
EXPLOITING LINGUISTIC DATA
IN MACHINE TRANSLATION

Ondřej Bojar



STUDIES IN COMPUTATIONAL
AND THEORETICAL LINGUISTICS

Ondřej Bojar

EXPLOITING LINGUISTIC DATA
IN MACHINE TRANSLATION

Published by Institute of Formal and Applied Linguistics
as the 7th publication in the series
Studies in Computational and Theoretical Linguistics.

Editor in chief: Jan Hajič

Editorial board: Nicoletta Calzolari, Miriam Fried, Eva Hajičová, Frederick Jelinek,
Aravind Joshi, Petr Karlík, Joakim Nivre, Jarmila Panevová,
Patrice Pognan, Pavel Straňák, and Hans Uszkoreit

Reviewers: Chris Callison-Burch, Johns Hopkins University
Jan Cuřín, IBM Czech Republic

This book has been printed with the support of the project MSM0021620838 of The Ministry
of Education of the Czech Republic.

Copyright © Institute of Formal and Applied Linguistics, 2009

ISBN 978-80-904175-8-8



Contents

1 Introduction 1
1.1 Relation between Theory, Applications and Data . . . . . . . . . . 1
1.2 How Theory Should Help . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Structure of the Book . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Extracting Verb Valency Frames 5
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 FGD and Valency Theory . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.1 Layers of Language Description . . . . . . . . . . . . . . . . 5
2.2.2 Basics of Valency Theory in FGD . . . . . . . . . . . . . . . 7
2.2.3 Available Data . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.4 Structure of VALLEX 1.0, 1.5 and PDT-VALLEX . . . . . . . . 11
2.2.5 Frame Alternations and VALLEX 2.x . . . . . . . . . . . . . . 13
2.2.6 Motivation for Automated Lexical Acquisition . . . . . . . . 13

2.3 Simplified Formalization of VALLEX Frames . . . . . . . . . . . . . 14
2.4 Types of Data Sources . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.5 Learning Task and Evaluation Metrics . . . . . . . . . . . . . . . . 16

2.5.1 Frame Edit Distance and Verb Entry Similarity . . . . . . . 17
2.5.2 Achievable Recall without Frame Decomposition . . . . . . 18

2.6 Lexicographic Process . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.7 Direct Methods of Learning VALLEX Frames . . . . . . . . . . . . . 20

2.7.1 Word-Frame Disambiguation (WFD) . . . . . . . . . . . . . 21
2.7.2 Deep Syntactic Distance (DSD) . . . . . . . . . . . . . . . . 22
2.7.3 Learning Frames by Decomposition (Decomp) . . . . . . . 23
2.7.4 Post-processing of Suggested Framesets . . . . . . . . . . 24

2.8 Empirical Evaluation of Direct Methods . . . . . . . . . . . . . . . 25

iii



CONTENTS

2.9 PatternSearch: Guessing Verb Semantic Class . . . . . . . . . . . 27
2.9.1 Verb Classes in VALLEX . . . . . . . . . . . . . . . . . . . . . 27
2.9.2 Verbs of Communication . . . . . . . . . . . . . . . . . . . . 28
2.9.3 Automatic Identification of Verbs of Communication . . . . 28
2.9.4 Evaluation against VALLEX and FrameNet . . . . . . . . . . 29
2.9.5 Application to Frame Suggestion . . . . . . . . . . . . . . . 31

2.10 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.10.1 Related Research . . . . . . . . . . . . . . . . . . . . . . . . 32
2.10.2 Lack of Semantic Information . . . . . . . . . . . . . . . . . 33
2.10.3 Deletability of Modifiers . . . . . . . . . . . . . . . . . . . . 33
2.10.4 Need to Fine-Tune Features and Training Data . . . . . . . . 34
2.10.5 Lack of Manual Intervention . . . . . . . . . . . . . . . . . . 34

2.11 Conclusion and Further Research . . . . . . . . . . . . . . . . . . . 34

3 Machine Translation via Deep Syntax 37
3.1 The Challenge of Machine Translation . . . . . . . . . . . . . . . . 37

3.1.1 Approaches to Machine Translation . . . . . . . . . . . . . . 38
3.1.2 Advantages of Deep Syntactic Transfer . . . . . . . . . . . 40
3.1.3 Motivation for English→Czech . . . . . . . . . . . . . . . . . 40
3.1.4 Brief Summary of Czech-English Data and Tools . . . . . . 41

3.2 Synchronous Tree Substitution Grammar . . . . . . . . . . . . . . 41
3.3 STSG Formally . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.4 STSG in Machine Translation . . . . . . . . . . . . . . . . . . . . . 45

3.4.1 Log-linear Model . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.4.2 Decoding Algorithms for STSG . . . . . . . . . . . . . . . . . 50

3.5 Heuristic Estimation of STSG Model Parameters . . . . . . . . . . 52
3.6 Methods of Back-off . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.6.1 Preserve All . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.6.2 Drop Frontiers . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.6.3 Translate Word by Word . . . . . . . . . . . . . . . . . . . . 55
3.6.4 Keep Word Non-Translated . . . . . . . . . . . . . . . . . . . 56
3.6.5 Factored Input Nodes . . . . . . . . . . . . . . . . . . . . . . 56
3.6.6 Factored Output Nodes . . . . . . . . . . . . . . . . . . . . . 57

3.7 Remarks on Implementation . . . . . . . . . . . . . . . . . . . . . 58

iv



CONTENTS

3.8 Evaluating MT Quality . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.9 Empirical Evaluation of STSG Translation . . . . . . . . . . . . . . 59

3.9.1 Experimental Results . . . . . . . . . . . . . . . . . . . . . . 60
3.10 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.10.1 BLEU Favours n-gram LMs . . . . . . . . . . . . . . . . . . . 61
3.10.2 Cumulation of Errors . . . . . . . . . . . . . . . . . . . . . . 61
3.10.3 Conflict of Structures . . . . . . . . . . . . . . . . . . . . . . 61
3.10.4 Combinatorial Explosion . . . . . . . . . . . . . . . . . . . . 62
3.10.5 Sentence Generation Tuned for Manual Trees . . . . . . . . 62
3.10.6 Errors in Source-Side Analysis . . . . . . . . . . . . . . . . . 63
3.10.7 More Free Parameters . . . . . . . . . . . . . . . . . . . . . 63
3.10.8 Related Research . . . . . . . . . . . . . . . . . . . . . . . . 63

3.11 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4 Improving Morphological Coherence in Phrase-Based MT 67
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.1.1 Motivation for Improving Morphology . . . . . . . . . . . . 67
4.2 Overview of Factored Phrase-Based MT . . . . . . . . . . . . . . . 68

4.2.1 Phrase-Based SMT . . . . . . . . . . . . . . . . . . . . . . . . 68
4.2.2 Log-linear Model . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.2.3 Phrase-Based Features . . . . . . . . . . . . . . . . . . . . . 69
4.2.4 Factored Phrase-Based SMT . . . . . . . . . . . . . . . . . . 70
4.2.5 Language Models . . . . . . . . . . . . . . . . . . . . . . . . 71
4.2.6 Beam Search . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.3 Data Used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.4 Scenarios of Factored Translation English→Czech . . . . . . . . . 72

4.4.1 Experimental Results: Improved over T . . . . . . . . . . . 73
4.5 Granularity of Czech Part-of-Speech Tags . . . . . . . . . . . . . . 74

4.5.1 Experimental Results: CNG03 Best . . . . . . . . . . . . . . 75
4.6 More Out-of-Domain Data in T and T+C Scenarios . . . . . . . . . 75
4.7 Human Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.8 Untreated Morphological Errors . . . . . . . . . . . . . . . . . . . . 78
4.9 Related Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.10 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

v



CONTENTS

5 Concluding Discussion 83
5.1 When Lexicons Proved to Be Useful . . . . . . . . . . . . . . . . . 83

5.1.1 Lexicon Improves Information Retrieval . . . . . . . . . . . 84
5.1.2 Subcategorization Improves Parsing . . . . . . . . . . . . . 84
5.1.3 Lexicons Employed in MT . . . . . . . . . . . . . . . . . . . 85
5.1.4 Lexicons Help Theories . . . . . . . . . . . . . . . . . . . . . 85

