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Chapter 1

Introduction

This report presents our progress and final status of tree-based transfer for machine translation,
covering thus the aims of Work Package 3 of the EuroMatrix project. Further details and other
Deliverables are available at our departmental web site1 or the official EuroMatrix web site2.

Chapter 2 briefly describes the progress in manual annotation of parallel texts at Czech
and English tectogrammatical layers (see Deliverable 3.1, Mikulová et al. (2007)) and also our
parallelization of automatic annotation pipeline.

Chapter 3 is devoted to further improvements and empirical evaluation of the Tree Aligner
proposed in Deliverable 3.2 (Bojar and Čmejrek, 2007) and implemented in Deliverable 3.3
(Bojar et al., 2008b).

The key Chapter 4 evaluates our tree-to-tree transfer system TreeDecode. We first ex-
amine some problems specific to the transfer at the tectogrammatical layer and continue with
various improvements of TreeDecode implementation and an empirical evaluation of vari-
ous setups. Chapter 4 concludes with a comparison to our configuration of a state-of-the-art
phrase-based MT system Moses and other English-to-Czech MT system that took part in the
shared translation task of EACL 2009 Fourth Workshop on Statistical Machine Translation
(WMT093).

A separate Chapter 5 examines the utility of tectogrammatical layer for automatic evaluation
of MT quality. We observe, that a novel metric SemPOS based on some features from the
tectogrammatical layer performs best in terms of correlation with human judgments.

The final Chapter 6 summarizes our observations and achievements.

1http://ufal.mff.cuni.cz/euromatrix/
2http://www.euromatrix.net/
3http://www.statmt.org/wmt09/
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Chapter 2

Data Annotation and Pre-Processing

2.1 Progress in Manual Annotation at the t-Layer

One of our tasks in Work Package 3 was to design a formal representation of sentence structure
and meaning, see Mikulová et al. (2007). We have extended our aims and we are in the process
of manual annotation of English sentences from Prague Czech-English Dependency Treebank
(PCEDT, Čmejrek et al. (2004)) at the t-layer. With funding support from additional sources,
the Czech sentences in PCEDT are also being manually annotated following the representation
designed for the Prague Dependency Treebank (PDT, Hajič (2004)).

While the two annotation processes are not completely synchronized, the annotators aimed
at a moderate overlap. Table 2.1 documents the current state of annotation: sentences with
manual annotation at the t-layer finished in both languages.

English Czech

Sentences 4599

Manual Annotation
a-nodes (i.e. tokens) 115109 107432
t-nodes 78004 86973

Automatic Annotation
a-nodes (i.e. tokens) 111290 107787
t-nodes 70988 75875

Table 2.1: Current size of manually annotated Czech and English sentences in PCEDT. Only
finished and revised sentences in both languages are included.

We see that the PCEDT dataset contains rather long sentences, 23 Czech and 25 English
tokens per sentence on average and that the annotation to t-layer leads to the reduction of
node count by factor of nearly 1.5 for English and 1.2 for Czech. There is an important
difference between automatic and manual t-layer: the manual annotation closely follows the
guidelines and includes “generated” nodes, i.e. nodes with no corresponding word in the surface
representation of the sentence but required in the tectogrammatical valency frame (e.g. elided
inner participants such as dropped pronouns in subject position). Automatic procedures do not
use any valency dictionary and they are therefore not capable of adding that many elements.

2.2 Parallel Large-Scale Rich Automatic Pre-Processing

Being aware of the fact that manually annotated data are and will be inevitably too small to
train transfer models of large coverage, we are developing and improving tools for automatic
annotation. Our pipeline for automatic annotation was described in Section 4.1 of Deliverable
3.2 (Bojar and Čmejrek, 2007).
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Since then, we have moved from our own pipeline setup to the generic framework of TectoMT
(Žabokrtský et al., 2008; Žabokrtský and Bojar, 2008) that is being implemented. TectoMT
includes many NLP tools, provides a unified file format and a very effective means of building
complex annotation pipelines, so called scenarios.

Our contribution to TectoMT is a tool for running scenarios on large datasets in parallel on
a Sun Grid Engine cluster. Thanks to the parallelization, we were able to annotate large Czech
monolingual and Czech-English parallel data automatically up to the t-layer. Table 2.2 shows
the magnitude of data we were able to process on our cluster of 40 4-CPU machines in a few
weeks.

Czech Monolingual Data
Sentences 52 M

with nonempty t-layer 51 M

a-nodes (i.e. tokens) 0.9 G
t-nodes 0.6 G

Czech-English Parallel Data
English Czech

Sentences 6.91 M
with nonempty t-layer 6.89 M

a-nodes (i.e. tokens) 61 M 50 M
t-nodes 41 M 33 M

Table 2.2: Czech monolingual and Czech-English parallel data annotated automatically up to
the t-layer.

The data serves our experiments with transfer at the t-layer and was also used in the WMT09
shared task. See Bojar et al. (2009) for more details on data sources and applications.
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Chapter 3

Tree Aligner

3.1 Improvements of the Perl Implementation

The original implementation of our tree aligner in Perl as described in Deliverable 3.3 (Bojar
et al., 2008b) poses some problems when applied to larger data or utilized in connection with
other tools:

• The implementation requires Perl modules Data::Dumper or Storable installed and pro-
duces models stored in structures readable only using these modules. In order to employ
the learned models in other tools including our Tree Decoder (see Section 3 of Deliverable
3.3), we need a portable file format.

• Each iteration builds the whole new model in memory. For larger datasets, the model
cannot fit into computing memory (see Table 2.7 in Deliverable 3.3).

• In each iteration, the whole scoring model is loaded into memory. Loading only individual
rules on demand can greatly reduce memory usage at runtime.

These problems relate to the way of building and storing the model files. Proposed and
implemented solutions are described in Sections 3.1.1 and 3.1.2.

Another problem is the time consumption of the aligner. We adapted the software to collect
(weighted) observation counts on disjoint sets of sentence pairs in parallel. The new model is
created by joining the independent observations and converting counts to probability estimates
as usual. The parallelization is described in Section 3.1.4.

The pruning methods were slightly improved, too. These improvements are described in
Section 3.1.6. We have also generalized the input file format (Section 3.1.7) allowing backoff
models to choose from more input attributes.

3.1.1 Models File Format for Interchange

The models are now stored in simple text files which can be used by the decoder or any other
tool. Using this file format also avoids the dependency on external Perl modules.

The model file format is line-oriented. Each line represents one rule and its probability.
More precisely, there are seven tab-separated fields on each line:

• backoff model index

• state of the left treelet root

• state of the right treelet root

• left treelet structure, internal node labels and frontier node states

• right treelet structure, internal node labels and frontier node states
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• pairing (alignment) of frontier nodes

• conditional probability of the rule (the pair of treelets with aligned frontier nodes given
their root states)

When exporting the model for another tool such as the decoder, we store the whole model
in a single file. During the computation, we split model file into parts, so called “submodels”. A
single submodel file contains the set of rules sharing the backoff model type and the root state
(of both left and right treelets). As all the conditional probabilities in each submodel file share
the same condition (the root state), this division matches the formula of conditional probability
and the probabilities in one file thus sum to one. The following section shows how we use this
formula while building a model.

