Automatic Extraction of Clause Relationships
from a Treebank

Oldfich Kruza and Vladislav Kubon

Charles University in Prague
Institute of Formal and Applied Linguistics
Malostranské nam. 25, Prague
Czech Republic
kruza@ufal.mff.cuni.cz, vkQufal.mff.cuni.cz

Abstract. The paper concentrates on deriving non-obvious information
about clause structure of complex sentences from the Prague Dependency
Treebank. Individual clauses and their mutual relationship are not ex-
plicitly annotated in the treebank, therefore it was necessary to develop
an automatic method transforming the original annotation concentrating
on the syntactic role of individual word forms into a scheme describing
the relationship between individual clauses. The task is complicated by
a certain degree of inconsistency in original annotation with regard to
clauses and their structure. The paper describes the method of deriving
clause-related information from the existing annotation and its evalua-
tion.

1 Introduction

One of the major factors which changed linguistics during the past twenty years
was without a doubt a strong stress on building and exploiting large annotated
corpora of natural languages. They serve nowadays as a primary source of evi-
dence for the development and evaluation of linguistic theories and applications.

Although the corpora are extremely important source of data, they are not
omnipotent. The more elaborated annotation scheme the authors use, the more
problems with linguistic phenomena they have to solve. Creating a consistently
annotated treebank requires making a large number of decisions about a par-
ticular annotation of particular linguistic phenomena. The more elaborated and
detailed is the annotation, the easier it is to find phenomena which are anno-
tated in a seemingly inconsistent way. If the annotation is really well-designed
and consistent, then it should be possible to extract an information hidden in the
corpus or treebank even in case that a particular phenomenon we are interested
in was not annotated explicitly.

This paper describes an attempt to do precisely that - to extract an informa-
tion which may be useful for research of a particular linguistic phenomenon from
the treebank, where this phenomenon is not explicitly tagged. The axtracted in-
formation should provide a linguistic basis for research in the fields of natural
language parsing and information retrieval (exploiting linguistically motivated

methods in information retrieval seems can recently be found in a number of pa-
pers, cf. e.g. [1]). The treebank under consideration is the Prague Dependency
Treebank (PDT)!, [3] a large and elaborated corpus with rich syntactic anno-
tation of Czech sentences. The reason why we concentrate on this particular
corpus is very simple - it is the only existing large scale syntactically annotated
corpus for Czech. The phenomenon we are interested in are Czech complex sen-
tences, the mutual relationship of their clauses and properties of those clauses.
In the following sections we would like to present a brief description of the PDT,
followed by a discussion of the annotation of clauses in complex sentences (and
their parts - segments) in the PDT. Then we are going to describe an auto-
matic method how to extract the required information from PDT (where it is
not explicitly marked). In the last section we are going to present a discussion
concerning the methods and results of an evaluation of the method presented in
the paper.

2 The Prague Dependency Treebank

The Prague Dependency Treebank is a result of a large scale project started
in 1996 at the Faculty of Mathematics and Physics at the Charles University
in Prague. It is a corpus annotated on multiple levels - morphological, ana-
lytical and underlying-syntactic layer (for a description of the tagging scheme
of PDT, see e.g. [5], [2], [7], [8], and the two manuals for tagging published
as Technical Reports by UFAL and CKL of the Faculty of Mathematics and
Physics, Charles University Prague (see [6]) and available also on the website
http://ufal.mff.cuni.cz).

2.1 Clauses and segments

Unfortunately, although the annotation scheme of PDT allows for a very deep
description of many kinds of syntactic relationships, there is no explicit anno-
tation of the mutual relationships of individual clauses in complex sentences in
the corpus. Even worse, even the units which the clauses consist from (segments
- cf. the following informal definition) are not explicitly and consistently anno-
tated. In order to make clear what we understand by the notion of a segment in
the following text, let us mention that very informally a segment is a term de-
scribing individual part of a simple clause which is visually separated from other
segments by some separator (conjunction, relative pronoun, bracket, punctua-
tion mark etc.). The segments are of course smaller units than clauses, a clause
consists from more than a single segment for example in case that it contains
coordination or when it is divided into more parts for example by an embedded
subordinated clause. A more detailed description of segments can be found e.g.
in [9].

