ∗ is accepted by M , if there is an accepting computation which starts in the
restarting configuration with the tape inscription cw$ and ends by executing the accept oper-
ation. By LC(M) we denote the language consisting of all words accepted by M ; we say that
M recognizes (accepts) the characteristic language LC(M).

Remark 1. sRL-automata are two-way nondeterministic automata, which allow to check the
whole input sentence prior to any changes. It resembles a linguist who can read the whole
sentence first, and reduce the sentence in a correct way afterwards. We choose a nondetermin-
istic model to enable various orders of reductions. This can serve for the verification of the
(in)dependency between the individual parts of a sentence.

Similarly as in [10], we use a restricted type of sRL-automata for which the number of rewrite,
delete and pebble operations made per cycle is limited by a constant. Such sRL-automata can
be described by (meta)-instructions. The cycles of M are described by restarting instructions
over Γ that describe the moves of the head and the changes of the states implicitly. Each cycle
of M is described by a single restarting instruction over Γ of the following form:

IR = (c · E0, [a1]1o1, E1, [a2]2o2, E2, . . . , Es−1, [as]sos, Es · $,Restart), where

• E0, E1, . . . , Es (s > 0), are regular languages over Γ (usually represented by regular
expressions);

• o1, . . . , os ∈ {dl, pb} ∪ {wr[b] | b ∈ Γ}.

• The symbols a1, a2, . . . , as ∈ Γ are the symbols on which the corresponding operations
o1, . . . , os are executed.

(In)dependencies in Functional Generative Description by Restarting Automata 17

For each operation o, let us define an auxiliary function o : Γ→ Γ as:
pb(a) = a, dl(a) = λ, wr[b](a) = b, for all a ∈ Γ.

When trying to execute IR starting from a tape inscription cw$,M will get stuck (and so reject),
if w does not admit a factorization of the form w = v0a1v1a2 . . . vs−1asvs such that vi ∈ Ei for
all i = 0, . . . , s. On the other hand, if w admits factorizations of this form, then one of them is
chosen nondeterministically, and cw$ is transformed (reduced) into cv0o1(a1)v1 · · · vs−1os(as)vs$.

Tails of accepting computations are described by accepting instructions over Γ of the form
IA = (c · E0, [a1]1, E1, [a2]2, E2, . . . , Es−1, [as]s, Es · $,Accept), where individual Ei are finite
languages over Γ. A tail performed by the instruction IA starts with the inscription on the tape
cz$; if z ∈ E0a1 · · · asEs, then M accepts z (and the whole computation as well). Otherwise,
the computation halts with rejection. This special form of accepting instruction is introduced
with regard to the future enhancements of restarting automata.

Further we will refer to a sRL-automaton M as a tuple M = (Γ, c, $, R(M), A(M)), where Γ
is a characteristic vocabulary (alphabet), c and $ are sentinels not belonging to Γ, R(M) is a
finite set of restarting instructions over Γ, and A(M) is a finite set of accepting instructions
over Γ. The class of all sRL-automata will be denoted as sRL.

The following property of restarting automata has a crucial role in our applications of restarting
automata.

(Correctness Preserving Property) A sRL-automaton M is correctness preserving if (for
all u, v ∈ Γ∗)

u ∈ LC(M) and u `c∗
M v imply that v ∈ LC(M).

In order to model adequately the analysis by reduction, we only consider correctness preserving
automata in the sequel.

2.1. DR-structures

In this subsection, we introduce DR-structures, which serve for the enhancement of the compu-
tations of restarting automata in the next section.

A DR-structure is a generalization of a DR-tree used in [4]. It is a directed acyclic graph
D = (V,H), where V is a finite set of nodes, and H ⊂ V × V is a finite set of edges. A node
u ∈ V is a tuple u = [i, j, a], where a is a symbol assigned to the node, i, j are natural numbers,
i represents the horizontal position of the node u, j represents the vertical position of u (it is
equal to 0 or to the number of nodes with the same horizontal position i from which there are
oriented paths to u). Each edge h = (u, v) ∈ H, where u = [iu, ju, a] and v = [iv, jv, b] for some
nonnegative integers iu, iv, ju, jv and a, b ∈ Γ, is either

• oblique edge – if iu 6= iv, or

18 M. Plátek, F. Mráz, and M. Lopatková

• vertical edge – if iu = iv and jv = ju + 1.