3.1.2 Improved Model Estimation

The key difference between the former and the current implementation is the division of model
estimation into two phases.

The first phase (see Alg. 1 and compare to Alg. 3 in Section 2.2 of Deliverable 3.3) just goes
through the data, collects all observations of each rule and computes the probability of using
the rule. The pairs of the observed rule and the observation probability are stored in several
files. Each file contains rules with the same root state (i.e. the left hand side).

The second phase (see Alg. 2) adds up the collected observation probabilities for each rule
to get its new expected count. The new probability of a rule is then computed as a division of
the rule’s expected count and the sum of expected counts of all rules with the same root state.

Note that these rules are stored in the same file, therefore the sum of their expected counts is
equal to the sum of all observation probabilities in the file. The second phase can hence process
each file separately. The result is a set of submodel files that form the whole new model.

This two-phase setup saves the required memory in several ways: in the first phase, we need
access to the scoring model (the model from the previous iteration) to calculate rule observation
probabilities. As soon as a rule observation probability is calculated, it is written to the disk
and not needed until the second phase. So in the first phase, we’re saving by not needing the
new model. In the second phase, the scoring model is not needed any more: we just add up
observation counts. Moreover, thanks to the independence of submodel files, we can run the
second phase for all submodels sequentially (or in parallel on several machines) and thus work
with a fraction of the overall model data at a time.

Algorithm 1 Collecting observation probabilities.
1. for each (left tree, right tree) ← tree-pair from input file
2. Rs ← observe synchronous rules(left tree, right tree)
3. for each rule R∈Rs in safe order
4. count inside probability update of R for the chart cell
5. determined by left and right treelet bottom up indices
6. end
7. for each rule R∈Rs in reversed safe order
8. count outside probability update of R for the chart cell
9. determined by left and right treelet bottom up indices
10. end
11. for each rule R∈Rs
12. P ← observation probability (i.e. expected count update of R)
13. S ← root state (left hand side) of R
14. append the tuple (R, P) to the file called S
15. end
16. end
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Algorithm 2 Computing rule probabilities from observations.
1. for each rule
2. expected counts(rule) ← 0
3. end
4. for each F ← file of collected observations
5. total count ← 0
6. while (rule R, observation probability P) ← read F
7. increment expected counts of R by P
8. increment total count by P
9. end
10. for each affected rule R
11. probabilities(R) ← expected count of R / total count
12. end
13. end

3.1.3 Model File Format for Re-Estimation

For the purposes of re-estimation of model parameters as described in Section 3.1.2, the sub-
models are stored in CDB database file format instead of the interchange plain text format
(Section 3.1.1). This enables additional memory savings because the next iteration does not
have to to load the whole scoring model. The rule probabilities are loaded on demand as needed
for the computation.

We use the Perl module CDB File to read and write the CDB file format. The module also
ensures minimalization of disk access by reasonable caching of those rule probabilities which
are used often.

3.1.4 Parallelization

Aside from memory savings, the two-phase model estimation also enables time savings in form of
parallelization of the process. The parallelization is possible due to the fact that the expected
count updates can be collected independently for each tree pair. Therefore we can split the
input data into disjoint sets and run the first update-collecting phase on each set separately,
in parallel. When all the parallel processes are finished, we merge the corresponding submodel
files and perform the second phase as usual. Note that the second phase can also be parallelized
by running it for each submodel file independently.

The parallelization uses Sun Grid Engine cluster.

3.1.5 Improved Detaching Lexical Information

Another minor memory savings are acquired by an improvement of detaching lexical information
(see Section 2.4.1 of Deliverable 3.3). The frequencies of the detached lexica (lemmas, functors,
etc.) are now considered. Therefore the lower, less memory consuming indices are assigned to
the more frequent lexica.

3.1.6 Improved Pruning Methods

In Deliverable 3.3, we proposed several improvements of pruning methods. Two of them are
implemented in the current version:

InternalsReflectWordAlignmentBenevolent. A benevolent variant of pruning treelet pairs
with not aligned internal nodes. This method requires only one pair of the internals word-
aligned in order to keep a treelet pair.

PruneLowFrequencyBackoffTreelet. In the pruning of low frequency single treelets we can
now specify the level of detail considered: the chosen back-off model determines which
of the treelet features (structure, frontier states and internal labels) are preserved when
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calculating treelet frequency. A rule is not created if either the left or the right treelet (in
the specified coarse representation) were observed too rarely.

3.1.7 Generalized Input File Format

The input file format is more general. It is very similar to the file format of the former imple-
mentation and it is compatible with it. The only difference is that a token can include variable
number of lexical factors instead of the fixed number of three.

The last three factors contain the word-alignment and structure information, this remains
unchanged.

The extension of the input file format is complemented by the extended configuration options
of backoff models (Section 3.1.8) that allows to choose any of the factors as node labels.

3.1.8 Experiment Configuration

We use a single configuration file to store the whole configuration of an experiment. As the
computation runs in parallel, manual execution of the iterations would be hard to manage.
Currently, all iterations are executed by a single script which gets the configuration file as an
argument. The configuration file was enriched with options describing the iteration number
to start and end with and the input data to use. We also added options for the new pruning
methods.

The following list contains all possible options and their values in a configuration file:

backoffs Set of space-separated backoff definitions. Each backoff definition has a form of
a-b-c-d, where

• a is a set of indices which determine frontier node state,

• b is a set of indices which determine internal node label,

• c is a boolean (1 or 0) value determining whether treelet structure is preserved and

• d is a weight of the backoff model.

For example backoffs = 1-0-1-4 2-1-0-1 defines two backoff models. The first one
uses the second factor (semantic part of speech on Czech side and functor on English
side) as frontier node state, the first factor (t-lemma) as internal node label and keeps the
treelet structure. Its relative weight is 4 (the absolute weight is 0.8).

The second backoff model uses the third factor (formeme) as frontier node state, the
second factor as internal node label and omits the treelet structure. Its relative weight is
1 (the absolute weight is 0.2).

The specific meanings of the factors naturally depends on the factors in the training data
file.

left transcode dicts, right transcode dicts Space separated list of dictionaries of lexica
(words) used in the original input trees. The dictionaries are stored in very simple format;
a single word is listed on a single line. The more frequent words come earlier. Each word
is replaced with its line number in the data with the detached lexical information.

left treelet pruning, right treelet pruning Which treelet pruning method is used for the
left and right treelets in each rule. Possible values:

• no pruning: no pruning method is used, all observed treelets are kept.