! http://ufal.mff.cuni.cz/pdt2.0/

2.2 Annotation of segments at the analytic level of the PDT

The identification of segments and their mutual relationship might be an im-
portant part of the process of the identification of whole clauses, so let us look
at the annotation of segments in the PDT. More precisely, let us look at the
annotation at the surface syntactic (analytic) level of the PDT, because it con-
stitutes much more natural information source for our purpose than the deeper,
tectogrammatical level (mainly due to the fact that the analytic trees of PDT
correspond more directly to individual tokens (words, punctuation marks etc.)
of the input sentence. The tectogrammatical level represents a meaning of the
sentence, the correspondence to its surface form is not so straightforward as it
is in the case of the analytic level.

Formally, the structure of a sentence at the analytic layer of PDT is rep-
resented as a dependency-based tree, i.e. a connected acyclic directed graph in
which no more than one edge leads into a node. The edges represent syntactic
relations in the sentence (dependency, coordination and apposition being the
basic ones). The nodes — labelled with complex symbols (sets of attributes) —
represent word forms and punctuation marks.

In particular, there are no nonterminal nodes in PDT that would represent
more complex sentence units — such units are expressed as (dependency) sub-
trees, see also Figures 1, 2 and 3:

— Complex units that correspond to particular “phrases”, as verb phrase, nom-
inal phrase or prepositional phrase — such units are expressed as subtrees
rooted with nodes labelled with respective governing word forms, e.g. gov-
erning verb (its “lexical” part in case of analytical verb form, or copula in
verbal-nominal predicate, or modal verb), governing noun, or preposition (as
a “head” of a whole prepositional phrase);

— Dependent clauses — in principle, they are rendered as subtrees rooted with a
node labelled with the governing verb of dependent clause (e.g. for attributive
dependent clauses), or with a node for subordinating conjunction (adverbial
and content clauses);

— Coordinated structures and sentence units in apposition (whether they are
sentence members or whole clauses) — they are represented by subtrees rooted
with nodes that correspond to a coordinating conjunction or some formal flag
for an apposition (e.g. comma, brackets).

The rules described above always concern syntactic relationships between a
pair of tokens (words) in the sentence. They do not deal by any means with
bigger units — not even in the case of coordination where it would be natural.
Segments and clauses are not explicitly marked in the tree, nor is their mu-
tual relationship. We can, of course, intuitively suppose that subtrees might be
rooted with the governing node of the segment or a clause as a natural solution.
Unfortunately, it turned out that this is not the case at the analytic level of
PDT. Let us demonstrate this fact on constructions contained in brackets, visu-
ally very easily distinguishable sentential segments with a direct relationship to

the structure of individual clauses (a bracketed construction is one of the phe-
nomena dividing a clause into more segments). Unlike punctuation marks, the
brackets unambiguously show the beginning and the end of a text inserted into
a sentence. It is therefore quite natural to expect this easily detectable segment
to be annotated in a single consistent way. The following examples of structures
assigned to segments in brackets have been borrowed from [4], see Fig. 1, 2 and
3.

\zabyvah'
??.’\
se \postavehim
AuxT Obj
ﬂ:pos
UK University)
Atr Ap Atr Ap AuxG

Karlovy
Atr

Fig. 1. PDT: Segment in parenthesis as an apposition: zabgvali se postavenim UK
(Univerzity Karlovy) [(they) dealt-with refl. a_position of_UK (University of_Charles)]

\vra':ir
22;

\

se véera z
Aux Adyv_Pa AuxpP

(J hospody
AuxG AuxG Ady

Fig. 2. PDT: Segments in parenthesis as a sentence member: vrdtil se (véera) z hospody
[(he)... returned refl (yesterday) from a_pub]

Let us point out that not only the annotation of a content of these parenthesis
differs, but even the mutual position of both types of brackets in the tree is
different. The situation is similar when we look at clauses, the main difference
being the size - in the case of whole clauses the examples would be longer and
even less transparent than the examples presented above for bracketed segments.

