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Abstract

We present our system used for participa-
tion in the ICON 2009 NLP Tools Contest:
dependency parsing of Hindi, Bangla and
Telugu. The system consists of three exist-
ing, freely available dependency parsers,
two of which (MST and Malt) have been
known to produce state-of-the-art struc-
tures on data sets for other languages. Var-
ious settings of the parsers are explored in
order to adjust them for the three Indian
languages, and a voting approach is used
to combine them into a superparser. Since
there is nothing novel about the approach
used, substantial part of the paper is de-
voted to the analysis of errors the system
makes on the given data sets.

1 Introduction

Dependency parsing, i.e. sentence analysis that
outputs tree of word-on-word dependencies (as op-
posed to constituent trees of context-free deriva-
tions), gained growing attention and popularity re-
cently. There are data-driven dependency parsers
that can be trained on syntactically annotated cor-
pora (treebanks) and new, previously unseen ma-
terial can be parsed very efficiently (Nivre, 2009).
Most of the successful parsers employ discrimi-

native learning techniques to sort out vast sets of
potentially useful features observed in the input
text. Thus, for every new training treebank, smart
feature engineering is the key to getting the most
out of the existing parsers, regardless how well
they performed on other data sets and languages.
Now that there are new treebanks available for two
Indo-Aryan and one Dravidian language, we took
three existing dependency parsers and explored the
possibilities of tuning them for the new training
data. Both parser configuration and data prepro-
cessing are relevant approaches to the tuning. In

addition, we used parser combination to further
improve the results.
Throughout the paper we focus mainly on the

unlabeled attachment score. Although the parsers
produce labeled dependencies, we do not optimize
the system towards label accuracy.
The rest of the paper is organized as follows: In

Section 2, we describe the respective parsers and
the combined parsing system. In Section 3, we re-
port on the experiments we performed, discuss var-
ious results on the development set and analyze the
errors. In Section 4 we present the official results
on the test data. We conclude by summarizing the
best configuration we were able to find, and future
implications.

2 System Description

Several good trainable dependency parsers have
emerged during the past five years. The CoNLL-
X (Buchholz and Marsi, 2006) and CoNLL 2007
(Nivre et al., 2007a) shared tasks in multilingual
dependency parsing have greatly contributed to the
development of the parsers. Some of the parsers
are now freely available on the web, some are even
open-source. We selected three of the publicly
available parsers for our experiments:

2.1 MST Parser
The Maximum Spanning Tree (MST) parser (Mc-
Donald et al., 2005) views the sentence as a di-
rected complete graph with edges weighted by a
feature scoring function. It finds for the graph
the spanning tree that maximizes the weights of
the edges. A multi-class classification algorithm
called MIRA is used to compute the scoring func-
tion.
MST Parser achieved the best unlabeled attach-

ment scores (UAS) for 9 out of the 13 languages of
CoNLL-X, and second best scores in two others.
Parsing is fast but training the parser takes many
hours on large treebanks. On small data however,
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multiple quick experiments with different settings
are still doable. The parser is implemented in Java
and freely available for download.1

2.2 Malt Parser

The Malt Parser (Nivre et al., 2007b) is a deter-
ministic shift-reduce parser where input words can
be either put to the stack or taken from the stack
and combined to form a dependency. The decision
which operation to perform is made by an oracle
based on various features of the words in the input
buffer and the stack. The default machine learning
algorithm used to train the oracle is a sort of SVN
(support vectormachine) classifier (Cristianini and
Shawe-Taylor, 2000).
Malt Parser has participated in both CoNLL-

X and CoNLL 2007 shared tasks, and although it
achieved the best UAS in three languages only,
it usually scored among the five best parsers,
sometimes with statistically insignificant differ-
ence from the winner. Malt Parser is really fast
and its new Java implementation is open-source,
freely available for download.2

