
LEXICAL ASSOCIATION MEASURES
Collocation Extraction

Pavel Pecina



STUDIES IN COMPUTATIONAL
AND THEORETICAL LINGUISTICS

Pavel Pecina

LEXICAL ASSOCIATION MEASURES
Collocation Extraction

Published by Institute of Formal and Applied Linguistics
as the 4th publication in the series
Studies in Computational and Theoretical Linguistics.

Editor in chief: Jan Hajič

Editorial board: Nicoletta Calzolari, Miriam Fried, Eva Hajičová, Frederick Jelinek,
Aravind Joshi, Petr Karlík, Joakim Nivre, Jarmila Panevová,
Patrice Pognan, Pavel Straňák, and Hans Uszkoreit

Reviewers: Timothy Baldwin
Jiří Semecký

Copyright © Institute of Formal and Applied Linguistics, 2009

ISBN 978-80-904175-5-7



to my family





Contents

1 Introduction 1
1.1 Lexical association . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Collocational association . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.2 Semantic association . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.3 Cross-language association . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Motivation and applications . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Goals and objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Theory and Principles 11
2.1 Notion of collocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Lexical combinatorics . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.2 Historical perspective . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.3 Diversity of definitions . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.1.4 Typology and classification . . . . . . . . . . . . . . . . . . . . . . . 18
2.1.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2 Collocation extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2.1 Extraction principles . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2.2 Extraction pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.2.3 Linguistic preprocessing . . . . . . . . . . . . . . . . . . . . . . . . 26
2.2.4 Collocation candidates . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.2.5 Occurrence statistics . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.2.6 Filtering candidate data . . . . . . . . . . . . . . . . . . . . . . . . . 33

3 Association Measures 39
3.1 Statistical association . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2 Context analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4 Reference Data 49

v



CONTENTS

4.1 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.1.1 Candidate data extraction . . . . . . . . . . . . . . . . . . . . . . . 49
4.1.2 Annotation process . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2 Prague Dependency Treebank . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.2.1 Treebank details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.2.2 Candidate data sets . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.2.3 Manual annotation . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3 Czech National Corpus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.3.1 Corpus details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.3.2 Automatic preprocessing . . . . . . . . . . . . . . . . . . . . . . . . 59
4.3.3 Candidate data set . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.4 Swedish PAROLE corpus . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.4.1 Corpus details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.4.2 Support-verb constructions . . . . . . . . . . . . . . . . . . . . . . . 62
4.4.3 Manual extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5 Empirical Evaluation 65
5.1 Evaluation methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.1.1 Precision-recall curves . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.1.2 Mean average precision . . . . . . . . . . . . . . . . . . . . . . . . 68
5.1.3 Significance testing . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.2.1 Prague Dependency Treebank . . . . . . . . . . . . . . . . . . . . . 71
5.2.2 Czech National Corpus . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.2.3 Swedish PAROLE Corpus . . . . . . . . . . . . . . . . . . . . . . . . 74

5.3 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6 Combining Association Measures 79
6.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.2.1 Linear logistic regression . . . . . . . . . . . . . . . . . . . . . . . . 80
6.2.2 Linear discriminant analysis . . . . . . . . . . . . . . . . . . . . . . 81
6.2.3 Support vector machines . . . . . . . . . . . . . . . . . . . . . . . . 81
6.2.4 Neural networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

vi



CONTENTS

6.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.3.1 Prague Dependency Treebank . . . . . . . . . . . . . . . . . . . . . 83
6.3.2 Czech National Corpus . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.3.3 Swedish PAROLE Corpus . . . . . . . . . . . . . . . . . . . . . . . . 85

6.4 Linguistic features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.5 Model reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.5.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.5.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7 Conclusions 93

A MWE 2008 Shared Task Results 97
A.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
A.2 System overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
A.3 German Adj-Noun collocations . . . . . . . . . . . . . . . . . . . . . . . . 99

A.3.1 Data description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
A.3.2 Experiments and results . . . . . . . . . . . . . . . . . . . . . . . . 99

A.4 German PP-Verb collocations . . . . . . . . . . . . . . . . . . . . . . . . . 100
A.4.1 Data description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
A.4.2 Experiments and results . . . . . . . . . . . . . . . . . . . . . . . . 100

A.5 Czech PDT-Dep collocations . . . . . . . . . . . . . . . . . . . . . . . . . . 102
A.5.1 Data description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
A.5.2 Experiments and results . . . . . . . . . . . . . . . . . . . . . . . . 103

A.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

B Complete Evaluation Results 105
B.1 PDT-Dep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
B.2 PDT-Surf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
B.3 CNC-Surf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
B.4 PAR-Dist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

Summary 111

Bibliography 113

Index 127

vii





Motto:

“You shall know a word by the company it keeps!”
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1
Introduction

Word association is a popular word game based on exchanging words that are in some
way associated together. The game is initialized by a randomly or arbitrarily chosen
word. A player then finds another word associated with the initial one, usually the
first word that comes to his or her mind, and writes it down. A next player does
the same with this word and the game continues in turns until a time or word limit
is met. The amusement of the game comes from the analysis of the resulting chain
of words – how far one can get from the initial word and what the logic behind the
individual associations is. An example of a possible run of the game might be this
word sequence: dog, cat, meow, woof, bark, tree, plant, green, grass, weed, smoke, cigarette,
lighter, fluid.1

Similar concepts are commonly used in psychology to study a subconscious mind
based on subject’s word associations and disassociations, and in psycholinguistics to
study the way knowledge is structured in the human mind, e.g. by word association
norms measured as subject’s responses to words when preceded by associated words
(Palermo and Jenkins, 1964). “Generally speaking, subjects respond quicker than nor-
mal to the word nurse if it follows a highly associated word such as doctor” (Church
and Hanks, 1990).

1.1 Lexical association

Our interest in word association is linguistic and hence, we use the term lexical asso-
ciation to refer to association between words. In general, we distinguish between three
types of association between words: collocational association restricting combina-
tion of words into phrases (e.g. crystal clear, cosmetic surgery, weapons of mass destruc-
tion), semantic association reflecting semantic relationship between words (e.g. sick –
ill, baby – infant, dog – cat), and cross-language association corresponding to potential
translations of words between different languages (e.g. maison (FR) – house (EN), baum
(GER) – tree (EN), květina (CZ) – flower (EN)).

In the word association game and the fields mentioned above, it is a human mind
what directly provides evidence for exploring word associations. In this work, our
source of such evidence is a corpus – a collection of texts containing examples of word
usages. Based on such data and its statistical interpretation, we attempt to estimate
lexical associations automatically by means of lexical association measures determin-

1examples from http://www.wordassociation.org/
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1 INTRODUCTION

ing the strength of association between two or more words based on their occurrences
and cooccurrences in a corpus. Although our study is focused on the association on
the collocational level only, most of these measures can be easily used to explore also
other types of lexical association.

1.1.1 Collocational association

The process of combining words into phrases and sentences of natural language is
governed by a complex system of rules and constraints. In general, basic rules are
given by syntax, however there are also other restrictions (semantic and pragmatic)
that must be adhered to in order to produce correct, meaningful, and fluent utter-
ances. These constrains form important linguistic and lexicographic phenomena gen-
erally denoted by the term collocation. Collocations range from lexically restricted
expressions (strong tea, broad daylight), phrasal verbs (switch off, look after), technical
terms (car oil, stock owl), and proper names (New York, Old Town) to idioms (kick the
bucket, hear through the grapevine), etc. As opposed to free word combinations, colloca-
tions are not entirely predictable only on the basis of syntactic rules. They should be
listed in a lexicon and learned the same way as single words are.

Components of collocations are involved in a syntactic relation and usually tend
to cooccur (in this relation) more often than would be expected in other cases. This
empirical aspect typically distinguishes collocations from free word combinations.
Collocations are often characterized by semantic non-compositionality – when the
exact meaning of a collocation cannot be (fully) inferred from the meaning of its com-
ponents (kick the bucket), syntactic non-modifiability – when their syntactic structure
cannot be freely modified, e.g. by changing the word order, inserting another word,
or changing morphological categories (poor as a church mouse vs. *poor as a big church
mouse), and lexical non-substitutability – when collocation components cannot be
substituted by synonyms or other related words (stiff breeze vs. *stiff wind) (Man-
ning and Schütze, 1999, Chapter 5). Another property of some collocations is their
translatability into other languages: a translation of a collocation cannot generally
be performed blindly, word by word (e.g. the two-word collocation ice cream in En-
glish should be translated into Czech as one word zmrzlina, or perhaps as zmrzlinový
krém (rarely) but not as ledový krém which would be a straightforward word-by-word
translation).

1.1.2 Semantic association

Semantic association requires no grammatical boundedness between words. This
type of association is concerned with words that are used in similar contexts and
domains – word pairs whose meanings are in some kind of semantic relation. Com-
piled information of such type is usually presented in the form of a thesaurus and
includes the following types of relationships: synonyms with exactly or nearly equiv-

2



1.1 LEXICAL ASSOCIATION

alent meaning (car – automobile, glasses – spectacles), antonyms with the opposite mean-
ing (high – low, love – hate), meronyms with the part-whole relationship (door – house,
page –book), hyperonyms based on superordination (building – house, tree – oak), hy-
ponyms based on subordination (lily – flower, car – machine), and perhaps other word
combinations with even looser relations (table – chair, lecture – teach).

Semantic association is closest to the process involved in the word game mentioned
in the beginning of this chapter. Although presented as a relation between words
themselves, the actual association exists between their meanings (concepts). Before
a word association emerges in the human mind, the initial word is semantically dis-
ambiguated and only one selected sense of the word participates in the association,
e.g. the word bark has different meaning in association with woof and tree. For the same
reason, semantic association exists not only between single words but also between
multiword expressions constituting indivisible semantic units (i.e. collocations).

Similarly to collocational association, semantically associated words cooccur in the
same context more often than others, but in this case the context is understood as
a much wider span of words and, as we have already mentioned, no direct syntactic
relation between the words is necessary.

1.1.3 Cross-language association

Cross-language association corresponds to possible translations of words in one lan-
guage to another. This information is usually presented in a form of a bilingual dictio-
nary, where each word (with all its senses) is provided with all its equivalents in the
other language. Although every word (in one of its meanings) usually has one or two
common and generally accepted translations sufficient to understand its meaning, it
can be potentially expressed by a larger number of (more or less equivalent but in
a certain context entirely adequate) options. For example, the Czech adjective důležitý
is in most dictionaries translated into English as important or significant, but in a text
it can be translated also as: considerable, material, momentous, high, heavy, relevant, solid,
live, substantial, serious, notable, pompous, responsible, consequential, gutty, great, grand,
big, major, solemn, guttily, fateful, grave, weighty, vital, fundamental,2 and possibly also as
other options depending on context. Not even a highly competent speaker of both lan-
guages could not be expected to enumerate them exhaustively. Similarly to the case of
semantic association, dictionary items are not only single words but also multiword
expressions which cannot be translated in a word-by-word manner (i.e. collocations).

Cross-language association can be acquired not only from the human mind, it can
also be extracted from examples of already realized translations, e.g. in the form of
parallel texts – where texts (sentences) are placed alongside their translations. Also
in such data, associated word pairs (translation equivalents) cooccur more often that
would be expected in the case of non-associated (random) pairs.

2translations from http://slovnik.seznam.cz/
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1 INTRODUCTION

1.2 Motivation and applications

A monolingual lexicon enriched by collocations, a thesaurus comprised of semanti-
cally related words, and a bilingual dictionary containing translation equivalents –
all of these are important (and mutually interlinked) resources not only for language
teaching but in a machine-readable form also for many tasks of computational linguistics
and natural language processing.

The traditional manual approaches to building these resources are in many ways
insufficient (especially for computational use). The major problem is their lack of ex-
haustiveness and completeness. They are only “snapshots of a language”.3 Although
modern lexicons, dictionaries, and thesauri are developed with the help of language
corpora, utilization of these corpora is usually quite shallow and reduced to analy-
sis of the most frequent and typical (multi)word usages. Natural language is a live
system and no such resource can perhaps ever be expected to be complete and fully
reflect the actual language use. All these resources must also deal with the problem of
domain specificity. Either, they are general, domain-independent and thus in special
domains usable only to a certain extent, or they are specialized, domain-specific and
exist only for certain areas. Considerable limitations lie in the fact that the manually
built resources are discrete in character, while lexical association, as presented in this
work, should be perceived as a continuous phenomenon. Manually built language re-
sources are usually reliable and contain only a small number of errors and mistakes.
However, their development is an expensive and time-consuming process.

Automatic approaches extract association information on the basis of statistical
interpretation of corpus evidence (by means of lexical association measures). They
should eliminate (to a certain extent) all the mentioned disadvantages (lack of ex-
haustiveness and completeness, domain-specificity, continuousness). However, they
heavily rely on the quality and extent of the source corpora the associations are ex-
tracted from. Compared to manually built resources, the automatically built ones will
contain certain errors and this fact must be taken into account when these resources
are applied. In the following passages, we present some of the tasks that make use of
such automatically built resources.

Applications of lexical association measures

Generally, collocation extraction is the most popular application of lexical associa-
tion measures and quite a lot of significant studies have been published on this topic,
(e.g. Dunning, 1993; Smadja, 1993; Pedersen, 1996; Krenn, 2000; Weeber et al., 2000;
Schone and Jurafsky, 2001; Pearce, 2002; Bartsch, 2004; Evert, 2004). In computational
lexicography, automatic identification of collocations is employed to help human lex-
icographers in compiling lexicographic information (identification of possible word
senses, lexical preferences, usage examples, etc.) for traditional lexicons (Church and

3A quote by Yorick Wilks, LREC 2008, Marrakech, Morocco.
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1.2 MOTIVATION AND APPLICATIONS

Hanks, 1990) or for special lexicons of idioms or collocations (Klégr et al., 2005; Čer-
mák et al., 2004), used e.g. in translation studies (Fontenelle, 1994a), bilingual dictio-
naries, or for language teaching (Smadja et al., 1996; Haruno et al., 1996; Tiedemann,
1997; Kita and Ogata, 1997; Baddorf and Evens, 1998). Collocations play an important
role in systems of natural language generation where lexicons of collocations and fre-
quent phrases are used during the process of word selection in order to enhance flu-
ency of the automatically generated text (Smadja and McKeown, 1990; Smadja, 1993;
Stone and Doran, 1996; Edmonds, 1997; Inkpen and Hirst, 2002).

In the area of word sense disambiguation, two applicable principles have been
described: First, a word with a certain meaning tends to cooccur with different words
than when it is used in another sense, e.g. bank as a financial institution occurs in
context with words like money, loan, interest, etc., while bank as land along the side
of a river or lake occurs with words like river, lake, water, etc. (Justeson and Katz,
1995; Resnik, 1997; Pedersen, 2001; Rapp, 2004). Second, according to Yarowsky’s
“one sense per collocation” hypothesis, all occurrences of a word in the same col-
location have the same meaning (Yarowsky, 1995), e.g. the sense of the word river in
the collocation river bank is the same across all its occurrences. There has also been
some research on unsupervised discovery of word senses from text (Pantel and Lin,
2002; Tamir and Rapp, 2003). Association measures are used also for detecting se-
mantic similarity between words, either on a general level (Biemann et al., 2004) or
with a focus to specific relationships, such as synonymy (Terra and Clarke, 2003) or
antonymy (Justeson and Katz, 1991).

An important application of collocations is in the field of machine translation.
Collocations often cannot be translated in a word-by-word fashion. In translation,
they should be treated rather as lexical units distinct from syntactically and seman-
tically regular expressions. In this environment, association measures are employed
in the identification of translation equivalents from sentence-aligned parallel cor-
pora (Church and Gale, 1991; Smadja et al., 1996; Melamed, 2000) and also from non-
-parallel corpora (Rapp, 1999; Tanaka and Matsuo, 1999). In statistical machine trans-
lation, association measures are used over sentence aligned, parallel corpora to per-
form bilingual word alignment to identify translation pairs of words and phrases (or
more complex structures) stored in the form of translation tables and used for con-
structing possible translation hypotheses (Mihalcea and Pedersen, 2003; Taskar et al.,
2005; Moore et al., 2006).

Application of collocations in information retrieval has been studied as a natural
extension of indexing single word terms to multiword units (phrases). Early stud-
ies were focused on small domain-specific collections (Lesk, 1969; Fagan, 1987, 1989)
and yielded inconsistent and minor performance improvement. Later, similar tech-
niques were applied over larger, more diverse collections within the Text Retrieval
Conference (TREC) but still with only minor success (Evans and Zhai, 1996; Mitten-
dorf et al., 2000; Khoo et al., 2001). Other studies were only motivated by informa-
tion retrieval with no actual application presented (Dias et al., 2000). Recently, some

5



1 INTRODUCTION

researchers have attempted to incorporate cooccurrence information in probabilistic
models (Vechtomova, 2001) but no consistent improvement in performance has been
demonstrated (Alvarez et al., 2004; Jiang et al., 2004). Despite these results, using col-
locations in information retrieval is still of relatively high interest (e.g. Arazy and Woo,
2007). Collocational phrases have also been employed also in cross-lingual informa-
tion retrieval (Ballesteros and Croft, 1996; Hull and Grefenstette, 1996). A significant
amount of work has been done in the area of identification of technical terminology
(Ananiadou, 1994; Justeson and Katz, 1995; Fung et al., 1996; Maynard and Anani-
adou, 1999) and its translation (Dagan and Church, 1994; Fung and McKeown, 1997).

Lexical association measures have been applied to various other tasks from which
we select the following examples: named entity recognition (Lin, 1998), syntactic con-
stituent boundary detection (Magerman and Marcus, 1990), syntactic parsing (Church
et al., 1991; Alshawi and Carter, 1994), syntactic disambiguation (Basili et al., 1993),
discourse categorization (Wiebe and McKeever, 1998), adapted language modeling
(Beefermam et al., 1997), extraction of Japanese-English morpheme pairs from bilin-
gual terminological corpora (Tsuji and Kageura, 2001), sentence boundary detection
(Kiss and Strunk, 2002b), identification of abbreviations (Kiss and Strunk, 2002a),
computation of word associations norms (Rapp, 2002), topic segmentation and link
detection (Ferret, 2002), discovering morphologically related words based on seman-
tic similarity (Baroni et al., 2002), and possibly others.

1.3 Goals and objectives

This work is devoted to lexical association measures and their application to colloca-
tion extraction. The importance of this research was demonstrated in the previous
section by the large range of applications in natural language processing and compu-
tational linguistics where the role of lexical association measures in general, or collo-
cation extraction in particular, is essential. This significance was emphasized already
in 1964 at the Symposium on Statistical Association Methods For Mechanized Documen-
tation (Stevens et al., 1965), where Giuliano advocated better understanding of the
measures and their empirical evaluation (as cited by Evert, 2004, p. 19):

[First,] it soon becomes evident [to the reader] that at least a dozen some-
what different procedures and formulae for association are suggested [in
the book]. One suspects that each has its own possible merits and disad-
vantages, but the line between the profound and the trivial often appears
blurred. One thing which is badly needed is a better understanding of
the boundary conditions under which the various techniques are applica-
ble and the expected gains to be achieved through using one or the other
of them. This advance would primarily be one in theory, not in abstract
statistical theory but in a problem-oriented branch of statistical theory.
(Giuliano, 1965, p. 259)

6



1.3 GOALS AND OBJECTIVES

[Secondly,] it is clear that carefully controlled experiments to evaluate
the efficacy and usefulness of the statistical association techniques have
not yet been undertaken except in a few isolated instances …Nonetheless,
it is my feeling that the time is now ripe to conduct carefully controlled
experiments of an evaluative nature, …(Giuliano, 1965, p. 259).

Since that time, the issue of lexical association has attracted many researchers and
a number of works have been published in this field. Among those related to collo-
cation extraction, we point out especially: Chapter 5 in Manning and Schütze (1999),
Chapter 15 by McKeown and Radev in Dale et al. (2000), theses of Krenn (2000), Vech-
tomova (2001), Bartsch (2004), Evert (2004), and Moirón (2005). This work enriches the
current state of the art in this field by achieving the following specific goals:

1) Compilation of a comprehensive inventory of lexical association measures

The range of various association measures proposed to estimate lexical association
based on corpus evidence is enormous. They originate mostly in mathematical statis-
tics, but also in other (both theoretical and applied) fields. Most of them were tar-
geted mainly for collocation extraction, (e.g. Church and Hanks, 1990; Dunning, 1993;
Smadja, 1993; Pedersen, 1996). The early publications were devoted to individual as-
sociation measures, their formal and practical properties, and to the analysis of their
application to a corpus. The first overview text appeared in Manning and Schütze
(1999, Chapter 5) and described the three most popular association measures (and
also other techniques for collocation extraction). Later, other authors (e.g. Weeber
et al., 2000; Schone and Jurafsky, 2001; Pearce, 2002) attempted to describe (and com-
pare) multiple measures. However, none of the authors, at the time our research
started, had aspired to compile a comprehensive inventory of such measures.

A significant contribution in this direction was made by Stephan Evert, who set up
a web page to “provide a repository for the large number of association measures that
have been suggested in the literature, together with a short discussion of their math-
ematical background and key references”4. His effort, however, has focused only on
measures applied to 2-by-2 contingency tables representing cooccurrence frequencies
of word pairs, see details in Evert (2004). Our goal in this work is to provide a more
comprehensive list of measures without this restriction. Such measures should be ap-
plicable to determine various types of lexical association but our key application and
main research interest are in collocation extraction. The theoretical background to the
concept of collocation and principles of collocation extraction from text corpora are
covered in Chapter 2, and the inventory of lexical association measures is presented
in Chapter 3.

4http://www.collocations.de/
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2) Acquisition of reference data for collocation extraction

Before this work began, no widely acceptable evaluation resources for collocation ex-
traction were available. In order to evaluate our own experiments, we were compelled
to develop appropriate gold-standard reference data sets on our own. This comprised
several important steps: to specify the task precisely, select a suitable source corpus,
decide how to extract collocation candidates, define annotation guidelines, perform
annotation by multiple subjects, and combine their judgments. The entire process
and details of the acquired reference data sets are discussed in Chapter 4.

3) Empirical evaluation of association measures for collocation extraction

A strong request for empirical evaluation of association measures in specific tasks was
made already by Giuliano in 1965. Later, other authors also emphasized the impor-
tance of such evaluation in order to determine “efficacy and usefulness” of different
measures in different tasks and suggested various evaluation schemes for compara-
tive evaluation of collocation extraction methods, e.g. Kita et al. (1994) or Evert and
Krenn (2001). Empirical evaluation studies were published e.g. by Pearce (2002) and
Thanopoulos et al. (2002). A comprehensive study of statistical aspects of word cooc-
currences can be found in Krenn (2000) or Evert (2004).

Our evaluation scheme should be based on ranking, not classification (identifica-
tion), and it should reflect the ability of association measure to rank potential collo-
cations according to their chance to form true collocations (judged by human annota-
tors). Special attention should be paid to statistical significance tests of the evaluation
results. Our experiments, their results, and comparison are described in Chapter 5.

4) Combination of association measures for collocation extraction

The main focus of this work lies in the investigation of the possibility for combining
association measures into more complex models in order to improve performance in
collocation extraction. Our approach is based both on the application of supervised
machine learning techniques and the fact that different measures discover different
collocations. This novel insight into the application of association measures for collo-
cation extraction is explored in Chapter 6.

Notes

In this work, no special attention is paid to semantic and cross-language association as
they were discussed earlier in this chapter. We focus entirely on collocational associa-
tion and the study of methods for automatic collocation extraction from text corpora.
However, the inventory of association measures presented in this work, the evalua-
tion scheme, as well as the principle of combining association measures can be easily
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adapted and used for other types of lexical association. As can be judged from the vol-
ume of published works in this field, collocation extraction has really been the most
popular application of lexical association measures. The high interest in this field
is also expressed in the activities of the ACL Special Interest Group on the Lexicon
(SIGLEX) and the long tradition of workshops focused on problems related to this
field.5

Our attention is restricted exclusively to two-word (bigram) collocations – primar-
ily for the limited scalability of some methods to higher-order n-grams and also for
the reason that experiments with longer expressions would require processing of
a substantially larger corpus to obtain enough evidence of the observed events. For
example, the Prague Dependency Treebank (see Chapter 4) contains approximately
623 000 different dependency bigrams – only about 27 000 of them occur with fre-
quency greater than five, which can be considered sufficient evidence for our pur-
poses. The same data contains more than twice as many trigrams (1 715 000), but only
half the number (14 000) occurring more than five times.

The methods proposed in our work are language independent, although some
language-specific tools are required for linguistic preprocessing of source corpora
(e.g. part-of-speech taggers, lemmatizers, and syntactic parsers). However, the eval-
uation results are certainly language dependent and cannot be easily generalized for
other languages. Mainly due to source constraints, we perform our experiments only
on a limited selection of languages: Czech, Swedish, and German.

Some preliminary results of this research have already been published (see Pecina,
2005; Pecina and Schlesinger, 2006; Cinková et al., 2006; Pecina, 2008a,b).

5ACL 2001 Workshop on Collocations, Toulouse, France; 2002 Workshop on Computational Approaches
to Collocations, Vienna, Austria; ACL 2003 Workshop on Multiword Expressions: Analysis, Acquisition
and Treatment, Sapporo, Japan; ACL 2004 Workshop on Multiword Expressions: Integrating Processing,
Barcelona, Spain; COLING/ACL 2006 Workshop on Multiword Expressions: Identifying and Exploiting
Underlying Properties, Sydney, Australia; EACL 2006 Workshop on Multiword expressions in a multi-
lingual context, Trento, Italy; 2006 Workshop on Collocations and idioms: linguistic, computational, and
psycholinguistic perspectives, Berlin, Germany; ACL 2007 Workshop on a Broader Perspective on Multi-
word Expressions, Prague, Czech Republic; LREC 2008 Workshop, Towards a Shared Task for Multiword
Expressions, Marrakech, Morocco.
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2
Theory and Principles

This chapter is devoted to the theoretical background to collocations and principles
of collocation extraction from text corpora. First, we present the notion of collocation
based on the work of F. Čermák who introduced this concept into Czech linguistics
(Čermák and Holub, 1982). This part is followed by an overview of various other
approaches to this phenomenon presented from the perspective of theoretical and
also applied linguistics. In the second half of the chapter, we describe details of the
process of collocation extraction employed in the experimental part of this work.

2.1 Notion of collocation

The term collocation is derived from the Latin collorale (to place side by side, to co-
-locate). In linguistics, it is usually related to co-location of words and the fact that
they can not be combined freely and randomly only by rules of grammar. Collocations
are a borderline phenomenon ranging between lexicon and grammar and as such it is
quite difficult to define and treat systematically. This section is intended to illustrate
the diverse notions of collocation advocated by various authors in the last 70 years.