Although inconsistently annotated at the first sight, the trees contain an
extremely valuable syntactic information which may serve as a basis for an au-
tomatic re-annotation procedure. Such a procedure should exploit the fact that
in other respects, with regard to other syntactic phenomena, the corpus had been
annotated with extreme care and with a great deal of consistency. Actually, the

dosdhl
P2

hetriku Trval,

Obj Sb \
Marek \ (Viktoria)

Atr ExD ExD_Pa ExD

Zizkov
Atr

Fig. 3. PDT: Segments in parenthesis as an independent sentence part: a hetriku dosdhl
Marek Trval (Viktorie Zizkov) [and hattrickos; achieved Marek Trvalg.; (Viktorie
Zizkov))

reason for inconsistency wrt. the annotation of obvious segments is the consis-
tency achieved wrt. a different syntactic phenomenon, in this case the endeavor
to annotate the apposition and coordination in a similar way, i.e. with the whole
construction depending on a conjunction / appositional comma.

3 Definition of a Clause Based on the Analytic Layer of
the PDT

We base our definition of clauses on the analytic level of PDT. This definition will
serve as a basis for the algorithm of clause identification. By taking advantage
of the analytic annotation, we could come up with a simple definition that only
minimally refers to language intuition and meaning.

A clause is defined as a subtree of a predicate, the predicate inclusive. There
are two exceptions to this general rule:

1. A subordinating conjunction governing the predicate belongs to the clause.
2. A clause whose predicate is in the subtree of another clause is not considered
to be a part of the governing clause.

Since not every predicate is explicitly annotated as such in the analytic level
of PDT, this amounts to

1. tokens explicitly marked as predicates (have analytic function “Pred”),

2. finite autosemantic verbs,

3. tokens that govern a node of the analytic function “AuxV” (this denotes
predicates formed by compound verbs) and

4. tokens that are coordinated with a predicate.

There are exceptions and special cases to these rules:

— ad 2: Finite verbs that hold coordination or apposition are not considered
to be predicates for our purposes. See subsection 3.3.

— ad 3: If the token governing an AuxV-node is a coordinating conjunction,
then it is not considered a predicate. In such a case though, the coordi-
nated tokens are considered as if they governed an AuxV-node and are thus
recognized as predicates.

3.1 Sections of a sentence

The criteria introduced above state what is a clause and what tokens belong to
one. This is one of the two goals of our algorithm. The second one deals with
relations between and among clauses. These are basically dependency and coor-
dination relations. Since clauses are not atomic objects and there are cases where
a token belongs to more than one clause, we need to introduce a new, more gen-
eral term: sections. The reason why we cannot use the notion of segment instead
of a section is the different nature of both components of a clause. Segments
are units distinguishable on the surface, they are defined for sentences in the
form of sequences of word forms and punctuation marks. Sections, on the other
hand, are defined as units distinguishable from the surface syntactic (analytic)
representation of a sentence. Both terms refer to units which are similar but not
identical.

A section of a sentence is defined by its representative and its component. The
representative of a section is a token of the sentence or its technical root (every
sentence in PDT has a technical root). Each token as well as the technical root
represents no more than one section. The component of a section is a subset of
the tokens of the sentence. The components of the sentence’s sections constitute
a perfect coverage of the sentence’s tokens.

a-cmpr9407-024-p20s1
AuxS

zmizela .
Pred AuxK

nejistota

(an \&
Pocateéni 7 obstoji
Atr O/ l’At'r\)

jak
AuxX Adv AuxX

Fig. 4. Analytic tree of the sentence “Pocédtecni nejistota, jak obstoji, zmizela.” [Initial
uncertainty, how it-will-do, vanished.]

Typically, the representative of a section belongs also to its component. The
exception is the technical root, which can represent a section but can never be
in its component.