2.3 DZ Parser

In order to combine the two above parsers, we
needed a third parser. We picked DZ Parser (Ze-
man, 2004), which is also reasonably fast and
freely available.3 Although its accuracy, if com-
pared to MST or Malt, is worse by a wide margin,
this parser proved useful because its only role was
to help to form amajority wheneverMST andMalt
disagreed.
DZ Parser builds a model of bigrams of words

that occur together in a dependency; most of the
time, words are identified by their part of speech
tags and morphological features. The parser was
originally developed for Czech but it can be re-
trained for any other language.4

2.4 Voting Superparser

The three parsers are combined using a simple
weighted-voting approach similar to Zeman and

1http://sourceforge.net/projects/mstparser/
2http://maltparser.org/
3http://ufal.mff.cuni.cz/~zeman/projekty/

parser/
4Of course there are other dependency parsers that suc-

cessfully participated in the CoNLL shared tasks and are
available for download. One alternative worth mentioning
is the ISBN Parser (Titov and Henderson, 2007) at http:
//flake.cs.uiuc.edu/~titov/.

Žabokrtský (2005), except that the output is guar-
anteed to be cycle-free. We start by evaluating
every parser separately on the development data.
The UAS of each parser is subsequently used as
the weight of that parser’s vote. Dependencies are
parent-child relations, and for every node there are
up to three candidates for its parent (if all three
parsers disagree). Candidates get weighted votes
– e.g., if parsers with weights w1 = 0.8 and w2 =
0.7 agree on the candidate, the candidate gets 1.5
votes. Since we have only three parsers, in prac-
tice this means that the candidate of the best parser
looses only if 1. the other two parsers agree on
someone else, or 2. if attaching the child to this
candidate would create a cycle.
The tree is constructed from the root down. We

repeatedly add nodes whose winning parent candi-
dates are already in the tree. If none of the remain-
ing nodes meet this condition, we have to break
a cycle. We do so by examining all unattached
nodes. At each nodewe note the votes of its current
winning parent. Then we remove the least-scoring
winner and go on with adding nodes until all nodes
are attached or there is another cycle to break.

3 Experiments

The final test data are blind, any error analysis is
therefore impossible. That is why all scores given
in this section were measured on the development
data. All three treebanks follow the same annota-
tion scheme and each of them is available in two
flavors:

• nomorph variety contains word forms, chunk
labels, dependency links and dependency la-
bels

• morph variety is augmented by automatically
assigned lemmas, part of speech tags and val-
ues of morphological features (gender, num-
ber, person, case, postposition and tam –
tense+aspect+modality)

3.1 Morphology

Table 1 shows baseline results on the nomorph
data. Both MST and Malt parsers were invoked in
projective mode, Malt with the default Nivre arc-
eager algorithm.
There are several ways how to use the additional

information from themorph data. The easiest way,
exploitable by all three parsers, is to combine the
chunk label, the POS tag and the features into one
tag string. The results (not presented here) are very

http://maltparser.org/
http://ufal.mff.cuni.cz/~zeman/projekty/parser/
http://ufal.mff.cuni.cz/~zeman/projekty/parser/
http://flake.cs.uiuc.edu/~titov/
http://flake.cs.uiuc.edu/~titov/


MST Malt DZ Vote
hi 80.32 81.84 62.00 82.48
bn 82.00 84.71 71.02 83.11
te 77.63 80.89 70.52 80.59

Table 1: Baseline UAS of the four parsers on
nomorph development data. Language codes fol-
low ISO 639: hi = Hindi, bn = Bangla, te = Telugu.

poor. Although there may be tagging errors, the
most likely cause is data sparseness. In Table 2 we
illustrate this by showing the numbers of unique
values in the various attributes of treebank words.

occ frm lem cl pos feat
hi 13779 3973 3134 10 33 714
bn 6449 2997 2336 14 30 367
te 5494 2462 1403 12 31 453

Table 2: Size of the training corpora: occ – word
occurrences, frm – distinct forms, lem – lemmas,
cl – chunk labels, pos – part of speech tags, feat –
feature value combinations.