We say that D = (V,H) is a DR-tree if the graph D is a rooted inner tree (i.e. all maximal
paths in T end in its single root).

2.2. Enhanced sRL-automata

In this section, we introduce enhanced restarting automata – the so-called sERL-automata.
During their computations, these automata build DR-structures consisting of nodes containing
deleted, rewritten, or marked symbols and of directed edges between them.

Enhanced sRL-automata (sERL-automata) were introduced in a restricted form in [11]. The
model presented here works with more complex structures – in contrast to an sRL-automaton,
an sERL-automaton can attach a DR-structure to any item of its tape. Each sERL-automaton
Me is actually an sRL-automaton with enhanced instructions.

An sERL-automaton Me = (Γ, c, $, ER(Me), EA(Me)) consists of an alphabet Γ, sentinels
c, $ 6∈ Γ, a set of enhanced restarting instructions ER(Me), and a set of enhanced accepting
instructions EA(Me). An enhanced instruction is a pair Ie = (I,G) consisting of an instruction
I of a sRL-automaton and a directed acyclic graph G = (U,H) representing the required struc-
ture for symbols processed – deleted, rewritten or marked (pebbled) – during the application
of the instruction I. The restrictions put on the set of edges of G are described below. Let us
note that the graph G is described in a different way than the DR-structures; in this way, we
stress their different purpose here.

Restarting instruction. If I is a restarting instruction I = (c · E0, [a1]1o1, E1, [a2]2o2, E2,
. . . , Es−1, [as]sos, Es · $,Restart), then o1, . . . , os ∈ {dl, pb} ∪ {wr[b] | b ∈ Γ} are the operations
performed on symbols a1, . . . , as. Let oi1 = wr[bi1], . . . , oir = wr[bir], for some r ≥ 0, be
all rewrite operations from {o1, . . . , os}. The nodes in U are 1, 2, . . . , s, i′1, i

′
2, . . . , i

′
r and they

correspond to the symbols a1, . . . , as and symbols bi1 , . . . , bir , respectively. An edge (u, v) ∈ H
is:

1. either deleting : u = i corresponds to a deleted symbol ai (hence oi = dl, 1 ≤ i ≤ s) and
v = j for some j from U ,

2. or rewriting : u = i corresponds to a rewritten symbol ai (hence oi = wr[bij], bij ∈ Γ,
1 ≤ i ≤ s, 1 ≤ j ≤ r) and v = i′j.

Accepting instruction. If I is an accepting instruction I = (c ·E0, [a1]1pb, E1, [a2]2pb, E2, . . . ,
Es−1, [as]spb, Es · $,Accept), then the symbols a1, . . . , as are pebbled and they correspond to
the nodes {1, 2, . . . , s} of U . For each edge h = (u, v) ∈ H, u 6= v and h is considered to be
deleting.

(In)dependencies in Functional Generative Description by Restarting Automata 19

2.3. Computations and (structured) languages by sERL-automata

Let Me = (Γ, c, $, ER(Me), EA(Me)) be an sERL-automaton. By removing the graphs
from the enhanced instructions Me, we obtain instructions of the sRL-automaton M =
(Γ, c, $, R(M), A(M)), where R(M) = {I | (I,G) ∈ ER(Me)} and A(M) = {I | (I,G) ∈
EA(Me)}. Then we define the reduction relation `Me of Me to be the same as the reduction
relation `M of M . That is, u `Me v if Me can execute a cycle starting with tape contents cu$
and finishing with cv$ on its tape. It implies that Me accepts a word w iff M accepts w. Hence
the characteristic languages of Me and M coincide, LC(Me) = LC(M).

A formalization of analysis by reduction is denoted as characteristic reduction language. The
characteristic reduction language of the automaton Me is the set RC(Me) = {u `Me v | u, v ∈
LC(Me)}. This language fully determines enhanced computations of Me, which are introduced
in the next paragraphs. This property of enhanced sRL-automata illustrates the ability (and
the method) of linguists to derive dependency structures from the analysis by reduction.

A (restarting) configuration C = (T,D) of a given computation C by Me consists of two parts:
a set of items T representing current tape contents and a DR-structure D. The set T consists
of a sequence of items of the form [i, j, x], where i, j are nonnegative integers and x ∈ Γ. The
value i (called horizontal position) determines original position of the respective input symbol
in an input word. The value j (called vertical position) is the number of rewritings on the
corresponding place of the input word since the start of the computation C. This allows us to
build a DR-structure carrying information on relations among symbols in an input word.