5.2 When Lexicons Were Not Needed . . . . . . . . . . . . . . . . . . . 86
5.2.1 PP Attachment without Lexicons . . . . . . . . . . . . . . . 86
5.2.2 MT without Lexicons . . . . . . . . . . . . . . . . . . . . . . 86
5.2.3 Question Answering without Deep Syntax . . . . . . . . . . 88
5.2.4 Summarization without Meaning and Grammaticality with-

out Valency Lexicon . . . . . . . . . . . . . . . . . . . . . . . 88
5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

A Sample Translation Output 91
A.1 In-Domain Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 91
A.2 Out-of-Domain Evaluation . . . . . . . . . . . . . . . . . . . . . . . 95

Summary 100

Bibliography 101

List of Figures 115

List of Tables 116

Index 117

vi



Acknowledgement

I would like to express my gratitude to the Institute of Formal and Applied Linguistics
(ÚFAL) for excellent support and to my colleagues for all the stimulating discussions.
It is impossible to name everyone who influenced my research, so here is an abbre-
viated list: the head of our department Jan Hajič, my thesis supervisor Vláďa Kuboň,
and all the numerous friends and colleagues at ÚFAL; those I met at informatics in
Hamburg (Wolfgang Menzel, Michael Daum and others), at the Programming Sys-
tems Lab and CoLi in Saarbrücken (Ralph Debusmann, Marco Kuhlmann, Ivana and
Geert-Jan Kruijff, Valia Kordoni and many others); the very influential team of Her-
mann Ney at RWTH Aachen University (Richard Zens, Saša Hasan and many others
again); Philipp Koehn’s MT team at the Johns Hopkins University summer workshop,
MT Marathons and in Edinburgh (Chris Dyer, Hieu Hoang, Phil Blunsom and Adam
Lopez to name a few) as well as the very warm and inspiring groups in Melbourne:
the LT group of Steven Bird, Tim Baldwin and many others; and the Mercury team
(Ralph Becket, Julien Fischer and others). Also, I do not wish to forget all the short
random friendly encounters with members of our community at summer schools,
workshops or conferences.

And last but not least, this book would never have come into being without the
support of my greater family, my parents, and my wife Pavla.

The work reported in this book was also partially supported by the following grants:
FP6-IST-5-034291-STP (EuroMatrix), MSM0021620838, MŠMT ČR LC536, GA405/06/
/0589, GAČR 201/05/H014, GAAV ČR 1ET201120505, GAUK 351/2005, and Col-
legium Informaticum GAČR 201/05/H014.

vii





1
Introduction

Computational linguistics and natural language processing (NLP) try to formally cap-
ture and model the complexity of how people communicate using a natural language.
The field has implications in many aspects of the society: linguistic theories are some-
times used as a basis when prescribing what is an appropriate and correct usage of
an expression, they predict how a message is perceived by a human recipient and
justify which information should be included in language textbooks, dictionaries or
lexicons. Applications are built to speed up human processing of text (such as finding
relevant documents, answering questions, translating from one language to another)
or attempt to turn the computer into a real partner able to share knowledge and obey
commands issued in a natural language.

1.1 Relation between Theory, Applications and Data

Both linguistic theories and NLP applications rely heavily on language data, which
include raw examples of language expressions (written sentences in books, newspa-
pers, sentences uttered in a dialog, recorded or broadcasted) as well as more or less
formalized data about the language itself (such as style guides or dictionaries). On
the one hand, examples of language usage can validate linguistic theories (by testing
predictions on real data) and on the other hand, linguistic theories provide a frame-
work for creating derived language resources like the above mentioned lexicons and
dictionaries. Thus, the theory is tested indirectly, by applying and using a derived
resource in a practical task. NLP applications are related to data even more tightly
simply because the application has some input and output data. Moreover, many
NLP applications need to consult varying amounts of language data in order to be
able to achieve their goal.

In this book, we study the mutual relationship between a linguistic theory, an NLP
application and language data. We focus on one particular theory, the theory of Func-
tional Generative Description (FGD), one particular type of derived language data,
namely valency dictionaries, and on one particular NLP application, namely machine
translation (MT). Whenever possible, we try to include references to relevant alterna-
tives.

1



1 INTRODUCTION

1.2 How Theory Should Help

The general belief is that having an established theory as a background of an NLP ap-
plication should bring an advantage to the design of the application: the description
of the algorithm could be shorter because it builds on top of notions defined in the
theory, decisions that have to be made should be more local and thus easier to meet
and finally, such an application should produce outputs of a predictable quality. In
short, a good theory should constrain the internal structure of applications to their
advantage.

There is a similar relation between the theory and language data: a good theory
describes which features of unprocessed language data are significant for a particular
task. A theory provides a view on unprocessed data. Given a task and following the
theory, we can “compress” raw language data by ignoring all but relevant features.
Dictionaries are an excellent example of such compression: instead of scanning large
texts and looking at many occurrences of a word to understand the meaning and cor-
rect ways of using it in context we just read a short (formal) description.

In an NLP application such as MT, there is always someone who has to do the
difficult job. In the extreme case, all the intelligence is contained in a “dictionary”, i.e.
the “dictionary” provides the expected output of the application for every possible
input. More realistically, we can expect to know at least parts of the output from the top
of our head but we have to correctly glue them together to create a complete answer.
The more or the better training data we have, the simpler the application can be.

To sum up, a theory provides guidelines on how to build linguistic applications
and how to look at language data. If all goes well, such a theoretical background will
simplify the design and facilitate better performance at the same time.

1.3 Structure of the Book

This study consists of two major parts: the first one is devoted to lexical acquisition
(Chapter 2) and the second one to machine translation (Chapters 3 and 4), linked as
follows:

One of the key components in the theory of our choice, FGD (briefly introduced in
Section 2.2), is the valency theory which predicts how an element in a grammatically
well formed sentence can or must be accompanied by other elements. The prediction
primarily depends on the sense of the governing word and it is best captured in a
lexicon. The motivation to build such lexicons comes often from applications: some
applications simply require a lexicon to e.g. produce an output text, while some only
benefit from them by improving accuracy or increasing coverage. Finally, a syntactic
lexicon is always a valuable reference for human users of the language. However, the
development of lexicons is costly and therefore we focus on the question of automatic
suggestion of entries based on available textual data. In short, Chapter 2 explores

2



1.3 STRUCTURE OF THE BOOK

the theory of FGD and the journey from raw language data in a text to a compressed
formalized representation in a lexicon.

In Chapter 3 we pick an NLP application, the task of machine translation (MT) in
particular, to study how the theory lends itself to practical employment. After a brief
review of various approaches to MT, we follow up on FGD and describe our system
of syntax-based machine translation. The full complexity of the system is outlined,
but the main focus is given only to our contribution, syntactic transfer. Nevertheless,
we implement the whole pipeline of the MT system and we are able to evaluate MT
quality using an established automatic metric.

Chapter 4 is devoted to a contrast experiment: we aim at English-to-Czech MT
leaving the framework of FGD aside and using a rather direct method. We briefly
summarize the state-of-the-art approach, so-called phrase-based statistical machine
translation, including an extension to factored MT where various linguistically moti-
vated aspects can be explicitly captured. Then we demonstrate how to use factors to
improve morphological coherence of MT output and compare the performance of the
direct approach with the syntax-based system from Chapter 3.

We conclude by Chapter 5, providing a broad survey of documented utility of
lexicons in NLP and summarizing our observations and contributions.