2.1.1 Lexical combinatorics

Although in traditional linguistics, lexis (vocabulary) and grammar (morphology and
syntax) were perceived as separate and distinct components of a natural language,
they are nowadays considered inseparable and completely interdependent. Syntac-
tic rules are not the only restrictions imposed on arranging words into meaningful
expressions and sentences. Čermák (2006) emphasizes that semantic rules are those
which primarily govern the combination of words. These rules determine seman-
tic compatibility, i.e. whether a lexical combination is meaningful or not (or to what
extent), which combinations are (proto)typical and most frequent, which are com-
mon and ordinary, marginal and abnormal, or which are impossible. Syntax then
plays only a subordinate role in the process of lexical selection. Omitting the semantic
rules generally leads to grammatically correct but meaningless expressions and sen-
tences. As a well-taken example, Čermák (2006) gives the famous sentence composed
by Chomsky (1957): Colorless green ideas sleep furiously. Each word combination in this
sentence (and thus the sentence itself) is grammatically correct but nonsensical.1

1Although the expression green ideas can nowadays have a figurative meaning and be interpreted as
ideas that are ”environmentally friendly.”
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In general, the ability of a word to combine with other words in text (or speech) is
called collocability. It is governed by both semantic and grammatical (and pragmatic)
rules and expressed in terms of paradigms – sets of words substitutable (functionally
equivalent) in a specific context (as a combination with a given word). It can be spec-
ified either intensionally – by a description of the same syntactic and semantic prop-
erties, which forms valency, or extensionally – by enumeration, where no summary
specification can be applied. On this basis, Čermák and Holub (1982, p. 10) defined
collocation (quite broadly) as a realization of collocability in text, and later (2001) as
a “meaningful combination of words [...] respecting their mutual collocability and
also compatibility”.

Naturally, different words have a different degree of collocability (examples from
Čermák and Holub, 1982): On one hand, words like be, good, and thing can be com-
bined with a wide range of other words and only general (syntactic) rules are required
for producing correct expressions with such words. On the other hand, the colloca-
bility of words like bark, cubic, and hypertension is more restricted and knowledge of
these (semantic) constraints is quite useful (together with the general rules) to pro-
duce a more cohesive text. Furthermore, there are words that can be combined with
only one or a select few others; their knowledge (lexical and pragmatic) is absolutely
essential for their correct usage in language, and they cannot be used otherwise (no
general rules apply).

The scale of collocability ranges from free word combinations whose component
words can be substituted by another word (i.e. synonym) without significant change
in the overall meaning and if omitted, they can not be easily predicted from the re-
maining components, to idioms whose semantics can not be inferred from the mean-
ings of the components. Čermák’s notion of collocation based on mutual collocabil-
ity and compatibility spans a wide range of this scale. The research in natural lan-
guage processing is usually focused on the narrower concept: word combinations
with extensionally restricted collocability – in literature described as significant (Sin-
clair, 1966), habitual, fixed, anomalous and holistic (Moon, 1998), unpredictable, mu-
tually expected (Palmer, 1968), mutually selective (Cruse, 1986), or idiosyncratic (Sag
et al., 2002).

2.1.2 Historical perspective

The idea of collocation was first introduced into linguistics by Palmer (1938), an En-
glish linguist and teacher. As a concept, however, collocations were studied by Greek
Stoic philosophers as early as in the third century B.C. They believed that “word mean-
ings do not exist in isolation, and may differ according to the collocation in which they
are used” (Robins, 1967). Palmer (1938) defined collocations as “successions of two
or more words the meaning of which can hardly be deduced from a knowledge of
their component words” and pointed out that such concepts “must each be learnt as
one learns single words”, e.g. at least, give up, let alone, as a matter of fact, how do you do
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2.1 NOTION OF COLLOCATION

(see also Palmer and Hornby, 1937). Collocations as a linguistic phenomenon were
studied mostly in British linguistics (Firth, Halliday, Sinclair) and rather neglected in
structural linguistics (Saussure, Chomsky).

An important contribution to the theoretical research of collocations was made by
John R. Firth who used the concept of collocation in his study of lexis to define a mean-
ing of a single word (Firth, 1951, 1957). He introduced the term meaning by colloca-
tion as a new mode of meaning of words and distinguished it from both the “conceptual
or idea approach to the meaning of words” and “contextual meaning”. Uniquely, he
attempted to explain it at the syntagmatic, not the traditional paradigmatic, level (by
semantic relations such as synonymy or antonymy)2. With the example dark night,
he claimed that one of the meanings of night is its collocability with dark, and one of
the meanings of dark is its collocability with night. Thus, a complete analysis of the
meaning of a word would have to include all its collocations. In Firth (1957, p. 181),
“collocations of a given word” were defined as “statements of the habitual or custom-
ary places of that word.” Later (see Palmer, 1968), he used a more famous definition
and described collocation as “the company a word keeps”.

Firth’s students and disciples, known as Neo-Firthians, further developed his the-
ory. They regarded lexis as complementary to grammar and used collocations as the
basis for a lexical analysis of language alternative to (and independent from) the gram-
matical analysis. They argued that grammatical description does not account for all
the patterns in a language, and promoted the study of lexis on the basis of corpus-
-based observations. Halliday (1966) defined collocation as “a linear co-occurrence
relationship among lexical items which co-occur together” and introduced the term
set as “the grouping of members with like privilege of occurrence in collocation”. For
example, bright, hot, shine, light, and come out belong to the same lexical set, since they
all collocate with the word sun (Halliday, 1966, p. 158).

Sinclair (1966) also regarded grammar and lexicon as “two different interpenetrat-
ing aspects”. He dealt with quite general “tendencies” of lexical items to collocate
with one another which “ought to tell us facts about language that cannot be got by
grammatical analysis”. He introduced the following terminology for the structure of
collocations: a node as the item whose collocations are studied, a span as the number
of lexical items on each side of a node that are considered relevant to that node, and
collocates as the items occurring within the span. He even argued that “there are virtu-
ally no impossible collocations, but some are much more likely than others” (Sinclair,
1966, p. 411) but later distinguished between casual collocations and significant colloca-
tions that “occur more frequently than would be expected on the basis of the individ-
ual items”. In Sinclair (1991, p. 170), collocation were defined directly as “occurrence
of two or more words within a short space of each other in a text”, where “short space”

2The paradigmatic relationship of lexical items consists of sets of words belonging to the same class
that can be substituted for one another in a certain grammatical and semantic context. The syntagmatic
relationship of lexical items refers to the ability of a word to combine with other words (collocability).
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was suggested as a maximum of four words intervening together. Sinclair also added
that “Collocations can be dramatic and interesting because unexpected, or they can
be important in the lexical structure of the language because of being frequently re-
peated.”

Halliday and Hasan (1967, p. 287) described collocation as “a cover term for the co-
hesion that results from the cooccurrence of lexical items that are in some way or other
typically associated with one another, because they tend to occur in similar environ-
ments” and gave examples such as: sky – sunshine – cloud – rain or poetry – literature –
reader – writer – style, etc.

Mitchell (1971) considered lexis and grammar as interdependent, not separate and
discrete, but forming a continuum. He argued for the “oneness of grammar, lexis
and meaning” (p. 43) and suggested collocations “to be studied within grammatical
matrices [which] in turn depend for their recognition on the observation of colloca-
tional similarities” (p. 65). By the grammatical matrices he understood patterns such
as adjective – noun, verb – adverb, or verb – gerund. Fontenelle (1994b, p. 43), on the
other hand, perceived the concept of collocation as “independent of grammatical cat-
egories: the relationship which holds between the verb argue and the adverb strongly
is the same as that holding between the noun argument and the adjective strong”.

2.1.3 Diversity of definitions

The disagreement on the notion of collocation among different linguists is quite re-
markable not only in historical context but also in current research. None of the exist-
ing definitions of collocation is commonly accepted either in formal or computational
linguistics. In general, the definitions are based on five fundamental aspects, which
we address in the following passages (cf. Moon (1998) and Bartsch (2004)):

1) grammatical boundedness,
2) lexical selection,
3) semantic cohesion,
4) language institutionalization,
5) frequency and recurrence.

1) Grammatical boundedness

By grammatical boundedness, we mean a (direct) syntactic relationship between com-
ponents of collocation. This criterion was omitted in early studies on collocations.
Sinclair’s concept of collocation presented in the previous section (Sinclair, 1966) sug-
gests that all occurrences (including those not grammatically bounded) of two or more
words can be considered collocations (they are co-located). More notably, Halliday’s
and Hasan’s (1967) definition describing words which ”tend to occur in similar envi-
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ronments“ directly implies that collocations do not necessarily appear as grammati-
cal units with a specific word order, e.g. hair, comb, curl, wave or candle, flame, flicker
(see also above). Halliday and Hasan (1967, p. 287) even emphasized that they are
”largely independent of the grammatical structure“. For such classes, of words that
are “likely to be used in the same context” (semantically related but not syntactically
dependent) Manning and Schütze (1999, p. 185) suggested to use the terms association
or co-occurrence, e.g. doctor, nurse, hospital. In his later work, Hasan (1984) rejected his
previous definition of collocation as too broad and used the term lexical chain for this
concept.

The grammatical aspect became important in the notion of collocation based on
lexical collocability by Čermák (see below). Also Kjellmer (1994, p. xiv) explicitly de-
fined collocations as “recurring sequences that are grammatically well formed”. Sim-
ilarly, Choueka (1988) used the expression “a syntactic and semantic unit” in his def-
inition of collocation. Although most of the current definitions are not explicit about
grammatical boundedness, they usually assume that collocations form grammatical
expressions implicitly.

2) Lexical selection

The process of lexical selection in natural language production (generation) is close-
ly related to collocability (expressing the ability of words to be combined with other
words, see Section 2.1.1). Collocations (as opposed to free word combinations) are of-
ten characterized by restricted (or preferred) lexical selection, i.e. not-easily-explain-
able patterns of word usage (Manning and Schütze, 1999, p. 141). For example, Meals
will be served outside on the terrace, weather permitting vs. *Meals will be served outside on
the terrace, weather allowing. Although to allow and to permit have very similar mean-
ings, in this combination, only permitting is correct. For the same reason, stiff breeze is
correct but *stiff wind is not, strong tea is correct and *powerful tea not, although powerful
drugs and strong cigarette are correct too (examples from Manning and Schütze, 1999,
Chapter 5).

Constrained lexical selection (morpho-syntactic preference) is what distinguishes
free word combinations from collocations, which Bahns (1993, p. 253) depicted as
“springing to mind in such a way as to be said to be psychologically salient”. Kjellmer
(1991, p. 112) stated that “the occurrence of one of the words in such combination
can be said to predict the occurrence of the other(s)”. Similarly Bartsch (2004, p. 11)
claimed that “the choice of one of the constituents appears to automatically trigger the
selection of one or more other constituents in their immediate context” and “block the
selection of other lexical items that, according to their meaning and morpho-syntactic
properties, appear to be eligible choices in the same expression”. Bartsch (2004, p. 60)
also discussed directionality of the process of co-selection, but for the notion of collo-
cation it seems not important.
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3) Semantic cohesion

The criterion of semantic cohesion reflects the semantic transparency or opacity (com-
positionality or non-compositionality) of word combinations. Many researchers use
cohesion to distinguish between idioms and collocations as different lexical phenom-
ena. Benson (1985, p. 62) clearly stated that “the collocations [...] are not idioms: their
meanings are more or less inferrable from the meanings of their parts”. Idioms do
not reflect the meanings of their component parts at all, whereas the meaning of col-
locations does reflect the meanings of the parts (Benson et al., 1986, p. 253).

Cruse (1986, p. 37–41) also distinguished between collocations and idioms. He per-
ceived idioms as “lexically complex” units, forming a “single minimal semantic con-
stituent”, “whose meaning cannot be inferred from the meaning of its parts”. He used
the term collocation to “refer to sequences of lexical items which habitually co-occur,
but which are nonetheless fully transparent in the sense that each lexical constituent
is also a semantic constituent” and gave examples such as fine weather, torrential rain,
light drizzle, and high winds. He also added that collocations are “easy to distinguish
from idioms; nonetheless they do have a kind of semantic cohesion – the constituent
elements are, to varying degrees, mutually selective”. The cohesion is especially evi-
dent when “the meaning carried by one (or more) of the constituent elements is highly
restricted contextually, and different from its meaning in more neutral contexts”. He
also introduces “bound collocations” as expressions “whose constituents do not like
to be separated” and “transitional area bordering on idiom” (e.g. foot the bill and curry
flavour).

Fontenelle (1994b) stated that collocations are both “non-idiomatic expressions” as
well as “non-free combinations”. He characterized idiomatic expressions by “the fact
that they constitute a single semantic entity and that their meaning is not tantamount
to the sum of the meanings of the words they are made up of” (e.g. to lick somebody’s
boots which is neither about licking, nor about boots). To illustrate the difference be-
tween collocations and free-combinations he gave an example of adjectives sour, bad,
addled, rotten, and rancid that all can be combined with nouns denoting food, but they
are not freely interchangeable. Only sour milk, bad/addled/rotten egg, and rancid but-
ter are correct collocations in English. Other combinations such as *rancid egg, *sour
butter, and *addled milk are unacceptable.

Some researchers, however, do not explicitly exclude idioms from collocations –
Wallace (1979) even perceived collocations (and also proverbs) as subcategories of
idioms. Carter (1987, p. 58) considered idioms and fixed expressions as subclasses of
collocations. He described idioms as “restricted collocations which cannot normally
be understood from the literal meaning of the words which make them up” such as
have cold feet and to let the cat out of the bag. He argued that among collocations, there
are also other fixed expressions, such as as far as I know, as a matter of fact, and if I were
you that are not idioms but are also “semantically and structurally restricted”.
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Similarly, Kjellmer (1994, p. xxxiii) used collocation as an inclusive term and pre-
sented idiom as a “subcategory of the class of collocations” defined as “a collocation
whose meaning cannot be deduced from the combined meanings of its constituents”.
Choueka (1988) also included idioms in his definition of collocation: “[A collocation
expression] has a characteristics of a syntactic and semantic unit whose exact and un-
ambiguous meaning or connotation cannot be derived directly from the meaning or
connotation of its components.” Manning and Schütze (1999, p. 151) claimed that
“collocations are often characterized by limited compositionality“ and that ”idioms
are the most extreme examples of non-compositionality. Also Čermák (2001) explic-
itly conceived idioms as a subtype of collocations (see Section 2.1.4).

4) Language institutionalization

In general, language institutionalization is a process by which a phrase becomes
“recognized and accepted as a lexical item of the language” (Bauer, 1983). Institu-
tionalized phrases, originally fully compositional and free word combinations, be-
come significant and idiosyncratic by their frequent and consistent usage (especially
in comparison with other alternative lexicalizations of the same concept). Baldwin
and Villavicencio (2002) illustrated this phenomenon on the example of machine trans-
lation: “There is no particular reason why one could not say computer translation [...] but
people do not.“ Bauer (1983) gave examples such as telephone booth (correct in Amer-
ican English) vs. telephone box (correct in British English), salt and pepper, etc. Institu-
tionalized phrases are domain-dependent – they are adopted only within a certain do-
main and not elsewhere (e.g. carriage return in computer science, white water in sports).

5) Frequency of occurrence

Frequency of occurrence plays an important role in many attempts to describe and de-
fine collocations. Benson et al. (1986, p. 253) characterized collocation as being “used
frequently”, Bartsch (2004) defined collocations as “frequently recurrent, relatively
fixed syntagmatic combinations of two or more words”. Frequency is closely related
to institutionalization but it is difficult to be quantified. Kjellmer’s (1987, p. 133) re-
striction on sequences “of words that occur more than once in identical form and is
grammatically well-structured” is apparently insufficient. The key issue here is cor-
pus representativeness – which is, in general, insufficient and therefore no absolute
constraint can be imposed on a phrase as a frequency limit to become recognized as
a collocation. Sinclair (1991) defined a collocation as the “occurrence of two or more
words within a short space of each other in a text” that makes potentially any cooc-
currence of two or more words a collocation – which is also questionable.

Some more statistically motivated definitions are not based on the absolute fre-
quency of occurrence but rather on its statistical significance, where frequency of com-
ponent words is also taken into account: Church and Hanks (1990) defined a colloca-
tion as “a word pair that occurs together more often than expected”, McKeown and
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Radev (2000) as “a group of words that occur together more often than by chance”,
and Kilgarriff (1992, p. 29) as words co-occuring “significantly more often than one
would predict, given the frequency of occurrence of each word taken individualy”.
Sinclair (1966, p. 411) defined significant collocations as combinations occuring “more
frequently than would be expected on the basis of the individual items”. This ap-
proach is fundamental for methods of automatic collocation extraction but it suffers
from the problem of a limited corpus representativeness and data sparsity in general.

2.1.4 Typology and classification

Several attempts have been made to design a topology or classification of collocations
and related concepts. All of them are closely tied to the definition of the studied
concept and the criteria used for its classification. In this section, we present four
representative approaches to illustrate the diversity of the notion of collocation among
theoretical and also applied linguists.

Word combinations by van der Wouden (1997)

Van der Wouden (1997, 8–9) used the following categorization of word combinations
based on semantic cohesion (cf. also Benson et al., 1986). Here, collocations occupy
a relatively narrow part of the scale but among the other types they are denoted as
fixed expressions as opposed to free word combinations.

1) free combinations
the components combine most freely with other lexical items
a murder + verbs, such as to analyze and to describe

2) collocations
loosely fixed combinations between idioms and free combinations
to commit a murder

3) transitional combinations
appear between idioms and collocations, more frozen than ordinary colloca-
tions and, unlike idioms, these combinations seem to have a meaning close to
that suggested by their component parts
to catch one’s breath

4) idioms
relatively frozen, meanings do not reflect the meaning of the components
to kick the bucket

5) proverbs/sayings
usually more frozen than idioms but form complete sentences
a friend in need is a friend indeed

6) compounds
totally frozen with no possible variations
definite article
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Fixed expressions and idioms by Moon (1998)

Moon (1998) dealt with the term fixed expressions and idioms (FEIs). In her work, she
stated that ”no clear classifications [of FEIs] are possible” and suggested that ”it should
be stressed that FEIs are non-compositional (to some extent); collocations and idioms
represent two large and amorphous subgroups of FEIs on continuum; transforma-
tional deficiencies are a feature of FEIs but not criterial; and discoursally or situation-
ally constrained units should be considered FEIs” 1998, p. 19–21 Her topology was
based on the identification of the primary reasons why each potential FEI might be
”regarded lexicographically as a holistic unit: that is, whether the string is problem-
atic and anomalous on grounds of lexicogrammar, pragmatics, or semantics”. This ty-
pology has three macrocategories anomalous collocations, formulae, and metaphors, each
divided into finer grained subcategories.

A) anomalous collocations (problems of lexicogrammar)
1. ill-formed collocations – syntagmatically or paradigmatically aberrant

at all, by and large
2. cranberry collocations – idiosyncratic lexical component

in retrospect, kith and kin
3. defective collocations – idiosyncratic meaning component

in effect, foot the bill
4. phraseological collocations – occurring in paradigms

in/into/out of action, on show/display
B) formulae (problems of pragmatics)

1. simple formulae – routine compositional strings with a special discourse
function; alive and well, you know

2. sayings – quotations catch-phrases, truism
an eye for an eye; a horse, a horse, my kingdom for a horse

3. proverbs (literal/metaphorical) – traditional maxims with deontic functions
you can’t have your cake and eat it, enough is enough

4. similes – institutionalized comparisons
as good as gold, live like a king

C) metaphors (problems of semantics)
1. transparent metaphors – expected to be decoded by real-world knowledge

behind someone’s back, pack one’s bags
2. semi-transparent metaphors – special knowledge required for decoding

on an even keel, pecking order
3. opaque metaphors – absolutely-compositional

bite the bullet, kick the bucket
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Lexical combinations by Čermák (2001)

Čermák (2001) attempted to classify lexical combinations by two basic linguistic dis-
tinctions: stableness (stable – unstable, langue – parole, system – text) and regularity
(regular – irregular) into the types shown below (see also Čermák and Šulc, 2006).
This classification, compared to others, is quite systematic but not quite consistent
with Čermák’s definition based on collocability and compatibility (see Section 2.1.1).
Apparently, not all word combinations are considered to be collocations, but the collo-
cations do subsume idioms in this case. Čermák also emphasized that the main types
A and B are not absolutely distinct and introduced the C type into his classification
as the boundary case between the types A1a and B3a.

A) Langue 1. regular a)terminological collocations (multiword technical terms)
cestovní kancelář (travel agency), kyselina sírová (sulphuric acid)

b)proprial collocations (multiword proper names)
Kanárské ostrovy (Canary Islands), Velká Británie (Great Britain)

2. irregular idiomatic collocations (idioms and phrasemes)
ležet ladem (lie fallow), jen aby (just to)

B) Parole 3. regular a)common collocations (gram-semantic combinations)
letní dovolená (summer vacation), snadná odpověď (easy answer)

b)analytical form combinations (analytical forms)
šel by (would go), byl zapsán (was subscribed)

4. irregular a)individual metaphoric collocations (authors’ metaphors)
třeskutě vtipný (bitingly funny), virové hrátky (viral games)

b)random adjacent combinations (adjacent occurrences)
uvnitř bytu (inside [an] apartment), že v (that in)

c)other combinations (babble)
C) Langue/Parole 5. common usage collocations (boundary type A1a–B3a)

umýt si ruce (wash hands), nastoupit do vlaku (board [the] train)

Multiword expressions by Sag et al. (2002)

Sag et al. (2002, p. 2) defined multiword expressions (MWE) “roughly as idiosyncratic
interpretations that cross word boundaries (or spaces)” and stated that the “problem
of multiword expressions is underappreciated in the field at large” and later “MWEs
appear in all text genres and pose significant problems for every kind of NLP.” As the
main problems, Sag et al. mentioned “overgeneration”, when no attention is paid to
collocational preferences in language generation (e.g. *telephone cabinet instead of tele-
phone box in British or telephone booth in American), and “idiomaticity” leading to miss-
interpretation of idiomatic and metaphoric expressions (e.g. kick the bucket). The ter-
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minology used in the proposed classification is adopted from (Bauer, 1983). The term
collocation is not used at any level of the classification, it is used to refer to “any statis-
tically significant cooccurrence, including all forms of MWE as described above and
compositional phrases which are predictably frequent (because of real world events
or other nonlinguistic factors).” For example, sell and house appear more often than
one can predict from the frequency of the two words, but “there is no reason to think
that this is due to anything other than real world facts.”

A) lexicalized phrases
have at least partially idiosyncratic syntax or semantics, or contain words which
do not occur in isolation:
1. fixed expressions

immutable expressions that defy conventions of grammar and composi-
tional interpretation, e.g. by and large, in short, kingdom come, every which
way; they are fully lexicalized and undergo neither morphosyntactic vari-
ation (cf. *in shorter) nor internal modification (cf. *in very short)

2. semi-fixed expressions
adhere to strict constraints on word order and composition, but undergo
some degree of lexical variation, e.g. in the form of inflection, variation in
reflexive form, and determiner selection
a) non-decomposable idioms

kick the bucket, trip the light
b) compound nominals

car park, attorney general, part of speech
c) proper names

San Francisco, Oakland Riders
3. syntactically-flexible expressions

exhibit a much wider range of syntactic variability
a) verb-particle constructions

write up, look up, brush up on
b) decomposable idioms

Idioms such as spill the beans, for example, can be analyzed as being
made up of spill in a reveal sense and the beans in a secret(s) sense,
resulting in the overall compositional reading of reveal the secret(s)
let the cat out of the bag, sweep under the rug

c) light verbs
make a mistake, give a demo

B) institutionalized phrases
syntactically and semantically compositional but statistically idiosyncratic, they
occur with remarkably high frequency (in a given context), e.g. traffic light.
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2.1.5 Conclusion

There is no commonly accepted definition of collocation and we do not aim to cre-
ate one in this work. Based on Čermák’s notion of compatibility and collocability
(Section 2.1.1), we understand collocation as a meaningful and grammatical word
combination constrained by extensionally specified restrictions and preferences. This
approach has two important aspects: First, it restricts collocations only to meaning-
ful grammatical expressions and therefore combinations of incompatible words (e.g.
green idea) and combinations of words without direct syntactic relationship (e.g. doctor
– nurse) cannot form collocations. Second, combination of words in a collocation must
be governed not only by syntactic and semantic rules but also by some other restric-
tions that cannot be based on the description of syntactic and semantic properties of
the components – they must be specified explicitly by enumeration, i.e. extensionally.

This approach is quite similar to that presented by Evert (2004). His notion of col-
location is based on the definition by Choueka (1988) saying that “[A collocation ex-
pression] has a characteristics of a syntactic and semantic unit whose exact and unam-
biguous meaning or connotation cannot be derived directly from the meaning or con-
notation of its components.” Evert added to his notion only an explicit criterion that
should help to distinguish between collocational and non-collocational expressions:
“Does it deserve a special entry in a dictionary or lexical database of the language?”
and defined collocation as “a word combination whose semantic and/or syntactic
properties cannot be fully predicted from those of its components, and which there-
fore has to be listed in a lexicon” (Evert, 2004, p. 9), which only emphasizes the exten-
sional character of collocations – to be enumerated, listed in a lexicon.

Also, in a similar manner to Evert (2004), we use collocation as “a generic term
whose specific meaning can be narrowed down according to the requirements of
a particular research question or application” (Evert, 2004, p. 9). However, each ex-
periment presented in this work is performed on a specific data set and bounded with
a particular definition of the studied concept (or its subtype) and thus it is always clear
what phenomenon we deal with.

The presented notion of collocation is possibly interchangeable with the concept
of multiword expression (MWE) that has became commonly preferred and accepted
by many authors and researchers. Baldwin (2006) defined it as an expression that is
“1) decomposable into multiple simplex words and 2) lexically, syntactically, seman-
tically, pragmatically and/or statistically idiosyncratic”. However, mainly for histori-
cal and traditional reasons, we keep using the term collocation to refer to this concept
in our work.
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2.2 Collocation extraction

Collocation extraction is a traditional task of corpus linguistics. The goal is to extract
a list of collocations from a text corpus. Generally, it is not required to identify partic-
ular occurrences (instances, tokens) of collocations, but rather to produce a list of all
collocations (types) appearing anywhere in the corpus – a collocation lexicon. This
task is often restricted to a particular subtype or subset of collocations (defined e.g. by
grammatical constraints), but we deal with it in a general sense. The first research at-
tempts in this area are dated back to the era of “mechanized documentation” (Stevens
et al., 1965). The first work focused particularly on collocation extraction was pub-
lished by Berry-Rogghe (1973), and later followed by studies by Choueka et al. (1983),
Church and Hanks (1990), Smadja (1993), Kita et al. (1994), Shimohata et al. (1997),
and many others, especially in the last ten years (Krenn, 2000; Evert, 2004; Bartsch,
2004)

In the following sections, we first briefly discuss the basic principles of collocation
extraction and then, in more detail, we describe individual steps of the entire extrac-
tion process. The reference corpus we use in our examples in this section is the Prague
Dependency Treebank 2.0 (PDT), described in detail later in Section 4.2.

2.2.1 Extraction principles

Methods for collocation extraction are based on several different extraction princi-
ples. These principles exploit characteristic properties of collocations and are formu-
lated as hypotheses (assumptions) about word occurrence and cooccurrence statistics
extracted from a text corpus. Mathematically, they are expressed as formulas that
determine the degree of collocational association between words. These formulas are
commonly called lexical association measures. In this work, we focus our attention
on measures based on the following three extraction principles:

1) Collocation components occur together more often than by chance

The simplest approach to discover collocations in a text corpus is counting their oc-
currences – if two words occur together a lot, then that might be the evidence that
they have a special function that is not simply explained as a result of their combi-
nation (Manning and Schütze, 1999, p. 153). The assumption that collocations occur
more frequently than arbitrary word combinations is reflected in many definitions of
collocation (see Section 2.1.3) but in practice it presents certain difficulties:

First, natural language contains some highly frequent word combinations that do
not form collocations, such as various combinations of function words (words with lit-
tle lexical meaning, expressing only grammatical relationship with other words). For
example, the most frequent word combination (with a direct syntactic relation be-
tween components) in PDT is by měl (would have) with frequency 2 124, while the most
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frequent combination that can be considered a collocation is Česká republika (Czech Re-
public) occurring only 527 times. Such “uninteresting” combinations should be iden-
tified and eliminated during the extraction process.