Pocatecni nejistota

, jak obstoji ,

Fig. 5. Sections of the sentence from Figure 4. Each bordered shape marks a section.
Each horizontal level contains one clause. The lines mark bloodline relations of clauses.

The component of a section forms a tree on the analytic level. The only
exception is the section represented by the technical root, the component of
which can be a forest.

Sections are of three types:

1. clause,
. coordination and
3. adjunct.

\V]

Each clause constitutes a section of the type clause. Its representative is the
finite verb that governs the clause and its component consists of the tokens that
belong to the clause.

Coordination of clauses Whenever two or more clauses are coordinated, the
coordination itself constitutes an extra section of the type coordination. Its rep-
resentative is the coordinating conjunction (or punctuation token) that holds
the coordination (i.e. it has the analytic function of “Coord” or “Apos” in case
of appositions, which we treat equally to coordinations). The component of a
coordination section is its representative and leaf tokens dependent on it that
are not related to the coordinated clauses. That is:

1. other conjunctions, commas and other separators of the coordinated clauses,
2. other words of the conjunction in case of multi-word conjunctions,
3. auxiliary leaf tokens (those with analytic function beginning with “Aux”).

The third case emerges when a coordination of clauses governs a phrase that
effectively depends on all the coordinated clauses. Take the English example:
“John loves Mary but won’t marry.” There are two finite verbs present: “loves”
and “won’t”. So our above stated definition would recognize two clauses plus
one coordination.

Clause 1 would certainly contain tokens “loves Mary”, Clause 2 would contain
“won’t marry” and the coordination would only contain “but”. So, where would
“John” go? It’s him who loves Mary and it’s also him who won’t marry the poor

girl. We could see this sentence as a coordination of clauses with the subject
distributed: “John loves Mary” + “John won’t marry”.

To denote this type of relation, we give “John” (with his whole (empty)
subtree) his own section of the type adjunct. Sections of this type are always
formed by subtrees (dependent clauses excluding) of tokens that are not clauses
and depend on a coordination of clauses but are not coordinated in it.

Tokens that do not fall into any section by the above criteria belong to the
section represented by the technical root. Its type is set to clause, but that is a
purely technical decision.

3.2 Inter-clausal Relations

The sections were defined with the intention to obtain a help when capturing
relations among clauses. Notice that every section’s component has a tree-like
structure. The only exception again being the clause whose representative is
the technical root. This means that every section has one root token. We can
therefore define bloodline relations between sections like this:

Definition 1 (Parent section) Let D be a section whose representative is not
the technical root. Let r be the root token of D. Let p be the analytic parent
token of r. We call the section to which p belongs or which p represents the
parent section of D. The root section is its own parent.

As in the real life, one child is sometimes quite unlike another, that is an
experience of many human parents. It’s the same here, so we differentiate several
types of children. These are:

1. dependants,
2. members and
3. parts.

Every clause and every adjunct can only have child sections of the dependant
type. Coordinations, on the other hand, can have children of any type.
Whenever a coordination has a child of the member type, it means that the child
section is coordinated in the coordination.

Whenever a coordination has a child of the dependant type, it means that the
child section is effectively dependent on all the sections coordinated in the parent
coordination.

Whenever a coordination has a child of the part type, it means that the child sec-
tion belongs to all the sections coordinated in the parent coordination. Children
of the part type are exactly the sections of the type adjunct.

This approach allows to capture virtually any clause structure from the PDT,
keeping information about tokens belonging to clauses, their dependencies and
coordinations. The grammatical roles of clauses are easily extracted from analytic
functions of their representatives.

Since the definitions mentioned above are all based on information available
on the analytic and lower levels of PDT, the algorithm for extracting clause
structure from the analytic annotation is a straight-forward rewrite of those
definitions into a programming language.