For a given input word w = x1 . . . xn (xj ∈ Γ, for 1 ≤ j ≤ n), the initial contents of the
tape is the set of items Tw = {[0, 0, c]} ∪ {[i, 0, xi] | i = 1, . . . , n} ∪ {[n + 1, 0, $]}. During
subsequent cycles, some symbols of the tape are deleted or rewritten. Rewritten items preserve
the horizontal position of the items being rewritten, hence a tape inscription cx1 . . . xn$ (xi ∈ Γ)
can be represented by any set T = {[0, 0, c], [i1, j1, x1], [i2, j2, x2], · · · , [in, jn, an], [in+1, 0, $]},
where 0 < i1 < i2 < · · · < in+1; such T is called a (working) tape of w. Obviously, the vertical
position of both sentinels c,$ must be 0, and the horizontal position of the left sentinel must
be zero, too. Let Tp(w) denote the set of all tapes representing w.

The initial configuration C0 = (Tw, D∅) for an input word w = x1 . . . xn consists of the set of
items representing the initial contents of the tape Tw and the empty DR-structure D∅ = (∅, ∅).
By application of an enhanced restarting instruction I, a configuration C is transformed onto
a configuration C ′. The tape contents must be shortened and the DR-structure can grow.

In general, an enhanced configuration of Me on w is a pair (Pw, Dw), where Pw ∈ Tp(w), Dw

is a DR-structure such that all maximal oriented paths in Dw end in nodes which belong to
Pw. It is obvious that for any given word w and sERL-automaton Me, there exists an infinite
number of enhanced configurations of Me on w.

Next, we will define an application of an enhanced restarting instruction. Let Ir = (I,G)

20 M. Plátek, F. Mráz, and M. Lopatková

be an enhanced restarting instruction (see Section 2.2). An application of Ir in an enhanced
configuration Cw = (T,D) on a word w, where T ∈ Tp(w), results in a new configuration
C ′ = (T ′, D′). The application consists in the following steps:

1. Choosing a factorization of cw$ of the form w = v0a1v1a2 . . . vs−1asvs such that vi ∈ Ei

for all i = 0, . . . , s. On the other hand, if w does not admit any factorization of this form,
then Ie cannot be applied on Cw.

2. Rewriting the tape containing cw$ into the tape containing cv0o1(a1)v1 · · · vs−1 os(as)vs$
in the following way:

• each item from T that corresponds to an unchanged or pebbled symbols is copied
onto T ′,

• no item from T that corresponds to a deleted symbol is transferred onto T ′, and

• each item [i, j, x] from T that corresponds to a rewritten symbol x = ai (hence
oi = wr[bij], bij ∈ Γ, 1 ≤ i ≤ s, 1 ≤ j ≤ r) is replaced in T ′ by the item [i, j + 1, bij]

3. For each edge e ∈ H a new edge is inserted into the new DR-structure D′.

If e = (i, j) is a deleting edge, then an oblique edge is inserted leading from the item
containing deleted ai to the item corresponding to j (either aj, if 1 ≤ j ≤ s, or bj, when
j ∈ {i′1, . . . , i′r}) .
If e = (i, j) is a rewriting edge, then a vertical edge is inserted leading from the item
containing ai to the new item containing bj (j ∈ {i′1, . . . , i′r}), which was inserted into T ′
in step 2.

If there was a DR-structure attached to some of the deleted of rewritten cell, the structure
is preserved and combined into a larger graph.

We say that the configuration C ′ can be reached in one (restarting) step from the configuration
Cw by Me (using the instruction Ir) and denote it by Cw |=Me C

′ (we also write Cw |=Ir
Me

C ′ if
the instruction Ir ought to be specified).

Example 1. Let I1 = ((c · a∗, [a]1pb, λ, [a]2dl, λ, [b]3dl, b
∗X∗, [c]4wr[X], c∗ · $,Restart), D1) be an

enhanced restarting instruction with the graph D1 (see the left part of Figure 2). Then two
consecutive applications of I1 on the word aaabbbccc will result in the following sequence of
configurations (in the right part of Figure 2, the tape contents consist of the bold items depicted
in the upper horizontal part of a picture for a particular configuration).