Second, high frequency of certain word combinations can be purely accidental –
very frequent words are expected to occur together a lot just by chance, even if they
do not form a collocation. For example, the expression nový zákon (new law, not in the
sense of new testament) is among the 35 most frequent adjective-noun combinations
although it is not a collocation (not surprisingly, the words nový (new) and zákon (law)
are indeed very frequent; in PDT, the word nový (as masculine inanimate) occurs 777
times and the word zákon occurs 1575 times – both are among the most frequent
adjectives and nouns).

The basic principle of collocation extraction is based on distinguishing between
random (free) word combinations that occur together just by chance, and those that
are not accidental and possibly form collocations. Herein, not only the frequency of
word cooccurrences but also the frequencies of words occurring independently are
taken into account. The corpus is observed as a sequence of randomly and indepen-
dently generated word bigrams (a random sample), and their joint and marginal oc-
currence frequencies are then employed in various association measures to estimate
how much the word cooccurrence is accidental.

One class of association measures using this principle is based on statistical hy-
pothesis testing: The null hypothesis is formulated such that there is no association
between the words beyond chance occurrences. The association measures are, in
fact, the test statistics used in these hypothesis tests. Other classes of measures using
this principle are likelihood ratios (expressing how much more likely one hypothesis is
against the other), and other (mostly heuristic) measures of statistical association or
measures adopted from other fields, such as information theory (Church et al., 1991)
and others.

2) Collocations occur as units in information-theoretically noisy environment

While the previous principle deals with the relationship of words inside collocations,
in this approach, we analyse the outside relationships of collocations, i.e. words which
immediately precede or follow a collocation in the text stream (immediate contexts).

By determining the entropy of these contexts, we can discover points in the word
stream with either low or high uncertainty (disorder) what the next (or previous)
word will be. “Points with high uncertainty are likely to be phrase boundaries, which
in turn are candidates for points where a collocation may start or end, whereas points
with low uncertainty are likely to be located within a collocation.” (Manning and
Schütze, 1999, p. 181). In other words, entropy inside collocations is expected to be
lower (low uncertainty, high association) and outside collocations to be higher (high
uncertainty, low association). Methods based on this assumption has been employed
e.g. by Evans and Zhai (1996), Shimohata et al. (1997), and Pearce (2002).
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In this principle, the corpus is again interpreted as a sequence of randomly (and
independently) generated words. For each collocation candidate, we estimate prob-
ability distribution of words occurring in its immediate contexts (left and right) and
determine its lexical association based on measuring entropy of these contexts.

3) Collocations occur in different contexts to their components

Limited compositionality is a typical property of collocations – the meaning of a collo-
cation cannot be fully inferred from the meanings of its components. In other words,
meaning of a collocation must (to some extent) differ from the “union” of the mean-
ing of its components (see Section 2.1.3). Traditional examples of this property are
idiomatic expressions (e.g. kick the bucket – there is no bucket nor kicking in the mean-
ing of this idiom).

A typical way of modeling senses in natural language processing is by empirical
contexts, i.e. by a bag of words occurring within a specified context window of a word
or an expression. The more different the contexts are, the higher the chance is that the
expression is a collocation (Zhai, 1997). Lexical association measures based on this
principle are adopted from mathematics (vector distance), information theory (cross
entropy, divergence), and from the field of information retrieval (vector similarity).

A major weakness of most lexical association measures lies in their unreliability
when applied to low frequency data. They either assume word occurrence probabili-
ties to be approximately normally distributed (e.g. t-test), which is not true in general
(Church and Mercer, 1993) and unensurable to assume when dealing with frequen-
cies around five or less. Or, they are just sensitive to estimates that are inaccurate due
to data sparsity (e.g. Pointwise mutual information), see Manning and Schütze (1999,
p. 181).

Other extraction principles

Various other extraction principles have been proposed for collocation extraction but
they are not of our interest in this work – they either require additional linguistic
resources or they are not based on measuring lexical association. For example, Man-
ning and Schütze (1999, Chapter 5) described a technique based on analysis of the
mean and variance of distance between the components of word combinations. Pearce
(2002) exploited another characteristic property of collocation – non-substitutability
and measured whether collocation components can be replaced by their synonyms,
where Wordnet (Fellbaum, 1998) was used as a source of such (lexical) synonyms. Sev-
eral researchers have also attempted to extract collocations (and their translations)
from bilingual parallel corpora and its word alignment, e.g. Ohmori and Higashida
(1999) or Wu and Zhou (2003).
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2.2.2 Extraction pipeline

Automatic collocation extraction is usually performed as a process consisting of sev-
eral steps, called the extraction pipeline (Krenn, 2000; Evert and Kermes, 2003):

First, the corpus as a collection of machine-readable texts in one language is lin-
guistically pre-processed – morphologically and syntactically analyzed and disam-
biguated. Second, all collocation candidates (i.e. potential collocations) are identi-
fied and their occurrence statistics extracted from the corpus. Third, the candidates
are filtered to improve precision (based on grammatical patterns and/or occurrence
frequency). Fourth, a lexical association measure is chosen and applied to the occur-
rence statistics obtained from the corpus. And finally, the collocation candidates are
classified according to their association scores and a certain threshold – candidates
above this threshold are classified as collocations and candidates below the threshold
as non-collocations.

However, there is no principled way of finding the optimal classification threshold
(Inkpen and Hirst, 2002) – its value depends primarily on the intended application
(whether high precision or broad coverage is preferred) and is usually set empirically.
To avoid this step, the task of collocation extraction is usually reformulated as ranking
collocation candidates – the goal is not to extract a discreet set of collocations from
a given corpus, but instead to rank all potential collocations according to their degree
of association so that the most associated ones are concentrated at the top of the list.
This approach to collocation extraction will be applied in the rest of our work. The
extraction pipeline for bigram collocation extraction will be described in detail in the
following sections, and lexical association measures will be presented separately in
the next chapter.

2.2.3 Linguistic preprocessing

By linguistic preprocessing, we mean the analysis and disambiguation at the level of
morphology and surface syntax. Higher levels (more abstract) of linguistic process-
ing (e.g. deep syntax) are not useful since we are interested only in the association at
the lexical level. In this step, information about word base forms, morphological cate-
gories, and sentence syntax is obtained in order to identify collocation candidates and
all their occurrences – regardless of inflectional variance and sentence position.

Formally, a source corpus W is expected in the form of a linearly ordered set of
n word tokens wi identified as contiguous, non-overlapping strings vi over an al-
phabet Σ distinguished by their position i = 1, . . . , n in the corpus, so the i-th word
token wi is a pair ⟨i, vi⟩. The ordering of W is defined by the natural ordering of the
positions. The items vi are called word forms and the set of all possible word forms
is called the vocabulary V .

W = {w1, . . . , wn} , wi := ⟨i, vi⟩, vi ∈ V⊂ Σ∗, i = 1, . . . , n.
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During morphological analysis and disambiguation, each word token wi from W

is assigned (by mappingϕ) a (basic) word type u (from a set of all such word typesU).
The word types define equivalence classes of word tokens based on inflection, so all
inflectional variants are assigned the same value u. We denote ui as the word type
assigned to the word token wi.

ϕ : W → U, ui := ϕ(wi), i = 1, . . . , n.

Technically, each u ∈ U is usually a pair ⟨l, t⟩ where l is a lemma – a word base
form as it appears in the lexicon L, and t is a tag from the tag set T specifying detailed
morphological characteristics (e.g. derivational) shared by all the inflectional variants.

u := ⟨l, t⟩, l ∈ L, t ∈ T.

The word types are defined to conflate all word tokens not only with the same word
base form but also with the same lexical meaning – which may not be fully reflected
in the word base form. Details strongly depend on the system employed for encod-
ing the morphological information in the corpus. For example, in the Czech system
used in PDT, the information about the morphological categories negation or grade (de-
gree of comparison) which are considered derivational and which discriminate word
meanings, is encoded in the tag, not in the lemma. For this reason, e.g. the word types
of nebezpečný (insecure) and nejvyšší (highest) must be encoded as ⟨bezpečný, 1N⟩ (se-
cure, 1stgrade+negative) and ⟨vysoký, 3A⟩ (high, 3rdgrade+affirmative), respectively (for
details, see also Section 4.2.1).

During syntactic analysis and disambiguation, each word token wi from the cor-
pusW is assigned (by a function δ applied to its index i) an index j of its head wordwj

(in terms of dependency syntax, wj governs wi) and (by a mapping α) the analytical
function a (from the set A of all possible analytical functions enriched by a special
value HEAD, see details bellow) specifying the type of syntactic relation between the
word token and its head word. The head word of a word token wi is either another
word token wj, i ̸= j from the same sentence, or the value NULL if wi is the root of
the sentence (j = 0). We denote ai as the analytical function assigned to the word
token wi.

δ : {1, . . . , n} → {0, . . . , n} , δ(i) ̸= i,

α : W → A, ai := α(wi), i = 1, . . . , n.

In order to identify word tokens that are not only inflectional variants but also have
the same syntactic function, each word token wi can be assigned (by a mapping φ)
an extended word type ⟨ui, ai⟩, which consists of its word type ui and its analytical
function ai.

φ : W → U×A, φ(wi) := ⟨ui, ai⟩, ui= ϕ(wi), ai= α(wi), i = 1, . . . , n.
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For technical reasons, we also define a special extended word type that can be
assigned (by a mapping φ ′) to any word token wi and consists of its word type ui

and the special value of analytical function ai = HEAD. This extended word type will
be used to label head words appearing in a dependency relation with other words.

φ ′ : W → U×A, φ(wi) := ⟨ui,HEAD⟩, ui= ϕ(wi), i = 1, . . . , n.

Generally, linguistic preprocessing is not necessarily required for collocation ex-
traction, especially when working with languages with simple morphology (such as
English) and if we focus e.g. only on fixed adjacent and non-modifiable collocations.
However, if we have to deal with complex morphology (e.g. in Czech) and if we want
to extract syntactically bounded word combinations with free word order, this infor-
mation is quite useful.

Linguistic information can also be used in the subsequent steps of the extraction
pipeline for filtering collocation candidates (see Section 2.2.6) and to construct addi-
tional features in methods combining statistical and linguistic evidence in more com-
plex classification and ranking models (see Chapter 6).

2.2.4 Collocation candidates

Collocation candidates represent the set of all potential collocations appearing in the
corpus, i.e. the word combinations that satisfy some basic requirements imposed on
collocations (e.g. components to be in a direct syntactic relation or to occur within
a given distance in the text). Collocation candidates are examined with respect to the
degree their components are associated, and ranked according to their strength of
association, as specified in the task description. The goal in this step of the extraction
pipeline is to identify all collocation candidates and their instances (occurrences) in
the corpus. In the beginning, we describe this step on a general level, then with details
of specific approaches.

First, the corpus W is by some means transformed to a set B consisting of bigram
tokens bk= ⟨wi, wj⟩, i.e. pairs of word tokens from the corpus satisfying some given
conditions. Elements of B are indexed by k ∈ {1, . . . ,N}, where N = |B|, although the
actual ordering of this set is not important.

B = {b1, . . . , bN} , B ⊂ W×W, bk := ⟨wi, wj⟩, k = 1, . . . ,N.

Second, each bigram tokenbk from the setB is assigned (by a mappingΦ) a bigram
type c (from a set C∗ of all possible bigram types) defining equivalence classes of
bigram tokens based on inflection – all bigram tokens that differ only in inflection
are assigned the same bigram type c. Bigram types identified by Φ in B are called
collocation candidates and a set of all such bigram types is denoted byC. Each bigram
token is thus an instance of a collocation candidate. We denote ck as the bigram type
of the bigram token bk.

Φ : B → C∗, ck := Φ(bk), k = 1, . . . ,N, C := Φ(B), C ⊂ C∗.
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Third, a multiset (allowing repeated elements, also called a bag) D, referred to as
the candidate occurrence data (or candidate data), is acquired as a result of Φ applied
on all the elements from B, i.e. bigram types assigned to all bigram tokens. This data
serves as a basis for the extraction of occurrence statistics described in the following
section.

D = {c1, . . . , cN}, ck := Φ(bk), bk ∈ B, k = 1, . . . ,N.

The collocation candidate data can be obtained in several alternative ways, de-
pending on the level of linguistic preprocessing of the corpus. These ways differ in
how the set of bigram tokens B is constructed and how the mapping Φ is defined
to produce the elements of D. In the following paragraphs, we describe three ap-
proaches employed in our experiments.

Dependency bigrams

The generic notion of collocation presented in Section 2.1.5 requires collocations to
be syntactic units. In dependency syntax, as it is applied in PDT, this constraint can
be interpreted as the presence of a direct dependency relation between the collocation
components. Collocation candidates can then be identified as dependency bigrams.
The set Bdep then consists of dependency bigram tokens defined as pairs ⟨wi, wj⟩ of
word tokens from the corpus W in a direct dependency relation of a certain type and
in a certain word order.

Bdep = {⟨wi, wj⟩∈ W×W : i < j ∧ (j = δ(i)∨ i = δ(j))} .

In general, word order can discriminate between the collocation candidates, and it
should be distinguished between bigrams with the first component as the head word
and the second one as the modifier and vice versa. For illustration, see the following
example: dependency bigrams velký výr and výr velký differ only in word order; the
component výr is in both the cases the head word and velký is its attribute but the
meanings of these expressions are different – the first refers to a big owl and the latter
denotes stock owl as a biological species. On the other hand, in some collocations, word
order is not that important: For example, naklepat maso (to tenderize meat) can occur in
this and also in the reverse word order: Petr naklepal maso and Maso jsem naklepal včera
are both correct sentences containing the collocation naklepat maso. Since it is not clear
how to determine when word order is important and when it is not, we decided to
preserve word order in all collocation candidates. This is done by the condition i < j

(the first component must always precede the second one in the corpus). For this
reason, dependency relations are possible in both directions, either j = δ(i) or i = δ(j).

The mapping Φdep that assigns to each bigram token from Bdep its bigram type is
for dependency bigrams defined by extended word types in the following way:

Φdep (⟨wi, wj⟩) =
{ ⟨φ(wi), φ

′(wj)⟩ for j = δ(i),
⟨φ ′(wi), φ(wj)⟩ for i = δ(j).
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One component of a dependency bigram appearing in a sentence always acts as
the head and the other one as the modifier. The head word, however, also participates
in another relation outside the bigram as a modifier. This relation is ignored in the
dependency bigram and the analytical function of the bigram head word is set to the
value HEAD (by the mapping φ ′).

Surface bigrams

Extracting the collocation candidates as dependency bigrams seems quite a reason-
able approach. It is guaranteed that each potential collocation is a syntactic unit.
However, the source corpus is, in this case, expected to be syntactically analyzed and
disambiguated in order to identify such bigrams. If this is not the case, we can de-
tect collocation candidates heuristically, based just on the surface word order. We
can assume that most collocations occur as adjacent word expressions that cannot be
modified by the insertion of another word, and identify bigram collocation candidates
as surface bigrams – pairs of adjacent words. The set Bsurf of surface bigram tokens
is formally defined as follows:

Bsurf = {⟨wi, wj⟩∈ W×W : j = i+ 1} .

The mapping Φsurf that assigns a surface bigram type to each surface bigram to-
ken from Bsurf is defined by word types of both components in the following way:

Φsurf (⟨wi, wj⟩) := ⟨ϕ(wi), ϕ(wj)⟩ .

Distance bigrams

The constraint that collocation candidates are only adjacent word pairs might be too
restrictive. Obviously, it is not valid for certain types of collocations, such as support-
-verb constructions or verb–noun combinations in general. Collocations of these (and
perhaps other) types can often be modified by the insertion of another word and their
components can occur at various distances, as in the example naklepat maso (to ten-
derize meat) mentioned earlier. In Czech, it can occur not only with free word order
but also with various distances between the components. Of course, these cases can
be captured by dependency bigrams, but if the syntactic information is not available
in the source corpus, we can identify collocation candidates as distance bigrams –
word pairs occurring within a given distance specified by a distance function db and
a threshold tb. The set Bdist is then defined by this formula:

Bdist = {⟨wi, wj⟩∈ W×W : i < j ∧ db(i, j) ≤ tb} .

The mapping Φdist that assigns a bigram type to each distance bigram token from
Bdist is then defined in the same way as for surface bigrams:

Φdist (⟨wi, wj⟩) := Φsurf (⟨wi, wj⟩) = ⟨ϕ(wi), ϕ(wj)⟩ .
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By one of the mentioned approaches, the candidate data D is constructed as follows:

⟨B,Φ⟩ ∈ {⟨Bdep, Φdep⟩, ⟨Bsurf,Φsurf⟩, ⟨Bdist,Φdist⟩} ,

D = {Φ(b1), . . . , Φ(bN)}, bk ∈ B, k = 1, . . . ,N, N = |B|.

The candidate data of dependency and surface bigrams are of approximately the
same size as the corpus (the number of bigram tokens roughly corresponds to the
number of word tokens in the corpus), but the candidate data of distance bigrams
is larger, depending on the distance function and the threshold (usually set to 3–5
intervening words).

2.2.5 Occurrence statistics

In this step of the extraction pipeline, the occurrence statistics of bigrams and their
components are obtained from the candidate occurrence data D and the corpus W.
We assume that D is a multiset of generic bigram types (either dependency, surface, or
distance) whose components are generic word types (either basic or extended), elements
of U∗. For simplicity of notation, we further denote the elements of D as pairs ⟨xk, yk⟩:

D = {⟨xk, yk⟩ : k ∈ {1, . . . ,N}} , xk, yk ∈ U∗

The statistics extracted for each collocation candidate (bigram type) ⟨x, y⟩ ∈ C (for
simpler notation further denoted as xy) and its components (word types) x, y from
the candidate data, range from simple frequency counts and contingency tables to more
complex models such as immediate or empirical contexts.

Frequency counts

The basic occurrence model consists of the frequency counts of the bigram xy, its
components x, y, and the size of the candidate data N = |D|.

f(xy) := | {k : xk = x∧ yk= y} |

f(x∗) := | {k : xk= x} |

f(∗y) := | {k : yk= y} |

The bigram frequency f(xy) (also called joint frequency) denotes the number of
pairs ⟨xk, yk⟩ = ⟨x, y⟩ in the candidate data D. The component frequencies f(x∗) and
f(∗y) (also called marginal frequencies) denote the number of pairs where the first
component is x and pairs where the second component is y, respectively. N denotes
the number of all pairs in D. Evert (2004, p. 28) refers to the quadruple ⟨f(xy), f(x∗),
f(∗y), N⟩ as the frequency signature of the bigram xy.
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2 THEORY AND PRINCIPLES

a := f(xy) =: f11 b := f(xȳ) =: f12 f(x∗) =: f1

c := f(x̄y) =: f21 d := f(x̄ȳ) =: f22 f(x̄∗)

f(∗y) =: f2 f(∗ȳ) N

Table 2.1: Observed contingency table frequencies (f11, f12, f21, and f22) of a bigram xy, includ-
ing marginal frequencies (f1, f2) summing over the first row and the first column, respectively.

Contingency tables

A more detailed model of bigram occurrences has the form of an (observed) con-
tingency table. In addition, it also counts frequencies of pairs of the bigram compo-
nents x, y with words other than y and x, respectively. The contingency table contains
four cells with the following counts:

f(xy) := | {k : xk= x∧ yk= y} |

f(xȳ) := | {k : xk= x∧ yk ̸= y} |

f(x̄y) := | {k : xk ̸= x∧ yk= y} |

f(x̄ȳ) := | {k : xk ̸= x∧ yk ̸= y} |

These counts are organized in the table as depicted in Table 2.1: for a given bi-
gram xy, the counts are often also denoted also by the letters a, b, c, and d or by the
letter f indexed by i,j ∈ {1, 2}. An example of a contingency table is shown in Table 2.2.
It also illustrates how the contingency table is constructed and what types of bigrams
are counted in which table cells.

Immediate contexts

Another possible approach to describe bigram occurrences is modeling occurrences
of words that appear in an immediate context of the bigram, i.e. words that immedi-
ately precede or follow the bigram in the corpus. According to the second extraction
principle (page 24), composition of these contexts should also, in a sense, reflect the
degree of association between the bigram components.

For this purpose, we formally define the left immediate context Cl
xy and the right

immediate context Cr
xy of a bigram xy as multisets (also called bags of words) whose

elements are word types ϕ(wm) of word tokens wm ∈ W that appear at a particu-
lar position before (the left context) or after (the right context) an occurrence of the
bigram xy:

Cl
xy = {um=ϕ(wm) : wm ∈ W ∧ ∃ i,j (Φ(⟨wi, wj⟩) = ⟨x, y⟩ ∧ m = i− 1)} ,

Cr
xy = {um=ϕ(wm) : wm ∈ W ∧ ∃ i,j (Φ(⟨wi, wj⟩) = ⟨x, y⟩ ∧ m = i+ 1)} .
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2.2 COLLOCATION EXTRACTION

X = black X ̸= black X = ∗

Y = market black market new market ∗ market

Y ̸= market black horse new horse ∗ horse

Y = ∗ black ∗ new ∗ ∗ ∗

X = black X ̸= black X = ∗

Y = market 15 38 53

Y ̸= market 654 1 330 171 1 330 825

Y = ∗ 669 1 330 209 1 330 878

Table 2.2: An example of an observed contingency table for the bigram černý trh (black market).
X and Y denote the first and the second bigram components, respectively. The actual frequen-

cies contained in the bottom table refer to the occurrences of dependency bigrams in PDT.

Empirical contexts

Occurrences of bigrams (and words) can also be described by a broader empirical
context which captures occurrences of words appearing not only in the immediate
contexts but also within a longer distance from a given bigram (or a word). This ap-
proach is mainly used by lexical association measures based on the third extraction
principle (page 25).

Formally, for a given word type z ∈ U∗, we define a multisetCx of word typesϕ(wm)
of word tokens wm from the corpus W that appear within a predefined distance (de-
termined by a distance function dc and a threshold tc) from a particular occurrence of
the word type z in the corpus; analogically, we define Cxy for a bigram type xy ∈ C∗.

Cx = {um = ϕ(wm) : wm∈ W ∧ ∃i (ϕ(wi) = x ∧ dc(i,m) < tc)} ,

Cxy = {um = ϕ(wm) :

wm∈ W ∧ ∃i, j (Φ(⟨wi, wj⟩) = ⟨x, y⟩∧ (dc(i,m) ≤ tc ∨ dc(j,m) ≤ tc))} .

Examples of these contexts (immediate and empirical) are shown in Figures 2.1
and 2.2 on the next page. In the examples, the words are displayed as word tokens,
but in fact, the contexts contain their word types.

2.2.6 Filtering candidate data

Filtering is often used to improve the precision of the extraction process by eliminating
such data that does not help discover true collocations or can bias their extraction. It
can be performed either before obtaining the occurrence statistics or after. Evert (2004,
p. 32–33) described these two approaches as token filtering and type filtering.
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2 THEORY AND PRINCIPLES

. . . součástí trhu, vznikl obratem černý trh s plyšovými medvídky a .
zabránit přísunu drog na domácí černý trh v hodnotě 32 milionu . . . .
. stejnými jednotlivci i kompletní černý trh . Jinými slovy, byla by . . . .
. . . pomáhali pašování cigaret na černý trh do východního Německa.
. . . . . nájemních práv nezaručený černý trh . Libor Dellin, člen . . . . . . .
. . . . . . pašovaného zboží a kypící černý trh jsou toho výmluvným . . .
. Také například tím, že vznikne černý trh , který je ke spotřebitelům
. . . . . . . nabídku a pak nastupuje černý trh . Za možnost přestupu na
. . . . .Řídí gangy, které kontrolují černý trh a okrádají cizince. Oba . . .
. . . .nájemného ” bylo a je omezit černý trh s byty, nestane se nic. . . . .

. . . . nějak negativně tento černý trh naše hospodářství? Je to . . . . . . . .
. . . . . inzeráty. Rozmohl se černý trh bytů a skutečné náklady na . . . . .
. . . . . jak se říká na Arbatu, černý trh něco do sebe. Je - li hlad . . . . . . . .
. . . . .Naplno se již rozjíždí černý trh se vstupenkami. Na závod . . . . . .
. . starožitnostmi měl řídit, černý trh podporuje na straně jedné . . . . . .
. . . Našim lidem pro samý černý trh nezbýval čas na sex, a tak . . . . . . .

…unie však ukazují, že černý trh překonal stagnaci a piráti . . . . . . .
. . . . . . . . . ceny, funguje čilý černý trh dosud. Země bez chudých . . . . . .
. . . . novými zbraněmi. Na černý trh odhalený specialisty z útvaru . . .
. . . . . . . . se vlastně jedná o černý trh s byty. Připustil ovšem, že . . . . . .

Figure 2.1: Examples of left (at the top) and right (at the bottom) immediate contexts (not un-
derlined words in bold) of the expression černý trh (black market) as they appear in PDT.

. . . . .oparu. Muž byl velmi malý, menší než žena. Měl černý kabát se sametovým límcem. Nevšímali si ho. Sedni
. . . . . rozsadili se kolem stolu. Kordič si sundal sako a černý vlčák mu ulehl oddaně k nohám. Po předchozím . . .
. . . zn. Hořčák přibyl ještě tuzemský rum a činže, zel černý plstěný klobouk brzo prázdnotou. Tehdy začal pan .
. . našla správnou odpověď. Táhla za bílého a vzápětí černý svým posledním tahem. V pořadí sto šedesátým . . . .
. . .Ani se o to nepokoušel. Náhle se před ním vynořil černý kůň. Na koni klidně seděla mladá policistka, světlé . .
. . . jsou bílé. Zobák je u obou pohlaví v prostém šatě černý , u samice v době hnízdění žlutý. Domovem tohoto .
. . . .v kapli. Ruce ve volném rukávu, umělá květina a černý klobouk na bílém stolku. Starý kněz vypíná pomalu
Poslanecké sněmovny. Na budově je zároveň vyvěšen černý prapor. Rozpočet armády v příštích letech vzroste . . .
. . . zdravou reakci. A pak je tu ještě smích. Humor tak černý , že se můžete jen smát. Smích je poslední výspa . . . .
. . . . ženy. Chodily zahalené od hlavy až k patě, jejich černý hábit měl jen dva otvory pro oči. Nesměly tehdy . . .