3





2
Extracting Verb Valency Frames

2.1 Introduction
Verb valency frames1 formally describe the potential of a verb to combine with other
elements in the sentence.2

When analyzing an input sentence, the knowledge of the verb frame facilitates re-
solving ambiguity at various levels. Consult e.g. Straňáková-Lopatková and Žabokrt-
ský (2002) for simple examples or Hlaváčková et al. (2006) for a report on a dramatic
reduction in parsing ambiguity.

When generating text from some deep representation, the valency frame of the
verb is used to choose the appropriate morphemic form (e.g. the preposition and case)
of a modifier and thus to guarantee grammaticality of the output. For some systems,
the existence of a valency lexicon is a strict requirement, e.g. RUSLAN (Hajič, 1987;
Hajič et al., 1987; Oliva, 1989); for some systems, the valency information is optionally
used do refine the output, e.g. (Ptáček and Žabokrtský, 2006).

2.2 FGD and Valency Theory
This section introduces Functional Generative Description (FGD) and its valency the-
ory, including relevant available data.

2.2.1 Layers of Language Description

Let us briefly summarize key components of FGD related to our task. However, since
it is not our aim to review FGD in detail, please consult relevant books, reports or
tutorials, e.g. PDT Guide3, Sgall et al. (1986), Hajič et al. (2006) or Mikulová et al. (2006)
to get acquainted with the theory and to find definitions of all notions not explained
here.

FGD as implemented in the Prague Dependency Treebank (PDT, Section 2.2.3 be-
low) defines three layers of language representation called morphological (or m-layer),
analytical (a-layer, corresponds to surface syntax) and tectogrammatical (t-layer, cor-
responds to deep syntax) to annotate an original text (the word-form, w-layer, where

1The term “valency frame” is defined and used in dependency analysis in the framework of FGD theory,
see below. A related notion in phrases̄tructure grammars is traditionally called “subcategorization frames”.

2Valency frames can be assigned also to nouns, adjectives and possibly other parts of speech. We focus
on verbs only.

3http://ufal.mff.cuni.cz/pdt2.0/doc/pdt-guide/en/html/
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2 EXTRACTING VERB VALENCY FRAMES

Figure 2.1: Layers of annotation of Czech as implemented in Prague Dependency Treebank.
(Picture from the PDT Guide.)

even typographical errors are stored verbatim, e.g. no space between do and lesa), see
Figure 2.1. Note that the PDT annotation differs in some aspects (most notable on the
a-layer) from the original FGD proposal.

M-layer represents the sentence as a sequence of word forms accompanied by their
lemmas (base forms) and morphological tags that include part-of-speech and many
other relevant categories such as case, gender, number, or tense.

A-layer and t-layer use a rooted labelled dependency tree to encode the relations
between elements of the sentence. Edge labels, sometimes stored as an attribute of
the dependent node (modifier), are called analytical functions (afuns, e.g. Pred, Sb,
Obj) at the a-layer and functors (e.g. PRED, ACT, PAT) at the t-layer and they formally
describe the relation between the governing and dependent node.

6



2.2 FGD AND VALENCY THEORY

At the a-layer, nodes in the tree correspond one to one to words in the input sen-
tence.

At the t-layer, words bearing meaning have a corresponding node while all auxil-
iary words only contribute to some attributes of relevant nodes. On the other hand,
the t-layer includes nodes for entities that were not explicitly expressed in the sentence
but the language syntax and lexicon indicate their presence in the described situation.
This is one of several reasons that make the t-layer language dependent and not an
Interlingua.

2.2.2 Basics of Valency Theory in FGD

In FGD, (verb) valency frames are defined at the t-layer only and describe formal re-
quirements on the immediate dependents of the verbal t-node (Panevová, 1980; Hajič
et al., 2006). Here is a brief summary of the key definitions:
Participants and free modifiers.

FGD defines the distinction between participants (actants, inner participants,
arguments) and free modifiers (adjuncts) of a verb strictly on the tectogram-
matical layer (and not on the analytical layer):

• A participant is characteristic of a verb whereas a free modifier can modify
nearly any verb.

• A participant cannot modify a verb twice within a sentence whereas a free
modifier can be used repeatedly.

The set of participants is fixed in FGD. The participants are: ACT (actor), PAT
(patient), ADDR (addressee), ORIG (origin) and EFF (effect).
Moreover, FGD employs the principle of shifting: if a verb has only one par-
ticipant, it is labelled ACT regardless of its semantic type. Two participants are
always ACT and PAT. Starting from three participants, the functors are assigned
with respect to the semantics of the modifiers:

ADDR
ACT PAT EFF

ORIG

Obligatory and optional modifiers.
The distinction between obligatory and optional modifiers is defined on the t-
-layer only. To summarize the dialogue test by Panevová (1980), the modifier
is obligatory if its value must be known to the speaker, although the speaker
might decide not to express it explicitly on the surface layer. This test cannot
be performed by a machine so we can only hope for enough indirect evidence
in the context or enough examples where none of the obligatory modifications
was omitted (“deleted” in some literature).

Valency frame.
A valency frame is the set of all participants and obligatory free modifiers of

7



2 EXTRACTING VERB VALENCY FRAMES

Corpus name Size (no. words) Balanced
SYN2006PUB 300 mil. no
SYN2005 100 mil. yes
SYN2000 100 mil. yes

Table 2.1: Versions of Czech National Corpus.

the verb, i.e. optional free modifiers are not included in the frame. The lexicon
of valency frames is needed for all systems aiming at the t-layer annotation in
order to re-create t-nodes for obligatory modifiers that were omitted (“deleted”)
on the surface.

Valency frames, though constructed by observing verb occurrences (and a bit of
introspection for the dialogue test), tend to correspond to verb senses (Lopatková and
Panevová, 2005)4. Performing a word-sense disambiguation task for verbs thus equals
to identification of the correct frame of the verb occurrence. In this sense, the lexical
unit at the t-layer is not just the verb, but also the frame used in the particular instance.

2.2.3 Available Data

This section briefly reviews the properties of available data, i.e. relevant corpora or
dictionaries that can be used for automatic extraction of valency frames.

Czech National Corpus (CNC)

The Institute of Czech National Corpus (CNC5) provides a collection of balanced and
non-balanced corpora of Czech text. In our experiments we used the three versions
as listed in Table 2.1.

VALLEX

VALLEX (Žabokrtský, 2005) is a valency lexicon of Czech verbs. VALLEX uses FGD as
its theoretical background and is closely related to the Prague Dependency Treebank
(see PDT below). VALLEX is fully manually annotated based on corpus observations
and other available Czech lexicons, which poses inevitable limits on the growth rate.
On the other hand, manual annotation ensures attaining data of high quality.

4In the cases where the valency frame is identical for two or more very distinct verb senses, separate
frames are introduced for each of the senses, formally differing only in a remark or gloss. Future refine-
ments of the theory, e.g. capturing which lexical classes of modifications are permitted in the slots, might
later differentiate such entries.

5http://ucnk.ff.cuni.cz/
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2.2 FGD AND VALENCY THEORY

VALLEX 1.0
Occ. [%] Verb lemmas [%]

Covered 8.0M 53.7 1,064 3.6
Not covered but frequent 4.1M 27.9 20 0.1
Not covered, infrequent 2.7M 18.3 28,385 96.3
Total 14.8M 100.0 29,469 100.0

VALLEX 1.5
Occ. [%] Verb lemmas [%]

Covered 8.0M 65.6 1,802 6.1
Not covered but frequent 3.5M 23.4 4 0.0
Not covered, infrequent 1.6M 10.9 27,663 93.9
Total 14.8M 100.0 29,469 100.0

Table 2.2: Coverage of VALLEX 1.0 and 1.5 with respect to the Czech National Corpus,
SYN2000.

The first version of VALLEX 1.0 was publicly released in 2003 and contained over
1,400 verb entries6. The set of covered verbs was extended to about 2,500 verb entries
in VALLEX 1.5, an internal version released in 2005. For a remark on VALLEX 2.x see
Section 2.2.5 below.