To fight sparseness, we could either restrict the
tag to selected information, or split the information
into multiple features learnt separately, or both.
We first restricted the tag string to selected infor-
mation. Parsing on other treebanks showed that
POS with case is especially useful (Zeman, 2004).
The other feature we selected is called vibhakti,
which partially corresponds to case suffix and par-
tially to postposition.5
Table 3 presents the results of restricting the tag

string to POS+case+vibhakti. This move espe-
cially improves the MST Parser, which now out-
performs Malt on Hindi and Bangla. Malt im-
proves on Hindi but drops behind on Bangla and
Telugu. DZ Parser also improves on Hindi and de-
teriorates elsewhere but there is an interesting ob-
servation: even though its own scores are worse,
the worsened output actually improves the voting
results (provided the configurations of MST and
Malt are fixed). So it seems that the newly intro-
duced errors are less important (because taken care
of by the more powerful parsers) while some dif-
ficult parts of the data are now covered better.
Finally, ve returned to nomorph with Malt on

Bangla and Telugu, where the POS+case+vibhakti
tags did not help. The results are given in Table 4.

5The Indian treebanks at hand are unusual in that nodes do
not always map to words. They represent chunks, with func-
tion words such as postpositions hidden in node attributes.

MST Malt DZ Vote
hi 86.16 85.84 75.12 87.12
bn 85.70 77.31 54.38 85.82
te 79.85 77.78 45.78 79.70

Table 3: UAS on refined morph data (POS tag,
case and vibhakti concatenated).

This is also the configuration we used to parse the
test set for the official evaluation round 1.

MST Malt DZ Vote
hi 86.16 85.84 75.12 87.12
bn 85.70 84.71 54.38 86.19
te 79.85 80.89 45.78 82.37

Table 4: UAS on mixed data: MST and DZ use
POS+case+vibhakti for all languages, Malt uses
that for Hindi only, elsewhere it uses just POS.

3.2 Nonprojectivity
Nonprojectivity is a property of the dependency
structure and the word order (Hajičová et al., 2004)
that makes parsingmore difficult. All three parsers
can produce nonprojective structures and all three
treebanks are nonprojective. However, except for
Hindi, the proportion of nonprojective dependen-
cies is so small that one can hardly imagine that
running the parsers in nonprojective mode would
bring any improvement. A quick experiment with
Malt Parser switched to the nonprojective Stack
Eager algorithm revealed that it actually hurts the
results even for Hindi.

Edges Sentences
hi 01.83 13.93
bn 00.96 05.49
te 00.45 01.31

Table 5: Percentage of nonprojective dependen-
cies, and of sentences containing at least one non-
projectivity.

3.3 Error Patterns
The accuracy of the dependencies is relatively high
and it is difficult to trace repetitive error patterns.
In Hindi, many wrong attachments seem to be
long-distance, and verbs, conjunctions, root and
NULL nodes are frequently involved. Frequent
words should perhaps be available to the parsers
as parts of tag strings: for instance, Hindi िक (ki)



“that” or तो (to) are wrongly attached because the
parser only sees the general CC tag. On a similar
note, problems with coordination, also observed
e.g. by Zeman (2004), occur here, too: भाई और
भाभी (bhāī aura bhābhī) “brother and his wife” is
correctly recognized as coordination rooted by the
conjunction और, however, the conjunction node
lacks the information about its noun children and
fails to attach as the subject of the verb.
The tag string should contain both the chunk

label and the POS tag. So far we wrongly as-
sumed that POS always determines the chunk la-
bel. It is often so but not always, as exemplified
in the Bangla chunk sequence তেব সুদীপ ওেক
একিদন আড়ােল েডেক বেলিছল েকৗতূহল েদখােল
তুিম উঁচুেত উঠেত অিনেমষ (tabe sudīpa oke ekad-
ina āṛāle ḍeke balechila kautūhala dekhāle tumi um̃-
cute uṭhate animeša). Thewords েডেক and েদখােল
are tagged VGNF|VM while বেলিছল and উঠেত
are VGF|VM. The parser gets them wrong and it
could be caused by it seeing only VM in the tag.
In Telugu, extraordinal number of sentences fol-