. miliónů dolarů. Ovlivňuje nějak negativně tento černý trh naše hospodářství? Je to pouze ztráta na daních . . . .
. .Maltské liry lze nakoupit pouze ve směnárnách, černý trh s valutami neexistuje. Na Maltě je v porovnání s . . .
operoval i ženu. A přece má, jak se říká na Arbatu, černý trh něco do sebe. Je - li hlad nejlepší kuchař, je . . . . . . . . .
. . přestal. V patách za krizí vstoupil do Bělehradu černý trh , pašování a zvýšená kriminalita. Překupníci . . . . . . .
. . . . . . z toho obviněni. Řídí gangy, které kontrolují černý trh a okrádají cizince. Oba byli zbaveni funkcí a byl . . . .
.drogové hysterii. Následkem toho neexistoval ani černý trh , protože nebylo na čem vydělávat. V roce 1957 bylo
. . . . . k rychlému zpracování. Naplno se již rozjíždí černý trh se vstupenkami. Na závod na 5000 m v . . . . . . . . . . . . .
. . . na čelném místě obchodu se zbraněmi. Zatímco černý trh se zbraněmi se pro celý svět stává čím dál tím větší.
. . . . . v parlamentu. Věřím, že brzy bude regulovat černý trh s ohroženými druhy zvířat, míní. Promoravské . . . . .
. . . 100 tisíc korun. Podle Piňose se vlastně jedná o černý trh s byty. Připustil ovšem, že právě v případě bytového

Figure 2.2: Example of empirical contexts (not underlined words in bold) of the word černý
(black) and the expression černý trh (black market) from the Prague Dependency Treebank.
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2.2 COLLOCATION EXTRACTION

f POS bigram

2124 V:V být mít
1815 V:R být v
1362 P:J ten že
1344 J:V že být
1287 R:V v být
1196 V:P být ten
1165 V:J být a
1010 P:V ten být
985 V:R jít o
973 V:J být a
904 J:V a být
883 R:N v roce
841 V:V být moci
826 V:J být že
798 P:V který být
771 J:J že a
712 R:N v době
700 P:V se stát
675 J:R a v
661 R:N v případě
627 V:R být na
627 R:J mezi a
620 D:J hodně než
618 V:V být být
618 P:V který mít
573 J:V že být
560 R:P o ten
543 V:R mít v
542 R:J v a
527 A:N Česká republika

f POS bigram

527 A:N Česká republika
488 N:N milión korun
242 A:N příští rok
221 A:N loňský rok
220 A:N životní prostředí
210 A:N letošní rok
190 A:N současná doba
182 N:N ministr zahraničí
179 N:N miliarda korun
169 A:N Spojené státy
164 A:N minulý týden
162 A:N Evropský unie
156 N:N Václav Klaus
156 A:N druhá strana
156 A:N akciová společnost
155 N:N návrh zákona
155 A:N New York
152 N:N milión dolarů
150 A:N cenný papír
148 N:N konec roku
145 A:N státní rozpočet
142 A:N politická strana
142 A:N akciová společnost
141 A:N trestný čin
130 A:N hlavní město
129 A:N generální ředitel
128 A:N poslední rok
126 A:N poslední doba
121 A:N Komerční banka
120 N:N Václav Havel

Table 2.3: Part-of-speech filtering: the top collocation candidates from PDT sorted by raw bi-
gram frequency (f ) before (left) and after (right) the filtering was applied.

Token filtering is applied before the extraction of occurrence statistics and can be
understood as a set of additional constraints on the identification of bigram tokens
in the set B. Token filtering affects the candidate occurrence data D and the statistics
obtained from it. This step must be theoretically substantiated and must not bias the
occurrence models. Appropriately designed token filtering can even improve the va-
lidity of assumptions required by certain extraction principles (e.g. the independence
of randomly generated word pairs). According to Evert (2004, p. 33), it is quite ade-
quate to restrict the bigram tokens e.g. only to adjective-noun combinations, if we fo-
cus only on collocations of this type, however, we cannot remove bigrams with certain
general adjectives that ”usually produce uninteresting results“. Such a step would de-
crease marginal frequencies of nouns appearing in the affected bigrams which could
unjustly prioritize other combinations of these nouns in ranking. It is quite reason-
able, on the other hand, to restrict the bigram tokens only to combinations without
punctuation marks.
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2 THEORY AND PRINCIPLES

PMI f POS bigram

20.34 1 N:N Čchien Čchi
20.34 1 N:N Čaněk Gridoux
20.34 1 N:N ČLS JEP
20.34 1 N:N Áron Mónus
20.34 1 N:N škodlivost narkomanie
20.34 1 N:N šiška konifery
20.34 1 N:N šestka Davenportová
20.34 1 N:N Šan Čching
20.34 1 N:N Šalom Achšav
20.34 1 N:N Ľuba Lauffová
20.34 1 N:N zúžení hrdla
20.34 1 N:N zvýraznění koloritu
20.34 1 N:N zplozenec Paynea
20.34 1 N:N zopakování seskoku
20.34 1 N:N znechucení naladění
20.34 1 N:N zjevení démantu
20.34 1 N:N zbožnost císaře
20.34 1 N:N zavření tavírny
20.34 1 N:N zastánce vhodu
20.34 1 N:N zaměřování zlomek
20.34 1 N:N zadeček Chera
20.34 1 N:N výškař Ruffíni
20.34 1 N:N výstřednost slavíka
20.34 1 N:N výsev jařiny

PMI f POS bigram

17.53 7 N:N TTI Therm
17.53 6 N:N Guido Reni
17.34 8 N:N Buenos Aires
17.34 7 N:N Monte Carlo
17.34 7 A:N laskavé svolení
17.34 7 A:N AG Flek
17.34 6 A:N Tchaj wan
17.31 6 N:N AIK Stockholm
17.17 9 N:N Twin Peaks
17.17 9 N:N Kazimír Jánoška
17.17 7 A:N Geigerův čítač
17.17 6 N:N Karol Štěpánová
17.17 6 A:N Saudská Arábie
17.12 6 N:N cash flow
17.02 7 A:N Beastie Boy
16.98 7 A:N čtvrtletní slosování
16.95 6 N:N Kaučuk Kralupy
16.92 6 A:N Třinecké železárny
16.88 9 N:N tie break
16.88 9 N:N Four Seasons
16.88 7 A:N kochleární implantát
16.88 6 N:N Saccheriho čtyřúhelník
16.88 6 N:N José Carreras
16.88 6 N:N Baruch Goldstein
16.85 8 A:N clearingové zúčtování

Table 2.4: Frequency filtering: the top collocation candidates from PDT sorted by Pointwise
mutual information) (PMI) before (left) and after (right) the filtering was applied.

Type filtering is applied after the extraction of occurrence statistics and has no ef-
fect on the candidate occurrence data D and the extracted statistics. It divides the col-
location candidates into subsets which are then handled separately. A typical case of
type filtering is the commonly used part-of-speech filtering based on the morpholog-
ical information obtained during linguistic preprocessing (see e.g. Justeson and Katz,
1995; Manning and Schütze, 1999; Evert, 2004). With the knowledge of morphological
characteristics of collocation candidates and their components, we can identify those
that are not very likely to form collocations, and exclude them from further analysis.
They can be explicitly classified as non-collocations or, in the case of ranking, placed at
the end of the list or discarded entirely.

The effect of type filtering is illustrated in Table 2.3. It shows the top 20 collocation
candidates from PDT, ranked by bigram frequency obtained before part-of-speech
filtering (on the left), and the top 20 candidates from the same set, obtained after the
filter was applied, where only adjective-noun and noun-noun combinations were kept.
The first table contains only one true collocation Česká republika, which appears at the
very bottom of the list (Czech Republic). After the application of the filter, almost all
the top candidates, as they appear in the other table, can be considered collocations.
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2.2 COLLOCATION EXTRACTION

Another case of type filtering is frequency filtering. It is based on setting a limit
on the minimal frequency of collocation candidates before association measures are
applied. It is a well-known fact that many association measures are unreliable when
applied to low-frequency data and that certain minimal frequency is required in order
to expect meaningful results. This issue was thoroughly studied by Evert in his the-
sis (Evert, 2004) where he demonstrated that ”it is impossible in principle to compute
meaningful association scores for the lowest-frequency data“ (p. 22, 95–108).

The effect of frequency filtering is illustrated in Table 2.4. The top positions in the
list of collocation candidates from PDT, ranked according to scores of Pointwise mu-
tual information, are occupied by bigrams whose components appear in PDT just once,
that is, in this bigram. There is no way to distinguish between collocations and non-
-collocations in this list – from the perspective of statistics, they have the same proper-
ties (occurrence frequency) and cannot be differentiated. The top candidates obtained
after applying the frequency filter that discarded candidates occurring 5 times or less
is shown on the right – almost all of them can be considered collocations.

Context filtering is a special case of filtering that can be employed during the
construction of empirical contexts. These structures are intended for modeling the
semantics of collocation candidates and their components (see the third extraction
principle in Section 2.2.1). The way they are defined in Section 2.2.5 implies that they
contain types of all word tokens occurring within specified context windows which
also includes words with a little or no semantic content that do not determine meaning
of a given bigram or word. In empirical contexts, such word tokens can be ignored.
This idea, however, cannot be applied to immediate contexts that model an immedi-
ate word environment from an information-theoretical point of view, and therefore
the occurrence of all word tokens should be taken into account.
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3
Association Measures

The last step of the extraction pipeline involves applying a chosen lexical association
measure to the occurrence and context statistics extracted from the corpus for all col-
location candidates and obtaining their association scores. A list of the candidates
ranked according to their association scores is the desired result of the entire process.

In this chapter, we introduce an inventory of 82 such lexical association measures.
These measures are based on the extraction principles described in Section 2.2.1 which
correspond to the three basic approaches to determine collocational association: by
measuring the statistical association between the components of the collocation candi-
dates, by measuring the quality of context of the collocation candidates, and by mea-
suring the dissimilarity of contexts of the collocation candidates and their components.

For each of these approaches, we first present its mathematical foundations and
then a list of the relevant measures including their formulas and key references. We
do not discuss each of the measures in detail. An exhaustive description of many of
these measures (applied to collocation extraction) was published in the dissertation
of Evert (2004). A general description (not applied to collocation extraction) of other
measures can be found in the thesis of Warrens (2008) or in the provided references.

3.1 Statistical association

In order to measure the statistical association, the candidate occurrence data D ex-
tracted from the corpus is interpreted as a random sample obtained by sampling (with
replacement) from the (unknown) population of all possible bigram types xy ∈ C∗.
The random sample consists of N realizations (observed values) of a pair of discrete
random variables ⟨X, Y⟩ representing the component types x, y ∈ U∗. The population
is characterized by the occurrence probability (also called joint probability) of the
bigram types:

P(xy) := P(X= x∧ Y= y).

The probabilities P(X= x) and P(Y= y) of the components types x and y are called
the marginal probabilities and can be computed from the joint probabilities as:

P(x∗) := P(X= x) =
∑
y′

P(X= x∧ Y= y′),

P(∗y) := P(Y= y) =
∑
x′

P(X= x′ ∧ Y= y).
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3 ASSOCIATION MEASURES

P(xy) =: P11 P(xȳ) =: P12 P(x∗) =: P1

P(x̄y) =: P21 P(x̄ȳ) =: P22 P(x̄∗)

P(∗y) =: P2 P(∗ȳ) N

Table 3.1: A contingency table of the probabilities associated with a bigram xy.

Similarly to the occurrence frequencies, the population can also be described by
the following probabilities organized into a contingency table (Table 3.1):

P(xy) := P(X= x∧ Y= y)

P(xȳ) := P(X= x∧ Y ̸= y) =
∑
y′ ̸=y

P(X= x∧ Y= y′),

P(x̄y) := P(X ̸= x∧ Y= y) =
∑
x′ ̸=x

P(X= x′ ∧ Y= y),

P(x̄ȳ) := P(X ̸= x∧ Y ̸= y) =
∑

x′ ̸=x,y′ ̸=y

P(X= x′ ∧ Y= y′)

These probabilities are considered unknown parameters of the population. Any
inferences concerning these parameters can be made only on the basis of the observed
frequencies obtained from the random sample D.

In order to estimate values of these probabilities for each bigram separately, we in-
troduce random variables Fij, i, j ∈ {1, 2} that correspond to the values in the observed
contingency table of a given bigram xy as depicted in Table 3.2. These random vari-
ables are defined as the number of successes in a sequence of N independent experi-
ments (Bernoulli trials) that determine whether a particular bigram type (xy, xȳ, x̄y,
or x̄ȳ) occurs or not, and where each experiment yields success with probability Pij.
The observed values of a contingency table ⟨f11, f12, f21, f22⟩ can be interpreted as
the realization of the random variables ⟨F11, F12, F21, F22⟩ denoted by F. Their joint
distribution is a multinomial distribution with parameters N,P11, P12, P21, and P22:

F ∼ Multi(N,P11, P12, P21, P22).

The probability of an observation of the values f11, f12, f21, f22, where
∑

fij=N, is:

P(F11=f11∧F12=f12∧F21=f21∧F22=f22) =
N!

f11!f12!f21!f22!
·Pf11

11 ·Pf12

12 ·Pf21

21 ·Pf22

22 .

Each random variable Fij has then a binomial distribution with parameters (N,Pij):

Fij ∼ Bi(N,Pij).
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3.1 STATISTICAL ASSOCIATION

X = x X ̸= x

Y = y F11 F12

Y ̸= y F21 F22

Table 3.2: Random variables representing event frequencies in a contingency table.

The probability of observing the value fij is for these variables defined by the formula:

P(Fij=fij) =

(
N

fij

)
P
fij
ij (1− Pij)

N−fij .

The expected value and variance for binomially distributed variables are defined as:

E(Fij) = NPij, Var(Fij) = NPij(1− Pij).

In the same manner, we can introduce random variables Fi, i ∈ {1, 2} representing
the marginal frequencies f1, f2 that have binomial distribution with the parameters
N and P1, P2, respectively. Under the binomial distribution of Fij, the maximum-
-likelihood estimates of the population parameters Pij that maximize the probability
of the data (the observed contingency table) are defined as:

p11 :=
f11

N
≈ P11, p21 :=

f21

N
≈ P21,

p12 :=
f12

N
≈ P12, p22 :=

f22

N
≈ P22.

And analogically, the maximum-likelihood estimates of the marginal probabilities are:

p1 :=
f1

N
≈ P1 p2 :=

f2

N
≈ P2

The last step to measuring statistical association is to define this concept by the
notion of statistical independence. We say that there is no statistical association be-
tween the components of a bigram type if the occurrence of one component has no
influence on the occurrence of the other one, i.e. the occurrences of the components
(as random events) are statistically independent.

In the terminology of statistical hypothesis testing, this can be formulated as the
null hypothesis of independence H0 where the probability of observing the compo-
nents together (as a bigram) is just the product of their marginal probabilities:

H0 : P = P1 · P2

We are then interested in those bigram types (collocation candidates) for which this
hypothesis can be (based on the evidence obtained from the random sample) rejected
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3 ASSOCIATION MEASURES

f̂(xy) =: f̂11 f̂(xȳ) =: f̂12 f̂(x∗) =: f̂1

f̂(x̄y) =: f̂21 f̂(x̄ȳ) =: f̂22 f̂(x̄∗)

f̂(∗y) =: f̂2 f̂(∗ȳ) N

Table 3.3: Expected contingency table frequencies of a bigram xy (under the null hypothesis).

in favor of the alternative hypothesis H1 stating the observed bigram occurrences
have not resulted from random chance:

H1 : P ̸= P1 · P2

With the maximum-likelihood estimates p1 ≈ P1 and p2 ≈ P2, we can determine
the probabilities Pij under the null hypothesis H0 as:

H0 : P11 = p1 · p2,

P12 = p1 · (1−p2),

P21 = (1−p1) · p2,

P21 = (1−p1) · (1−p2).

Consequently, the expected values of the variables Fij that form the expected contin-
gency table under the null hypothesis H0 (Table 3.3) are:

H0 : E(F11) =
f1 · f2
N

=: f̂11, E(F12) =
f1 · (N−f2)

N
=: f̂12,

E(F21) =
(N−f1) · f2

N
=: f̂21, E(F22) =

(N−f1) · (N−f2)

N
=: f̂22.

There are various approaches that can be employed for testing the null hypothesis
of independence. Test statistics calculate the probability (p-value) that the observed
values (frequencies) would occur if the null hypothesis were true. If the p-value is
too low (beneath a significance level α, typically set to 0.05), the null hypothesis is
rejected in favor of the alternative hypothesis (at the significance level α) and held as
possible otherwise. In other words, the tests compare the observed values (frequen-
cies) with those that are expected under the null hypothesis and if the difference is
too large, the null hypothesis is rejected (again at the significance level α). However,
the test statistics are more useful as methods for determining the strength of asso-
ciation (the level of significance is ignored) and their scores are directly used as the
association scores for ranking. The statistical association measures base on statistical
tests are Pearson’s χ2 test (10), Fisher’s exact test (11), t-test (12), z score (13), and Poisson
significance (14) (the numbers in parentheses refer to Table 3.4).

More interpretable are likelihood ratios that simply express how much more like-
ly one hypothesis is than the other (H0 vs. H1). These ratios can also be employed to
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test the null hypothesis in order to attempt rejecting it (at the significance level α) or
not, but it is more useful to use them directly to compute the association scores for
ranking, e.g. Log likelihood ratio (15).

Various other measures have been proposed to determine the statistical associa-
tion of two events (and its strength). Although they originate in all sorts of fields
(e.g. information theory) and are based on various principles (often heuristic), they
can be successfully used for measuring lexical association. All the statistical associa-
tion measures are presented in Table 3.4.

3.2 Context analysis

The second and the third extraction principle, described in Section 2.2.1, deal with
the concept of context. Generally, a context is defined as a multiset (bag) of word
types occurring within a predefined distance (also called a context window) from
any occurrence of a given bigram type or word type (their tokens, more precisely) in
the corpus. The main idea of using this concept is to model the average context of an
occurrence of the bigram/word type in the corpus, i.e. word types that typically occur
in its neighborhood.

In this work, we employ two approaches representing the average context: by esti-
mating the probability distribution of word types appearing in such a neighborhood
and by the vector space model adopted from the field of information retrieval.

The four specific context types used in this work are formally defined on page 32.
In the following sections, we use Ce to denote the context of an event e (occurrence of
a bigram type xy or a word type z) of any of those types (left/right immediate context
or empirical context). For simplicity of notation, elements of Ce are denoted by zk:

Ce = {zk : zk∈ {1, . . . ,M}} , M = |Ce|, Ce ∈
{
Cl
xy, C

r
xy, Cx, Cxy

}
.

Probability distribution estimation

In order to estimate the probability distribution P(Z|Ce) of word types z appearing
in the context Ce, this multiset is interpreted as a random sample obtained by sam-
pling (with replacement) from the population of all possible (basic) word types z ∈ U.
The random sample consists of M realizations of a (discrete) random variable Z rep-
resenting the word type appearing in the context Ce. The population parameters are
the context occurrence probabilities of the word types z ∈ U.

P(z|Ce) := P(Z = z|Ce).

These parameters can be estimated on the basis of the observed frequencies of word
types z ∈ U obtained from the random sample Ce by the following formula:

f(z|Ce) = | {k : zk∈ Ce ∧ zk= z} |.
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# name formula reference

1. Joint probability p(xy) (Giuliano, 1964)
2. Conditional probability p(y|x) (Gregory et al., 1999)
3. Reverse cond. probability p(x|y) (Gregory et al., 1999)
4. Pointwise mutual inf. (MI) log p(xy)

p(x∗)p(∗y) (Church and Hanks, 1990)
5. Mutual dependency (MD) log p(xy)2

p(x∗)p(∗y) (Thanopoulos et al., 2002)
6. Log frequency biased MD log p(xy)2

p(x∗)p(∗y) + logp(xy) (Thanopoulos et al., 2002)
7. Normalized expectation 2f(xy)

f(x∗)+f(∗y) (Smadja and McKeown, 1990)
8. Mutual expectation 2f(xy)

f(x∗)+f(∗y) · p(xy) (Dias et al., 2000)
9. Salience log p(xy)2

p(x∗)p(∗y) · log f(xy) (Kilgarriff and Tugwell, 2001)

10. Pearson’s χ2 test
∑

i,j

(fij−f̂ij)
2

f̂ij
(Manning and Schütze, 1999)

11. Fisher’s exact test f(x∗)!f(x̄∗)!f(∗y)!f(∗ȳ)!
N!f(xy)!f(xȳ)!f(x̄y)!f(x̄ȳ)!

(Pedersen, 1996)
12. t test f(xy)−f̂(xy)√

f(xy)(1−(f(xy)/N))
(Church and Hanks, 1990)

13. z score f(xy)−f̂(xy)√
f̂(xy)(1−(f̂(xy)/N))

(Berry-Rogghe, 1973)

14. Poisson significance f̂(xy)−f(xy) log f̂(xy)+log f(xy)!

log N
(Quasthoff and Wolff, 2002)

15. Log likelihood ratio −2
∑

i,j fij log fij

f̂ij
(Dunning, 1993)

16. Squared log likelihood ratio −2
∑

i,j

log f2ij

f̂ij
(Inkpen and Hirst, 2002)

17. Russel-Rao a
a+b+c+d

(Russel and Rao, 1940)
18. Sokal-Michiner a+d

a+b+c+d
(Sokal and Michener, 1958)

19. Rogers-Tanimoto a+d
a+2b+2c+d

(Rogers and Tanimoto, 1960)
20. Hamann (a+d)−(b+c)

a+b+c+d
(Hamann, 1961)

21. Third Sokal-Sneath b+c
a+d

(Sokal and Sneath, 1963)
22. Jaccard a

a+b+c
(Jaccard, 1912)

23. First Kulczynsky a
b+c

(Kulczynski, 1927)
24. Second Sokal-Sneath a

a+2(b+c)
(Sokal and Sneath, 1963)

25. Second Kulczynski 1
2
( a
a+b

+ a
a+c

) (Kulczynski, 1927)
26. Fourth Sokal-Sneath 1

4
( a
a+b

+ a
a+c

+ d
d+b

+ d
d+c

) (Kulczynski, 1927)
27. Odds ratio ad

bc
(Tan et al., 2002)

28. Yulle’s ω
√
ad−

√
bc√

ad+
√

bc
(Tan et al., 2002)

29. Yulle’s Q ad−bc
ad+bc

(Tan et al., 2002)
30. Driver-Kroeber a√

(a+b)(a+c)
(Driver and Kroeber, 1932)
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# name formula reference

31. Fifth Sokal-Sneath ad√
(a+b)(a+c)(d+b)(d+c)

(Sokal and Sneath, 1963)

32. Pearson ad−bc√
(a+b)(a+c)(d+b)(d+c)

(Pearson,1950)

33. Baroni-Urbani a+
√

ad

a+b+c+
√
ad

(Baroni-Urbani and Buser, 1976)
34. Braun-Blanquet a

max(a+b,a+c)
(Braun-Blanquet, 1932)

35. Simpson a
min(a+b,a+c)

(Simpson, 1943)
36. Michael 4(ad−bc)

(a+d)2+(b+c)2
(Michael, 1920)

37. Mountford 2a
2bc+ab+ac

(Kaufman and Rousseeuw, 1990)
38. Fager a√

(a+b)(a+c)
− 1

2
max(b, c) (Kaufman and Rousseeuw, 1990)

39. Unigram subtuples log ad
bc

− 3.29

√
1
a
+ 1

b
+ 1

c
+ 1

d
(Blaheta and Johnson, 2001)

40. U cost log(1 + min(b,c)+a

max(b,c)+a
) (Tulloss, 1997)

41. S cost log(1 + min(b,c)
a+1

)−
1
2 (Tulloss, 1997)

42. R cost log(1 + a
a+b

) · log(1 + a
a+c

) (Tulloss, 1997)
43. T combined cost

√
U× S× R (Tulloss, 1997)

44. Phi p(xy)−p(x∗)p(∗y)√
p(x∗)p(∗y)(1−p(x∗))(1−p(∗y))

(Tan et al., 2002)

45. Kappa p(xy)+p(x̄ȳ)−p(x∗)p(∗y)−p(x̄∗)p(∗ȳ)
1−p(x∗)p(∗y)−p(x̄∗)p(∗ȳ) (Tan et al., 2002)

46. J measure max[p(xy) log p(y|x)
p(∗y) + p(xȳ) log p(ȳ|x)

p(∗ȳ) , (Tan et al., 2002)
p(xy) log p(x|y)

p(x∗) + p(x̄y) log p(x̄|y)
p(x̄∗) ]

47. Gini index max[p(x∗)(p(y|x)2 + p(ȳ|x)2) − p(∗y)2 (Tan et al., 2002)
+p(x̄∗)(p(y|x̄)2 + p(ȳ|x̄)2) − p(∗ȳ)2,
p(∗y)(p(x|y)2 + p(x̄|y)2) − p(x∗)2

+p(∗ȳ)(p(x|ȳ)2 + p(x̄|ȳ)2) − p(x̄∗)2]
48. Confidence max[p(y|x), p(x|y)] (Tan et al., 2002)
49. Laplace max[Np(xy)+1

Np(x∗)+2
,
Np(xy)+1

Np(∗y)+2
] (Tan et al., 2002)

50. Conviction max[p(x∗)p(∗y)
p(xȳ)

,
p(x̄∗)p(∗y)

p(x̄y)
] (Tan et al., 2002)

51. Piatersky-Shapiro p(xy) − p(x∗)p(∗y) (Tan et al., 2002)
52. Certainity factor max[p(y|x)−p(∗y)

1−p(∗y) ,
p(x|y)−p(x∗)

1−p(x∗) ] (Tan et al., 2002)
53. Added value (AV) max[p(y|x) − p(∗y), p(x|y) − p(x∗)] (Tan et al., 2002)
54. Collective strength p(xy)+p(x̄ȳ)

p(x∗)p(y)+p(x̄∗)p(∗y) ·
1−p(x∗)p(∗y)−p(x̄∗)p(∗y)

1−p(xy)−p(x̄ȳ)
(Tan et al., 2002)

55. Klosgen
√

p(xy) ·AV (Tan et al., 2002)

Table 3.4: Statistical association measures.
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We introduce a random variable F that represents the observed frequencies of word
types in the context Ce which has a binomial distribution with parameters M and
P. The probability of observing the value f for the binomial distribution with these
parameters is defined as:

P(F=f) =

(
M

f

)
Pf (1− P)M−f, F ∼ Bi(M,P).

Under the binomial distribution of F, the maximum-likelihood estimates of the pop-
ulation parameters P that maximize the probability of the observed frequencies are:

p(z|Ce) :=
f(z|Ce)

M
≈ P(z|Ce)

Having estimated the probabilities of word types occurring within the context of
collocation candidates and their components, we can compute the association scores
of measures based on the second and third extraction principles, such as entropy,
cross entropy, divergence, and distance of these contexts, such as measures 56–62
and 63–76 in Table 3.5.

Vector space model

The vector space model model (Salton et al., 1975; van Rijsbergen, 1979; Baeza-Yates
and Ribeiro-Neto, 1999) is a mathematical model used in information retrieval and
related areas for representing text documents as vectors of terms. Each dimension of
the vector corresponds to a separate term. The value of the term in the vector corre-
sponds to its weight in the document: if the term appears in the document, its weight
is greater than zero. In our case, the document is a context and the terms are the word
types from the set of all possible word types U.

Formally, for a context Ce, we define its vector model ce as the vector of term
weights ωl,Ce

, where l = 1, . . . , |U|. The value of ωl,Ce
then represents the weight

of the word type ul in the context Ce.

ce=
⟨
ω1,Ce

, . . . ,ω|U|,Ce

⟩
.

Several different techniques for computing term weights have been proposed. In
this work, we employ three of the most common ones:

In the boolean model, the weights have boolean values {0, 1} and simply indicate
if a term appears in the context or not. If the term occurs in the context at least once,
its weight is 1 and 0 otherwise.

ωl,Ce
:= I(ul, Ce), I(ul, Ce) :=

{
1 if f(ul|Ce) > 0,

0 if f(ul|Ce) = 0.
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3.2 CONTEXT ANALYSIS

The term frequency model (TF) is equivalent to the context probability distribu-
tion and the term weights are computed as normalized occurrence frequencies. This
approach should reflect how important the term is for the context – its importance
increases proportionally to the number of times the term appears in the context.