VALLEX 1.5 covers around 66% of verb occurrences; 23% of verb occurrences be-
long to few frequent auxiliary verbs, esp. být, bývat (to be). (See Table 2.2.) The remain-
ing 10% occurrences belong to verbs with low corpus frequency. The distribution of
verbs closely follows Zipf law (Zipf, 1945) and there are about 28k additional verbs
needed just to cover our particular corpus. An automated method of lexical extraction
would save a lot of labour.

Since the very beginning, VALLEX has been built with computational applica-
tions in mind, mostly as a means of ambiguity solving at various levels (lemmati-
zation, tagging, syntactic analysis, sense disambiguation; see (Straňáková-Lopatková
and Žabokrtský, 2002) for examples). As a result, VALLEX is sufficiently formalized
and the format is very well documented.

VALLEX applications so far, though very significant, are unfortunately still mostly
academic:

• In an early stage of the development, VALLEX data was used as a basis for PDT-
-VALLEX (see below).

• The data format and development technology was reused in the development
of VerbaLex (Hlaváčková and Horák, 2006).

6The term verb entry refers to a VALLEX entry which distinguishes homographs and reflexive variants
of the verb. The term verb lemma refers to the infinitive form of the verb, excluding the reflexive particle.
See Section 2.2.4 below.
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2 EXTRACTING VERB VALENCY FRAMES

• Observations made by VALLEX developers led to refinements in the valency
theory (Lopatková and Panevová, 2005).

• VALEVAL data (see below) are used to improve word-sense disambiguation
(WSD) methods for Czech verbs (Bojar et al., 2005; Semecký and Podveský, 2006).

• VALLEX was published as a printed lexicon for linguists and Czech speakers in
general (Lopatková et al., 2008).

• VALLEX is used when choosing some surface forms in text generation system
by Ptáček and Žabokrtský (2006).

VALEVAL

In a lexical sampling task called VALEVAL, the inter-annotator agreement of anno-
tating verb occurrences with VALLEX 1.0 frames was evaluated (Bojar et al., 2005).
Despite the fact that VALLEX provides extensive information on distribution contexts
(as emphasized by Véronis (2003)), only moderate agreement (in terms of the Cohen’s
κ statistic (Carletta, 1996)) was achieved. In general, the level 75% of pairwise agree-
ment we achieved is no worse than results for other languages, but a better match
is certainly desirable. VALEVAL experiment provided VALLEX developers with a
valuable feedback and a few dozen of serious mistakes were identified in VALLEX
entries. A second experiment would have to be carried out to confirm an improve-
ment in inter-annotator agreement.

An independent achievement of VALEVAL are the manual annotations themselves.
Cases where VALEVAL annotators agreed or a final choice was made in a post-pro-
cessing phase constitute what we call “Golden VALEVAL” corpus. Golden VALEVAL
contains 108 verbs in 7804 sentences (72±26 sentences per verb), annotated with a sin-
gle VALLEX frame that was used in the sentence.

Prague Dependency Treebank (PDT) and PDT-VALLEX

Prague Dependency Treebank (PDT, Hajič et al. (2006)) is a corpus of Czech texts ex-
tensively manually annotated on the m-, a- and t-layers. Moreover, each occurrence
of a verb and some nouns and adjectives are labelled with a pointer to the valency
frame used in that particular sentence.

PDT-VALLEX (Hajič et al., 2003) is a valency lexicon of Czech verbs and some
nouns and adjectives that accompanies the Prague Dependency Treebank (PDT). While
based on the same theoretical background as VALLEX, PDT-VALLEX is tailored to
the corpus. In other words, PDT-VALLEX contains only frames that were actually
observed in sentences in PDT.

Similarly to VALLEX, PDT-VALLEX suffers from the problem with too specific
frame entries. For instance, the verb zakotvovat (to anchor), is equipped with two dis-
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2.2 FGD AND VALENCY THEORY

tinct frames: ACT(1) PAT(4) DIR3(*) (to anchor sth to sth)7 and ACT(1) PAT(4) LOC(*) (to
anchor sth somewhere). Each occurrence of zakotvovat is annotated with a single frame
reference, even in cases where there was no DIR3 and no LOC observed in the sen-
tence (e.g. t-cmpr9410-001-p4s2w11, see Hajič et al. (2006)). The annotator’s deci-
sion between these two frames is then based on his or her detailed understanding of
the sentence or simply random, if no clear hints are provided in a wide context. Two
annotators are likely to disagree in the frame chosen, although they would agree on
a less detailed frame.

As Mikulová et al. (2006) mention (Section 5.2.3.1.1. of the Czech version or 6.2.3.1.1.
of the English version), there are cases where the decision is well motivated and al-
lows us to distinguish between concrete, abstract or idiomatic meaning of the verb.
At the same time, it is mentioned that the annotation consistence is quite low in this
respect (not giving any more specific estimations).

Other Related Resources

There are far too many related projects of computational lexicography. To name a few,
we acknowledge:
for Czech

VerbaLex (Hlaváčková and Horák, 2006), Czech Syntactic Lexicon (Skoumalová,
2001) and their surface-syntactic predecessor Brief (Pala and Ševeček, 1997),

for English
FrameNet (Baker et al., 1998; Fillmore et al., 2001; Fillmore, 2002), PropBank
(Kingsbury et al., 2002), Lexical Conceptual Structure (Jackendoff, 1990; Dorr
and Mari, 1996), VerbNet (Kipper et al., 2000; Kipper-Schuler, 2005) and Eng-
ValLex (Cinková, 2006).

A closely related resource is the lexical database WordNet (Fellbaum, 1998) and its
European (Vossen, 1998) and Czech (Pala and Smrž, 2004) versions.

Please consult e.g. Žabokrtský et al. (2002) or Lopatková (2003) for a review of some
of the projects.

2.2.4 Structure of VALLEX 1.0, 1.5 and PDT-VALLEX

At the topmost level, VALLEX is a list of verb entries8, see Figure 2.2 for an exam-
ple of two of them. The verb is characterized by its headword lemma (including a
reflexive particle se or si, if appropriate) or several spelling variants of the headword
lemma equipped with verb aspect (perfective, imperfective, biaspectual). Every verb

7The abbreviated notation indicates the functors and their allowed morphemic forms: ACT is expressed
in nominative (1), PAT is expressed using accusative (4) and DIR3 can be realized using any form applicable
for the functor DIR3.

8Due to the lack of space we can only briefly summarize the key terms. Please consult Žabokrtský and
Lopatková (2004) for a detailed description, examples and explanation of all the terms not defined here.
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2 EXTRACTING VERB VALENCY FRAMES

odpovídat (imperfective)
1 odpovídat1 ∼ odvětit (answer; respond)

• frame: ACTobl
1

ADDRobl
3

PATopt

na+4,4
EFFobl

4,aby,a ť,zda, že
MANNtyp

• example: odpovídal mu na jeho dotaz pravdu / že … (he responded to his question truthfully / that …)
• asp.counterpart: odpovědět1 pf.
• class: communication
2 odpovídat2 ∼ reagovat (react)

• frame: ACTobl
1

PATobl
na+4

MEANStyp

7

• example: pokožka odpovídala na včelí bodnutí zarudnutím (the skin reacted to a bee sting by turning red)
• asp.counterpart: odpovědět2 pf.
3 odpovídat3 ∼ mít odpovědnost (be responsible)

• frame: ACTobl
1

ADDRobl
3

PATopt

za+4
MEANStyp

7

• example: odpovídá za své děti; odpovídá za ztrátu svým majetkem (she is responsible for her kids)
4 odpovídat4 ∼ být ve shodě (match)

• frame: ACTobl
1,že

PATobl
3

REGtyp

7

• example: řešení odpovídá svými vlastnostmi požadavkům (the solution matches the requirements)

odpovídat se (imperfective)
1 odpovídat se1 ∼ být zodpovědný (be responsible)

• frame: ACTobl
1

ADDRobl
3

PATobl
z+2

• example: odpovídá se ze ztrát (he answers for the losses)

Figure 2.2: Two VALLEX 1.0 entries for the verb lemma odpovídat (answer, match).

entry includes one or more valency frames of the verb roughly corresponding to its
senses. Every valency frame consists of a set of valency slots characterizing comple-
mentations of the verb. Each slot describes the type of the syntactico-semantic relation
between the verb and its complementation (by means of a tectogrammatical functor,
such as Actor ACT , Patient PAT , Direction DIR1; see FGD) as well as all allowed sur-
face realizations (morphemic forms) of the verb complementation (e.g. the required
preposition and case or the subordinating conjunction for dependent clauses).9 The
slot also indicates obligatoriness of the complementation. Each frame is equipped
with a short gloss and an example in order to help human annotators to distinguish
among the frames. Aspectual counterparts of the verb are not assigned to the verb
entry as a whole but to the individual frames: a frame of a verb contains a link to a
frame of its aspectual counterpart, if appropriate.