Pribyvéa podnikateld

g

@odnikaji domaD

Fig. 6. Sections and their relations of the sentence “Pfibyva podnikatelu, ktefi ne-
maji samostatnou kanceldf a podnikaji doma.” [The-number-grows of-businessmen,
who don’t-have separate office and work at-home.] (The number of businessmen who
have no separate office and work at home grows.) The main clause “Pfibyva pod-
nikatelt” (the number of businessmen grows) governs the coordination formed by the
conjunction and the comma. There are two dependent clauses: “ktefl nemaji samostat-
nou kanceldi” (who have no separate office) and “kteii podnikaji doma” (who work at
home). Their disjoint parts are marked as coordinated sections (section type: clause,
child type: member) and their common word “ktef{” (who) is marked as another section
(section type: adjunct, child type: part).

3.3 Appositions held by a finite verb

The only phenomenon we know that our algorithm is not handling correctly
concerns finite verbs that bear an apposition (or potentially coordination), that
is, they have the analytic function of “Coord” or “Apos”. Take the sentence “Do
uplnych detailu jako jsou typy obkladacek nelze jit.” [Into sheer details like are
types of-tiles is-not-possible to-go.] (We can’t go into sheer details like the types
of tiles.) Figure 7 shows its analytic tree. The clause that should apparently
be recognized is formed by tokens “jako jsou typy obkladacek” [like are types
of-tiles]. Notice that the tokens “Uplnych detailt” [sheer details], which do not
belong to the inner clause, are in the subtree of the inner clause’s founding verb
“jsou” [are].

Here, the most profound rule our definition is based upon — that a clause
is a subtree of its predicate — breaks the factual distribution of clauses. Even if
we only tore off the clause itself (which is a well-formed tree), the parent clause
would stop being connected. Our way of dealing with this is to simply ignore
the presence of the inner clause and keep it as a part of the parent clause. This
seems to be the best way to go, as it has virtually no negative consequences, it
is very easy to detect and implement, and the phenomenon is not frequent.

:-m?é@24-050-p2523

Aus \G

nelze .

Pred AuxK
jit
AuxG Sb
Do
AuxP
Jsou
(ZApos
detaild jako typy
jAdv AuxY Adv
uplnych nebo
Atr ZCoord\
obkladacek dvefi
Atr Atr

Fig. 7. Analytic tree of a sentence containing an apposition held by a finite verb

4 Evaluation

Applying the algorithm described above on the PDT, we get clauses marked up in
the sentences. The process is deterministic, it reflects the annotation of individual
nodes of an analytic tree of the PDT. It is also an application of a definition,
not an attempt to model a given linguistic phenomenon. The data should then
be used as gold standard for clause detection from the lower levels of annotation
(e.g. morphological). Tt is clear that standard precision/recall evaluation is not
useful in this case.

Instead, we have decided to try to count the sentences where the algorithm
provides clauses in a different manner than we think a human would. The dif-
ference between automatic and man-made annotation is based upon the fact
that our algorithm keeps clauses syntactically compact, while humans prefer to
keep them linearly compact. These requirements go against each other mostly in
the case where a coordination section has tokens inside some of the coordinated
clauses. See Figure 8. Other cases include erroneously annotated trees in the
corpus (garbage in — garbage out) and the presence of adjunct segments, which
humans tend to connect to the adjacent clause only.

Table 1 presents the evaluation done on a large subset of the PDT. First
row shows the number of sentences where a clause has alien tokens inside (pre-
cisely, where a clause is not bordered by conjunctions or punctuation). Second
row shows the number of the problematic appositions whose governing token

is a verb. Row three shows the number of sentences manifesting both phenom-
ena. Evidently, the number of sentences where the intuitive and the definition-
conforming splits of tokens to clauses differ is significant. However, the number
of sentences where the algorithm fails to do the right thing (row 2) is almost
negligible.

0

|mnohé zakazniky odrazoval@

Fig. 8. Sections of the sentence “Ty vSak mnohé zdkazniky odrazovaly.” [Those however
many clients,y; discouraged.] (Those have, however, discouraged many clients.) Here,
the sentence is marked up as one coordinated clause, governed by the coordination
formed by the “vsak” (however) conjunction. The reason for this maybe surprising
annotation is that the sentence is de facto coordinated with the previous one.