ωl,Ce
:= TF(ul, Ce), TF(ul, Ce) :=

f(ul|Ce)

M

The term frequency-document frequency model (TF-IDF) weights terms not only
by their importance in the actual context but also by their importance in other contexts.
The formula for computing term weights consists of two parts: term frequency is the
same as in the previous case and document frequency counts all contexts where the
term appears. C ′

e denotes any context of the same type as Ce.

ωl,Ce
:= TF(ul, Ce) · IDF(ul), IDF(ul) := log | {C ′

e} |

| {C ′
e : ul∈ C ′

e} |

The numerator in the IDF part of the formula is the total number of contexts of the
same type as Ce. The denominator corresponds to the number of contexts of the same
type as Ce containing ul.

Any of the specified models can be used for quantifying similarity between two
contexts by comparing their vector representations. Several techniques have been
proposed, e.g. Jaccard, Dice, Cosine (Frakes and Baeza-Yates, 1992) but in our work,
we employ two of the most popular ones:

The cosine similarity computes the cosine of the angle between the vectors. The
numerator is the inner product of the vectors, and the denominator is the product of
their lengths, thus normalizing the context vectors:

cos(cx, cy) :=
cx · cy

||cx|| · ||cy||
=

∑
ωl,x ωl,y√∑

ωl,x
2 ·

√∑
ωl,y

2
.

The dice similarity computes a similarity score on the basis of the formula given
bellow. It is also based on the inner product but the normalizing factor is the average
quadratic length of the two vectors:

dice(cx, cy) :=
2 cx · cy

||cx||2 + ||cy||2
=

2
∑

ωl,x ωl,y∑
ωl,x

2+
∑

ωl,y
2

These techniques combined with the different vector models are the basis of as-
sociation measures comparing empirical contexts of collocation candidates and their
components, such as measures 63–82 in Table 3.5.
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# name formula reference

56. Context entropy −
∑

z p(z|Cxy) logp(z|Cxy) (Krenn, 2000)
57. Left context entropy −

∑
z p(z|C

l
xy) logp(z|Cl

xy) (Shimohata et al., 1997)
58. Right context entropy −

∑
z p(z|C

r
xy) logp(z|Cr

xy) (Shimohata et al., 1997)
59. Left context divergence p(x∗) logp(x∗) −

∑
z p(z|C

l
xy) logp(z|Cl

xy)

60. Right context divergence p(∗y) logp(∗y) −
∑

z p(z|C
r
xy) logp(z|Cr

xy)

61. Cross entropy −
∑

z p(z|Cx) logp(z|Cy) (Cover and Thomas, 1991)
62. Reverse cross entropy −

∑
z p(z|Cy) logp(z|Cx) (Cover and Thomas, 1991)

63. Intersection measure 2|Cx∩Cy|

|Cx|+|Cy|
(Lin, 1998)

64. Euclidean norm
√∑

z(p(z|Cx) − p(z|Cy))2 (Lee, 2001)
65. Cosine norm

∑
z p(z|Cx)p(z|Cy)∑

z p(z|Cx)2·
∑

z p(z|Cy)2
(Lee, 2001)

66. L1 norm
∑

z |p(z|Cx) − p(z|Cy)| (Dagan et al., 1999)
67. Confusion probability

∑
z

p(x|Cz)p(y|Cz)p(z)
p(x∗) (Dagan et al., 1999)

68. Reverse confusion prob.
∑

z

p(y|Cz)p(x|Cz)p(z)
p(∗y)

69. Jensen-Shannon divergence 1
2
[D(p(Z|Cx)||

1
2
(p(Z|Cx) + p(Z|Cy))) (Dagan et al., 1999)

+D(p(Z|Cy)||
1
2
(p(Z|Cx) + p(Z|Cy)))]

70. Cosine of pointwise MI
∑

z MI(z,x)MI(z,y)√∑
z MI(z,x)2·

√∑
z MI(z,y)2

71. KL divergence
∑

z p(z|Cx) log p(z|Cx)
p(z|Cy)

(Dagan et al., 1999)
72. Reverse KL divergence

∑
z p(z|Cy) log p(z|Cy)

p(z|Cx)

73. Skew divergence D(p(Z|Cx)||αp(Z|Cy) + (1 − α)p(Z|Cx)) (Lee, 2001)
74. Reverse skew divergence D(p(Z|Cy)||αp(Z|Cx) + (1 − α)p(Z|Cy))

75. Phrase word coocurrence 1
2
(
f(x|Cxy)

f(xy)
+

f(y|Cxy)

f(xy)
) (Zhai, 1997)

76. Word association 1
2
(
f(x|Cy)−f(xy)

f(xy)
+ f(y|Cx)−f(xy)

f(xy)
) (Zhai, 1997)

Cosine context similarity: 1
2
(cos(cx, cxy) + cos(cy, cxy)) (Frakes, Baeza-Yates,1992)

77. in boolean vector space ωl,Ce = I(ul, Ce)

78. in TF vector space ωl,Ce = TF(ul, Ce)

79. in TF·IDF vector space ωl,Ce = TF(ul, Ce) · IDF(ul)

Dice context similarity: 1
2
(dice(cx, cxy) + dice(cy, cxy)) (Frakes, Baeza-Yates,1992)

80. in boolean vector space ωl,Ce = I(ul, Ce)

81. in TF vector space ωl,Ce = TF(ul, Ce)

82. in TF·IDF vector space ωl,Ce = TF(ul, Ce) · IDF(ul)

Table 3.5: Context-based association measures.
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4
Reference Data

Gold-standard reference data is absolutely essential for empirical evaluation. For many
tasks of computational linguistics and natural language processing (such as machine
translation or word sense disambiguation), standard and well designed reference data
sets are widely available for evaluation and development purposes, often developed
for various shared task evaluation campaigns. Since this has not been the case for
the task of collocation extraction (at the time of starting of this work) we decided to
develop a complete testbed of our own. In the following sections, we describe require-
ments imposed on the reference data, the source corpora the data was extracted from,
and the actual reference data sets we created and used in our experiments.

The main set of our experiments was conducted on the Czech Prague Dependency
Treebank, a medium-sized corpus featuring manual morphological and syntactic an-
notation. In additional experiments, we used the Czech National Corpus, a much larger
data automatically processed by a part-of-speech tagger. In order to compare the re-
sults with experiments on a different language, we also carried out some experiments
on the Swedish PAROLE corpus provided with automatic part-of-speech tagging.

4.1 Requirements

With respect to the nature of the task (defined as ranking collocation candidates; see
Chapter 2), and the evaluation scheme (based on precision and recall; see Chapter 5)
the reference data should be composed of a set of collocation candidates indicated
(annotated) as true collocations and false collocations (non-collocations). The design and
development of the reference data is thus influenced by two main factors: 1) how and
from where to extract the candidate data and 2) how to perform the annotation.

4.1.1 Candidate data extraction

When choosing the source corpus and preparing the candidate data for annotation,
we considered the following requirements (or recommendations):

1. Czech, similarly to many other languages, has very complex morphology. Ap-
propriate morphological normalization is required to conflate all morphological
variants of individual collocation candidates so all occurrences of a collocation
candidate in the source corpus are correctly recognized regardless of their actual
surface forms.
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2. According to our notion of collocation (see Section 2.1.5), collocations are gram-
matically bounded. Syntactic information is required to identify collocation
candidates solely as syntactic units (and not as other non-syntactic word com-
binations). Also, each occurrence of a collocation candidate must be correctly
recognized regardless of the actual word order of its components.

3. In order to minimize the bias caused by underlying linguistic data preprocessing
(such as part-of-speech tagging, lemmatization, and parsing) the source corpus
should be provided with manual morphological and syntactic annotation.

4. Most of the extraction methods assume normal distribution of observations or
become unreliable when dealing with rare events for other reasons (see Chap-
ter 3). The source corpus must be large enough to provide enough occurrence
evidence for sufficient numbers of collocation candidates.

5. Ideally, the annotation should be performed on a full candidate data extracted
from the corpus (e.g. all occurring n-grams) to avoid sampling (taking only
a subset of the full data) and potential problems with estimating performance
over the full data based on the sample estimation.

6. The amount of collocation candidates must be small enough that the annotation
process is feasible for a human annotator(s), and at the same time large enough
to provide good and reliable estimation of the performance scores.

4.1.2 Annotation process

The annotation process should result in a set of collocation candidates, each reliably
judged either as a true collocation or as a false collocation. The entire procedure must
follow a-priori established guidelines covering the following points:

1. Clear and exact definition of annotated phenomena must be provided. All the
participating annotators must share the same notion of these phenomena and
be able to achieve maximum agreement.

2. Subjectivity and other factors play an important role in the notion of colloca-
tion and have a negative influence on the annotation quality. The annotation
should be performed independently by multiple annotators in parallel in order
to estimate the output quality and to minimize the subjectivity of the work by
combining annotators’ judgments.

3. There are several possible scenarios how to combine multiple annotators’ out-
comes: at least one positive judgment required, taking a majority vote, full
agreement required etc. The most appropriate approach should be considered
with respect to the nature of the annotated phenomena.

4. During annotation, annotators can assess each occurrence of a collocation can-
didate as a token with complete knowledge of its current context, or judge each
candidates as a type independently on its occurrences and without contextual
information assuming that all occurrences would share the same annotation.
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4.2 Prague Dependency Treebank

To accomplish all requirements imposed in the previous section, we chose the Prague
Dependency Treebank 2.0 (PDT) as the source corpus of our candidate data. It is
a moderate sized corpus provided with manual morphological and syntactic annota-
tion and by focusing only on two-word collocations, PDT provides sufficient evidence
of observations for a sound evaluation. By default, the data is divided into training,
development, and evaluation sets (e.g. for the purposes of part-of-speech tagging,
parsing, etc.). We ignored this split and used all data annotated on the morphological
and analytical layer – a total of 1 504 847 tokens in 87 980 sentences and 5 338 docu-
ments.

4.2.1 Treebank details

The Prague Dependency Treebank has been developed by the Institute of Formal and
Applied Linguistics and the Center for Computational Linguistics, Charles Univer-
sity, Prague1 and it is available from Linguistic Data Consortium2 (catalog number
LDC2006T01). It contains a large amount of Czech texts (comprising samples from
daily newspapers, a weekly business magazine, and a popular scientific magazine)
with complex and interlinked annotation on morphological, analytical (surface syn-
tax), and tectogrammatical (deep syntax) layer. The annotation is based on the long-
-standing Praguian linguistic tradition, adapted for the current computational linguis-
tics research needs.3

Morphological layer

On the morphological layer, each word form (token) is assigned a lemma and a mor-
phological tag. Combination of the lemma and the tag uniquely identifies the word
form. Two different word forms differ either in their lemmas or in morphological tags.

A lemma has two parts. The first part, the lemma proper, is a unique identifier
of the lexical item. Usually it is the base form of the word (e.g. first case singular for
nouns, infinitive for verbs, etc.), possibly followed by a number distinguishing dif-
ferent lemmas with the same base forms (different word senses). The second part is
optional. It contains additional information about the lemma (e.g. semantic or deriva-
tional information). A morphological tag is a string of 15 characters where every po-
sition encodes one morphological category using one character. Description of the
categories and range of their possible values are summarized in Table 4.1. Detailed
information of the morphological annotation can be found in Zeman et al. (2005).

1http://ufal.mff.cuni.cz/
2http://www.ldc.upenn.edu/
3http://ufal.mff.cuni.cz/pdt2.0/
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position name description # values
1 POS Part of speech 12
2 SubPOS Detailed part of speech 60
3 Gender Gender 9
4 Number Number 5
5 Case Case 8
6 PossGender Possessor’s gender 4
7 PossNumber Possessor’s number 3
8 Person Person 4
9 Tense Tense 5

10 Grade Degree of comparison 3
11 Negation Negation 2
12 Voice Voice 2
13 Reserve1 Reserve -
14 Reserve2 Reserve -
15 Var Variant, style 10

Table 4.1: Morphological categories encoded in Czech positional tags (Zeman et al., 2005).

afun description
Pred Predicate, a node not depending on another node
Sb Subject
Obj Object
Adv Adverbial
Atr Attribute
AtrAtr An attribute of any of several preceding (syntactic) nouns
AtrAdv Structural ambiguity between adverbial and adnominal dependency
AdvAtr Dtto with reverse preference
AtrObj Structural ambiguity between object and adnominal dependency
ObjAtr Dtto with reverse preference
Atv Complement (determining), hung on a non-verb. element
AtvV Complement (determining), hung on a verb, no 2nd gov. node
Pnom Nominal predicate, or nom. part of predicate with copula be
Coord Coordinated node
Apos Apposition (main node)
ExD Main element of a sentence without predicate, or deleted item
AuxV Auxiliary verb be
AuxT Reflexive tantum
AuxR Reflexive passive
AuxP Primary preposition, parts of a secondary preposition
AuxC Conjunction (subordinate)
AuxO Redundant or emotional item, ’coreferential’ pronoun
AuxZ Emphasizing word
AuxX Comma (not serving as a coordinating conjunciton)
AuxG Other graphic symbols, not terminal
AuxY Adverbs, particles not classed elsewhere
AuxK Terminal punctuation of a sentence

Table 4.2: Analytical functions and their description (Hajič et al., 1997).
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ID form lemma tag parentID afun

1 Zbraně zbraň NNFP1-----A---- 0 ExD
2 hromadného hromadný AANS2----1A---- 3 Atr
3 ničení ničení_ˆ(*3it) NNNS2-----A---- 1 Atr

Table 4.3: Example of a text (zbraně hromadného ničení – weapons of mass destruction) annotated
on morphological (lemma + tag) and analytical (parentID + afun) layers.

Analytical layer

Analytical layer of PDT serves to encode sentence dependency structures. Each word
in a sentence is linked to its head word and assigned its analytical function (depen-
dency type). If we think of a sentence as a graph with words as nodes and dependency
relations as edges, the resulting structure is a tree – a directed acyclic graph having
one root, in the theory of dependency syntax called dependency tree. Possible values of
analytical functions are listed in Table 4.2. Complete details of analytical annotation
can be found in Hajič et al. (1997) and a small example of an annotated text in Table 4.3.
Each token (either a word or a punctuation mark) is represented by: its position in the
sentence (ID), word form as it appears in the original text, lemma, morphological tag,
position of the governing word (parentID) (or 0 if the token is the root), and analytical
function (afun).

4.2.2 Candidate data sets

Two collocation candidate data sets were obtained from the Prague Dependency Tree-
bank. Both were extracted from morphologically normalized texts and filtered by
a part-of-speech filter and a frequency filter. Details of these steps are described in
the following parts:

Morphological normalization

The usual role of morphological normalization is to canonize morphological variants
of words so that each word (lexical item) can be identified regardless of its actual mor-
phological form. This technique has been found to be very beneficial in information
retrieval, for example, especially when dealing with morphologically rich languages
such as Czech (Pecina et al., 2008). Two basic approaches to this problem are: a) stem-
ming, where a word is transformed (usually heuristically) into its stem which often
does not represent a meaningful word, and b) lemmatization, where a word is prop-
erly transformed into its base form (lemma) by means of morphological analysis and
disambiguation. For details, see e.g. Frakes and Baeza-Yates (1992) or Manning et al.
(2008).

The latter approach seems more reasonable in our case (manually assigned lem-
mas are available in PDT) but it is not completely adequate. By transforming words
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form lemma full tag lemma proper reduced tag

Zbraně zbraň NNFP1-----A---- zbraň NF-A
hromadného hromadný AANS2----1A---- hromadný AN1A
ničení ničení_ˆ(*3it) NNNS2-----A---- ničení NN-A

Table 4.4: Morphological normalization of surface word forms. A normalized form consists of
a lemma proper (lemma without technical suffixes) and a reduced morphological tag.

only into lemmas, we would lose important information about their lexical senses
that we need to distinguish between the occurrences of different collocation candi-
dates. For example, negation and grade (degree of comparison) significantly change
word meanings and differentiate between collocation candidates (e.g. secure area vs.
insecure area, big mountain vs. (the) highest mountain). Indication of such morphological
categories in the PDT system is not encoded in the lemma but rather in the tag. With
respect to our task, we normalized word forms by transforming them into a combi-
nation of a lemma (lemma proper, in fact; the technical suffixes in PDT lemmas are
omitted) and a reduced tag that comprises the following morphological categories:
part-of-speech, gender, grade, and negation (highlighted in Table 4.1). An example of
morphological normalization is shown in Table 4.4.

For similar reasons and in order to decrease the granularity of collocation candi-
dates, we also simplified the system of Czech analytical functions by merging some of
them into a single value. Details are depicted in Table 4.2, where only the highlighted
part of analytical function values is kept.

Part-of-speech filtering

A part-of-speech filter is a simple heuristic that improves the results of collocation
extraction methods (Justeson and Katz, 1995): the collocation candidates are passed
through a filter which only lets through those patterns that are likely to be ”phrases“
(potential collocations) and not random word combinations. Similar approaches were
used also by Ross and Tukey (1975) and Kupiec et al. (1995). Our motivation for part-
-of-speech filtering is similar but not quite identical. Justeson and Katz (1995) filtered
the data in order to keep those that are more likely to be collocations than others; for
bigram collocation extraction they suggest to use only patterns A:N (adjective–noun)
and N:N (noun–noun). On the other hand, we deal with a broader notion of collocation
in this work and this constraint would be too constraining. We filtered out candidates
with part-of-speech patterns that never form a collocation (at least in our data), in
other words, we allow all part-of-speech patterns that can possibly form a collocation.
This step does not affect the evaluation because it can be done prior to all extraction
methods (token filtering). A list of the employed patterns is presented in Table 4.6. It
was proposed congruently by the annotators before the annotation process, described
in Section 4.2.3, started.
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ID lemma proper reduced tag parentID afun

1 zbraň NF-A 0 Head
2 hromadný AN1A 3 Atr
3 ničení NN-A 1 Atr

Table 4.5: Example of a normalized collocation candidate.

Frequency filtering

To make sure that the evaluation is not biased by low-frequency data, we limit our-
selves only to collocation candidates occurring in PDT more than five times. The less
frequent candidates do not meet the requirement for sufficient evidence of observa-
tions needed by some methods used in this work (they are unreliable when dealing
with rare events) and thus were not included in our evaluation. While Moore (2004)
clearly stated that these cases comprise the majority of all the data (the well-known
Zipfian phenomenon (Zipf, 1949)) and should not be excluded from real-world appli-
cations, Evert (2004, p. 22) argues that ”it is impossible in principle to compute mean-
ingful association scores for the lowest-frequency data“.

PDT-Dep

Dependency trees from the treebank were broken down into dependency bigrams
(Section 2.2.4). From all sentences in PDT, we obtained a total of 635 952 different
dependency bigram types (494 499 of them were singletons). Only 26 450 of them
occur in the data more than five times. After applying the frequency and part-of-
-speech pattern filter, we obtained a list of 12 232 collocation candidates (consisting
of a normalized head word and its modifier, plus their dependency type), further
referred to as PDT-Dep.

PDT-Surf

Although collocations form syntactic units by the definition we use (Section 2.1.5), it
is also possible to extract collocations as surface bigrams, i.e. pairs of adjacent words
(Section 2.2.4) without the guarantee that they form such units but under the assump-
tion that a majority of bigram collocations cannot be modified by the insertion of an-
other word and in text they occur as surface bigrams (Manning and Schütze, 1999,
Chapter 5). In real-world applications this approach would not require the source
corpus to be parsed, which is usually a time-consuming process, accurate only to a cer-
tain extent. A total of 638 030 surface bigram types was extracted from PDT, 29 035
of which occurred more than five times. After applying the part-of-speech filter, we
obtained a list of 10 021 collocation candidates (consisting of normalized component
words), further referred to as PDT-Surf. 974 of these bigrams do not appear in the
PDT-Dep test set (ignoring syntactic information).
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POS pattern example translation

A:N trestný čin criminal act
N:N doba splatnosti term of expiration
V:N kroutit hlavou shake head
R:N bez problémů no problem
C:N první republika First Republic
N:V zranění podlehnout succumb
N:C Charta 77 Charta 77
D:A volně směnitelný freely convertible
N:A metr čtvereční square meter
D:V těžce zranit badly hurt
N:T play off play-off
N:D MF Dnes MF Dnes
D:D jak jinak how else

Table 4.6: Patterns for part-of-speech filtering with their examples. The capital letters denote:
adjectives (A), nouns (N), numerals (C), verbs (V), adverbs (D), prepositions (R), particles (T).

4.2.3 Manual annotation

Three educated linguists, familiar with the phenomenon of collocation, were hired
to annotate the reference data sets extracted from PDT. These annotators agreed on
a definition of collocation adopted from Choueka (1988): “[A collocation expression]
has the characteristics of a syntactic and semantic unit whose exact and unambiguous
meaning or connotation cannot be derived directly from the meaning or connotation
of its components.” This notion requires collocations to be grammatical units (sub-
trees of sentence dependency trees in case of dependency syntax employed in PDT)
that are not entirely predictable (semantically and syntactically). This definition is rel-
atively wide and covers a broad range of lexical phenomena such as idioms, phrasal
verbs, light verb constructions, technical expressions, proper names, stock phrases,
and also weaker lexical preferences. Basically, the annotators had to judge each can-
didate whether it could be considered a free word combination (with intensionally
restricted collocability) or not (and hence, should be placed in a lexicon as colloca-
tion).

The dependency bigrams in PDT-Dep were assessed first. The annotation was per-
formed independently, in parallel, and without any knowledge of context. In order
to minimize the cost of the process, each collocation candidate was presented to each
annotator only once although it could appear in various different contexts. The anno-
tators were instructed to judge any bigram which could eventually appear in a context
where it has a character of collocation as a true collocation. For example, idiomatic ex-
pressions were judged as collocations although they can also occur in contexts where
they have a literal meaning; similarly for other types of collocations. As a result, the
annotators were relatively liberal in their judgments, but their full agreement was
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0 1 2 3 4 5

0 7 066 644 135 78 208 3
1 590 265 125 0 96 0
2 13 8 621 0 46 1
3 74 0 1 185 0 0
4 409 442 87 0 1075 7
5 25 3 2 2 15 6

0 1–5

0 7 066 1 068
1–5 1 111 2 987

Table 4.7: Confusion matrix of two annotators measured on the fine-grained (0-5) categories
(on the left) and after the collocation categories (1–5) were merged together (on the right).

required to mark a candidate as a true collocation in the reference data set. Prob-
lems could have arisen in cases where the annotators had poor knowledge of some
(e.g. technical) domain and could have misjudged certain less-known technical terms
from this domain. The Prague Dependency Treebank, fortunately, does not contain
such texts (see Section 4.2.1) and this sort of problems was not observed (according to
the annotators).

During the assessment, the annotators also attempted to distinguish between sub-
types of collocations and classified each collocation into one of the categories below.
This classification, however, was not intended as a result of the process (our primary
goal was binary classification) but rather as a way to clarify and simplify the annota-
tion. Any bigram that can be assigned to any of the categories was considered a col-
location.

1. stock phrases, frequent unpredictable usages
zásadní problém (major problem), konec roku (end of the year)

2. proper names
Pražský hrad (Prague Castle), Červený kříž (Red Cross)

3. support-verb constructions
mít pravdu (to be right), činit rozhodnutí (make decision)

4. technical terms
předseda vlády (prime minister), očitý svědek (eye witness)

5. idiomatic expressions
studená válka (cold war), visí otazník (lit. hanging question mark ∼ open question)

The surface bigrams from PDT-Surf were annotated in the same fashion but only
those collocation candidates that do not appear in PDT-Dep were actually judged.
Technically, we removed the syntactic information from PDT-Dep data and transfered
the annotations to PDT-Surf. If a surface bigram from PDT-Surf appears also in PDT-
-Dep, it is assigned the same annotation from all three annotators.
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annotations fine grained binary
accuracy Fleiss’ κ accuracy Fleiss’ κ

A1–A2 72.1 0.49 79.5 0.55
A2–A3 71.1 0.47 78.6 0.53
A1–A3 75.4 0.53 82.2 0.60

A1–A2–A3 61.7 0.49 70.1 0.56

Table 4.8: Inter-annotator agreement for annotators A1, A2, A3 on PDT-Dep measured by ac-
curacy and Fleiss’ κ on all 6 categories (fine-grained) and after merging categories 1–5 (binary).

Inter-annotator agreement

The inter-annotator agreement on all the categories of collocations (plus a 0 category
for non-collocations) was relatively low: the simple percent agreement (accuracy) be-
tween two annotators on PDT-Dep ranged from 71.1% to 75.4% and Cohen’s κ4 ranged
from 0.47 to 0.53. The exact Fleiss’ κ5 among all the annotators was 0.49.

This demonstrates that the notion of collocation is very subjective, domain-specific,
and also somewhat vague. In our experiments, we did not distinguish between dif-
ferent collocation categories – ignoring them (considering only two categories: true
collocations and false collocations) increased Fleiss’ κ among all the annotators to 0.56
(see details in Tables 4.7 and 4.8). Multiple annotation was performed in order to
get a more precise and objective idea about what can be considered a collocation by
combining independent outcomes of the annotators. Only those candidates that all
three annotators recognized as collocations (of any type) were considered true collo-
cations (full agreement required). The PDT-Dep reference data set contains 2 557 such
bigrams (21.02% of all the candidates) and PDT-Surf data set 2 293 (22.88% of all the
candidates). For comparison of these reference data sets, see Figure 4.1.

4.3 Czech National Corpus

In an era of multi-billion word corpora, a corpus of the size of the PDT is certainly not
sufficient for real-world applications and thus we attempted to extract collocations
also from a larger data – a set of a total of 242 million tokens from the Czech National
Corpus. This data, however, lacks any manual annotation, and hence we settled for
automatic part-of-speech tagging (Hajič, 2004) and extracted collocation candidates
as surface bigrams similarly to the case of PDT-Surf.

4An agreement measure for two annotators (Cohen, 1960): κ = Po−Pe
1−Pe

, where Po is the relative observed
agreement between annotators and Pe is the theoretical probability of chance agreement (each annotator
randomly choosing each category). The factor 1−Pe then corresponds to the level of agreement achievable
above chance and Po−Pe is the level of agreement actually achieved above chance. We used this commonly
accepted and robust measure although Krenn et al. (2004) argued against using it for linguistic annotations.

5A generalization of Cohen’s κ for any numbers of annotators (Fleiss, 1971).
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units all tokens relevant tokens

tags 95.78 94.77
lemmas 97.21 96.30
lemmas + tags 94.14 92.52
reduced tags 98.15 97.83
lemmas + reduced tags 96.34 95.37

Table 4.9: Accuracy of a Czech state-of-the-art morphological tagger measured on various dif-
ferent units. By default, accuracy is measured on tags of all tokens. Relevant tokens refer to
words with part-of-speech used in the part-of-speech pattern filter described in Section 4.2.2.

4.3.1 Corpus details

The Czech National Corpus (CNC) is a log-term academic project with the aim of build-
ing up a large computer-based corpus, containing mainly written Czech.6 This project
consists of two main parts – synchronous and diachronic – and already produced
a number of various valuable corpora that are available for academic purposes. The
data we used in our evaluation experiments comprises two synchronous (containing
contemporary written language) corpora SYN2000 (ICNC, 2000) and SYN2005 (ICNC,
2005), each containing about 100 million running words (excluding punctuation).

SYN2000 (released to the public in 2000) contains complete texts selected to cover
the widest range of literary genres. It contains contemporary written Czech mostly
from the period 1990-1999. SYN2005 (released in 2005) is again a synchronous but
also a representative collection of texts (mostly from 1990-2004) reflecting the current
distribution of text genres.