The operational criteria on when to create a new frame entry of a verb are described
in Lopatková and Panevová (2005). Roughly speaking, a frame entry corresponds to
a “sense” of the verb based primarily on (deep) syntactic observations.

9In the cases where any morphemic form typical for a functor can be used to realize the slot, the set of
morphemic forms is left empty.
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2.2 FGD AND VALENCY THEORY

We use the term verb lemma to denote the infinitive of the verb, excluding a pos-
sible reflexive particle and homograph distinction, e.g. odpovídat is the verb lemma
for the verbs odpovídat and odpovídat se. The verb lemma is determined by the mor-
phological analysis of a text.

2.2.5 Frame Alternations and VALLEX 2.x

It should be noted that the slots and sets of allowed morphemic forms listed in VALLEX
describe only the “canonical” realizations of the verb. Each of the frames can undergo
one of a small set of pre-defined frame alternations.

For instance, if the frame contains an ACT in nominative and a PAT in accusative,
we have to alter the frame for occurrences of the verb in passive—the PAT becomes
expressed by a nominative and the ACT by an instrumental.

Empirical data for Czech are available in PDT 2.0 where each verb occurrence is
labelled with a frame identifier from PDT-VALLEX. By comparing immediate depen-
dents (the observed frame) of the verb in the tree with slots of the respective frame,
we can see which alternation (if any) was performed in the sentence.

VALLEX versions 2.0 (Lopatková et al., 2006a) and 2.5 (Lopatková et al., 2008) again
extend the set of verbs and frames covered. Inspired by the alternation model by Levin
(1993), they adopt the idea of alternations as a part of the core design and significantly
change the structure of the lexicon (Lopatková et al., 2006b). Until there are some cor-
pus examples annotated with VALLEX 2.x frames, we cannot use this source for most
methods of frame extraction, leaving the additional problem of alternation learning
aside.

2.2.6 Motivation for Automated Lexical Acquisition

As mentioned in Section 2.2.3, VALLEX 1.5 covers about 66% of verb tokens but only
6% of verb types in CNC. Due to the law of diminishing returns, it is less and less
economical to add entries for new verbs manually. Moreover, it is believed that less
frequent verbs have a simpler structure of frames. See Stevenson (2003) who discusses
the observation by Zipf (1945) and other experiments confirming that the observation
is not just an artifact of fewer corpus instances available to lexicographers. In total, we
could hope that for most of the remaining verbs, frame information can be derived au-
tomatically given enough corpus evidence (and the frames already defined for other
verbs) and that a lot of lexicographic labour can be thus saved.

From a different perspective, automatically finding examples of VALLEX entries
in a large corpus would allow to:

• add frequencies to VALLEX (to support statistically-aware applications of the
lexicon),

13



2 EXTRACTING VERB VALENCY FRAMES

• add selectional restrictions (to support more semantically-informed applications
or to improve the sense-discriminating power of VALLEX in a way similar to
VerbaLex),

• cross-check of VALLEX entries (to test whether all corpus samples of a verb
identified automatically to bear the same VALLEX frame are indeed confirmed
to be instances of a single verb sense by a native speaker).

2.3 Simplified Formalization of VALLEX Frames
Section 2.2.4 introduced the formal structure of VALLEX and PDT-VALLEX. Both of
the dictionaries reflect the fact that at the t-layer, the t-lemma includes the reflexive
particle whenever appropriate. On the other hand, most of our learning methods,
as described in Section 2.7 below, do not expect to start with a t-annotation at hand.
Anywhere below the t-layer, it is not easy to identify the reflexivity of a verb for sev-
eral reasons: (1) the reflexive particle does not need to appear next to the verb, (2) it
is homomorphic with the vocalized version of a Czech preposition, and (3) it can rep-
resent the value of a regular frame slot (e.g. PAT or ADDR), indicate passivization as
well as purely syntactically complement the verb lemma (reflexiva tantum). Although
(1) and (2) can be recognized at a high precision, (3) has probably not been studied
yet. Our preliminary experiments (Figure 2.3) indicate that the verb lemma plays a
very significant role in identifying the reflexivity of the verb. If the verb lemma is not
known, the decision procedure makes a wrong guess in 9 to 16% of cases. Knowing
the verb lemma helps to reduce the error by 5 to 10% absolute.

For the purpose of our learning task, we simplify the structure of VALLEX as fol-
lows.

While VALLEX and PDT-VALLEX provide us with the mapping: verb lemma
index distinguishing homonyms

reflexive particle

 → set of frames

we treat the valency lexicon as the mapping:

verb lemma → set of
(

reflexive particle
frame

)
Apart from the index distinguishing homonyms, it is easy to convert one format

into the other one and vice versa.
VALLEX and PDT-VALLEX also differ in formal details of morphemic forms. For

instance, PDT-VALLEX uses a nested structure to describe requirements on the pres-
ence and attributes of a set of a-nodes (e.g. a preposition and a noun that form a part
of a phraseme) while a simple surface string of words is used in VALLEX. Again, we
simplify the format and treat all morphemic forms as atomic units.
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2.3 SIMPLIFIED FORMALIZATION OF VALLEX FRAMES

Features Used Average Error [%]
Verb lemma, Refl seen close 4.83 ± 0.89
Verb lemma+tag, Refl seen 4.96 ± 0.86
Verb lemma, Refl seen 5.38 ± 1.30
Verb tag, Refl seen close 9.69 ± 1.37
Refl seen close 9.71 ± 1.23
Verb tag, Refl seen 16.06 ± 1.34
Refl seen 16.08 ± 1.69

• Training data: 7000 occurrences of verbs in golden VALEVAL data.
• Learning goal: Decide whether the VALLEX entry assigned to each verb occurrence has the reflexive

particle se, si or is not reflexive at all.
• Procedure: Decision trees (C4.5) using a subset of the following features:

– Verb lemma – the lemma of the verb in question,
– Verb tag – individual features for each morphological category of the verb occurrence,
– Refl seen – features describing the presence and morphological case of the reflexive particle se/si

before or after the verb in question,
– Refl seen close – like “Refl seen” but only particles between the verb in question and another verb

in the sentence are considered.
• Evaluation: Average error over 4- to 10-fold evaluation.

Figure 2.3: Average error of identifying the type of reflexivity (non-reflexive/se/si) of a verb
occurrence using decision trees (Quinlan, 1996).

To sum up, we define frame F = (Refl, Slots) as a tuple where:
• Refl ∈ {void, se, si} is a ternary feature describing the reflexivity of a verb in the

meaning of frame F.
• Slots : Functor 7→ (Oblig, ℘(MorphemicForms)) is a function assigning an

obligatoriness flag Oblig ∈ {obligatory, optional} and a set of allowed Mor-
phemicForms to any Functor ∈ {ACT, PAT, . . . } mentioned by the frame.
The function Slots is not total, an undefined mapping for a functor indicates
there is no slot with such functor in the frame. Note that this formalization does
not allow any frame to contain several slots sharing the same value of Functor.