Count| Ratio
Linearly incompact| 7124| 8.59%

Appositions 114 0.14%
incomp&appos 7225 8.71%
All 82944(100.00%

Table 1. Evaluation of the extraction of clauses from analytic trees.

5 Conclusions

The most valuable result of the experiment described in the paper is actually the
treebank of Czech with automatically added annotation of mutual relationships
among clauses in complex sentences. Our experiment shows that it is possible to
reconstruct this information from the syntactic relationships among individual
words. The data obtained as a result of application of our algorithm may serve for
future experiments with complex sentences and clauses. Our algorithm provides

enough data not only for testing the theories, but also for the application of
stochastic or machine—learning methods.

By ensuring that every section (and thus clause) is a tree on its own, our
algorithm allows to develop a sort of a two-step parsing algorithm, where the
first step will be the analysis of the structure of complex sentences and the
second step the parsing of single clauses. The results of many existing parsers
(cf. [10] etc.) show a dependency of parsing accuracy wrt. the length of input
sentences, therefore dividing the complex sentence into shorter units and parsing
them separately might help to overcome this natural behavior of existing parsers.
This experiment is yet to be done, though.

Acknowledgments

This work was supported by the Grant Agency of the Czech Republic, grant
No. 405/08/0681 and by the programme Information Society of the GAAV CR,
grant No. 1IET100300517.

References

1. Fernandez, M., de la Clergerie, E., Vilares, M.: Mining Conceptual Graphs for
Knowledge Acquisition In: Proc. of AcM c1kM Workshop on Improving Non-English
Web Searching (inews’08), ISBN 978-1-60558-253-5, Napa Valley, USA, 25-32 (2008)

2. Haji¢, J., Hladka, B.: Probabilistic and Rule-Based Tagger of an Inflective Lan-
guage — A Comparison In: Proceedings of the Fifth Conference on Applied Natural
Language Processing. Washington D.C., 111-118 (1997)

3. Hajic, J., Hajicova, E., Pajas, P., Panevov4, J., Sgall, P., Vidovi-Hladké, B.: Prague
Dependency Treebank 1.0 (Final Production Label). In: CD-ROM, Linguistic Data
Consortium (2001)

4. Hajic, J., Panevova, J., Burdnové, E., Uresovd, Z. Bémova, A.: Anotace Prazského
zdvislostniho korpusu na analytické roviné: pokyny pro anotdtory. (in Czech) Tech-
nical Report No. 28, UFAL MFF UK, Prague, Czech Republic (1999)

5. Haji¢, J.: Building a Syntactically Annotated Corpus: The Prague Dependency Tree-
bank In Issues of Valency and Meaning, 106-132, Karolinum, Praha (1998)

6. Hajic, J., Panevovd, J., Burdnovd, E., UreSovd, Z. and Bémov4,A.: A Manual for
Analytic Layer Tagging of the Prague Dependency Treebank, ISBN 1-58563-212-0
(2001)

7. Hajicova, E. : Prague Dependency Treebank: From Analytic to Tectogrammatical
Annotations. In: Text, Speech , Dialogue, ed. by P. Sojka, V. Matousek and I.
Kopecek, Brno, Masaryk University, 45-50 (1998)

8. Hajicovd, E. : The Prague Dependency Treebank: Crossing the Sentence Boundary.
In: Matousek, V., Mautner, P., Ocelikovd, J. and Sojka, P. (eds.) Text, Speech and
Dialogue, Berlin: Springer, 20-27, (1999)

9. Kubon, V., Lopatkova, M., Platek, M., Pognan, P.: Segmentation of Complex Sen-
tences, In: LNCS 4188, Text, Speech and Dialogue, T'SD 2006, Springer Berlin /
Heidelberg 151-158 (2006)

10. Zeman, D.: Parsing with a Statistical Dependency, PhD. Thesis, Charles university,
Prague (2004)