• is treelet hifreq: only the treelets contained in the set of high frequency treelets
are kept.

left treelet counts filename, right treelet counts filename Names of files containing
precomputed counts of left and right treelets in the input data. These counts are used in
is treelet hifreq pruning method.
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hifreq pruning bm index This option enables the new feature described in Section 3.1.6. It
determines which backoff model is used for checking whether a treelet is frequent enough
not to be pruned by is treelet hifreq method.

hifreq pruning treshold How many times the treelet must be observed in the data not to
pruned by is treelet hifreq method. The value of 1 is equivalent to no pruning, the
default value of 2 is the most benevolent variant that does prune some treelets.

treelet pairs pruning Which treelet pair pruning method is used. Possible values:

• no pruning: All treelets are kept

• do treelets reflect wali: A treelet pair (t1, t2) is pruned if there exists a word-
alignment edge (a, b) where a is a node inside t1 and b is a node outside of t2 or vice
versa, i.e. the edge joins a node inside one treelet and a node outside of the opposite
treelet.

• do internals reflect wali: A treelet pair (t1, t2) is pruned if there exists a word-
alignment edge (a, b) where a is an internal node inside t1 and b is a node outside t2
or vice versa, i.e. the edge joins an internal node of one treelet and a node outside
the opposite treelet.

• do internals reflect wali benevolent: A treelet pair is pruned if all word-alignment
edges, which start from an internal node of one treelet lead to a node outside the
opposite treelet.

rule pruning Which rule pruning method is used. Possible values:

• no pruning: All rules are kept.

• do frontiers reflect wali: A rule is pruned if it contains a frontier-mapping edge
(a, b) and there exists a word-alignment edge (a, c) where c 6= b.

• do frontiers reflect wali benevolent: A rule is pruned if it contains a frontier-
mapping edge (a, b) and there exists a word-alignment edge (a, c) where c lies outside
the subtree of b.

data files A set of space-separated paths to input files of tree pairs. Within a single iteration,
each file is processed separately independently to the others. This option thus determines
the level of parallelization. The number of files is also the number of processes which will
be executed in parallel.

start with iteration What iteration to start with. Any number higher than 0 assumes the
existence of previous iteration model. The default value is 0.

end with iteration What iteration to end with. The default value is 1. The computation of
following iterations can be taken up again using the start with iteration option and
re-executing the experiment.

experiment id Identification string of an experiment. It is used as a name of subdirectory
where the models, log and additional files are stored.

virtual memory size The limit of the amount of operating memory that each process can
use. It is specified in megabytes. The default value is 512 (MB).

model prefix The prefix of each model subdirectory of the experiment directory. The name is
completed with the number of iteration. The submodels of each iteration are stored into
the subdirectory. The default value is model .
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3.1.9 Experiment Execution

As explained before, two phases of computation are executed in parallel:

• computing the new model parts

• merging them together

Alg. 3 shows the procedure of executing parallel processes.

Algorithm 3 Running the aligner in parallel.
1. dataset D ← read the set of data files from configuration file
2. start ← read the number of iteration to start with
3. end ← read the number of iteration to end with
4. for i ← start to end
5. for each part P∈D
6. run i-th iteration with input P on a machine
7. add affected submodels to a set SUBS of submodels
8. end
9. wait until all the processes finish
10. for each submodel S∈SUBS
11. run merging of the computed parts of S on a machine
12. end
13. wait until all the processes finish
14. /* the set of merged submodels forms the new model */
15. end

3.2 Evaluation

In this section, we describe experiments testing the performance of the aligner depending on
the backoff models, pruning methods and training data used.

The experiments are divided into three parts:

• Section 3.2.1 documents the speedup of the current implementation compared to the
previous version (Deliverable 3.3).

• Section 3.2.2 reports the number of rules extracted and the coverage of the ruleset de-
pending on the backoff models and pruning methods.

• Section 3.2.3 compares the performance of the aligner for manual or automatic input trees.

3.2.1 Speedup of the Current Implementation

Table 3.1 compares the amount of computation time of the “zeroth” and the first subsequent
EM iteration on one hundred tree pairs using the current parallel version and the former non-
parallel version. The comparison is not fair because the parallel version uses 10 machines to get
the results. The comparison is useful to estimate the the costs of parallelization itself, we can
see that the parallel version is not 10 times better but only about 7 times. However, the larger
data are used for computation, the lower impact the costs have.

“zeroth” iteration EM iteration

parallel (current) version 22 s 26 s
non-parallel (previous) version 148 s 186 s

Table 3.1: Comparison of time consumption of parallel and non-parallel version
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3.2.2 Comparison of Different Backoff Models and Pruning Methods

In this section, we compare the coverage of the input sentence pairs by extracted rules depending
on which backoff model is taken into account and what pruning method we use.

There are a lot of possible settings as a pruning method and a backoff model are set inde-
pendently. The goal is to cover as many tree pairs as possible and to keep the model reasonably
small in order to keep the memory and time consumption bearable. A pruning method de-
creases the model size by not taking some rules into account whereas a backoff model does it
by decreasing the data sparseness.

For the comparison, we use the Project Syndicate section of CzEng (Bojar et al., 2008a)1.
The number of sentence pairs is 84,141. Omitting sentences which contain a node with more
than five children, the number of sentences sinks to 75,335. Of all the available attributes at
the t-layer (Mikulová et al., 2007), we use only t-lemma, functor, formeme and semantic part
of speech. Most of our pruning methods consider node-to-node alignment when selecting likely
treelet pairs. We use the automatic alignment by Mareček et al. (2008) which is in turn based
on GIZA++ “word” alignments of linearized trees.

We do not list all possible combinations of the pruning methods and backoff models. Ta-
ble 3.2 shows several possible settings of pruning methods with the backoff model fixed to ‘label
= t-lemma, state = functor, structure = yes’ (for further combinations see Deliverable 3.3,
Table 2.7). Table 3.3 shows several possible settings of backoff models with the pruning method
fixed to ‘internals reflect wali benevolent + frontiers reflect wali benevolent’.

Pruning method Number Tree pairs Tree pairs
of rules covered covered (%)

treelets reflect wali 28.2· 106 4,942 6,56 %
internals reflect wali benevolent
+ frontiers reflect wali benevolent 40.8· 106 18,881 25.06 %

Table 3.2: Performance of the aligner depending on chosen pruning method.

Backoff model Number Tree pairs Tree pairs
of rules covered covered (%)

label: t-lemma, state: functor, structure: yes 40.8· 106 18,881 25.06 %
label: sempos, state: formeme, structure: yes 34.4· 106 18,896 25.08 %
label: sempos, state: functor, structure: yes 35.8· 106 18,891 25.08 %

Table 3.3: Performance of the aligner depending on chosen backoff model.

We see that the pruning method “treelets reflect wali” is too strict. Even with 28 million
rules extracted from the 75k sentence pairs, only about 5k sentences can be reconstructed (see
the column “Tree pairs covered”) in Table 3.2. The more benevolent method increases the
percentage of reconstructable trees to 25 %.

Table 3.3 shows statistics of the model depending upon the backoff model used. The de-
creasing counts of observed number of rules indicate more and more general backoff models
(with a lower vocabulary size of node labels and frontier states). Still, the number of tree pairs
that can be reconstructed by the learned rules (“tree pairs covered”) is not any higher for more
general models: the used pruning method (internals reflect wali benevolent + frontiers reflect
wali benevolent) is nearly equally destructive for all the backoff models.