MorphemicForms is a set of atomic values, each describing one of all pos-
sible morphemic realizations of a modifier. Unlike VALLEX, we never leave
MorphemicForms empty. In the cases where all typical morphemic forms are
appropriate, we explicitly fill the set with observed verb modifiers and their
functors in PDT 2.0.

By including Refl in the frame, we leave it up to the learner to cope with the diffi-
cult issue of reflexivity.
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2 EXTRACTING VERB VALENCY FRAMES

2.4 Types of Data Sources

In the following, we use this notation:
V = (V, F, L) denotes a valency lexicon, where V is the set of verb lemmas of all verbs

contained in the lexicon, F is the set of all frames defined in the lexicon and
L : V → P(F) is the actual mapping providing each of the verbs v ∈ V with a set
of frames from F.
In our experiments we can use VALLEX 1.0, VALEVAL or PDT-VALLEX as our
V. The difference between VALLEX 1.0 and VALEVAL is both in the set of verbs
V covered and the set of known frames F: VVALEVAL includes only the frames
that were actually observed in golden VALEVAL annotation.
For conciseness, we use dot notation to access individual components of the
structure. For instance, we write “VVALLEX 1.0.V” to denote the set of verb lemmas
contained in VALLEX 1.0.

C = (S,W) denotes a corpus of sentences S = {si | si is a Czech sentence}. Although
the order of the sentences in C is not important, we assume an arbitrary fixed
order and use C.W to refer to the sequence of all running words in the corpus.
C.Wi denotes the ith word in the corpus.
We use a superscript on C to indicate the deepest layer (morphological, analytical
or tectogrammatical) of annotation available for sentences in C. For instance, Ct

refers to a corpus with all layers up to the tectogrammatical analysis.
For C≥m (i.e. a corpus with at least morphological annotation) and a verb lemma
v, we define the function find(v, C≥m) to return all occurrences (indices to C.W)
of the verb with the verb lemma v. The corpus manager Manatee (Rychlý and
Smrž, 2004) is a very efficient implementation of the function find(·, ·).
In our experiments, we can use PDT 2.0, CNC or VALEVAL as our C, PDT 2.0
being the only corpus with manual annotation on all layers.

ĈV = (C, V, O, A) denotes a corpus C with all occurrences O ⊂ C.W of verbs v ∈ V.V

annotated with the frame used by the speaker in the particular sentence. The
function A : O → V.F formally represents the annotation.
VALEVAL and the combination of PDT 2.0 with PDT-VALLEX are two examples
of ĈV we have at hand.

2.5 Learning Task and Evaluation Metrics

Our learning task is to provide a test verb lemma vt with the set of all valid frames
Fvt

. For the purpose of evaluation of our learning methods, we always choose vt from
a known dictionary V. This allows us to compare Fvt

to the manually assigned set of
frames V.L(vt). We use the abbreviation “golden frame set” (G) to refer to V.L(vt)
and “hypothesized frame set” (H) to refer to Fvt

.
Given a test verb lemma vt, how should we evaluate the quality of a hypothesized

frame set H given the golden frame set G?
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2.5 LEARNING TASK AND EVALUATION METRICS

Methods of frame extraction are usually evaluated in terms of precision () and
recall () of either frames as wholes or of individual frame elements (slots). See esp.
Korhonen (2002) for a survey and comparison of several approaches using precision
and recall.

Note however that depending on the application, different metrics may provide
different predictions. As pointed out by Zhang et al. (2007), an HPSG parser benefits
more from lexical acquisition methods of a high recall, not of a high F-score (harmonic
mean of precision and recall).

For the richly structured VALLEX-like verb entries, precision and recall suffer from
some limitations:

• frame-based  and  are too rough and penalize the smallest mistake in frame
with the same cost as omission of the whole frame,

• slot-based  and  are too fine-grained and cannot account for the complexity of
verb entry in terms of various combinations of slots.

To provide a simple means of comparison, we report on the frame-based precision
and recall:

(H,G) =
|H ∩ G|

|H|
(2.1)

(H,G) =
|H ∩ G|

|G|
(2.2)

However, our main focus will lie in a novel metric, frame edit distance and verb
entry similarity as defined below.

2.5.1 Frame Edit Distance and Verb Entry Similarity

In Benešová and Bojar (2006), we define the frame edit distance (FED) as the mini-
mum number of edit operations (insert, delete, replace) necessary to convert a hypoth-
esized frame into the correct frame. The metric described in this section is a refined
version that better matches our simplified definition of frames (see Section 2.3).

For the time being, we assign equal costs to all basic editing operations (fixing
the reflexive particle of the frame or fixing obligatoriness flag, adding to or removing
allowed morphemic forms from a slot). However, the functor of a slot is considered as
fixed. In order to change the functor, one pays for a complete destruction of the wrong
slot and a complete construction of the correct slot. We consider charging more for
slot destruction than for slot construction in future versions of the metric because we
prefer methods that undergenerate and produce safer frames to methods that suggest
unjustified frames.

In order to evaluate the match between a whole golden frame set G as contained
in the lexicon and a frame set H hypothesized by an automatic frame-generation pro-
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2 EXTRACTING VERB VALENCY FRAMES

cedure, we need to extend FED to compare whole sets of frames (i.e. verb entries in
the lexicon). We call this extension entry similarity (ES) and define it as follows:

ES(H,G) = 1 −
min FED(G,H)

FED(G,∅)+FED(H,∅)

G denotes the set golden verb entries of the verb lemma, H denotes the hypothe-
sized entries and ∅ stands for a blank verb entry (containing no frames). min FED(G, H)
is the minimum edit distance necessary to convert the frames in H into the frames in
G, including the possible generation of missing frames or destruction of superfluous
frames.

ES attempts to capture how much of lexicographic labour has been saved thanks to
the contribution of the automatic frame-generation procedure. If the system did not
suggest anything (H = ∅), the ES is 0%. If the system suggested exactly all the golden
frames (H = G and thus FED(G,H) = 0), the ES achieves 100%. With this explanation
in mind, we will use the term expected saving (ES) as a synonym to “entry similarity”.

It is important to note that the suggested verb entry or frame can sometimes con-
tain some additional information that should be included in the golden frameset, but
it is not. We perform no special treatment for this situation and regard the additional
information as a mistake of the learning algorithm, although it is in fact a mistake or
omission of the authors of the lexicon.10

2.5.2 Achievable Recall without Frame Decomposition

Let us first briefly examine the upper bound on recall of a baseline algorithm. Given
VALLEX frames for some known verb lemmas, the most simple approach to learning
entries for new verbs is to reuse known frames as wholes.

Figure 2.4 summarizes the baseline algorithm and its upper bound on recall with
respect to the number of training verb lemmas. As we see, if frames are treated as full
frames (i.e. a set of functors including the obligatoriness flag and the set of allowed
morphemic forms), the theoretically achievable recall of any learning algorithm that
uses known frames as wholes is about 92±3%. If only the functors and the obligatori-
ness flags (labelled “funcobl”) are taken into account when learning and proposing
frames, current VALLEX size proves to suffice: the achievable recall reaches 99± 1%.
However as the learning curve indicates, this had not been the case until about 1 500
verb lemmas were covered in VALLEX.

It is worth mentioning that the number of frames covered in VALLEX is still grow-
ing, and that the growth is observed even in the least detailed definition of frames.
Table 2.3 displays the number of frames (collected from all verb entries) in VALLEX
1.0 and 1.5. If two frames are counted as different whenever any attribute differs,

10Thanks to the VALEVAL experiment (Bojar et al., 2005), we know that in a sample of 100 verb lemmas
of verbs, annotators observed about 57 missing frames, 6 inappropriately joined or split frames and 12
superfluous frames. Similarly, errors were observed in VALLEX frame entries: in 16 cases a functor was
chosen incorrectly or the slot was missing and in 12 cases, the morphemic form was incorrect or missing.
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• Input data: A valency lexicon V, the set of verb lemmas V.V partitioned into a training T and
evaluation E sets, T ∩ E = ∅.