Further, let us define an application of an enhanced accepting instruction Ia = (I,G) in an
enhanced configuration Cw = (T,D) of Me with a tape contents T ∈ Tp(w) for some word
w. The application of Ia in Cw results in a new configuration C ′ = (T ′, D′). Let I = (c ·
E0, [a1]1pb, E1, [a2]2pb, E2, . . . , Es−1, [as]spb, Es ·$,Accept) and G = (U,H). In this case, all the
edges in H are interpreted as deleting edges. The application consists in:

(In)dependencies in Functional Generative Description by Restarting Automata 21

1

2 3

4’

4

[0,0,c] [1,0,a] [2,0,a] [3,0,a] [4,0,b] [5,0,b] [6,0,b] [7,0,c] [8,0,c] [9,0,c] [10,0,$]

[0,0,c] [1,0,a] [2,0,a]

[3,0,a] [4,0,b]

[5,0,b] [6,0,b] [7,1,X] [8,0,c] [9,0,c] [10,0,$]

[7,0,c]

[0,0,c] [1,0,a]

[2,0,a]

[3,0,a] [4,0,b]

[5,0,b]

[5,0,b] [7,1,X] [8,1,c] [9,0,c] [10,0,$]

[7,0,c] [8,0,X]

Figure 2: The graph D1 and the two steps on aaabbbccc using I1

.

1. Choosing a factorization of cw$ of the form w = v0a1v1a2 . . . vs−1asvs such that vi ∈ Ei

for all i = 0, . . . , s. On the other hand, if w does not admit any factorization of this form,
then Ia cannot be applied on Cw.

2. Since only pebble operations are performed in Ia, the tape T is not changed (T ′ = T).

3. All edges and nodes from the DR-structure D are transferred into the new DR-structure
D′. Moreover, for each edge e = (i, j) ∈ H a new edge is inserted into D′. The new edge
starts in the item representing ai and ends in the item corresponding to aj.

Also in this case, we say that the configuration C ′ can be reached in one (accepting) step from
the configuration C by Me using the instruction Ia and denote it by C |=Ia

Me
C ′.

Example 2. Let I2 = ((c, [a]1pb, λ, [b]2pb, X
∗, [c]3pb, $,Accept), D2) be an enhanced accepting

instruction with the graph D2 from the left part of Figure 3. Then after applying I2 on the
resulting DR-structure from Example 1 we obtain the final DR-structure from the right part of
Figure 3.

1 2

3

[1,0,a]

[2,0,a]

[3,0,a] [4,0,b]

[5,0,b]

[6,0,b]

[9,0,c]

[7,1,X] [8,1,X]

[7,0,c] [8,0,c]

Figure 3: The graph D2 and the final DR-structure on aaabbbccc.

Let C |=Me C
′, C = (T,D), and C ′ = (T ′, D′). We denote as IDR(C,C ′) the smallest DR-

structure which is a subgraph of D′, and does not contain any edge from D. We say that
IDR(C,C ′) is the DR-increment of the step C |=Me C

′.

Let C = C0, C1, . . . , Ck be a sequence of configurations such that Ci |=Ii
Me

Ci+1 holds for all i =
0, . . . , k−1, Ii are restarting instructions for all i = 0, . . . , k−2, Ik−1 is an accepting instruction,

22 M. Plátek, F. Mráz, and M. Lopatková

and C0 is the initial configuration for a word w. Then we say that C is an accepting computation
of Me, the word w is accepted by Me, and the DR-structure Dk from the last configuration
Ck = (Tk, Dk) is the output DR-structure of the computation C. We write DR(C) = Dk.

Let AC(Me) denote the set of all accepting computations of the sERL-automaton Me. Then
the DR-language of Me is the set DR(Me) = {DR(C) | C ∈ AC(Me)}.

2.4. Enhanced automata with several layers

First, we introduce a technical notion of projection. Let Σ and Γ (⊃ Σ) be alphabets. The
projection from Γ∗ onto Σ∗ denoted as PrΣ is the morphism defined as a 7→ a (for a ∈ Σ) and
A 7→ λ (for A ∈ ΓrΣ). Similarly, we define the projection of languages: PrΣ : P(Γ∗) 7→ P(Σ∗).

Similarly as above, we introduce a projection for DR-structures. Let D be a DR-structure from
a DR-language over an alphabet Γ, PrΣ(D) denote a DR-structure over Σ that is obtained from
D by removing all nodes with (at least one) symbol from Γ r Σ and all edges incident to such
nodes. In an obvious way, the projection can be extended into a projection of a DR-language
over Γ.