To make the aligner usable in practice, some sort of generalization of tree structure is neces-
sary, such as learning, which dependents are “obligatory” and which are “free modifiers”. The
rules should then map only obligatory elements to obligatory elements, and all “free modifiers”
would be mapped on the fly.

1http://ufal.mff.cuni.cz/czeng/
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3.2.3 Comparison of Manually and Automatically Annotated Data

This set of experiments uses the data described in Table 2.1. Both the manually and the
automatically annotated data were enriched with automatic alignment of t-nodes and exported
to the input format of the aligner.

Table 3.4 shows the numbers extracted rules and the percentage of covered trees for anno-
tations. We use the pruning method “internals reflect wali benevolent + frontiers reflect wali
benevolent” and the backoff model “label=sempos, state=functor, structure=yes”.

Type of annotation Number Tree pairs Tree pairs
of rules covered covered (%)

automatic 1.79· 106 411 10.5 %
manual 1.86· 106 437 11.1 %

Table 3.4: Performance of the aligner depending on whether automatic or manual annotation
is used.

We see that with this different dataset, only 10 to 11 % of tree pairs can be reconstructed
using the extracted rules. We attribute the effect to the different domain of texts.2

At least some positive news is the minor improvement in coverage when using manual trees
instead of automatic ones. This confirms that the tectogrammatical layer is designed reasonably
and improving both sides (manual annotations are surely closer to the definition of the layer
than automatic parses are) indeed increases the structural similarity, the key motivation for the
whole enterprise.

2The lower coverage cannot be explained by less training data, because we are testing the coverage on the

training data, not on an independent test set.
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Chapter 4

Tree Decoder: TreeDecode

The tree-to-tree transfer system TreeDecode (Deliverable 3.3, Chapter 3, Bojar et al. (2008b))
is a highly configurable system that translates source dependency trees to target dependency
trees. The system can be applied at or across various layers of linguistic representation of the
sentence, as long as the representation is a dependency tree. Figure 4.1 illustrates the pos-
sible setups we are interested in when translating from English to Czech: “etct” is our main
goal, transfer at the tectogrammatical layer, “eaca” is the application of the system at surface-
syntactic (analytical) layer and “epcp” is an approximation of phrase-based translation: the
source and target “trees” are linear trees, branching to the right hand side only.

eaca

epcp

eact etca

etct generate

linearize

Morphological (m-) Layer

Analytical (a-) Layer

Tectogrammatical (t-) Layer

Interlingua

English Czech

Figure 4.1: Various setups of tree-to-tree transfer.

The main motivation for tree-to-tree transfer is its application at the t-layer (Mikulová et
al., 2007), the deep syntactic representation of a sentence.

Unless stated otherwise, the scores reported in this text are based on the WMT09 devel-
opment set, part b, containing 1026 sentences from various news web sites. We report BLEU
(Papineni et al., 2002) with empirical confidence intervals at 95% level estimated using boot-
strapping (Koehn, 2004).

4.1 Considerations on the Complexity of Deep Transfer

This section describes some specific properties of the t-layer relevant for statistical MT transfer,
the new problems caused and proposals to solve them.

4.1.1 Upper Bound given Czech Target Generation

When translating via t-layer, the last step in the translation pipeline has to be the generation
of the target string of words. Naturally, the quality of the output is bounded by the quality of
this generation step.

To estimate the upper bound on MT quality given the generation step, we performed a
simple experiment, see Figure 4.2. We use our automatic analysis of Czech target sentences
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(to approximate the Czech t-trees we see in the training phase) and re-generate them using
the deterministic generation sequence implemented in TectoMT (Žabokrtský et al., 2008). The
English source does not come into play at all.

generate

(a+t)-parse Czech

Morphological (m-) Layer

Analytical (a-) Layer

Tectogrammatical (t-) Layer

Interlingua

English Czech

Figure 4.2: Experimental setup for upper bound estimate of BLEU given Czech target genera-
tion.

Table 4.1 presents BLEU scores from this Czech-to-Czech “translation” and documents
the importance of attributes of t-nodes. In our transfer, we use a new attribute “formeme”
introduced by Žabokrtský et al. (2008) and the most important 231 of all the 38 content
attributes listed in the Appendix of Deliverable 3.1.

We compare BLEU scores for the setting where all these 24 attributes are preserved to
situations when some of the attributes are deleted and the generation procedure has to use
some default instead of the original value. With all attributes reserved, the score of 57 % BLEU
can be interpreted as an upper bound on BLEU for any English-to-Czech system that finishes
with this generation step.

Ignoring all grammatemes (the “gram/*” attributes), leads to a loss of nearly a half of the
BLEU score. Ignoring all attributes except for t-lemma reduces BLEU to nearly one sixth.
This difference indicates how important the contribution of all various morphological markings
of content words to the meaning of the sentence is.

Rather interesting is the impact of removing formeme and preserving all other attributes:
BLEU sinks from 57 to 14 points. The formeme proves to be the single most important attribute
for the generation procedure in TectoMT. For this reason and also because of the definition of
formeme (to express the syntactic relation between the governing and the dependent node), we
choose formeme as the state of frontier nodes.

Attributes of t-nodes preserved BLEU

All attributes preserved 57.09±1.14
Preserved t-lemma, functor, nodetype, formeme, but no grammatemes 33.43±1.02
Preserved all attributes except for formeme 13.87±0.70
Preserved only t-lemma, functor and nodetype 11.32±0.66
Preserved only t-lemma 11.11±0.67

Table 4.1: BLEU scores for Czech-to-Czech “translation” via t-layer.

1Proper t-layer attributes used in our transfer: t-lemma, functor, nodetype, gram/sempos, gram/number,
gram/negation, gram/tense, gram/verbmod, gram/deontmod, gram/indeftype, gram/aspect, gram/numertype,
gram/degcmp, gram/dispmod, gram/gender, gram/iterativeness, gram/person, gram/politeness,
gram/resultative, is passive, is member, is clause head, is relclause head.
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4.1.2 Cannot Assume Atomicity of t-nodes

The basic model of Synchronous Tree-Substitution Grammars (STSG), as specified in Deliv-
erable 3.2 (Bojar and Čmejrek, 2007), assumes only two pieces of information at a node: the
(internal) node label and the (frontier and root) state. Put differently, STSG assumes that node
labels are atomic, there is no means to work with individual attributes, except using some of
them as frontier states.

Section 4.1.1 documented the importance of t-node attributes: in order to hope for a rea-
sonable BLEU score, we have to provide most of the attributes. To accept the atomicity
assumption, we have to concatenate all t-node attributes of a node to a single compound value.
This naturally breaks one of the main advantages of t-layer, the independence of various at-
tributes in translation: the source-language number or tense marking can be mapped to the
target-language number or tense marking nearly regardless the lexical value (the t-lemma) of
the sentence element in question. And another cost we have to pay for the atomicity assumption
is the increased vocabulary size: the vocabulary size can in theory grow up to the full cartesian
product of t-node attributes. In practice, not all attribute combinations are meaningful.