• Procedure:
1. Collect all full frames of training lemmas T into a set K of known frames.
2. For an unseen verb lemma l ∈ E with golden frames G, evaluate achievable recall R as the

ratio of known frames among golden frames: R =
|G∩K|

|G|
.

Figure 2.4: Upper bound on full frame recall, i.e. frames are not decomposed into slots.

VALLEX 1.0 contains about 3 900 and VALLEX 1.5 about 6 500 frames. The other ex-
treme is to consider frames as sets of functors only, ignoring morphemic forms and
obligatoriness. There are about 330 of these crude frames in VALLEX 1.0 and about
440 in VALLEX 1.5. This indicates that the set of crude frames is by no means complete
yet and that new frames should be expected in more contemporary Czech data.

To sum up, methods that “reuse” known frames as wholes will face a significant
limit on achievable recall unless they reduce the notion of frame to the set of functors.

2.6 Lexicographic Process

The aim of this chapter is to automate the creation of VALLEX entries, i.e. to model
the work of a lexicographer.

Atkins (1993), Calzolari et al. (2001) or Stevenson (2003) delimit two stages in the
process of deriving lexical entries:
Analysis: Collecting corpus evidence. The risk connected with this task is that if

there is no underlying theory or no direct application targeted, important fea-
tures might remain neglected. This can effectively block some future applica-
tions of the lexicon.
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VALLEX version: 1.0 1.5
Everything incl. comments 3871 6506
Functors+Oblig+Forms 1142 1711
Functors+Oblig+Forms, ignoring order of Forms 1141 1705
Functors+Oblig+Forms, ignoring frames with a phraseme 1040 1472
Functors+Oblig 427 574
Functors 330 444

Table 2.3: The number of unique frames defined in VALLEX 1.0 and 1.5 depending on how
detailed information is used to distinguish frames. Frames are collected from all verb entries.

Synthesis: Creating the lexicon entry. The most apparent difficulty is to make en-
tries consistent throughout the whole lexicon. A central question is what to
include in the lexicon and what to ignore (which entries as well as which details
within the entries). Here, the only objective criterion is usually the frequency,
however for FGD, Panevová (1980) offers a valuable insight by introducing the
so-called dialogue test to identify obligatory slots (which should thus be in-
cluded in the dictionary).

A similar delimitation of our task into the two subtasks can be drawn:
• word-sense discrimination, i.e. providing verb occurrences with a sense or frame

label,
• grouping verb occurrences with the same frame and constructing the formal

frame description for the whole group.
Following the delimitation, we now propose three direct methods (Section 2.7) and

an indirect one (Section 2.9) for automatic frame suggestion.

2.7 Direct Methods of Learning VALLEX Frames

One could think of many ways of how to automatically generate valency frames for
new verbs. This section is devoted to the description and comparison of three rather
direct methods we developed. The methods are: WFD (Word-Frame Disambigua-
tion), DSD (Deep Syntactic Distance), and Decomp (Learning frames by decompo-
sition). An additional method, PatternSearch (Searching for patterns indicating a
frame), is described in Section 2.9.

One of the key aspect of each learning method is whether it treats verb frames as
opaque units and is thus limited by the upper bound described in Section 2.5.2, or
whether the method is in principle capable of constructing completely new types of
frames if the data seem to suggest it. The methods WFD, DSD and PatternSearch do
not consider internal structure of verb frames at all. Decomp is in principle able to
construct new types of frames.
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Using the notation as defined in Section 2.4, we can formally describe the type of
training data necessary to learn frames F for a given test verb lemma vt:
ĈV and C ′ where vt /∈ V.V and find(vt, C ′) ̸= ∅.

When we have a corpus annotated with frames ĈV (but no examples for the test
verb vt) and a corpus C ′ with no explicit annotation of verbal frames but with
some examples of usage of vt, we can use the methods WFD, DSD and Decomp,
as described below.

V and C where vt /∈ V.V and find(vt, C) ̸= ∅.
When we have just a seed lexicon V (not covering the verb vt) and a corpus C
containing some samples of vt usage, we can use PatternSearch.

2.7.1 Word-Frame Disambiguation (WFD)

Semecký (2007) describes a system for supervised word-frame disambiguation (WFD),
a word-sense disambiguation task for verbs only. For a training corpus annotated
with verb frames ĈV and a given verb lemma v (where find(v, C) ̸= ∅), the system
learns to predict the frame f ∈ V.A(v) for a test sentence st where no annotation is
available. At the minimum, the corpus has to be analysed at the morphological layer
(Cm) but significant improvement is gained if analytical trees are available (Ca). The
system converts each occurrence of the verb in the training corpus, o ∈ find(v, C),
into a vector of features describing morphological and surface-syntactic properties of
the verb and its neighbourhood. A similar vector of features is extracted for the verb
v from the test sentence st. Comparing the test vector with the training vectors using
one of several machine-learning methods (various vector distance metrics), the sys-
tem suggests the most likely frame to the verb v occurring in st. The system treats
verb frames as opaque symbols with no internal structure and achieves accuracy of
nearly 80%.

We can reuse the idea to predict the set of frames F for a test verb vt. We first train a
chosen classifier on training examples for all known verbs ignoring their lemmas (i.e.
pretending that all annotated verb occurrences in ĈV belong to the same verb, namely
vt). Given a set of real examples of vt, i.e. C ′ annotated at the same layer as C, the
classifier will suggest the most likely frame from all occurrences o ∈ find(vt, C ′). In
our experiments, we used MaxEnt classifier by Zhang (2004) but any other classifier
such as decision trees or support vector machines could be used. A very promising
approach would be to use some of discriminative learning methods (e.g. averaged
perceptron, Collins and Roark (2004)) that learn to predict the most likely frame by
contrasting it to other candidates whereas traditional methods consider each candi-
date independently estimating its chance to win.

Simply collecting all frames suggested for various examples of the given verb will
give us an estimate which frames should we assign to the verb. Formally:

Fvt
:= {f | ∃o ∈ find(vt, C ′) s.t. WFD system assigned f to o} (2.3)
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2 EXTRACTING VERB VALENCY FRAMES

Summary of WFD:
• frames opaque
• input: vt; output: Fvt

• required data:
– ĈV where vt /∈ V.V , and
– C ′m or a where find(vt, C ′) ̸= ∅

2.7.2 Deep Syntactic Distance (DSD)

One of the drawbacks of WFD described in the previous section is the lack of a direct
link between the theory of valency and the model predicting one of the frames for
a given verb occurrence. In order to address this issue, we propose a novel metric
called Deep Syntactic Distance (DSD). DSD is directly motivated by valency theory as
expressed in guidelines for VALLEX authors: for each verb occurrence, the underlying
deep syntactic analysis of the sentence is considered.

Given two occurrences o1 and o2 of a verb (or two distinct verbs) in a corpus Ca

annotated at the a-layer, DSD(o1, o2) estimates how difficult it is to believe that the
underlying verb frame used in o1 is the same as the frame used in o2 given the re-
spective observed frames. DSD considers the surface realization of each analytical
dependent sonj of oi and the likelihood p(F|sonj) of that particular form to express a
tectogrammatical functor F. The dependents of o1 and o2 are paired assuming a com-
mon functor F for both of them. DSD is the minimum cost (highest likelihood) over
all possible pairings π, optionally with a penalty for unpaired dependents in case the
verb occurrences have a different number of sons.

DSD(o1, o2) := min
p∈π(o1,o2)

∑
(son1,son2,F)∈p

1 − p(F|son1) · p(F|son2) (2.4)

The application of DSD to our task (i.e. providing a test verb vt with a hypothe-
sized frameset Fvt

) is in essence identical to the well-known nearest neighbours (NN)
machine-learning method: given a training corpus annotated with verb frames ĈaV
and a sample unlabelled observation ot in a sentence containing vt, we evaluate the
distance DSD(o, ot) for all labelled observations o ∈ (ĈaV).O. The test observation
ot is assigned the same frame as the winning o in the labelled data has. Similarly to the
nearest neighbours method, various modifications of the voting scheme (e.g. k-NN or
k-NN weighted by the distance) might be considered.