Let Σ1, . . . ,Σj, for some j ≥ 1, be a sequence of pairwise disjoint alphabets and Γ = Σ1∪· · ·∪Σj.
We say that sERL-automaton M = (Γ, c, $, ER(M), EA(M)) is an enhanced sERL-automaton
with j layers ((j)-sERL-automaton for short) if the following assumptions are fulfilled: M is
correctness preserving, and M is allowed to rewrite a symbol from Σi (for 1 ≤ i ≤ j) by a
symbol from the same sub-vocabulary Σi, only. We refer to the symbols from Σi as the symbols
on layer i (or i-symbols).

2.5. Current model of FGD as a (4)-sERL-automaton

Our ultimate goal is to model (in)dependencies in FGD – by our opinion, a (4)-sERL-automaton
MFD provides a suitable formal framework for the formal description of this part of the grammar
of a natural language (Czech, in particular). In this way we formally separate (in)dependency
from the more complex phenomena like coordination, apposition and ellipsis.

First, let us describe an important property of analysis by reduction modeled by MFD (for all
phenomena considered in FGD).

Reduction completeness: if u, v ∈ LC(MFD), and v is a subsequence (a scattered substring)
of u, then u `∗MFD

v holds.

Secondly, we describe the properties of MFD that ensure the separation of the current version of
MFD from a more complex model capturing also phenomena other than (in)dependencies (like
e.g. coordination):

• Let C |=MFD
C1, C |=MFD

C2, where C1 and C2 are different configurations. Then the

(In)dependencies in Functional Generative Description by Restarting Automata 23

DR-increments IDR(C,C1) and IDR(C,C2) have disjoint sets of edges.

• We can see that the relation |=MFD
(steps of MFD) creates a partial ordering on the set

of configurations of MFD.

Let us consider all (enhanced) computations starting from a starting configuration C0;
further, let us consider the sets of all steps St of MFD and configurations Cf of these
computations. We can see that the pair (Cf , St) (set and ordering) creates a semi-lattice,
C0 being its maximum. The second separation property for MFD is formulated as a request
on (Cf , St): the semi-lattice (Cf , St) has to be a lattice as well, i.e. it must have also a
(common) single minimum.

Let us stress that if we would extend MFD for analysis of sentences with coordination
or apposition, the corresponding semi-lattice will have at least two different minimal
configurations.

• The DR-structures computed by all computations that start from a starting configuration
C0 are equal. Moreover, all these computations produce the same set of DR-increments
(naturally in different sequences).

Further, we continue with the technical properties and notions connected with MFD.

Let MFD = (Γ, c, $, ER(MFD), EA(MFD)); Γ consists of four parts Γ = Σw ∪ Σm ∪ Σa ∪ Σt,
which correspond to the respective layers of FGD (Section 1.2). Recall that the symbols from
individual layers can be quite complex.

A language of layer ` ∈ {w,m, s, t} accepted by MFD is obtained as a projection of the charac-
teristic language onto Σ`, i.e. L`(MFD) = PrΣ`(LC(MFD)).

The characteristic language LC(MFD) contains input sequences (over Σw) interleaved with
(meta)language information in the form of symbols from Σm ∪Σa ∪Σt. Hence, the language of
correct Czech sentences is Lw = PrΣw(LC(MFD)).

Similarly, a DR-language of layer ` accepted by MFD is obtained as DR`(MFD) = PrΣ`(DR(MFD)),
` ∈ {w,m, s, t}. Let us note that DRw(MFD) and DRm(MFD) are empty (Lw and Lm are
string languages). Further, DRa(MFD) and DRt(MFD) are languages of DR-trees. Each DR-tree
T ∈ DRt(MFD) is projective (with respect to its descendants); that is, for each node n of the
DR-tree T all its descendants constitute a contiguous sequence in the horizontal ordering of
nodes of the tree T . On the other hand, trees from DRa(MFD) can be in general non-projective.

The DR-language DRt(MFD) represents the set of meaning descriptions in FGD whereas
DRa(MFD) models a set of (surface) syntactic trees.