4.3.2 Automatic preprocessing

SYN2000 and SYN2005 are not manually annotated, neither on the morphological nor
the analytical layer. Manual annotation of such an amount of data would be unfeasi-
ble. These corpora, however, were processed by a part-of-speech tagger (Spoustová
et al., 2007) and provided at least with automatically assigned morphological tags.
On the one hand, we do not want our evaluation to be biased by automatic linguis-
tic preprocessing (hence we chose the manually annotated PDT as the source corpus
for our main experiments), but on the other hand, we are interested in estimating
the performance of the methods in real-world applications where the availability of
a large-scale manually annotated data cannot be expected.

In order to better understand the possible bias caused by the automatic preprocess-
ing tools, let us now study their actual performance. The part-of-speech tagging of our
CNC data was performed by a hybrid tagger described in Spoustová et al. (2007). It is
a complicated system based on a combination of statistical and rule-based methods.

6http://ucnk.ff.cuni.cz/
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window span 1 2 3 4 5 6 7 8 9 Inf
accuracy (%) 90.89 89.45 88.12 87.16 86.47 85.99 85.56 85.27 85.04 84.76

Table 4.10: Accuracy of a current Czech state-of-the-art dependency parser with respect to the
maximum span of a word and its head, ranging between 1–9 and more (Inf) words.

Its expected accuracy (ratio of correctly assigned tags) measured on the PDT evalua-
tion test set is 95.68% (Spoustová et al., 2007). One of the statistical components used
in this system is a state-of-the-art tagger based on discriminative training of Hidden
Markov Models by the Averaged Perceptron algorithm. This approach was first intro-
duced by Collins (2002) and for Czech morphology implemented by Votrubec (2006).
Its current (unpublished) accuracy measured on full morphological tags (described
in Section 4.2.1) is 95.78%. For measuring the accuracy of taggers, lemmas are typi-
cally ignored. If we count both the correctly assigned tags and lemmas, the accuracy
will drop to 94.14%. The accuracy evaluated on lemmas and reduced tags which were
used in our experiments (Section 4.2.2) is relatively high, a 96.34%̇ (Table 4.9).

Based on this observation, we can assume that in an automatically tagged text
approximately one out of 28 randomly selected tokens is assigned a wrong tag and/or
lemma. Such a token, however, usually appears in more than one bigram. For surface
bigrams, only the first and the last token of a sentence affect one bigram: all other
tokens affect two different bigrams. In the case of dependency bigrams, only the root
and leaf tokens appear in one bigram, other tokens can appear in two or more bigrams
depending on the sentence tree structure. For both surface and dependency bigrams,
the average number of bigrams affected by one token depends on the sentence length
and is equal to 2(n − 1)/n, where n is the sentence length. For an average sentence
from the PDT data, which has 17.1 tokens, the number of bigrams affected by one
token equals 1.88. This implies that if one out of 28 tokens is not assigned a correct
tag and/or lemma (accuracy of 96.34%), then approximately one out of 15 selected
bigrams occurring in an automatically normalized text is misleading and contains
an error (at least in one of its components). Furthermore, we should estimate the
performance only on words that pass through our part-of-speech filter (Section 4.2.2).
Accuracy on such data measured on lemmas and reduced tags is equal to 95.37%.
Thus, we can assume that approximately every 12th bigram occurrence contains an
error. All the accuracy figures mentioned above are summarized in Table 4.9.

Both SYN2000 and SYN2005 are provided with automatic part-of-speech tagging
but no syntactic analysis. Although automatic dependency parsers for Czech do exist,
they were not used to obtain automatic sentence dependency structures of the data
from CNC – mainly for reasons of time complexity. The state-of-the-art dependency
parser is based on McDonald’s maximum spanning tree approach (McDonald et al.,
2005) and enhanced by Novák and Žabokrtský (2007). Its accuracy (ratio of correctly
assigned head words and corresponding values of analytical function) measured on
the evaluation test set from the PDT is 84.76%. This performance is much higher if
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Figure 4.1: Distribution of part-of-speech patterns (left) and annotation categories (right) as-
signed by one of the three annotators in all the three Czech reference data sets.

we analyze words only in a limited surface distance. If we focus only on adjacent
dependency bigrams, which are more likely to form collocations, the tagger’s accu-
racy is almost 91%. As we allow for more distant dependencies (less likely to form
collocations) the accuracy constantly decreases. See Table 4.10 for details.

4.3.3 Candidate data set

CNC-Surf

From the total of 242 million tokens from SYN2000 and SYN2005, we extracted more
than 30 million surface bigrams (types) (Section 2.2.4). We followed the same proce-
dure as for the PDT reference data. After applying the part-of-speech and frequency
filters, the list of collocation candidates contained 1 503 072 surface bigrams. Manual
annotation of such an amount of data was infeasible. To minimize the cost, we se-
lected only a small sample of it – the already annotated bigrams from the PDT-Surf
reference data set, a total of 9 868 surface bigrams, further called CNC-Surf. All these
bigrams appear also in PDT-Surf, but 153 do not occur in it more than five times.
CNC-Surf contains 2 263 (22.66%) true collocations – candidates that all three annota-
tors recognized as collocations (of any type). For comparison with the reference data
sets extracted from the PDT, see Figure 4.1.

4.4 Swedish PAROLE corpus

So far, all the reference data sets presented in this work have been extracted from
Czech texts. In this section, we describe our last reference data set – support-verb con-
struction candidates obtained from the Swedish PAROLE corpus, containing about
20 million words. This data differs not only in the language and the type of collo-
cations used, but also in the extraction procedure. Our original motivation was to
evaluate methods for semi-automatic building of a Swedish lexicon of support-verb
constructions. Preliminary results of this work were described in Cinková et al. (2006).
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category w=1 w=2 w=3 w=1–3

0. non-collocations 7 320 7 080 2 119 15 735
1. phrasemes 63 24 8 79
2. quasimodals 24 14 8 31
3. support-verb constructions 557 559 232 1 182

all 7 964 7 677 2 367 17 027

Table 4.11: Distribution of the annotation categories in the Swedish reference data with respect
to the surface distance between the candidate components (w) in the range 1–3.

4.4.1 Corpus details

The PAROLE corpus is a collection of modern Swedish texts comprising 20 million
running words. It belongs to Språkbanken, the set of corpora at Språkdata, Univer-
sity in Gothenburg, Sweden.7 The corpus was built within the EU project PAROLE
(finished in 1997), which aimed at creating a European network of language resources
(corpora and lexicons). It has automatic morphological annotation but lacks lemmati-
zation. In order to deal with morphological normalization, an automatic lemmatizer
developed by Cinková and Pomikálek (2006) was employed to transform all word
forms into their lemmas.

4.4.2 Support-verb constructions

Support-verb construction (SVC) is combination of a lexical verb and a noun or a nom-
inal group containing a predication and denoting an event or a state, e.g. to take/make
a decision, to undergo a change. From the semantic point of view, the noun seems to be
part of a complex predicate rather than the object of the verb, whatever the surface
syntax may suggest (Cinková et al., 2006). The meaning of a SVC is concentrated in the
predicate noun, whereas the semantic content of the verb is reduced or generalized.
The notion of SVC and related concepts has already been studied elsewhere, e.g. in
Grefenstette and Teufel (1995), Tapanainen et al. (1998), Lin (1999), McCarthy et al.
(2003), and Bannard et al. (2003).

Our interest in SVCs is mainly in the perspective of foreign language learners and
building a lexicon (see Cinková et al., 2006). Although SVCs are easily understood
by foreign language learners, they pose substantial problems for foreign language
production (Heid, 1998) due to the unpredictability of the support verb. For example,
the predicate noun question in an SVC meaning to ask takes different support verbs
in Czech and in Swedish: Czech uses the verb položit (i.e. to put horizontally) while
Swedish uses the verb stålla (i.e. to put vertically). The translation equivalent to the
support verb is unpredictable, though the common semantic motivation can be traced

7http://spraakbanken.gu.se/PAROLE/
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back. The unpredictability of the support verb places SVCs into the lexicon, while the
semantic generality of support verbs and their productivity move them to the very
borders of grammar (Cinková et al., 2006).

4.4.3 Manual extraction

The reference data was obtained by the following manual extraction procedure. It
was inspired by other similar approaches (e.g. Heid, 1998) and comprises these steps:

1. semi-automatic extraction of word expressions whose morphosyntactic charac-
ter suggests that they are potential support-verb constructions,

2. subsequent manual elimination of non-collocations,
3. manual sorting of collocations into three groups: SVCs, quasimodals, phrasemes.

Step 1 involved formulating several corpus queries and obtaining the results. The
queries basically varied the distance between the verb and the noun (ranging from 1
to 3). Some queries introduced article, number, and adjective insertion restrictions.
To ensure that the noun was the object of the verb, the verbs had to follow a modal or
an auxiliary verb.

In step 2, the collocation candidates were ordered according to their frequency
in the corpus. Each collocation interval (the distance between the noun and the verb)
was processed separately. Equally frequent collocation candidates were sorted al-
phabetically according to their verbs. This facilitated manual processing, as some
very frequent verbs could be instantly recognized as never forming support verbs,
and ignored in blocks, i.e. kåpa (to buy) or såga (to say).

Step 3 included a fine-grained semantic classification. Three groups were set at the
beginning: SVCs, quasimodals, and phrasemes. The SVCs group included collocations
with nouns denoting an event (also a state) or containing a predication, e.g. få hjålp
(to get help) and få betydelse (lit. to get significance – to become significant). In the SVCs
group, it is the event described by the predicate noun that actually ”takes place”. In
quasimodals, on the other hand, the verb and the predicate noun form one semantic
unit that resembles a modal verb (e.g. to get the chance to V = to start to be able to V
etc.) (Cinková and Kolářová, 2004) and must be completed by the event in question
(here marked as V). Phrasemes include frequent collocations in which the noun is not
a predicate noun and the meaning of the entire unit is idiomatic (e.g. ta hand om X,
lit. to take hand about X – to take care of X).

Naturally, this sorting was strongly based on intuition. Basically, the phraseme
and quasimodal groups also allow for nouns which do not contain any predication
(e.g. hand), while the ”pure SVCs” are intended to be denoting events and states. With
respect to this, we were not able to find a consistent solution for constructions like begå
en dummhet (lit. to commit a stupidity), which underspecifies the given event.
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4 REFERENCE DATA

reference data set PDT-Dep PDT-Surf CNC-Surf PAR-Dist

morphology manual manual auto auto
syntax manual none none none
bigram types dependency surface surface distance

sentences 87 980 87 980 15 934 590 2 639 283
tokens 1 504 847 1 504 847 242 272 798 22 883 361
words (no punctuation) 1 282 536 1 282 536 200 498 152 20 240 346
bigram types 635 952 638 030 30 608 916 13 370 375
after frequency filtering 26 450 29 035 2 941 414 13 370 375
after part-of-speech filtering 12 232 10 021 1 503 072 898 324

collocation candidates 12 232 10 021 9 868 17 027
data sample size (%) 100 100 0.66 1.90

true collocations 2 557 2 293 2 263 1 292
baseline precision (%) 21.02 22.88 22.66 7.59

Table 4.12: Summary statistics of all the four reference data sets and their source corpora.

PAR-Dist

The extraction procedure was designed and performed by Dr. Silvie Cinková and
yielded 17 027 SVC candidates occurring at collocation intervals 1–3, out of which
15 735 were classified as negative examples, not collocations of our interest. 1 182
collocations were classified as SVCs, 21 were labeled as quasimodal, 79 were labeled
as phrasemes. All of these cases are considered true collocations in our experiments.
Details are shown in Table 4.11. This reference data set is further referred to as PAR-
-Distand detailed comparison of the four reference data sets is shown in Table 4.12.

Crossvalidation split

For the purposes of significance testing (Section 5.1.3) and crossvalidation in our ex-
periments, all the data sets were split into seven stratified subsets (folds), each con-
taining the same ratio of true collocations (to ensure the prior probabilities of true
collocations, i.e. the baseline precision scores, are equal in all the folds). This number
was chosen as a compromise between two contradictory needs: 1) to have enough
folds for a paired test of significance, and 2) to have enough instances in each fold for
reliable estimates of evaluation scores. Six of the folds (called the evaluation folds)
were used for 6-fold cross validation and estimation of average performance includ-
ing significance testing (Chapter 5). The one remaining fold (called the held-out fold)
was put aside and used as held-out data in additional experiments (Section 6.5).
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5
Empirical Evaluation

In this chapter, we present a comparative performance evaluation of the 82 associa-
tion measures discussed in Chapter 3. The evaluation experiments were performed
on the four data sets described in Chapter 4: dependency bigrams from the Prague
Dependency Treebank (PDT-Dep), surface bigrams from the same source (PDT-Surf ),
instances of surface bigrams from the Czech National Corpus (CNC-Surf ), and dis-
tance verb-noun combinations from the Swedish PAROLE corpus (PAR-Dist).

In the first section, we introduce our evaluation scheme based on precision and
recall. Then, we evaluate performance of the association measures separately on the
individual data sets and attempt to compare the obtained results across the different
data sets.

5.1 Evaluation methods

From the statistical point of view, collocation extraction can be viewed as a classi-
fication problem, where each collocation candidate from a given data set must be
assigned to one of two categories: collocation or non-collocation. By setting a thresh-
old, any association measure becomes a binary classifier: the candidates with higher
association scores fall into one class (collocation), the rest into the other class (non-
-collocation). Effectiveness of such a classifier can be visualized in the form of a con-
fusion matrix (Kohavi and Provost, 1998), also called a table of confusion, or a matching
matrix. This matrix contains information about the actual and predicted classifica-
tions done by the classifier on a given data set. An example of a confusion matrix for
a classifier of collocations is shown in Table 5.1.

The rows in the confusion matrix represent instances of the true (gold-standard)
classes and the columns represent instances of the predicted classes. The cells then
contain counts of the instances divided into four sets according to their true and pre-
dicted classification as depicted in Table 5.1: true positives (TP) are correctly classified
true collocations, false negatives (FN) are misclassified true collocations, false positives
(FP) are misclassified true non-collocations, and true negatives (TN) are correctly clas-
sified true non-collocations.

The performance of this classifier can be evaluated using the data in its confusion
matrix, e.g. by a common evaluation measure accuracy – the fraction of correct predic-
tions, i.e. the candidates correctly predicted either as collocations or non-collocations:

A =
TP + TN

TP + FN+ FP + TN
, A ∈ ⟨0, 1⟩.
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5 EMPIRICAL EVALUATION

predicted
collocation non-collocation

tr
ue

collocation TP FN

non-collocation FP TN

Table 5.1: A confusion matrix of prediction of collocations.

However, the prior probabilities of the two classes (the number of true colloca-
tions vs. non-collocations) are usually unbalanced and in that case, the accuracy is not
a very representative evaluation measure of the classifier performance – the classifier
can be biased towards non-collocations. Since we are more interested in correct pre-
diction of collocations rather than non-collocations, several authors (e.g. Evert and
Krenn, 2001) have suggested to use precision and recall as more appropriate evalua-
tion measures: precision (P) is the fraction of positive predictions that are correct
(correctly predicted true collocations), recall (R) is the fraction of positives that are
correctly predicted (true collocations correctly predicted):

P =
TP

TP + FP
, P ∈ ⟨0, 1⟩, R =

TP

TP + FN
, R ∈ ⟨0, 1⟩.

These two evaluation measures are interdependent – by changing the classification
threshold (also called discrimination threshold), we can tune the classifier and trade
off between recall and precision, as illustrated in Figure 5.2

5.1.1 Precision-recall curves

Choosing the optimal classification threshold depends primarily on the intended ap-
plication and there is no principled way of finding its optimal value (Inkpen and Hirst,
2002). Instead, we can measure the performance of association measures by pairs of
precision-recall scores within the entire interval of possible threshold values. In this
manner, individual association measures can be thoroughly compared by their two-
-dimensional precision-recall curves visualizing the quality of ranking collocation can-
didates without committing to a classification threshold. The closer the curve stays
to the top and right, the better the ranking procedure is.

Formally, the precision-recall curve is a graphical plot of recall vs. precision for
a classifier as its classification threshold is varied. The concept of the precision-recall
curve is closely related to a receiver operating characteristic (ROC) curve which com-
pares two operating characteristics computed also from the data of the confusion matrix
– namely the fraction of true positives (TPR=TP/(TP+FP)) vs. the fraction of false pos-
itives (FPR= FP/(FP+TN)) as the criterion (threshold) changes (Fawcett, 2003). ROC
analysis is a popular diagnostic tool used to select optimal classification models. Orig-
inally, it was used in signal detection theory (in 1960s) but recently, it was introduced
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5.1 EVALUATION METHODS

collocation candidate translation PMI precision recall

Červený kříž Red Cross 15.66 100.00 12.50
železná opona iron curtain 15.23 100.00 25.00
řádová čárka decimal point 14.01 100.00 37.50
kupónová knížka coupon book 13.83 100.00 50.00
autor knihy book author 11.05 80.00 50.00
aritmetická operace arithmetical operation 10.52 83.33 62.50
podavač papíru paper feeder 10.17 85.71 75.00
nová kniha new book 10.09 75.00 75.00
kulatý stůl round table 7.03 77.77 87.50
nová vlna new wave 6.59 70.00 87.50
čerpací stanice gas station 6.04 72.72 100.00
systém typu system of a type 3.54 66.66 100.00
centrum města city center 1.54 61.53 100.00
na další on next 0.54 57.14 100.00
program v program in 0.35 53.33 100.00
úroveň je level is 0.25 50.00 100.00

Table 5.2: Precision-recall trade-off illustrated on a ranked list of collocation candidates (true
collocations are in bold) sampled from PDT-Dep and ranked by Pointwise mutual information (4).

also into areas such as machine learning and data mining . The precision-recall (PR)
curves are commonly used for the evaluation of methods in natural language process-
ing and information retrieval when dealing with unbalanced data sets (which is also
the case of collocation extraction) because they give a more informative picture of the
classifier’s performance. For a more detailed comparison of ROC and PR curves, see
e.g. Davis and Goadrich (2006).

From the statistical perspective, the precision-recall curves must be viewed as es-
timates of their true (unknown) shapes from a (random) data sample (fold). As such
they have a certain statistical variance and are sensitive to data. For illustration, see
Figure 5.1 showing PR curves obtained on the six crossvalidation folds of PDT-Dep
(each of the thin curves corresponds to one data fold). In order to obtain a good es-
timation of their true shape we must apply some kind of curve averaging where all
crossvalidation folds with precision-recall scores are combined and a single curve is
drawn. Such averaging can be done in three ways (Fawcett, 2003): vertical – averaging
precision at the same fixed levels of recall, horizontal – averaging recall at the same
fixed levels of precision, and combined – fixing threshold, averaging both precision
and recall. The averaged results are then presented on a curve. Vertical averaging,
as illustrated in Figure 5.1, worked reasonably well in our case and was used in our
further experiments. The thin curves are produced by a single association measure
on six separate data folds; the thick one is obtained by vertical averaging and better
characterizes the true performance on the whole data set.
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Figure 5.1: An example of vertical averaging of precision-recall curves. The thin curves repre-
sent individual non-averaged curves obtained by Pointwise mutual information (4) on each of the

six evaluation data folds of PDT-Dep, the thick one is obtained by vertical averaging.

5.1.2 Mean average precision

The visual comparison of precision-recall curves is a powerful evaluation tool. How-
ever, it has a certain weak point: while a curve that predominates another one within
the entire interval of recall is evidently better (although it might not be significantly
better), when this is not the case, the judgment is not so obvious. Also the significance
testing of the difference on the curves is non-trivial – it should be done interval-wise by
comparing the curves globally on the whole interval of recall (Prchal, 2008), not only
point-wise by comparing the points of precision at fixed levels of recall independently
of each other (Evert, 2004). Instead of evaluating association measures directly by
their PR curves, we propose the average precision (AP) as a more appropriate evalua-
tion measure that can simply compare the evaluated methods by their overall perfor-
mance. This measure is adopted from information retrieval, where it is widely used
for comparing the performance between retrieval techniques or systems (Buckley and
Voorhees, 2000).

Formally, for a ranked list of collocation candidates, we define the average preci-
sion as the mean of the precision scores obtained after each true collocation appears
in the list:

AP =
1

r

n∑
i=1

xipi, pm =
1

m

m∑
k=1

xk, xk∈ {0, 1} ,

where r is the total number of true collocations in the fold, n is the total number of all
candidates in the fold, pm is the precision after m candidates in the ranked list, and
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Figure 5.2: Examples of crossvalidated and averaged precision-recall curves of some well-
-performing association measures obtained on the PDT-Dep data set.

xk indicates if the kth candidate in the list is a true collocation (xk=1) or not (xk=0).
The average precision can also be understood as the expected value of precision for all
possible values of recall, assuming uniform distribution of recall (all possible values
of recall are equally probable):

AP ≈ E (P(R)) , R ∼ U(0, 1).

In the example in Table 5.2, the average precision would be computed from the
precision scores highlighted in bold. Another interpretation of the average precision
is the area under the (PR) curve (AUC). Nevertheless, our approach does not require the
precision-recall values to be transformed into a (continuous) curve in order to estimate
the area under it.

Based on the average precision scores APj computed for N data folds, we define
the mean average precision (MAP) as the sample mean of these scores and use it as
the main evaluation measures in our work:

MAP =
1

N

N∑
j=1

APj

Note: In order to reduce the bias caused by the unreliable precision scores for low
recall and their fast changes for high recall (see again Figure 5.1), we limit the esti-
mation of AP to a narrower range of recall ⟨0.1, 0.9⟩ and use this estimation in all our
experiments.
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5 EMPIRICAL EVALUATION

5.1.3 Significance testing

Statistical tests of the difference between the ranking methods are necessary to exam-
ine whether the observed differences in the evaluation scores (MAP) are measurable
or whether they occur only by chance. Because MAP is averaged over a number of
AP values computed on the separate (independent) data folds, we can employ tests
based on estimating the error of this measure.

As we have mentioned earlier, the precision-recall curves are quite sensitive to
the data and thus, we can expect differences in the AP values to be greater between
data folds than between methods. Therefore, when comparing two ranking methods,
we should analyze their AP difference for each matched pair of data folds (Di) rather
than the difference between AP values averaged over all the folds (D). This problem is
usually solved by the paired Student’s t-test which compares the average difference of
AP between two methods on the separate data folds to the variation of the difference
across the folds. If the average difference is large enough compared to its standard
error, then the methods are significantly different.

t =
D

SD/
√
N
, D =

1

N

N∑
i=1

Di, SD =

√√√√ 1

N− 1

N∑
i=1

(Di −D)2,

where Di is the AP difference on the ith data fold, D is the average difference over all
folds (i = 1, . . . ,N), and SD is the sample standard deviation.

Although the t-test requires the differences to be normally distributed, it works
quite well even if this assumption is not completely valid. However, as a non-para-
metric alternative, we can apply the paired Wilcoxon signed-ranked tests which is
commonly used in information retrieval. This test is more conservative and takes into
account only the rank and sign of the difference and ignores the actual magnitude.
The differences in AP on each data fold are replaced with the ranks of their absolute
values and each rank is multiplied by the sign of the difference (Ri). The sum of the
signed-ranks is compared to its expected value under the assumption that the two
groups are equal. For details and description of other possible tests, see e.g. Hull
(1993).

T =

∑N
i=1Ri√∑N
i=1R

2
i

, Ri = sign(Di) · rank|Di|.

5.2 Experiments

In order to evaluate the performance of the individual association measures, we per-
formed the following experiment on each of the four data sets introduced in Chapter 4.
For all collocation candidates, we extracted their frequency information (the observed
contingency tables) and context information (the immediate and empirical contexts)
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Figure 5.3: Sorted MAP scores of all association measures computed on PDT-Dep. The light
bars correspond to the statistical measures and the dark bars to the context-based measures.

from their source corpora as described in Section 2.2.5. The empirical contexts were
limited to a context window of 3 sentences (the actual one, the one preceding, and
the one following) and filtered to include only open-class word types as described in
Section 2.2.6. Based on this information, we computed the scores for all 82 association
measures for all the candidates in each evaluation data fold. Then, for each associa-
tion measure and each fold, we ranked the candidates according to their descending
association scores, computed values of precision and recall after each true collocation
appearing in the ranked list, plotted the averaged precision-recall curve, and com-
puted the average precision on the recall interval ⟨0.1, 0.9⟩. The AP values obtained
on the evaluation data folds were used to estimate the mean average precision as the
main evaluation measure. Further, we ranked the association measures according to
their MAP values in descending order and depicted the results in a graph. Finally, we
applied the paired Student’s and Wilcoxon tests to detect the measures with statisti-
cally indistinguishable performance. The actual results are presented in the following
subsections.

5.2.1 Prague Dependency Treebank

First, we evaluated the association measures on the PDT-Dep data set of dependency
bigrams extracted from the morphologically and syntactically annotated Prague De-
pendency Treebank, filtered by the part-of-speech and frequency filters as described
in Section 4.2. A baseline system ranking the PDT-Dep candidates randomly would
operate with the expected precision (AP and also MAP) of 21.02%, which is the prior
probability of a collocation candidate to be a true collocation. Precision-recall curves
of some well-performing methods are plotted in Figure 5.2. The best method evalu-
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Figure 5.4: Visualization of p-values from the significance tests of difference (Student’s t-test on
the left and Wilcoxon signed-rank test on the right) between all methods on PDT-Dep sorted ac-
cording to their MAP. The gray points correspond to p-values greater than α=0.05 and indicate

pairs of methods with statistically indistinguishable performance.

ated by the mean average precision is Cosine context similarity in boolean vector space (77)
with MAP=66.79%, followed by Unigram subtuple measure (39) with MAP=66.72% and
other 14 association measures with nearly identical performance (in terms of MAP,
see Figure 5.3). They include some popular methods known to perform reliably in this
task, such as Pointwise mutual information (4), Mutual dependency (5), Pearson’s χ2 test
(10), Z score (13), or Odds ratio (27). Surprisingly, another commonly used method T
test (12) only achieved MAP=24.89% and performed only slightly above the baseline.
Although the best association measure uses the empirical context information, most
of the other context-based methods are concentrated in the second half of the ranked
list of the association measures (indicated by dark-gray bars) and did not preform
well.

The significance tests were applied on all pairs of the association measures and
their results are visualized in Figure 5.4 in the form of a matrix of p-values for both
types of the test (the Student’s t-test on the left and Wilcoxon signed-rank test on the
right). The dark points indicate pairs of measures with statistically indistinguishable
MAP (p ≥ 0.05), the white space indicates pairs that are statistically different (p <

0.05). The big dark square in the bottom left corner corresponds to the 16 best mea-
sures mentioned earlier. Almost all of them are statistically indistinguishable from
one another (with some exceptions). Further in the ranked list of association mea-
sures, we can observe also other “clusters” of measures with statistically equal per-
formance determined by the dark squares on the diagonal. If we compare these two
tests, we can conclude that the Wilcoxon test is indeed more conservative (more pairs
of the measures are indistinguishable) but in general, the results are not very distinct.
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Figure 5.5: MAP scores of association measures computed on the PDT-Surf data set (bars) and
sorted by the MAP scores obtained on the PDT-Dep data set (square points) in descending order.