Figure 4.3 examines, whether we can find a reasonable balance of the vocabulary complexity
and achievable BLEU score assuming atomic node labels.2
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Figure 4.3: Room for improvement in BLEU score assuming atomicity of t-nodes and the goal
to keep the entropy of the model below entropy of plaintext.

Each dot in the graph corresponds to a subset of t-node attributes preserved in Czech-to-
Czech translation via the t-layer. As we remove additional attributes, the achievable BLEU
score (the x-axis) decreases, and so does the entropy of predicting the (atomic) label of a t-node
regardless any context (the y-axis). A good balance would mean we find a subset of t-node
attributes with a high achievable BLEU and a low entropy. Unfortunately, the lower right
corner of the graph does not contain any such points.

The graph also indicates some important values of BLEU score and entropy for the given test
set. We are surely interested in improving the translation quality beyond what Moses produces.3

For our particular dataset, Moses achieved BLEU of 12.09 (baseline) to 14.56 (multi-factor setup
with additional monolingual data), see the vertical lines in the graph. This makes all dots below

2The experiments were carried out on a dataset also used in MT experiments with Moses (Bojar and Hajič,
2008) and using an older version of the analysis/generation pipeline, so the BLEU scores do not match those in
Section 4.1.1.

3BLEU does not exactly correlate with translation quality as ranked by humans, but it is one of the most
widely used metrics.
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14.56 BLEU uninteresting from the practical point of view. The horizontal line in the graph
represents the entropy of plaintext word forms, taking even letter case information into account.
We are not surprised to see that the entropy of (atomic) t-nodes is higher than the entropy of
word forms, as t-node attributes capture also information coming from surrounding auxiliary
words.

The bad news is the tiny room that was left for improvement: if we assume atomic node
labels and we wish to stay below the entropy of plaintext word forms, we cannot obtain BLEU
higher than 16.20 due to the inevitable generation step.

To conclude, node labels in the transfer cannot be treated atomically. The attributes of
t-nodes have to be considered individually.

4.1.3 Explosion of the Search Space

As described in Deliverable 3.2, we use the approach of factored translation (Koehn and Hoang,
2007) to generate target-side attributes, see Figure 4.4.

uvedla said
uvést say
verb verb
past past
fem

1
2

3

4

5

Figure 4.4: Sample decoding steps in word-for-word factored translation.

Our preliminary implementation of factored translation was restricted to treelets containing
only one internal node, in the module t word for word factored. We have extended the
implementation to t structure factored to support any number of internal nodes in the
treelet (up to the limit global limit of treelet size).

Given a source treelet, the first probabilistic decision made by t structure factored is to
predict the structure of the target treelet: the number of internal nodes, inner edges and also the
number and labels of frontier nodes. This decision is conditioned on the input treelet structure
and the user can request to consider also the values of some source factors. Subsequent mapping
steps convert source factors to target factors in a fixed order following the configuration. In
each step, all internal nodes are handled at once: e.g. if the configuration specifies to translate
source t-lemma to target t-lemma, and the treelets contain one node in English and two nodes
in Czech, both of the target t-lemmas are filled at once (typewriter → psaćı stroj).

It is important to note that our implementation of factored translation assumes syn-
chronous decomposition of input trees into treelets, much like Koehn and Hoang (2007) assume
synchronous segmentation of input sentence into phrases. This means that the input is first
decomposed to treelets and the whole factored translation of input factors to output factors
happens within each of the treelet. Fully specified target treelets are then used in gradual
hypothesis expansion.

Given the synchronousness assumption, the whole process of factored translation can be
treated as a pre-processing step only, avoiding sparse training data (unseen combinations of
attribute values are generated on the fly).4 Unfortunately, the fact that there are too many
target treelet options remains unchanged and leads to a new issue: search errors. While all
the various target side attribute values are chosen based on a very limited source context
(the corresponding source treelet only), the real utility of individual translation options would
become apparent only when the treelet is attached to a partial hypothesis, on the basis of
surrounding nodes. Before the attachments happen, many of the translation options had to be
pushed off the stack.

4The other approach, “asynchronous phrases” in phrase-based MT was not applied with a success yet. With
asynchronous phrases (some factors filled and some still pending), it is not quite clear how to implement stack-
based pruning and the system falls into many search errors (Philipp Koehn, pers. comm.).
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Another consequence of the explosion (and insufficient stack space) is too little variance in
the final n-best list. Many hypotheses differ in values of less important node attributes only and
the more important choices such as a different t-lemma or formeme been pruned. The surface
representation of the hypothesis created by the final generation procedure may not reflect all
the subtle differences and in such cases, the stack space was simply wasted.

4.1.4 “Delayed” Factors to Tackle the Combinatorial Explosion

We see two ways of handling the combinatorial explosion of possible output attributes. One of
them is to condition target-side treelets not only on the source side treelet, but also on other
source-side nodes around the treelet in question. This would steer the scores towards attribute
values more relevant for the context, albeit estimated from the source side only.

Another option is to “pack” (or ignore for a while) the ambiguity of less important attributes
and choose their values at a later stage, when the overall tree structure has been decided along
with key attributes such as t-lemma and formeme. This saves a considerable portion of the
stack space (so we see a greater variance in the n-best list) and also allows to condition the
values of these attributes on anything from both the input tree and the target hypothesis.

For the time being, we decided to implement the latter option: the module t structure factored

now accepts some output attributes marked as “delayed”. Such attributes are filled with a spe-
cial symbol indicating that the real value has to be determined later, with a pointer to the
corresponding source-side node. These translation options are attached together to form hy-
potheses as usual. Once the main search finishes, an n-best list of hypotheses is extracted from
the search graph. All delayed output factors of all hypotheses in the n-best list are filled with
the best suggestion as provided by a maximum entropy classifier (we use the implementation
by Zhang (2004)) based on user-specified observations of the node’s neighbourhood in both the
source tree and the current hypothesis.

4.2 Empirical Evaluation

This section describes various configurations of TreeDecode and the performance in terms of
BLEU score on WMT09 development set, part b.

4.2.1 Sequence of Back-off Models

The configuration of TreeDecode specifies, which probabilistic models (also called “transla-
tion option generators”) should be consulted first to find translation options for each possible
source treelet. If the given model fails and has nothing to offer, the next model is consulted.

In Deliverable 3.3, Section 3.5.5, we mentioned the option to consult all models and merge
their suggestions. A translation option suggested (with some probability) by several models is
surely better than a translation option suggested only by one of the model. This means that the
scores from translation option generators should default to a the lowest possible value, unless
set by a model. Unfortunately, there is no simple way to implement this behaviour correctly,
i.e. to score translation options fairly.