Let z ∈ LC(MFD) and let DR(z,MFD) denote the DR-structure from DR(MFD) resulting from
(all) accepting computations of MFD on z. Let us recall that the language description based on

24 M. Plátek, F. Mráz, and M. Lopatková

FGD is disambiguated (see Section 1.1); in particular, DRt(MFD) and DRa(MFD) contain exactly
one t-tree and a-tree, respectively, resulting from all accepting computations of MFD on z.

Let us note that Lt(MFD) is designed as a deterministic context-free language. Readers familiar
with restarting automata can see that LC(MFD) is a deterministic context-sensitive language
and Lw(MFD) is a context-sensitive language.

So far, we have not mentioned the edges from DR-structures from DR(MFD) that interconnect
nodes (their symbols) in different layers. These edges serve for connecting the correspond-
ing lexical units on different layers (see the dotted lines in Figure 1), they are obtained by
applications of extended restarting meta-instructions of MFD.

Here such an edge connects nodes on neighboring layers only. For MFD, these edges can connect
w-layer nodes to m-layer nodes, m-layer nodes to a-layer nodes, a-layer nodes to t-layer nodes,
and nothing else (see Figure 1).

Let z ∈ LC(MFD) and let DRt(z,MFD) denote the DR-tree from DRt(MFD) resulting from any
accepting computation of MFD on z (see above the property of unambiguity). Now we can
define the TR-characteristic relation TSH(MFD) of the automaton MFD, which is the relation
between sentence on the (w-layer) and its meaning (t-layer), as

TSH(MFD) = {(u, t) | ∃y ∈ LC(MFD), u = PrΣw(y) and t ∈ DRt(y,MFD)}.

Remark 2. TR-characteristic relation represents the most important relations in FGD – the
relations of synonymy and ambiguity. From the characteristic relation, the fundamental notions
of analysis and synthesis are derived.

A TSH-synthesis using MFD is the function that returns the set of all word forms (i.e. Czech
sentences) u which are in TSH relation with a given DR-tree t ∈ DRt(MFD). Formally:

synt-TSH(MFD, t) = {u | (u, t) ∈ TSH(MFD)} .

For a tectogrammatical representation, i.e. a DR-tree t from DR(MFD), synt-TSH(MFD, t) is the
set of all corresponding sentences from Lw(MFD). Informally, synt-TSH(MFD, t) is the set of all
sentences having ‘meaning’ t. This notion makes it possible to study synonymy of sentences
(when a sentence has several meanings) and its degree.

A function dual to the TSH-synthesis is a function called TSH-analysis of a string u using MFD:

anal-TSH(MFD, u) = {t | (u, t) ∈ TSH(MFD)} .

For a given sentence u ∈ Lw, TSH-analysis returns all its possible tectogrammatical represen-
tations from DR(MFD) – i.e. all ‘meanings’ of u.

Hence it models ambiguity of an individual Czech sentence u. This notion represents a formal
definition of complete syntactic-semantic analysis using MFD.

(In)dependencies in Functional Generative Description by Restarting Automata 25

Similarly, we can define a surface syntactic relation and a surface analysis. Let z ∈ LC(MFD)
and let DRa(z,MFD) denote the (single) DR-tree from DRa(MFD) resulting from accepting com-
putations of MFD on z.

A surface syntactic relation TSX(MFD) of the automaton MFD is defined as the relation between
a Czech sentence (on the w-layer) and its surface syntax (a-layer).

TSX(MFD) = {(u, t) | ∃y ∈ LC(MFD), u = PrΣw(y) and t ∈ DRa(y,MFD)}.

Finally we introduce the notion of TSX-analysis of a string u using MFD:

anal-TSX(MFD, u) = {t | (u, t) ∈ TSX(MFD)} .

TSX-analysis serves as the (surface) syntactic analysis for Czech in FGD. We will show elsewhere
that, in general (and for Czech in particular), the TSX-analysis (surface syntactic relation)
cannot adequately substitute the TSH-analysis (TR-characteristic relation), i.e. the surface
syntactic relation cannot adequately describe the synonymy and ambiguity at the same time.
On the other hand, the procedure of complete TSH-analysis is usually implemented in two
basic steps, the first of them being the TSX-analysis. Similarly, the TSH-synthesis is usually
implemented in several steps.