As the second experiment, we performed the same procedure on the the PDT-Surf
data set of surface bigrams extracted from the Prague Dependency Treebank (exploit-
ing only the morphological information), and depicted the resulting MAP scores of all
association measures in Figure 5.5. For a better comparison, the methods are sorted
according to the results obtained on PDT-Dep. Extracting collocations as surface bi-
grams seems to be more reasonable than as dependency bigrams. The MAP scores
of most association measures increased dramatically. The best performing method
was Unigram subtuple measure (39) with MAP=75.03% compared to 66.71% achieved
on the dependency bigrams (absolute improvement of 11.68%). This is probably due
to the non-directly adjacent dependency bigrams not appearing in the PDT-Surf data
set: in most cases, they do not form collocations. Interestingly, this improvement is
not so significant for context-based association measures (see the dark-gray bars in
Figure 5.5). The best context-based measure on the dependency bigrams (77) ended
up as the 22nd on the surface data and its score increased only by absolute 4.1%.

5.2.2 Czech National Corpus

The third experiment was performed analogously on the instances of PDT-Surf in the
Czech National Corpus – the CNC-Surf reference data set. The content of these two
data sets is almost the same, CNC-Surf shares 98.46% of the collocation candidates
with PDT-Surf. The main difference is in their source corpora. The data from the
Czech National corpus are approximately 150 times larger (in terms of the number of
tokens). The average frequency of candidates in PDT-Surf is 161 compared to 1 662 in
CNC-Surf.
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Figure 5.6: MAP scores of association measures computed on the CNC-Surf data set (bars) and
sorted by the MAP obtained on the PDT-Surf data set (square points) in descending order.

The results are presented in Figure 5.6 and compared to those obtained on the PDT-
-Surf data set (again for a straightforward comparison). The effect of using a much
larger data set is positive only for certain methods – surprisingly the most efficient
ones. A significant improvement (4.5 absolute percentage points on average) is ob-
served only for a few of the best performing association measures on PDT-Surf and
also for some other less efficient methods. Performance of other association measures
did not significantly change or it dropped down. The two absolute winners are Uni-
gram subtuple measure (39) with MAP=79.74% and Pointwise mutual information (4) with
MAP=79.71%̇, known to be very efficient on large corpora.

5.2.3 Swedish PAROLE Corpus

The PAR-Dist data set, on which we carried out this last experiment, differs in more as-
pects. It contains support-verb construction candidates extracted as distance bigrams
(allowing up to three words occurring within the distance between components) from
the 20 million word Swedish PAROLE corpus. Also, no frequency filter was applied
to this data set. A baseline system ranking the PAR-Dist candidates randomly would
operate with the expected precision of 7.59%, which is significantly lower than for the
other data sets and thus the MAP of the association measures is expected to be lower.

Sorted MAP scores of the association measures are presented in descending or-
der as the square points in Figure 5.7. The best performing measures evaluated on
this data set are Michael’s coefficient (36) with MAP=18.88%, Piatersky-Shapiro’s coeffi-
cient (51) with MAP=18.87%, and T-test (12) with MAP=18.66%. Obviously, the scores
are statistically indistinguishable (the paired Wilcoxon signed-rank test, α=0.05). The
appearance of T-test (12) among the best measures is quite surprising because it per-
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Figure 5.7: MAP scores of association measures computed on a subset of PAR-Dist (f>5) (bars)
and sorted by the descending scores of MAP obtained on the full PAR-Dist set (square points).

formed only slightly above the baseline precision on the other data sets. In fact, the
results of other measures are also remarkably different and many of the best perform-
ing measures on other data sets appear in the tail (Figure 5.7).

The evaluation over the PAR-Dist data set might have been unfairly biased by the
low frequency candidates that were not filtered out by the frequency filter as was
the case with the other data sets. Hence, we applied the frequency filter to this set
and preserved only the candidates appearing in the corpus more than five times (the
same frequency threshold as for PDT-Dep, PDT-Surf, and CNC-Surf ). The resulting
set contains 5 530 candidates including 763 true collocations (the baseline precision is
13.79%). MAP scores of this reduced data set are visualized as bars and compared to
the original ones (the square points) also in Figure 5.7.

Most of the association measures are indeed very sensitive to low frequency data
and the MAP scores on the filtered and the full PAR-Dist data set do not correlate
much. The best scores were achieved by Gini index (47), MAP=31.27%, Klosgen’s coef-
ficient (55), MAP=30.53%, and T-test (12), MAP=30.34% (all insignificantly different).
Surprisingly, T-test (12) is again among the best measures. Compared to the results on
the full PAR-Dist set (18.87%), the MAP scores of the best measures are greater than
what could be explained by the difference between the baseline precisions.

Figure 5.8 compares MAP scores on the full PAR-Dist data set and the PDT-Dep
data set. It is evident that the performance of the individual measures varies to a large
extent also in this case. While Pearson’s χ2 test (10) is the third worse method on
PAR-Dist, it is among the best (statistically indistinguishable) methods on PDT-Dep.
On the contrary, T-test (12) is in the group of the best (statistically indistinguishable)
methods on PAR-Dist, but on PDT-Dep, it is among the methods with the lowest MAP.
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Figure 5.8: MAP scores of association measures obtained on the PDT-Surf data set (bars) and
sorted by the descending scores of MAP measured on the PAR-Dist data set (square points).

5.3 Comparison

When comparing results on these data sets, we must be aware of the fact that the
baseline MAP scores on these data sets are not equal (21.02% for PDT-Dep, 22.88% for
PDT-Surf, 22.66% for CNC-Surf, and 7.59% for PAR-Dist) and their differences must
be taken into account during the analysis of the MAP scores on different data sets. In
most cases, these differences are relatively small compared to the differences in MAP
of association measures that were observed in our experiments.

The complete results of all the experiments described in this chapter (including
the significance tests) are presented in Appendix B. To make the picture even more
complete, we have visualized how the results vary on the data sets by drawing their
scatterplots in Figure 5.9. Each of the plots in the matrix contains the MAP of all
association measures obtained on one data set plotted against the MAP on another
data set. Each point represents two MAP scores of a particular association measure
on two data sets. Fully correlated MAP scores on two data sets would appear on
the diagonal of the corresponding plot. A certain correlation is observed between
the results on the PDT-Dep and PDT-Surf data sets and also between PDT-Surf and
CNC-Surf (which are most similar data set pairings). Significantly less correlated are
the MAP scores on CNC-Surf and PDT-Dep, and basically no correlation is observed
between the results obtained on the PAR-Dist and the other data sets.

Based on this observation, we can conclude that the performance of association
measures on our data sets varies to a large extent and depends on every aspect of the
task, such as the type of collocations being extracted, the way the candidates were
obtained, the size of the source corpora, its language, etc.
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Figure 5.9: A matrix of scatterplots of MAP scores of all association measures computed on
all the four data sets (PDT-Dep, PDT-Surf, CNC-Surf, and PAR-Dist). Each point in a particular
scatterplot represents MAP scores of one measure obtained on the two corresponding data sets.

Although we are not able to recommend a measure (or measures) that perform
successfully on any data (or task), the presented evaluation scheme can be effectively
used to choose such a measure (or measures) for any particular task (assuming a man-
ually annotated reference data set is available).
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6
Combining Association Measures

In this chapter, we propose combining association measures into more complex sta-
tistical models that can exploit the potential of the individual association measures to
discover different groups and types of associated words.

6.1 Motivation

It is quite natural to expect that the collocation extraction methods (especially those
based on different extraction principles) rank collocation candidates differently. In
the previous chapter, we used the mean average precision (MAP) as a measure of
quality of such a ranking: methods that better concentrate true collocations at the top
of the list were evaluated as more efficient than the others. Many measures achieved
very similar MAP scores for a given data set and were evaluated as equally good.
For example, Cosine context similarity in boolean vector space (77) and Unigram subtu-
ple measure (39) performed on PDT-Dep with statistically indistinguishable scores of
MAP=66.79% and 66.72%, respectively.

In a more thorough comparison by precision-recall (PR) curves, we observed that
on PDT-Dep, the curve of Cosine context similarity (77) significantly predominates the
curve of Unigram subtuple measure (39) in the first half of the recall interval and vice
versa in the second half, as depicted in Figure 5.2. This is a case where MAP is not
a suitable metric for comparing the performance of association measures. For a more
detailed comparison, we should analyze not only their MAP but also their PR curves.
Moreover, even if two methods have identical PR curves, the actual ranking of col-
location candidates can still vary a lot and different association measures can prefer
different types (or groups) of collocations above others. Such non-correlated measures
could (perhaps) be combined and eventually improve the performance in ranking
collocation candidates. An example of existence of such measures is shown in Fig-
ure 6.1. Association scores of Pointwise mutual information (4) and Cosine context sim-
ilarity (77) seem independent enough to be (linearly) combined into one model and
possibly achieve better performance.

6.2 Methods

Formally, each collocation candidate xi can be empirically described by the feature
vector xi = (xi1, . . . , x

i
82)

T consisting of scores of all 82 association measures from
Tables 3.4 and 3.5 in Chapter 3 and assigned a label yi∈ {0, 1} which indicates whether
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Figure 6.1: Visualization of scores of two association measures. The dashed line denotes a linear
discriminant obtained by logistic linear regression. By moving this boundary, we can tune the
classifier output or use it as a ranker (a 5% stratified sample of the evaluation data is displayed).

the bigram is considered to be a true collocation (y = 1) or not (y =0). We look for
a ranker function f(xi) → R that determine the strength of collocational association
between components of collocation candidates (xi) and hence can be used for their
ranking in the same manner as the individual association measures. Performance
of such a method could be evaluated in the same way as the individual association
measures: MAP scores and PR curves. In this section, we briefly introduce several
statistical-classification methods and demonstrate how we used them as such rankers.
For further details on these methods, we refer to Venables and Ripley (2002).

6.2.1 Linear logistic regression

A generalized linear model (GLM) in a form of logistic regression is an additive model
for a binary response represented by:

logit(π) = β0 + β1x1 + . . .+ βnxn,

where logit(π) = log(π/(1−π)) is a canonical link function for odds ratio and π∈(0, 1)
is a conditional probability of a positive response given a vector x. The estimation of
β0 and β is computed by the maximum likelihood method which is solved by the
iteratively reweighted least squares algorithm. The ranker function in this case is defined
as the predicted value π̂ or equivalently (due to the monotonicity of the logit link
function) as the linear combination β̂0 + β̂Tx.
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6.2.2 Linear discriminant analysis

The basic idea of Fisher’s linear discriminant analysis (LDA) is to find a one-dimensi-
onal projection defined by a vector c so that for the projected combination cTx the ratio
of the between variance B to the within variance W is maximized. After the projection,
cTx can be used directly as a ranker.

max
c

cTB c
cTW c

.

6.2.3 Support vector machines

For technical reasons, we now change the labels yi ∈ {−1,+1}. The goal in support
vector machines (SVM) is to estimate a function f(x) = β0+ βTx and find a classi-
fier y(x)= sign

(
f(x)

)
which can be solved through the following convex optimization:

min
β0,β

n∑
i=1

[
1− yi(β0+ βTxi)

]+
+

λ

2
||β||2.

with λ as a regularization parameter. The hinge loss function L(y, f(x)) = [1−yf(x)]+ is
active only for positive values (i.e. bad predictions) and is therefore very suitable for
ranking models with β̂0+ β̂Tx as a ranker function. Setting the regularization param-
eter λ is crucial for both the estimators β̂0, β̂ and further classification (or ranking).
As an alternative to the often inappropriate grid search, Hastie et al. (2004) proposed
an effective algorithm which fits the entire SVM regularization path [β0(λ), β(λ)] and
provided an option to choose the optimal value of λ. As an objective function, we
used the total amount of loss on training data rather than the number of false pre-
dicted training instances.

6.2.4 Neural networks

Assuming the most common model of neural networks (NNet) with one hidden layer,
the aim is to find inner weights wjh and outer weights whi for

yi = ϕ0

(
α0 +

∑
whiϕh(αh +

∑
wjhxj)

)
,

where h ranges over the units in the hidden layer. Activation functions ϕh and the
function ϕ0 are fixed. Typically, ϕh is taken as the logistic function ϕh(z) = exp(z)/
(1+exp(z)) andϕ0 as the indicator functionϕ0(z) = I(z > ∆)with∆ as a classification
threshold. For ranking, we simply set ϕ0(z) = z. Parameters of the neural networks
are estimated by the backpropagation algorithm. The loss function can be based either
on least squares or maximum likelihood. To avoid problems with convergence of the
algorithm, we used the former one. The tuning parameter of a classifier is then the
number of units in the hidden layer.

81



6 COMBINING ASSOCIATION MEASURES

method averaged precision at MAP
R=20 R=50 R=80 R=⟨0.1,0.9⟩ +%

Neural network (5 units) 91.00 81.75 70.22 80.87 21.08
Linear logistic regression 86.96 79.74 64.63 77.36 15.82
Linear discriminant analysis 85.99 77.34 61.44 75.16 12.54
Neural network (1 unit) 82.47 77.08 65.75 74.88 12.11
Support vector machine (linear) 81.33 76.08 61.49 73.03 9.35

Cosine similarity (77) 80.88 68.46 49.99 66.79 0.00
Unigram subtuples (39) 75.86 68.19 55.13 66.72 –

Table 6.1: Performance of methods combining all association measures on PDT-Dep: averaged
(over the data folds) precision at fixed points of recall and mean average precision and its rela-
tive improvement (+%) compared to the best individual association measure (all values in %).

Training and application

The presented methods are originally intended for (binary) classification. For our pur-
poses, they are used with a small modification: in the training phase, they are used as
regular classifiers on two-class training data (collocations and non-collocations) to fit
the model parameters, but in the application phase, no classification threshold applies
and for each collocation candidate, the ranker function computes a value which is in-
terpreted as the association score. Applying the classification threshold would turn
the ranker back into a regular classifier. The candidates with higher scores would fall
into one class (collocations), the rest into the other class (non-collocations).

6.3 Experiments

In this section, we describe experiments with the models presented above on the four
reference data sets described in Chapter 4. The results will be evaluated by MAP
scores and PR curves, and compared to the performance of the best individual mea-
sures evaluated in Chapter 5.

To avoid incommensurability of association measures in the experiments, we have
used the most common preprocessing technique for multivariate standardization:
the values of each association measure were centered towards zero and scaled to a unit
variance. Precision-recall curves of all methods were obtained by vertical averaging
in 6-fold crossvalidation on the same reference data sets as in the earlier experiments.
Mean average precision was computed from the average precision values estimated
on the recall interval ⟨0.1, 0.9⟩. In each crossvalidation step, five folds were used for
training and one fold for testing.
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Figure 6.2: Precision-recall curves of selected methods combining all association measures on
PDT-Dep, compared with curves of two best measures employed individually on the same data.

6.3.1 Prague Dependency Treebank

First, we studied the performance of the combination methods on the PDT-Dep ref-
erence data. All combination methods worked very well and gained a substantial
performance improvement in comparison with individual measures. The best result
was achieved by the neural network with five units in the hidden layer (NNet.5) with
MAP=80.93%, which is 21.17% relative and 14.08% absolute improvement compared
to the best individual association measures, such as Cosine context similarity in boolean
vector space (77) and Unigram subtuple measure (39). More detailed results are given in
Table 6.1 and precision-recall curves are depicted in Figure 6.2. We observed a rel-
atively stable improvement within the whole interval of recall. The neural network
was the only method which performed better in its more complex variants (with up to
five units in the hidden layer). More complex models, such as neural networks with
more than five units in the hidden layer, support vector machines with higher order
polynomial kernels, quadratic logistic regression, or quadratic discriminant analysis,
overfitted the training data folds and better scores were achieved by their simpler
variants.

The results on the PDT-Surf data set were similar. The best method was also
NNet.5. It achieved even higher MAP=84.84% but compared to the best perform-
ing individual measure Unigram subtuple measure (39) with MAP=75.03%, the relative
improvement was only 12.43%.
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Figure 6.3: MAP scores of methods combining all association measures obtained on the refer-
ence data sets: PDT-Dep, PDT-Surf, CNC-Surf, and PAR-Dist. Best sAM and Best cAM refer to the
best statistical association measure and context-based measure on each data set, respectively.

6.3.2 Czech National Corpus

The CNC-Surf data set provides a much better estimation of the occurrence proba-
bilities of the collocation candidates and their components. Also the context infor-
mation extracted for the candidates in this data set from the Czech National corpus
is much more representative. The best individual association measures evaluated on
CNC-Surf gained about 4.5% (absolute) compared to the results on PDT-Surf (the
same collocation candidates but frequency and context information extracted from
the much smaller Prague Dependency Treebank). The best method on CNC-Surf, Un-
igram subtuple measure (39), achieved MAP=79.74% and NNet.5 combining all associ-
ation measures then increased this score to a remarkable 86.3%.

By taking the CNC-Surf data set as a representative sample of all collocation can-
didates from the whole Czech National Corpus (filtered by the same part-of-speech
and frequency filter) we can use this MAP score as an estimation of MAP that can be
achieved by this method on the full population of candidates from this corpus (which
is 1.5 million surface bigrams, see Table 4.12). Any portion of true collocations in this
population can be extracted by this neural network with the expected precision 86.3%.
If we limit ourselves to a specific recall, we can extract e.g. 20% of true collocations
with an expected precision of 94.07%, 50% of true collocations with an expected pre-
cision of 88.09% and 80% of true collocations with an expected precision of 75.62%
(these values are averaged precision scores at 20%, 50%, and 80% of recall obtained
by NNet.5 on CNC-Surf, respectively).
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Figure 6.4: The learning curve (MAP with respect to training data size) of the neural network
with 5 units in the hidden layer measured on the PDT-Dep reference data set.

6.3.3 Swedish PAROLE Corpus

The comparison of the performance of all the combination methods on all the refer-
ence data sets is depicted in Figure 6.3. NNet.5 was evaluated as the best performing
method also on the PAR-Dist reference data set. It achieved MAP=35.78%, which is,
compared to the best individual measure on the same data set, Michael’s coefficient(36),
with MAP=18.88%, a substantial improvement of 89.5% (relative). Based on the sus-
picion that the evaluation on the (full) PAR-Dist data set (see also Section 5.2.3) might
be biased by the low frequency candidates, we limited another experiment to the sub-
set of candidates with frequency greater than five. The best MAP score of individual
association measure Gini Index (47) was 31.27%. The same neural network model on
this subset achieved MAP=52.15% which is also quite a substantial improvement of
66.76% (relative).

Learning curve analysis

Our next experiment is focused on the effect of using different amounts of data for
training the combination models. The experiments presented so far in this chapter
were based on 6-fold crossvalidation (see Section 6.3). They used five out of the six
evaluation folds for training (fitting model parameters) and one fold for testing (pre-
dicting association strength). For example, in each crossvalidation step on PDT-Dep,
8 737 data instances (candidates labeled as collocations or non-collocations) were used
for training and other 1 747 for testing. The first question is whether such an amount of
training data is sufficient or whether we would profit from having more data available
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method PDT-Dep PDT-Surf CNC-Surf PAR-Dist

NNet.5 (AM+POS+DEP) 84.53 – – –
NNet.5 (AM+POS) 82.79 86.48 88.22 –
NNet.5 (AM) 80.87 84.35 86.30 35.78

Best AM 66.72 (77) 75.03 (39) 79.74 (39) 18.88 (36)
Baseline 21.02 22.88 22.66 7.59

Table 6.2: Summarization of the results achieved on each data sets by the best individual asso-
ciation measure (Best AM) and the best combination method (NNet.5) using association mea-

sures (AM), information about part-of speech pattern (POS) and dependency type (DEP).

for training. In case we have enough data for training, the second question is whether
its amount is not unnecessarily large and whether we can train a well-performing
model on less data.

We have repeated the experiment with NNet.5 on PDT-Dep with a varying propor-
tion of data used for training (the data used for testing did not change). The experi-
ment ran over 100 iterations. It started with 1% of data used for training (87 instances)
in each of the six crossvalidation steps and in every subsequent iteration, we added
another 1% of the data for training. The MAP scores computed after each iteration
of this experiment are depicted in Figure 6.4. The resulting curve is called a learning
curve and is a commnon tool for the analysis of model performance in dependency
on the size of the training data. The beginning of the curve obtained by NNet.5 on
PDT-Dep is fairly steep and reaches 90% of its maximum value with only 5% of train-
ing data; with 15% of training data, it climbs up to 95%; 99% of the maximum MAP
score can be achieved with about 50% of training data.

We expect the learning curve to stay flat even when using more data, and thus
we can conclude that the amount of data we used in our experiments is sufficient.
Moreover, we can use significantly less data and train a very well-performing system
with as little as 15% of the original amount of the training data. The effect of using
more than approximately 60% of the data is within the statistical error (by paired
Wilcoxon signed-rank test).

6.4 Linguistic features

In the following experiment, we attempted to improve the combination methods by
using some linguistic information extracted with the collocation candidates from the
source corpora, namely part-of-speech patterns and dependency types. This informa-
tion was incorporated into the models by binarization and dummy variables (Boros et al.,
1997) for each possible value of the part-of-speech pattern and dependency type, indi-
cating presence or absence of the value for each data instance (collocation candidate).
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Figure 6.5: Dendrogram visualizing hierarchical clustering of association measures based on
their (pairwise) correlation over the held-out data fold from the PDT-Dep data set.

The linguistic information contributed to the models quite significantly. The MAP
scores of the best performing method (NNet.5) exploiting this kind of information
on the reference data sets are shown in Table 6.2. Using POS information improved
the MAP scores of NNet.5 approximately by 2% (absolute) on all Czech data sets (the
Swedish PAR-Dist contains only verb-noun combinations). Additional 2% (absolute)
were gained on PDT-Dep by exploiting the information on the dependency type (the
only data set containing this kind of information) and the best performing method
achieved MAP=84.53% which is a relative improvement of 25.94% compared to MAP
of the best individual measure.

6.5 Model reduction

In the previous sections, we have demonstrated that combining association measures
is generally very reasonable and significantly helps in the task of ranking collocation
candidates. However, the methods which employ all 82 association measures in linear
combination (or more complex models, such as the neural networks with multiple
units in the hidden layer) are unnecessarily complex (in the number of the variables
used), mainly for the following two reasons:

First, some of the association measures are too similar (analytically or empirically)
– when combined they do not bring any new information and become redundant.
Such highly correlated measures make the training (fitting the models) quite diffi-
cult and should be eliminated. After applying principal component analysis (see e.g.
Jolliffe, 2002)) to the all 82 association scores of collocation candidates from the PDT-
-Dep reference data, we observed that 95% of the total variance is explained by only 17
principal components and 99.9% is explained by 42 components. We expect to able
to significantly reduce the number of variables in our models, possibly with a very
limited degradation of their performance.

Second, some of the measures are improper for ranking collocation candidates at
all – they do not determine well the strength of association, bring unnecessary noise to
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Figure 6.6: MAP scores obtained after each iteration of the model reduction of NNet.5 on PDT-
-Dep initiated with 60 variables (lower curve, scores were crossvalidated on the evaluation folds)
and MAP scores on the held-out fold used to select the variables to be removed (upper curve).

the combination models, and eventually, they can also hurt their performance. Also
such measures should be identified and removed from the model. In this section, we
attempt to propose an algorithm, which reduces the combination models by removing
such redundant (correlated) and useless (non-efficient) variables.

A straightforward, but in our case hardly feasible (due to the high number of the
model variables), approach would be an exhaustive search through the space of all
possible subsets of all the association measures. Another option is a heuristic step-
-wise algorithm iteratively removing one variable at a time until a stopping criterion
is met. Such algorithms are not very robust: they are particularly sensitive to data
and generally not recommended. That is why we tried to minimize these problems by
initializing the algorithm with clustering variables with the same contribution to the
model and choosing only one measure from each cluster as a representative. Thus we
can reduce the highly correlated variables and continue with the step-wise procedure.

6.5.1 Algorithm

The proposed algorithm eliminates the model variables (association measures) based
on two criteria: linear correlation with other variables and poor contribution to effi-
cient ranking of collocation candidates.

First, a hierarchical clustering (Kaufman and Rousseeuw, 1990) is employed in
order to group highly correlated measures into clusters. This clustering is based on
the similarity matrix formed by the absolute values of Pearson’s correlation coefficient
computed for each pair of association measures estimated from the held-out data fold
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Figure 6.7: Precision-recall curves of the reduced NNet.5 models compared with the curves of
the full model and two best individual methods on the PDT-Dep data set.

(independent from the evaluation data folds). This technique starts with each variable
in a separate cluster and merges them into consecutively larger clusters based on the
values from the similarity matrix until a desired number of clusters is reached or the
similarity between clusters exceeds a limit.

An example of a complete hierarchical clustering of association measures is de-
picted in Figure 6.5. If the stopping criterion is set correctly the measures in each
cluster have an approximately equal contribution to the model. Only one of them is
selected as a representative and used in the reduced model (the other measures are
redundant). The selection can be random or based e.g. on the (absolute) individual
performance of the measures on the held-out data.

The reduced model at this point does not contain highly-correlated variables and
can be more easily fit (trained) to the data. However, these variables are not guar-
anteed to have a positive contribution to the model. Therefore, the algorithm contin-
ues with the second step and applies a standard step-wise procedure removing one
variable in each iteration, causing minimal degradation of the model’s performance
measured by MAP on the held-out data fold. The procedure stops when the degra-
dation becomes statistically significant – e.g. by the paired t-test or paired Wilcoxon
signed-rank test.

6.5.2 Experiments

We tested the model reduction algorithm with NNet.5 (as the best performing combi-
nation method) on the PDT-Dep reference data set as follows: The initial hierarchical
clustering was stopped after merging the variables into 60 clusters (the number was
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# association measure MAP

13. Reverse cross entropy (62) 22.98
12. First Kulczynsky coefficient (23) 63.21
11. S cost (41) 35.77
10. Left context entropy (57) 22.38
9. Reverse confusion probability (68) 35.53
8. Left context divergence (59) 53.14
7. Phrase word cooccurrence (75) 28.94
6. Right context entropy (58) 23.05
5. Cosine context similarity in boolean vector space (77) 66.79
4. Dice context similarity in TF vector space (81) 28.98
3. Unigram subtuple measure (39) 66.72
2. Dice context similarity in TF·IDF vector space (82) 56.51
1. Log frequency biased Mutual Dependency (6) 60.81

Table 6.3: Association measures (with their individual MAP scores) of the final model of the
reduction algorithm applied to NNet.5 on PDT-Dep in the order they would be further removed.

set experimentally). In each iteration step of the algorithm, we estimated performance
of the current model reduced by each variable (one by one) on the held-out data fold:
six crossvalidation models were trained as usual on five of the evaluation folds and
tested not on the sixth one but on the held-out fold (so the MAP score was estimated
from six different rankings of candidates from one data fold). The variable causing
minimal degradation of this score was selected and removed from the model. The
new model was evaluated as usual on all the evaluation folds and the obtained MAP
score was tested to find out if it is significantly worse than the one from the previous
step. The decision which variable to remove in each iteration was done independently
of the performance evaluation of the intermediate models.

Figure 6.6 displays the MAP scores of the intermediate models from the whole
process. It started with 60 variables, the best MAP was achieved by a model with 47
variables. The MAP scores further oscillated around the same value until the model
had about 16 variables. Then, MAP dropped down a little after each iteration and
with less than 13 variables this degradation became significant (the paired Wilcoxon
signed-rank test, confidence level α = 0.05%) which is even smaller than the number
of principal components that explain 95% of the sample variance as mentioned earlier.