The problem is that in practice translation option generators have to heavily prune the
space of possible translation options, and they do it even before a translation option is fully
constructed. In the end, a translation option suggested by a model would often not get any
scores from another model because the other model have pruned it. Some sort of constraint-
based search, or “forced generation” would be necessary to ensure that all translation options
are scored by all models for a fair comparison. We leave this for further research and stick to
the original fixed sequence of back-off models.

Table 4.2 presents the BLEU scores of various back-off models and their sequential combi-
nations. We use the following models:
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Back-off Sequence 43k 643k

strall+wfwindep 5.51±0.49 5.26±0.51
strall+strindep+strdelay+wfwall+wfwindep 5.29±0.49 5.09±0.48
strdelay+wfwindep 4.99±0.45 5.30±0.54
strindep+wfwindep 4.86±0.49 5.39±0.59
wfwindep 4.58±0.51 5.09±0.50
strdelay 4.22±0.43 4.39±0.50
strindep 4.09±0.44 4.50±0.55
wfwall 3.81±0.52 4.11±0.50
strall 3.62±0.42 3.81±0.42

Table 4.2: Performance of various sequences of back-off models.

strall uses t structure factored to predict the structure of the treelet in the first step and
to predict all output factors at once in the second step. This model preserves the maxi-
mum number of dependencies between individual attribute values but it is prone to data
sparseness.

strindep uses t structure factored to predict the structure of the treelet in the first step
and to predict output factors from the corresponding source factors one by one. We do
not use any generation steps between output factors, so we do not preserve or promote
any dependencies between output attributes. Apart from sparseness caused by treelet
structure (structure of internal nodes and number, positions and states of frontier nodes),
this model is very general. The drawback of this model is the combinatorial explosion and
severe pruning of constructed treelets discussed in Section 4.1.3.

strdelay again predicts the structure using t structure factored and generates three most
important output factors in two mapping steps:

1. t lemma → t lemma, gram/sempos

2. formeme → formeme, gram/sempos

The fact that both the step predict the value of the semantic part of speech (noun, verb,
. . . ) ensures that the formeme types match the declination or conjugation capacities
of the t lemma. All other output factors are “delayed” (Section 4.1.4) and their values
are determined only once the full hypotheses are constructed based on all factors of the
corresponding source nodes.

wfwall uses t word for word factored (see Deliverable 3.3, p.30) to translate treelets of one
internal only, preserving the number and order of frontier nodes. The attributes of the
output internal node in this “wfwall” configuration are constructed in a single step, pre-
serving all dependencies between their values at the risk of sparse data.

wfwindep also uses t word for word factored, so one source node is translated to one target
node and the order of frontier nodes is preserved as well. The target attributes are
constructed step by step. As in “strindep”, we do not enforce any dependencies as we are
not using any generation steps.

Table 4.2 confirms our expectations on two datasets: 43k and 643k sentences. The data
sparseness problem strikes hard if “strall” is used alone: in this setting TreeDecode has to
see the exact treelet structure and the exact combination of attribute values in the training
data or back-off to the very default of simply copying the source node.

The model “wfwall” performs better, confirming that the t-layer is a reasonable abstraction
in terms of number of nodes and tree structure: when translating from English to Czech, it is
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not that harmful to preserve the whole tree structure. The same observation is confirmed once
more by the fact that “wfwindep” performs better than “strindep” and “strdelay”.

The delayed vs. independent approach to generation of detailed attribute values does not
seem to have a reliable effect. For different datasets, different settings work better. We attribute
this to relatively small stack limits so independent generation in the end offers usually the same
single-best values as delayed generation.

Not surprisingly, the best combination is to try a detailed model first (e.g. “strall”) followed
by a reasonable back-off to avoid the trap of sparse training data. On the 43k dataset, the best
combination is “strall+wfwindep”, on the 643k dataset, “strindep+wfindep” work better.

Note that the little or no difference between the 43k and the 643k dataset is discussed in
Section 4.2.4 below.

4.2.2 Rescoring Final Hypotheses based on LM

The final generation of the Czech sentence from the estimated tectogrammatical tree is a deter-
ministic procedure (Žabokrtský et al., 2008) with no access to an n-gram language model. Being
aware of the importance of language models for manual and especially automatic evaluation,
we decided to implement n-gram-based rescoring of final hypotheses.

If specified in the configuration, TreeDecode now extracts the full n-best list of tree
hypotheses, passes all of them to TectoMT for generation of their surface forms, tokenizes the
outputs and rescores them using the standard n-gram language model. We use IrstLM (Federico
and Cettolo, 2007) for LM estimation and scoring of hypotheses.

No Rescoring LM Rescoring

43k, no “#PersPron;” 4.53±0.40 4.71±0.43
600k+43k, no “#PersPron;” 4.37±0.45 4.55±0.44
600k, no “#PersPron;” 3.82±0.41 3.80±0.39
84k 4.49±0.40 4.69±0.43

Table 4.3: LM Rescoring helps, except for the 600k out-of-domain training dataset.

See Table 4.3 for an evaluation of the impact of n-gram language model rescoring on “etct”
translation trained on varying data sizes. In all experiments, we used the same LM based on
the 84k sentences. Albeit within the confidence intervals, LM rescoring proves to improve the
BLEU scores, with the exception of out-of-domain parallel training data, see Section 4.2.4 for
more details.

4.2.3 Alignment of T-Nodes for Heuristic Treelet Extraction

Tree Aligner (Section 3) implements a method to decompose pairs of trees into aligned treelets
(STSG rules). The treelet alignment method in principle does not need any alignment of nodes
in the trees, although such a node alignment can be used to prune unlikely treelet alignments.

Due to the poor coverage of treelet translation rules extracted by Tree Aligner, we resort to
the treelet extraction heuristics described in Deliverable 3.2 (Section 3.4): we extract all treelet
pairs compatible with node-to-node alignment up to a maximum size of a treelet.

In the experiments reported in Deliverable 3.2, we had to use node alignments obtained by
applying GIZA++ (Och and Ney, 2000) to linearized tectogrammatical trees.5 Since then, a
new method for alignment of t-nodes was developed by Mareček et al. (2008).

Table 4.4 confirms that the improved alignment increases also the quality of our “etct”
transfer in various settings, albeit still within the empirical confidence intervals.

5We run GIZA++ on sequences of t-lemmas in linear order as appearing the trees, which need not correspond
to the surface word order. We symmetrize the two GIZA++ runs using intersection as we prefer precision to
recall in alignments.
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Training data size and options T-Alignment GIZA++ Intersection

43k, no “#PersPron;”, big rescoring LM 4.92±0.44 4.79±0.46
43k, no “#PersPron;” 4.71±0.43 4.69±0.44
84k 4.69±0.43 4.54±0.43

Table 4.4: T-Alignment performs better than GIZA++.

We noticed that the current implementation of the t-alignment performs extremely poorly
on nodes with no real t-lemma such as nodes representing pronouns: “#PersPron;”. A manual
evaluation of a tiny sample revealed that 9 out of 11 “#PersPron;” nodes were mis-aligned and
the remaining two were correctly not aligned to anything.