Concluding remarks

In this paper, encouraged by [2, 1], we extend the formal model of natural language description
based on FGD so that it outputs the so-called reduction language and a set of complex DR-
structures. In this way we give a formalization of the basic methodology of FGD and the basic
task of capturing (in)dependencies in natural language sentences in terms of the automata
theory. Let us stress that this model does not work with any other symbols than Czech word-
forms and linguistic categories (meta-symbols); these categories can be found in grammar books
describing the Czech language and in Czech lexicons. This means that the model does not use
any auxiliary symbol(s) for technical reasons only. This issue is one of the important differences
between current models and the models of FGD from the previous century.

The novelty of this contribution consists in a further formal extension of restarting automata
in order to produce dependency based tree structures with several interlinked layers and in the
application of these automata to the stratificational description of a natural language. Let us
note that the new model can be considered also as an extension and generalization of Free-
Order Dependency Grammars (see [4]). Therefore, it can be used for the study of the complexity
and freedom of the word-order of natural languages by dependency structures, namely for the
complexity and freedom of word-order of the Czech language. The measures defined in [4] can
be used also for DR-structures produced by sERL-automata. We envisage that the proposed
methodology is not FGD-specific. A similar formal frame can be prepared for other language
descriptions, as e.g. for those presented in [9] and [5].

In the near future, we plan to study the relation between reduction languages and DR-languages
in detail. We believe that we will be able to show more explicitly the adequateness of the
presented model for FGD.

26 M. Plátek, F. Mráz, and M. Lopatková

Acknowledgements

The paper reports on the research supported by the grants of GA ČR P202/10/1333,
P103/10/0783, and 405/08/0681. It is carried under the project of MŠMT ČRMSM0021620838.

References

[1] BENSCH, S., DREWES, F., Millstream Systems, Report UMINF 09.21, Umeå University,
2009.

[2] GRAMATOVICI, R., MARTÍN-VIDE, C., Sorted Dependency Insertion Grammars,
Theor. Comput. Sci. 354(1) (2006) 142–152.

[3] HAJIČ, J. et al., Prague Dependency Treebank 2.0, Linguistic Data Consortium, Philadel-
phia, PA, USA 2006.

[4] HOLAN, T., KUBOŇ, V., OLIVA, K., PLÁTEK, M., Two Useful Measures of Word
Order Complexity, in: A. Polguere, S. Kahane (Eds.) Processing of Dependency-Based
Grammars. Workshop Proceedings (COLING/ACL’98), Montreal, ACL, 1998, 21–28.

[5] KUNZE, J., Abhängigkeitsgrammatik, Volume XII of Studia Grammatica, Akademie
Verlag, Berlin 1975.

[6] LOPATKOVÁ, M., MRÁZ, F., PLÁTEK, M., Towards a Formal Model of Natural Lan-
guage Description Based on Restarting Automata with Parallel DR-structures, in: Pro-
ceedings of ITAT, 2010 (accepted).

[7] LOPATKOVÁ, M., PLÁTEK, M., KUBOŇ, V., Modeling Syntax of Free Word-Order
Languages: Dependency Analysis by Reduction, in: Matoušek, Mautner, Pavelka (Eds.)
Proceedings of TSD 2005. LNAI 3658, Springer-Verlag, Berlin Heidelberg 2005, 140–147.

[8] LOPATKOVÁ, M., PLÁTEK, M., SGALL, P., Towards a Formal Model for Functional
Generative Description, Analysis by Reduction and Restarting Automata, The Prague
Bulletin of Mathematical Linguistics 87 (2007) 7–26.

[9] MEĽČUK, I. A., Dependency Syntax: Theory and Practice, State University of New York
Press, Albany 1988.

[10] MESSERSCHMIDT, H., MRÁZ, F., OTTO, F., PLÁTEK, M., Correctness Preserva-
tion and Complexity of Simple RL-Automata, in: Implementation and Application of
Automata. LNCS 4094, Springer-Verlag, Berlin Heidelberg 2006, 162–172.

[11] PLÁTEK, M., MRÁZ, F., LOPATKOVÁ, M., Restarting Automata with Structured
Output and Functional Generative Description, in: A. Dediu, H. Fernau, C. Martin-Vide
(Eds.) Proceedings of LATA 2010, LNCS 6031. Springer-Verlag, Berlin Heidelberg, 2010,
500–511.

[12] SGALL, P., HAJIČOVÁ, E., PANEVOVÁ, J., The Meaning of the Sentence in Its Seman-
tic and Pragmatic Aspects, Reidel, Dordrecht 1986.