low the SOV order so strongly that the last node
(verb) is almost always attached to the root and
most other nodes are attached directly to the last
node. An example chunk sequence where this rule
would lead to 100 % accuracy follows: రాష్టర౎ంల ొ
రంగారెడి్డ మెదక్ నిజామాబాద్ జిలా్లలలొ పంటను
గొపొ్ప పండిసు్తనా్నరు (rāšṭraṁlo raṁgāreḍḍi medak
nijāmābād jillālalo paṁṭanu goppo paṁḍistunnāru).
In the light of such examples it seems reasonable
to provide the parsers with an additional feature
telling whether a particular dependency observes
the “naïve Telugu” structure. Note however that
this will not help with the other two languages.
While 73.75 % of Telugu dependncies follow this
rule, it is only 39.52 % in Bangla and 35.71 % in
Hindi.

3.4 Voting Potential
In order to see howmuch can be potentially gained
from parser combination, we summarized the at-
tachments that at least one of the parsers got cor-
rect. This oracle accuracy gives an upper limit for
the real scores we can achieve. It corresponds to
the case that for every word, an oracle correctly
tells which parser to ask about the word’s par-
ent. Table 6 presents the oracle accuracies together
with percentage of unique correct attachments that
only one parser delivered. These figures give some
idea of how much similar are the errors of the re-
spective parsers to each other. Malt parser has

the most unique know-how in all three languages,
which could be explained by its focus on local fea-
tures. Both MST and DZ can reach for global,
sentence-wide relations. Note however, that the
development data set is small and the percentages
correspond to 42 (Malt/Bangla) or less words.

Oracle UqMST UqMalt UqDZ
hi 93.92 2.96 3.12 1.84
bn 94.20 4.32 5.18 1.97
te 88.00 2.37 5.48 2.07

Table 6: Oracle accuracy for the three languages,
and unique correct attachments (%) proposed by a
single parser.

4 Official Evaluation

Finally, we present the official evaluation of our
voting superparser, as measured by the organizers
on the test data. For this purpose, the parsing sys-
tem has been retrained on both the training data
and the development data. The results are shown
in Table 7.

UAS LAA LAS
hi 88.58 (3:90.31) 72.66 (4:76.38) 68.60 (4:74.48)
bn 86.06 (4:90.32) 71.28 (4:81.27) 66.70 (5:79.81)
te 80.27 (4:86.28) 54.20 (4:61.58) 49.91 (4:60.55)

Table 7: Official scores on the test data: unlabeled
attachment score (UAS), label assignment accu-
racy (LAA) and labeled attachment score (LAS).
The numbers in parentheses are the rank of our sys-
tem and the score of the best systemw.r.t. the given
metric.

5 Related and Future Work

There is a large body of work on parser combina-
tion. A summary can be found in Nivre and Mc-
Donald (2008), whose approach is also related to
ours w.r.t. the selection of parsers. However, their
feature-based integration of MST andMalt parsers
is much more sophisticated than our lightweight
voting. Further improvement of accuracy can be
expected if MST-Malt integration is applied to the
Indian treebanks.
Future work, at the time of writing, includes ex-

periments that can be run before the evaluation
round 2, and thus their results will appear in the
final version of this paper. We definitely intend to
test other algorithms of the Malt parser, as well as



to reconfigure its feature pool and let it work with
POS, case and vibhakti separately.
Labeling of the dependencies is another prob-

lem that deserves more attention. We have con-
centrated on the unlabeled attachment score so far
and for the sake of the official evaluation, we sim-
ply pushed the MST labels through. A separate
postprocessing classifier would probably produce
better results.

6 Conclusion

We have described our system of voting parsers,
as applied to the ICON 2009 NLP Tools Contest
task. We showed that case and vibhakti are impor-
tant features at least for parsing Hindi while their
usability in Bangla and Telugu is limited by data
sparseness. Providing these features to MST and
DZ in all languages, and to Malt in Hindi only
yielded the best combined parser. We also dis-
cussed several error patterns that could lead to fur-
ther improvements of the parsing system in future.
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