Based on this observation, we restricted our baseline dataset of about 84k sentences to
sentences with no “#PersPron;”. Obviously, personal pronouns appear in many sentences, so
the overall data size shrinks to a half: 43k. Still, the overall performance of the setup is higher
if sentences with mis-aligned pronouns are ignored.

4.2.4 Harder Domain Dependence

Table 4.5 documents a rather counter-intuitive result that using much larger data (600k of
parallel sentence; sentences with personal pronouns not included) can lead to worse translation
quality. The difference is more pronounced for transfer at the t-layer than for phrase-based
translation.

etct epcp

43k, no “#PersPron;” 4.71±0.43 7.29±0.66
84k 4.69±0.43 8.32±0.65
600k+43k, no “#PersPron;” 4.55±0.44 8.30±0.76
600k, no “#PersPron;” 3.80±0.39 7.29±0.78

Table 4.5: Larger data may decrease the performance, and more so for the tectogrammatical
transfer.

We already mentioned that the loss in performance from the 43k to 84k sentences is caused
by mis-aligned personal pronouns at the t-layer (and we do not see a loss for phrase-based
“epcp”).

However, the further loss when going to 600k of training data can be attributed only the
difference of domains (legal texts, not articles), with the distribution of t-node types and at-
tributes skewed so much, that even an unweighted combination of the 600k and 43k training
datasets does not fix the issue.

The huge domain difference is confirmed also by “epcp”: the 600k sentences, when used
alone, lead to the same performance as the small 43k corpus, but we see a clearly positive effect
of plain unweighted combination of the corpora: 600k+43k performs better than 43k.

4.3 Comparison with Moses and TectoMT

Table 4.6 presents the results of our participation at WMT09 (Bojar et al., 2009) complemented
by the tree-transfer using TreeDecode. The scores of all systems are based on the official
WMT09 test set of 3027 sentences and evaluated by the NIST scoring tool6. Note that only
the best system of each contributor was manually judged. Our best performing system was a
configuration of Moses, “Moses T”.

6ftp://jaguar.ncsl.nist.gov/mt/resources/mteval-v11b.pl
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For a full description of our configuration of Moses as well as TectoMT, please see Bojar et
al. (2009). Here we restrict ourselves to a summary of differences from our tree-based transfer.

TectoMT (Žabokrtský et al., 2008; Bojar et al., 2009) is a highly modular hybrid MT system
with transfer at the tectogrammatical layer. Our tree-based transfer shares the pre- and post-
processing pipelines with TectoMT but differs in the transfer step. While we aim at learning all
the tree-to-tree correspondences automatically for a more or less uniform model from parallel
treebanks, TectoMT is a complex hand-coded sequence of transfer rules. Some of these rules
rely on probabilistic dictionaries extracted from same the data sources as we use, but most of
them are heuristics tailored to the properties of the t-layer.

Moses (Koehn et al., 2007) is a state-of-the-art phrase-based decoder capable of explicitly
modelling some linguistic features using additional “factors” in input or output streams of
tokens. We use various configurations of Moses and rely on large training data to a great extent.
Phrase-based translation can be approximated with TreeDecode using linear trees (right
branching only) of word forms, denoted as “epcp”. The main limitation of this approximation
is no possibility of phrase reordering. All word reordering has to happen within phrases. For
the sake of comparison, we report also vanilla phrase-based translation performed by Moses
trained on the same dataset, using the same language model and with only distance-based
reordering model. We see that with no model optimization (MERT), our “epcp” and Moses
deliver translations of nearly identical quality.

System BLEU NIST Rank

Moses T 14.24 5.175 -3.02 (4)
Moses T+C 13.86 5.110 –
Google 13.59 4.964 -2.82 (3)
U. of Edinburgh 13.55 5.039 -3.24 (5)
Moses T+C+C&T+T+G 84k 10.01 4.360 –
Eurotran XP 09.51 4.381 -2.81 (2)
PC Translator 09.42 4.335 -2.77 (1)
TectoMT 07.29 4.173 -3.35 (6)

TreeDecode epcp 84k 08.07 3.942 –
TreeDecode etct 643k 05.53 3.660 –
TreeDecode etct 43k 05.14 3.538 –

Vanilla Moses 84k, even weights 08.01 3.911 –
Vanilla Moses 84k, MERT 10.52 4.506 –

Table 4.6: Automatic scores and preliminary human rank for English→Czech translation. Sys-
tems in italics were developed by other teams and are provided for comparison purposes only.
Best results in bold.

Unfortunately, the results in Table 4.6 suggest that simpler models perform better, partly
because it is easier to tune them properly both from computational point of view (e.g. MERT
not stable and prone to overfitting with more features7), as well as from software engineering
point of view (debugging of complex pipelines of tools is demanding). Consider also the variance
in BLEU scores due to different model configurations in Section 4.2.1: an extensive “tuning” of
a tree-to-tree transfer system would examine not only the few basic sequences of back-off models
but also various decoding sequences in all factored models and the impact of all implemented
stack limits. We imagine this process could be automated in a fashion similar to MERT, except
that instead of optimizing in a contiguous vector space of weights, we would be optimizing in
a hierarchical discrete space of configurations. However, we have to leave this idea for further
research.

7For “Moses T+C+C&T+T+G”, we observed BLEU scores on the test set varying by up to five points
absolute for various weight settings yielding nearly identical development set scores. For tree-based transfer,
MERT does not converge at all and hardly ever suggests any combination superior to the default even weights.
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Apart from an easier tuning, we observe that simpler models run faster: “Moses T” produces
12 sentences per minute, which is 4.6 times faster than “Moses T+C”. (Note that we have not
tuned either of the models for speed.) The “etct 643k” needs about 49 seconds for one sentence
of which 46 are spent in generating surface representations of n best hypotheses.

While “Moses T” is probably nearly identical setup as Google and Univ. of Edinburgh use,
the knowledge of correct language-dependent tokenization and the use of relatively high quality
large language model data seems to bring moderate improvements.

It is also worth mentioning that while our “Moses T” seemed to beat Google and all other
systems in terms of BLEU and NIST, we actually ranked slightly worse in manual evaluation.
The most striking difference between BLEU and human Rank is for two Czech commercial MT
systems, PC Translator and Eurotran XP.

Because none of our TreeDecode systems was manually ranked at WMT09 and because
BLEU has proved to correlate poorly with human judgements, we performed a quick manual
comparison of “Moses T” and “etct 643k”. For this particular pair of systems, we have to
confirm BLEU scores: “Moses T” delivered a reasonable (for MT) translation that was clearly
more fluent than “etct” in 69% of sentences while “etct 643k” produced a barely acceptable
translation (and nearly always worse than Moses) in only 38% of cases.
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Chapter 5

Tectogrammatical Layer for MT

Quality Evaluation

In an independent line of research, we employed the tectogrammatical layer in a tool that
automatically estimates MT quality. The full report is available in Kos and Bojar (2009).