Precision-recall curves for some intermediate models are shown in Figure 6.7. We
can conclude that we were able to reduce the NNet.5 model to 13 variables without
a statistically significant difference in performance, MAP=80.18%. The final model
contained the association measures listed in Table 6.3 in the order in which they would
be removed if the algorithm continued. They include measures across the entire spec-
trum, based on different extraction principles, and with very different individual per-
formance. The precision-recall curves of these measures are depicted in Figure 6.8.
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Figure 6.8: Averaged precision-recall curves of the 13 measures (applied individually on the
PDT-Dep data set) included in the reduced combination model (NNet.5).

Some of the measures/variables of the final model (e.g. 57, 58, 62) performed only
very slightly above the baseline when employed individually, however their contri-
bution to the model is perceptible – if any of them was removed from the model,
the model’s performance would drop significantly (measured by the paired Wilcoxon
signed-rank test at the confidence level α = 0.05%). If we let the model reduction
algorithm make one step more, it would remove the measure (62) with individual
MAP=22.98% (which is less than absolute 2% above the baseline) and the model’s
MAP would drop to 79.37% (which was confirmed to be a significant difference by
the paired Wilcoxon signed-rank test). If this difference (and the contribution of such
poorly performing measures) was not interpreted as “practically” significant and we
removed all measures with MAP less than 25% (57, 58, 62), the model’s MAP would
drop to 76.54% – i.e. the three “poor” methods contribute to the model’s MAP by
almost 4% absolute.

It should be emphasized that the model-reduction algorithm is very sensitive to
data and can very easily lead to different results depending on the task. However, we
employed the reduced NNet.5 models with the 13 variables on the other data sets and
it also performed very well, although in some cases, the differences are statistically
significant (see Table 6.4).

91



6 COMBINING ASSOCIATION MEASURES

PDT-Dep PDT-Surf CNC-Surf PAR-Dist
model full red full red full red full red

NNet.5 (AM+POS+DEP) 84.53 84.16 – – – – – –
NNet.5 (AM+POS) 82.79 82.51 86.48 86.33 88.22 87.58 – –
NNet.5 (AM) 80.87 80.18 84.35 83.81 86.30 85.01 35.78 33.19

Best AM 66.72 (77) 75.03 (39) 79.74 (39) 18.88 (36)
Baseline 21.02 22.88 22.66 7.59

Table 6.4: Comparison of the MAP scores of the full and reduced (13 variables) NNet.5 models
on all the reference data sets. Significantly different scores are in bold.
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7
Conclusions

In this work, we have studied lexical association measures and their application to
collocation extraction. First, we have compiled a comprehensive inventory of 82 lexi-
cal association measures for two-word (bigram) collocation extraction based on three
different extraction principles. These measures are divided into two groups: statistical
association measures and context-based association measures.

Second, we have developed four reference data sets for the task of identifying col-
location candidates. All of them consist of bigram collocation candidates. PDT-Dep
and PDT-Surf were extracted from the Czech manually annotated Prague Dependency
Treebank and differ only in the character of the bigrams: PDT-Dep consists of depen-
dency bigrams while PDT-Surf comprises surface bigrams. Both the sets were fil-
tered by the same part-of-speech pattern and frequency filters. Manual annotation
was done exhaustively by three annotators, true collocations were indicated in all the
data. The CNC-Surf reference data set was extracted from a substantially larger data
from the Czech National Corpus and consists of the surface bigrams also appearing in
PDT-Surf. This data set can be considered as a random sample from the full set of
collocation candidates in this corpus filtered by the same part-of-speech pattern filter
and frequency filter as the PDT-Surf reference data. The PAR-Dist reference data set
is quite different. It consists of Swedish verb-noun combinations manually extracted
from the Swedish PAROLE corpus in a nonexhaustive fashion with an indication of
true support-verb constructions.

These four reference data sets were designed to allow comparison of effectiveness
of the association measures in different settings. On PDT-Dep and PDT-Surf, we have
compared two ways of extracting collocation candidates (dependency vs. surface bi-
grams). On PDT-Surf and CNC-Surf, we have explored the effect of using a much
larger source corpus (1.5 million vs. 242 million tokens). PAR-Dist complements these
three sets with the data that differs in more aspects: the language (Swedish vs. Czech),
the way the candidates were obtained (distance vs. dependency or surface bigrams),
the type of collocations being extracted (support-verb constructions vs. general col-
locations), the size of the source corpora (20 million vs. 1.5 million or 242 million
tokens), and finally, the frequency filter (all candidates vs. those occurring more than
five times).

We implemented all the 82 lexical association measures and evaluated their perfor-
mance in ranking collocation candidates over the four reference data sets by averaged
precision-recall (PR) curves and mean average precision (MAP) scores in 6-fold cross val-
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7 CONCLUSIONS

idation. The baseline scores were set as the expected MAP of a system that would
rank the collocation candidates in each of the reference data sets randomly, which
corresponds to the prior probability of a collocation candidate to be a true colloca-
tion: 21.02% for PDT-Dep, 22.88% for PDT-Surf, 22.66% for CNC-Surf, and 7.59% for
PAR-Dist.

The best result on the PDT-Dep reference data was achieved by a context-based
method measuring Cosine context similarity in boolean vector space with MAP=66.79%
followed by 15 other association measures with statistically indistinguishable perfor-
mance. Extracting collocations as surface bigrams was observed to be a more effi-
cient approach (in terms of higher MAP). The results of almost all measures obtained
over the PDT-Surf reference data significantly improved: the best MAP=75.03% was
achieved with Unigram subtuple measure followed by 13 other measures with statisti-
cally insignificant differences in MAP. The experiments carried out on the CNC-Surf
reference data showed that processing of a larger corpus had a positive effect on the
quality of collocation extraction; the MAP score of the best measures, Unigram sub-
tuple measure and Pointwise mutual information, increased up to 79.7%. The results on
the PAR-Dist reference data set were remarkably different not only in the absolute
MAP scores of the best methods (Michael’s coefficient, Piatersky-Shapiro’s coefficient, and
T-test with statistically indistinguishable MAP=18.66–18.88%) but also in the relative
difference of their performance over the other data sets. For example, T-test, one of
the best measures on PAR-Dist, performed only slightly above the baseline across all
PDT-Dep, PDT-Surf, and CNC-Surf. These results demonstrate that performance of
lexical association measures strongly depends on the actual data and task. None of
the measures can be selected as the “best” measure that would perform efficiently on
any data set. However, the proposed evaluation scheme (based on MAP scores and
eventually also on PR curves) can be effectively used to choose such a measure (or
measures) for any particular task (if manually annotated data is available).

Further, we have demonstrated that by combining association measures, we can
achieve a substantial performance improvement in ranking collocation candidates.
The lexical association measures presented in this work and used as ranking func-
tions provide scores that are uncorrelated to such an extent that a linear combination
of all of them produces better association scores than any of the measures employed
individually. All investigated combination methods (linear logistic regression, linear
discriminant analysis, support vector machines, and neural networks) significantly outper-
formed all individual association measures on all the reference data sets. The best
results were achieved by a simple neural network with five units in the hidden layer.
Its MAP=80.87% that was achieved on the PDT-Dep data set represents 21.53% relative
improvement with respect to the best individual measure on the same set. In the ex-
periments on the CNC-Surf data set, the same neural network achieved MAP=86.30%.
After adding linguistic features (information about part-of-speech and dependency
type) to this model, the MAP score on PDT-Dep increased to 84.53% (25.94% relative
improvement) and on CNC-Surf to 88.22%.
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Moreover, we have observed that it is not necessary to combine all the 82 associ-
ation measures, Even a small subset of about 13 selected measures which performs
statistically indistinguishably from the full model (with the neural network with five
units in the hidden layer, measured by MAP on PDT-Dep), is sufficient. This subset
contains measures from the entire spectrum, based on different extraction principles,
and with very different individual performance. Although the combination of the 13
measures is not guaranteed to be efficient also on other data sets, the proposed algo-
rithm can be easily used to select the right measures for any specific data set and task
(assuming manually annotated data is available).

Performance of lexical association measures in the task of ranking collocation ex-
traction heavily depends on many aspects and must be evaluated on particular data
and task. Combining association measures is meaningful and improves precision and
recall of the extraction procedure and substantial performance improvements can be
achieved with a relatively small number of measures combined in a relatively simple
model.
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A
MWE 2008 Shared Task Results

This appendix is devoted to our participation in the MWE 2008 “Towards a Shared
Task for Multiword Expressions” evaluation campaign focused on ranking MWE can-
didates which was also described in Pecina (2008a). The system we used for this
shared task slightly differed from the one described in this work, namely in the fol-
lowing aspects: we employed only the 55 statistical association measures (no context-
-based measures were used), the results were crossvalidated in 7-fold crossvalidation
and compared by mean average precision (MAP) estimated on the full (not limited)
interval of recall ⟨0, 1⟩. We employed the same combination methods and again ob-
served significant performance improvement by combining multiple association mea-
sures.

A.1 Introduction

Four gold-standard data sets were provided for the MWE 2008 shared task. The goal
was to re-rank each list such that the “best” candidates are concentrated at the top of
the list1. Our experiments were carried out over only three of the data sets – those
provided with corpus frequency data by the shared task organizers:

1. German Adj-Noun collocation candidates from the Frankfurter Rundschau corpus,
2. German PP-Verb collocation candidates from the Frankfurter Rundschau corpus,
3. Czech general collocation candidates from the Prague Dependency Treebank.

In the following sections, for each of these data set, we present the best performing
individual association measure and results of methods combining multiple associa-
tion measures.

A.2 System overview

In our system, described also in our previous work (Pecina and Schlesinger, 2006;
Pecina, 2005), each collocation candidate xi is described by the feature vector xi =
(xi1, . . . , x

i
55)

T consisting of the 55 association scores from Table 3.4 (in Chapter 3 of
this work) computed from the corpus frequency data, and assigned a label yi ∈ {0, 1}
which indicates whether the bigram is considered as true positive (y= 1) or not (y= 0).

1http://multiword.sf.net/mwe2008/
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full set used subset 1–2 1–2–3
category items % items % items % items %

1 367 29.31 358 29.53 }
511 42.16

}
628 52.822 153 12.22 153 12.62

3 117 9.35 117 9.65  701 57.844 45 3.35 41 3.38 }
584 48.185 537 42.89 517 42.66

6 33 2.64 26 2.15

total 1 252 100.0 1 212 100.0 1 212 100.0 1 212 100.0

Table A.1: Category distribution in the full German Adj-Noun data (full set) and its subset of
the items provided with frequency information from the corpus (used subset).

full set all infr.30 light.v
category items % items % items % items %

FVG 549 2.51 543 2.91 282 5.75 455 7.26
figur 600 2.75 589 3.16 280 5.71 286 4.56

TP 1 149 5.26 1 132 6.08 562 11.45 741 11.82

total 21 796 100.00 18 648 100.00 4 907 100.00 6 271 100.00

Table A.2: Category distribution in the full German PP-Verb data (full set) and its subsets of the
candidates provided with frequency information from the corpus (all, in.fr30, light.v).

A part of the data is used to train standard statistical-classification models to pre-
dict the labels. These methods are modified so that they do not produce 0–1 clas-
sification but rather a score that can be used (similarly as for association measures)
for ranking the collocation candidates (Pecina and Schlesinger, 2006). The follow-
ing statistical-classification methods were used in experiments described in this ap-
pendix: linear logistic regression (GLM), linear discriminant analysis (LDA), neural net-
works with 1 and 5 units in the hidden layer (NNet.1, NNet.5), and support vector ma-
chines (SVM).

For evaluation, we followed a similar procedure that was described in Chapter 5
of this work. Before the experiments, each of the reference data sets was split into
seven stratified folds of the same size, each containing the same ratio of true positives.
Average precision (AP), corresponding to the area under the precision-recall curve, was
estimated for each data fold and its mean was used as the main evaluation measure –
mean average precision (MAP). The methods combining multiple association measures
used six data folds for training (fitting the parameters) and one for testing in the 7-fold
crossvalidation.
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A.3 GERMAN ADJ-NOUN COLLOCATIONS

1–2 1–2–3

Baseline 42.12 51.78
Best AM 62.88 (51) 69.14 (51)

GLM 60.88 70.62
LDA 61.30 70.77
SVM 57.95 64.24
NNet.1 60.52 70.38
NNet.5 59.87 70.16

Table A.3: MAP scores of ranking the German Adj-Noun collocation candidates.

A.3 German Adj-Noun collocations

A.3.1 Data description

This data set consist of 1 252 German collocation candidates randomly sampled from
the 8 546 different adjective-noun pairs (attributive prenominal adjectives only) oc-
curring at least 20 times in the Frankfurter Rundschau corpus (Rundschau, 1994). The
collocation candidates were lemmatized with the IMSLex morphology (Lezius et al.,
2000), pre-processed with the partial parser YAC (Kermes, 2003) for data extraction,
and annotated by professional lexicographers with the following categories (distribu-
tion is shown in Table A.1):

1. true lexical collocations, other multiword expressions,
2. customary and frequent combinations, often part of a collocational pattern,
3. common expressions, but no idiomatic properties,
4. unclear/boundary cases,
5. not collocational, free combinations,
6. lemmatization errors corpus-specific combinations.

A.3.2 Experiments and results

Frequency counts were provided for 1 212 collocation candidates from this data set.
We performed two sets of experiments on this subset. First, only the categories 1–2
were considered true positives. There was a total of 511 such cases and thus the base-
line precision was quite high (42.12%). The highest MAP=62.88% achieved by Piater-
sky–Shapiro coefficient (51) was not outperformed by any of the combination methods.

In the second set of experiments, the true positives comprised categories 1–2–3 (the
total of 628 items). The baseline precision was as high as 51.78%. The best association
measure was again Piatersky–Shapiro coefficient (51) but it was slightly outperformed
by most of the combination methods. The best one was based on LDA and achieved
MAP=70.77%. Detailed results are presented in Table A.3.
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all in.fr30 light.v

Baseline 2.91 5.75 7.26
Best AM 18.26 (48) 28.48 (48) 43.97 (14)

GLM 28.40 26.59 41.25
LDA 28.38 40.44 45.08
SVM 14.15 27.51 32.10
NNet.1 30.77 42.42 44.98
NNet.5 30.49 43.40 44.23

Table A.4: MAP of ranking the German PP-Verb support-verb construction (FVG) candidates.

A.4 German PP-Verb collocations

A.4.1 Data description

This data set comprises 21 796 German combinations of a prepositional phrase (PP)
and a governing verb extracted from the Frankfurter Rundschau corpus (Rundschau,
1994) and used in a number of experiments (e.g. Krenn, 2000). PPs are represented
by the combination of a preposition and a nominal head. Both the nominal head and
the verb were lemmatized using the IMSLex morphology (Lezius et al., 2000) and
processed by the partial parser YAC (Kermes, 2003). See Evert (2004) for details of
the extraction procedure. The data was manually annotated as lexical collocations
or non-collocations by Krenn (2000). In addition, a distinction was made between
two subtypes of lexical collocations: support-verb constructions (FVG), and figurative
expressions (figur), detailed statistics for the data are shown in Table A.2.

A.4.2 Experiments and results

Frequency data were provided for the total of 18 649 collocation candidates (all). We
carried out several series of experiments on this subset. First, we focused on the
support-verb constructions (FVG) and figurative expressions (figur) separately, then
we attempted to extract the same items without making the distinction in their type
(TP). Further, as suggested by the shared task organizers, we restricted ourselves to
a subset of 4 908 candidate pairs that occur at least 30 times in the Frankfurter Rund-
schau corpus (in.fr30). In the similar manner, additional experiments were restricted
to candidate pairs containing one of 16 typical light verbs. This step was motivated by
the assumption that filtering based on such condition should significantly improve
the performance of association measures. After applying this filter, the resulting set
(light.v) contains 6 272 collocation candidates.

100



A.4 GERMAN PP-VERB COLLOCATIONS

all in.fr30 light.v

Baseline 3.16 5.70 4.56
Best AM 14.98 (48) 21.04 (51) 23.65 (12)

GLM 19.22 15.28 10.46
LDA 18.34 23.32 24.88
SVM 7.95 15.70 13.29
NNet.1 19.05 22.01 24.30
NNet.5 18.26 22.73 25.86

Table A.5: MAP scores of ranking the German PP-Verb figurative expression (figur) candidates.

Support-verb constructions

The baseline precision for ranking only the support-verb constructions in all the data
(all) is as low as 2.91%, while the best MAP (18.26%) was achieved by Confidence mea-
sure (48). Additional substantial improvement was achieved by all combination meth-
ods. The best score (30.77%) was obtained by the neural network with 1 unit in the
hidden layer (NNet.1). When we focused on the candidates occurring at least 30 times
(infr.30 – baseline precision 5.75%), the best individual association measure was again
Confidence measure (48) with MAP 28.48%. The best combination method was then
neural network with 5 units in the hidden layer (NNet.5): MAP 43.40%. The best per-
forming individual association measure on the light verb data (light.v) was Poisson
significance measure (14) with MAP as high as 43.97% (baseline 7.25%). The perfor-
mance gain achieved by the best combination method was not, however, so significant
(45.08%, LDA). Details are shown in Table A.4.

Figurative expressions

Ranking figurative expressions is more difficult. The best individual association mea-
sure on all the data (all) is again Confidence measure (48) with MAP of only 14.98%,
although the baseline precision is a little bit higher then in the case of support-verb
constructions (3.16%). The best combination of multiple association measures is ob-
tained by liner logistic regression (GLM) with MAP equal to 19.22%. Results for the
candidates occurring at least 30 times (in.fr30 – baseline precision 5.70%) are higher:
the best AM (Piatersky-Shapiro coefficient (51)) with MAP 21.04% and LDA with MAP
23.32%. In the case of PP combinations with light verbs (light.v), the winning individ-
ual AM is t test (12) with MAP=23.65%, and the best combination method is NNet.5
with 25.86%. Details are given in Table A.5.

Support-verb constructions and figurative expressions

The last set of experiments performed on the German PP-Verb data aimed at ranking
both support-verb constructions and figurative expressions without making any dis-
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all in.fr30 light.v

Baseline 6.07 11.45 11.81
Best AM 31.17 (48) 43.85 (48) 63.59 (14)

GLM 44.66 47.81 65.37
LDA 41.20 57.77 65.54
SVM – 51.91 55.10
NNet.1 44.71 60.59 65.10
NNet.5 44.77 59.59 66.06

Table A.6: MAP scores of ranking the German PP-Verb candidates of both support-verb con-
structions and figurative expressions.

tinction between these two types of collocations. The results are shown in Table A.6
and are not very surprising. The best individual AM on all the candidates (all) as
well as on the subset of frequent candidates (in.fr30) was Piatersky-Shapiro coefficient
(51) with MAP 31.17% and 43.85%, respectively. Poisson significance measure (14) per-
formed best on the candidates containing light verbs (light.v) (63.59%). The best com-
bination methods were the neural networks with 1 and 5 units (NNet.1, NNet.5), re-
spectively. The most substantial performance improvement obtained by combining
multiple association measures was observed on the set of all candidates (no filtering
applied).

A.5 Czech PDT-Dep collocations

A.5.1 Data description

The PDT data contains an annotated set of 12 232 normalized dependency bigrams
occurring in the manually annotated Prague Dependency Treebank 2.0 more than five
times and having part-of-speech patterns that can possibly form a collocation. Every
bigram is assigned to one of the six categories described below by three annotators.
Only the bigrams where all annotators agreed on them being collocations (of any type,
categories 1–5) are considered true positives. The entire set contains 2 572 such items.

0. non-collocations,
1. stock phrases, frequent unpredictable usages,
2. names of persons, organizations, geographical locations, and other entities,
3. support-verb constructions,
4. technical terms,
5. idiomatic expressions.

Note: This data set is identical to the PDT-Dep reference data set described in Sec-
tion 4.2.1 of this work. However, the evaluation was performed over all seven cross-
validation folds (and thus the results are slightly different).
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AM AM+POS

Baseline 21.01
Best AM 65.63 (39)

GLM 67.21 77.27
LDA 67.23 75.83
SVM 71.44 74.38
NNet.1 67.34 77.76
NNet.5 70.31 79.51

Table A.7: MAP scores of ranking the Czech PDT-Dep data. The second column refers to ex-
periments using combination of association measures and POS pattern information.

A.5.2 Experiments and results

The baseline precision on this data is 21.02%. In our experiments, the best performing
individual association measure was Unigram subtuple measure (39) with MAP=65.63%.
The best method combining all association measures was support vector machine
with MAP equal to 71.44%. After introducing a new (categorical) variable indicating
POS patterns of the collocation candidates and adding it to the combination methods,
the performance increased up to 79.51% (for the best method – NNet.5).

A.6 Conclusion

The overview of the best results achieved by the individual association measures and
by the combination methods on all the data sets (and their variants) is shown in Ta-
ble A.8. With only one exception the combination methods significantly improved the
ranking of collocation candidates on all data sets. Our results showed that different
measures give different results for different tasks (data). It is not possible to recom-
mend “the best general association measure” for ranking collocation candidates, as
the performance of the measures heavily depend on the data/task. Instead, we sug-
gest to use the proposed machine learning approach and let the classification methods
do the job and weight each measure appropriately for each specific task and/or data.
It seems that a neural network is probably the most suitable learner for this task, but
the other combination methods also performed well.
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data set variant baseline best AM best CM +%

GR Adj-Noun 1-2 42.40 62.88 61.30 -2.51
1-2-3 51.74 69.14 70.77 2.36

GR PP-Verb FVG all 2.89 18.26 30.77 68.51
in.fr30 5.71 28.48 43.40 52.39
light.v 7.26 43.97 45.08 2.52

GR PP-Verb Figur all 3.15 14.98 19.22 28.30
in.fr30 5.71 21.04 23.32 10.84
light.v 4.47 23.65 25.86 9.34

GR PP-Verb all all 6.05 31.17 44.77 43.63
in.fr30 11.45 43.85 60.59 38.18
light.v 11.73 63.59 66.06 3.88

CZ PDT-Dep AM 21.01 65.63 71.44 8.85
AM+POS 21.01 65.63 79.51 21.15

Table A.8: Summary of the results obtained on all the data sets and their variants. The last
two columns refer to the scores of the best methods combining multiple association measures
(best CM) and the corresponding relative improvements (+%) compared to the best individual
association measure (best AM). The last row refers to the experiment using a combination of

association measures and information about part-of-speech (POS) patterns.
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B
Complete Evaluation Results

This appendix contains an overview of the results of all the evaluation experiments
performed in this work. For each data set, we present: 1) a barplot of the MAP scores
of all individual association measures (sorted in descending order), 2) a visualiza-
tion of the results of significance tests of difference between all individual association
measures (by the paired Student’s t-test and paired Wilcoxon signed-ranked test),
the gray points correspond to p-values greater than α = 0.05 and indicate pairs of
measures with statistically indistinguishable performance, and 3) a table of the MAP
scores obtained by combination of all association measures in different models and
their relative performance improvement compared to the best individual measures.
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B.1 PDT-Dep
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Figure B.1: MAP scores of all individual association measures (in descending order).
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Figure B.2: Significance tests of difference between all individual association measures (the
paired t-test on the left and paired signed-rank Wilcoxon test on the right, α=0.05).

AM +% AM+POS +% AM+POS+DEP +%

Baseline 21.01 – 21.01 – 21.01 –
Best AM (77) 66.79 0.00 66.79 0.00 66.79 0.00

GLM 77.36 15.82 79.77 19.43 82.07 22.88
LDA 75.16 12.54 78.00 16.79 82.07 22.88
SVM 73.03 9.35 77.55 16.10 79.01 18.29
NNet.1 74.36 11.33 78.28 17.20 82.01 22.79
NNet.5 80.87 21.08 82.79 23.96 84.53 25.56

Table B.1: MAP scores of combination of all association measures and their relative perfor-
mance improvement (+%) compared to the best individual measure.
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B.2 PDT-SURF

B.2 PDT-Surf
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Figure B.3: Sorted MAP scores of all individual association measures.
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Figure B.4: Significance tests of difference between all individual association measures (the
paired t-test on the left and paired signed-rank Wilcoxon test on the right, α=0.05).

AM +% AM+POS +%

Baseline 22.88 – 22.88 –
Best AM (39) 75.03 0.00 75.03 0.00

GLM 79.67 6.18 78.91 5.17
LDA 79.47 5.92 82.56 10.03
SVM 77.58 3.40 81.09 8.08
NNet.1 79.1 5.43 82.44 9.87
NNet.5 84.35 12.43 86.40 15.15

Table B.2: MAP scores of combination of all association measures and their relative perfor-
mance improvement (+%) compared to the best individual measure.
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B.3 CNC-Surf
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Figure B.5: Sorted MAP scores of all individual association measures.
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Figure B.6: Significance tests of difference between all individual association measures (the
paired t-test on the left and paired signed-rank Wilcoxon test on the right, α=0.05).

AM +% AM+POS +%

Baseline 22.66 – 22.66 –
Best AM (39) 79.74 0.00 79.74 0.00

GLM 75.21 -5.69 85.13 6.76
LDA 82.75 3.77 84.54 6.01
SVM 80.51 0.97 81.41 2.10
NNet.1 83.07 4.17 85.26 6.92
NNet.5 86.30 8.23 88.22 10.64

Table B.3: MAP scores of combination of all association measures and their relative perfor-
mance improvement (+%) compared to the best individual measure.
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Figure B.7: Sorted MAP scores of all individual association measures.
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Figure B.8: Significance tests of difference between all individual association measures (the
paired t-test on the left and paired signed-rank Wilcoxon test on the right, α=0.05).

AM +%

Baseline 7.59 –
Best AM (36) 18.88 0.00

GLM 34.24 81.35
LDA 32.79 73.68
SVM 31.94 69.17
NNet.1 34.52 82.82
NNet.5 35.78 89.50

Table B.4: MAP scores of combination of all association measures and their relative perfor-
mance improvement (+%) compared to the best individual measure.
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Figure B.9: Sorted MAP scores of all individual association measures.
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Figure B.10: Significance tests of difference between all individual association measures (the
paired t-test on the left and paired signed-rank Wilcoxon test on the right, α=0.05).

AM +%

Baseline 13.79 –
Best AM (47) 31.27 0.00

GLM 47.87 53.09
LDA 48.11 53.85
SVM 47.12 50.68
NNet.1 48.28 54.39
NNet.5 52.15 66.76

Table B.5: MAP scores of combination of all association measures and their relative perfor-
mance improvement (+%) compared to the best individual measure.
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Summary

This work is devoted to an empirical study of lexical association measures and their
application to two-word collocation extraction. We have compiled a comprehensive
inventory of 82 lexical association measures and present their empirical evaluation
on four reference data sets: Czech dependency bigrams from the manually annotated
Prague Dependency Treebank, surface bigrams from the same source, instances of the
latter from the substantially larger Czech National Corpus provided with automatically
assigned lemmas and part-of-speech tags, and finally, Swedish distance verb-noun
combinations from the automatically part-of-speech tagged PAROLE corpus. The col-
location candidates in the reference data sets were manually annotated and labeled as
collocations or non-collocations by educated linguists. The applied evaluation scheme
is based on measuring the quality of ranking collocation candidates according to their
chance to form collocations. The methods are compared by precision-recall curves, mean
average precision scores, and appropriate tests of statistical significance. Further, we also
study the possibility of combining lexical association measures and present empirical
results of several combination methods that significantly improved state of the art in
collocation extracting. Finally, we propose a model reduction algorithm that signifi-
cantly reduces the number of combined measures without any statistically significant
difference in performance.
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