The newly introduced metric is called Semantic POS Overlapping (SemPOS) and it
is inspired by Giménez and Márquez (2007) who employ various linguistic features from the
syntactic or semantic representation of the sentence. One of their best performing metrics was
semantic role overlapping. Since we did not find a tool that would assign semantic roles to
words in a Czech sentence, we decided to slightly modify the idea. The TectoMT framework
(Žabokrtský et al., 2008) can assign a semantic part of speech (semantic POS) to words. We
compute the overlapping (as defined in Giménez and Márquez (2007)) of the hypothesis with
the reference for this linguistic feature. Moreover, we do not use the surface representation of
the words but their t-lemma obtained from the TectoMT framework. As an approximation, we
can say that SemPOS evaluates the lexical choice of autosemantic words, taking the (semantic)
part of speech into account so ambiguous words are not confused (to state vs. the state). The
fluency of the hypothesis is checked only indirectly, by the TectoMT pipeline analyzing the
hypothesis.

Metric Articles Editorials Average

NIST 0.22±0.60 (7) 0.26±0.62 (1) 0.24
F-measure/GTM(e=1) 0.24±0.58 (1) 0.23±0.63 (4) 0.23
GTM(e=0.5) 0.24±0.58 (2) 0.23±0.63 (6) 0.23
GTM(e=2) 0.24±0.58 (3) 0.22±0.63 (10) 0.23
Meteor 0.23±0.57 (4) 0.24±0.62 (2) 0.23

GTM(e=0.1) 0.23±0.58 (5) 0.23±0.63 (5) 0.23
Meteor(orig) 0.23±0.57 (6) 0.23±0.62 (7) 0.23
PER 0.22±0.60 (8) 0.24±0.63 (3) 0.23
TER 0.21±0.60 (9) 0.23±0.62 (8) 0.22
WER 0.21±0.60 (10) 0.23±0.62 (9) 0.22

SemPOS 0.21±0.57 (11) 0.19±0.61 (11) 0.20
BLEU 0.03±0.63 (12) 0.02±0.62 (12) 0.03

Numbers in brackets indicate the relative position of the metric.

Table 5.1: Average sentence-level correlations for the metrics including standard deviation.

Tables 5.1 and 5.2 summarize all the MT quality metrics evaluated by Kos and Bojar (2009)
for English→Czech MT in terms of Pearson correlation coefficient against human judgments.
The experiments were conducted with two data sets (Articles and Editorials) on sentence-level
and system-level scale. (For system-level comparison there are no ties and Pearson correlation
coefficient equals Spearman’s rank correlation coefficient.)
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Metric Articles Editorials Average

SemPOS 0.81±0.18 (1) 0.75±0.23 (1) 0.78
Meteor 0.43±0.18 (2) 0.60±0.28 (2) 0.52
Meteor(orig) 0.43±0.18 (3) 0.52±0.32 (3) 0.47
GTM(e=0.1) 0.24±0.34 (9) 0.48±0.34 (4) 0.36
GTM(e=0.5) 0.40±0.22 (5) 0.28±0.33 (5) 0.34

BLEU 0.40±0.23 (6) 0.25±0.33 (6) 0.33
F-measure/GTM(e=1) 0.41±0.21 (4) 0.21±0.31 (7) 0.31
GTM(e=2) 0.31±0.34 (7) 0.18±0.31 (9) 0.24
NIST 0.25±0.34 (8) 0.21±0.31 (8) 0.23
PER 0.01±0.38 (10) 0.16±0.32 (12) 0.09

TER -0.17±0.41 (11) 0.18±0.32 (10) 0.00
WER -0.17±0.41 (12) 0.18±0.32 (11) 0.00

Results covered in the error bounds of the best result are in bold. Results covering the best result in their error
bounds are in italics. Numbers in brackets indicate the relative position of the metric.

Table 5.2: Average system-level correlations with standard deviations for the metrics computed
from bootstrapped samples (N=10000).

Our results confirm the well known fact that BLEU correlates poorly with human ranking at
the sentence level and achieves moderate agreement on the system level. Better-performing met-
rics for system-level comparison include Meteor (Banerjee and Lavie, 2005) and GTM (Turian
et al., 2003) but SemPOS appears to be the clear winner. A similar observation was confirmed
on a third dataset at WMT09 (Callison-Burch et al., 2009).

We plan to extend this research and explicitly score also the grammatical coherence of MT
output, albeit heavily influenced by the choice (and errors) of the parser.
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Chapter 6

Conclusion

In this deliverable, we described further improvements of our tree-based aligner and transfer
system aimed at machine translation via the tectogrammatical layer.

We documented that the hard constraint of parallel syntactic structures of source and target
sentences causes serious problems when the model is applied to real data, both manually and
automatically analyzed: only 10 to 25 % of sentences can be reconstructed using the synchronous
tree-substitution grammar as extracted by our tree aligner.

An empirical analysis of the transfer at the deep syntactic representation of the sentence re-
vealed the problem of detailed node attributes required in order to generate a reasonable surface
form of the sentence. We have further extended our tree-based transfer to allow simultaneous
changes of tree structure as well as the generation of detailed output attributes (previous ver-
sions could focus on structure or output attributes but not both features of output treelets at
the same time). We also implemented the ability to rescore final linearized hypotheses, so that a
traditional n-gram language model can be applied to the output of the deterministic generation
from tectogrammatical trees.

We presented and evaluated several configurations of the tree-based transfer with significant
improvements in BLEU score. Unfortunately, a contrastive comparison with our configuration
of a phrase-based model reveals that the tree-based approach produces hypotheses of much
worse quality. The reason lies in the complexity of sentence structure, made apparent by the
formal representation at the tectogrammatical layer. Despite our efforts, we were not able to
pinpoint the correct independence assumptions that would strike a balance between modelled
level of detail and data sparseness.

While our results so far confirm the success of rather simple phrase-based models, we do
believe in the potential of our deep syntactic representation of the sentence.

One of the side achievements of this project is the application of a pipeline of automatic
tools on huge datasets. We will continue experimenting with exploitation of the large-scale
rich annotation both for phrase-based as well as for syntax-based approaches to MT. The
data was already partially used in our experiments and served as valuable resource for an
independent team of colleagues developing TectoMT, a more heuristical approach to MT at the
tectogrammatical layer.

Another important result is the application of the tectogrammatical layer in evaluation of
MT quality when translating to Czech (Section 5). An automatic metric based on features
from the t-layer scored best in terms of correlation with human judgments on several official
datasets. We will continue this direction of research and experiment e.g. with the correlation
then evaluating translations to English and also with adding further features from the t-layer
such as preserved dependencies.

By implementing the tree aligner and the tree transfer system and applying them to real
data, we learned a lot about statistical search in complex structured spaces. Our plan for
the near future is to investigate methods capable of combining shallow and deep features in
a unified search. The most important property of such a system is to seamlessly back-off to
simpler models.
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CzEng 0.7: Parallel Corpus with Community-Supplied Translations. In Proceedings of the
Sixth International Language Resources and Evaluation (LREC’08), Marrakech, Morocco,
May. ELRA.
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