Given a corpus C ′ of example sentences of vt, each sentence in C ′ will contribute
with a single suggested frame fbest. We collect all suggested frames and return them
as the hypothesized frameset Fvt

. Formally:

Fvt
=

{
fbest

∣∣∣∣∃ot ∈ find(vt, C ′) s.t.
obest = argmin

o∈(ĈaV).O
DSD(o, ot)

fbest = (ĈaV).A(obest)

}
(2.5)
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2.7 DIRECT METHODS OF LEARNING VALLEX FRAMES

Another possible application of DSD is to help in consistence checking of manual
annotation in a ĈaV. Given a verb v ∈ V.V and all its occurrences O = find(v, C), we
can evaluate DSD(o1, o2) for each pair (o1, o2) ∈ O×O. All cases where DSD(o1, o2)

is low but o1 and o2 have a different frame assigned in the annotation (ĈaV).A as well
as all cases with DSD(o1, o2) high but identical frames assigned, i.e. A(o1) = A(o2),
should be manually checked. Assuming DSD estimates are correct, the discrepancy
between DSD and manual annotation can suggest an error in the annotation or at
least demonstrate that the differences between frames f1 = A(o1) and f2 = A(o2) are
maybe too subtle to be noticed based on purely syntactic information in the context
of the verb.

Summary of DSD:
• frames opaque
• input: vt; output: Fvt

• required data:
– ĈaV where vt /∈ V.V , and
– C ′a where find(vt, C ′) ̸= ∅

2.7.3 Learning Frames by Decomposition (Decomp)

Both WFD and DSD assumed frames are opaque units and relied on a similarity be-
tween verb occurrences. We now propose a method called Decomp that decomposes
frames into basic building blocks (“frame components”) and suggests frames for un-
seen occurrences by combining some of the frame components.

Given a labelled training corpus ĈV and a test verb vt not present in ĈV but present
in a separate unlabelled corpus C ′, we formulate the goal of providing vt with a set of
frames Fvt

as a multi-class classification task using a suitable set E of “frame compo-
nents”, each describing a particular aspect of the frame. For instance, the frame com-
ponents “refl-is-se”, “ACT-obligatory”, “ACT-can-be-nominative”, … could be used
to describe the frame “se ACT.obl.nom …”.

Two additional functions are needed: decomp : V.F → P(E) to decompose frame
into atomic pieces and recomb : P(E) → frame to recombine them again.

The multi-class classification is employed in the process as described in Alg. 1. In
our particular case, we use independent binary classifiers instead of a single multi-
-class classifier. For each deep feature (i.e. frame component) independently, we train
to predict “present” or “not-present” based on the full observed context. It is up to
the machine learner to identify if any surface features predict that particular frame
component more reliably. In our experiments, we used MaxEnt classifier by Zhang
(2004) but any other classifier such as decision trees (Quinlan, 1986, 2002) or support
vector machines (Cortes and Vapnik, 1995) could be used.

We cannot assume that the learner would be able to suggest frame components of
morphemic forms not realised (observed) in a particular sentence. Instead of sim-
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2 EXTRACTING VERB VALENCY FRAMES

Algorithm 1 Suggesting frames by decomposition (Decomp).
1. Prepare training data for the multi-class classifier:
2. For each occurrence o of each training verb v in cCV
3. Extract “surface features” from the neighbourhood of o, as in WFD.
4. Construct “deep features” from the frame assigned to o:

decomp((ĈaV).A(o)).
5. Enter the pair (surface features, deep features) as

a training instance to the classifier.
6. Suggest frame F for an occurrence ot of a test verb vt :
7. Use the multi-class classifier to predict the set of deep features

D ∈ P(E) for ot based on its observed surface features.
8. Assign the recombined frame to ot : F = recomb(D).

ply collecting all suggested frames, we merge(·) them based on the “skeleton” of
obligatory slots. For instance, if the frame ACT.obl.nom PAT.obl.acc was proposed for
one verb occurrence and ACT.obl PAT.obl.na+acc for another one, we include a single
merged frame in the final suggested frame set: ACT.obl.nom PAT.obl.{acc,na+acc}.

Formally:

Fvt
:= merge

({
f

∣∣∣∣ ∃o ∈ find(vt, C ′)
s.t. Decomp system assigned f to o

})
(2.6)

Summary of Decomp:
• frames decomposed and recombined
• input: vt; output: Fvt

• required data:
– ĈV where vt /∈ V.V , and
– C ′m or a where find(vt, C ′) ̸= ∅

2.7.4 Post-processing of Suggested Framesets

As a consequence of the definition, one of the key properties judged by ES is the
number of frames suggested. For every missing or superfluous frame, ES charges a
significant penalty based primarily on the number of slots of all unmatched frames.

Certainly, one could try to automatically predict the number of frames needed for
each verb on the basis of the frequency of the verb, some measure of diversity of syn-
tactic properties or the number of translation equivalents in a translation dictionary or
a parallel corpus. (Frequency alone is a reasonable but not sufficient predictor, there
are frequent verbs with relatively few frames.)

We leave this for further investigation and instead use two methods that modify a
suggested frame set to match the expected number of frames for each verb, thus allowing
the methods to peek at the test data partly:
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SIMPLE If the number of expected frames is higher than the number of suggested
frames, additional baseline frames (ACT.obl.nom PAT.obl.acc) are added to reach
the expected number of frames. If the number of expected frames is lower than
the number of suggested frames, only the frames with high support are added.
(The definition of support is straightforward: for WFD and DSD it is the num-
ber of verb occurrences that were assigned that particular frame. For Decomp,
the latter case never happens, as Decomp always suggests fewer frames than
expected, see the discussion below.)

CLUST If the number of expected frames is higher than the number of suggested
frames, we use the same approach as SIMPLE: add baseline frames up to the
expected frame count. If the number of expected frames is lower, we use au-
tomatic clustering and centroid selection to choose a set of the expected size
containing the most representative frames. The objects that enter our clustering
algorithm are frames suggested by individual verb occurrences. We compute
the frame edit distance (FED, Section 2.5.1) between every pair of frame occur-
rences and use the clustering toolkit by Karypis (2003) to cluster the occurrences
to the expected number of frame groups. Groups are chosen to maximize dis-
tances between the groups and minimize distances within the groups. For each
of the groups we then choose a representative (a “centroid”): the frame with the
lowest distance to all other members in the group.

2.8 Empirical Evaluation of Direct Methods

Table 2.4 summarizes the results of the various methods in terms of expected sav-
ing (ES), frame precision (Prec) and frame recall (Rec), averaged over individual verb
lemmas. The ± bounds represent standard deviations based on four iterations of a
10-fold evaluation.

The methods were evaluated on VALEVAL verbs and framesets from VALLEX 1.0.
In every fold we pick one tenth of verb lemmas as the test verbs. The remaining 9/10s
of verbs and their VALEVAL occurrences are available to the methods for training.
Every method has to produce a frameset for every test verb based on unlabelled oc-
currences in the VALEVAL corpus.

The column “Fit Frame Count” specifies whether the method had access to the
expected (correct) number of frames and how did it use it (SIMPLE or CLUST). Our
“Baseline” method is to suggest a frame with two obligatory slots: ACT.obl.nom PAT.
.obl.acc. The baseline method varies in the number of times we repeat this frame in the
suggested frameset, e.g. 2× indicates that every verb receives the frame twice while
avg× uses the training verbs to find out the average number of frames per verb.

We observe that baseline methods generally perform better than our frame-sugges-
tion techniques both in case when the methods do not access the expected number of
frames as well as when they do. It is only WFD (CLUST and SIMPLE) that insignifi-
cantly outperforms the baseline.
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2 EXTRACTING VERB VALENCY FRAMES

Method Options Fit Frame Count Avg ES Avg Prec Avg Rec
WFD no 21.4±4.7 4.1±1.4 26.9±11.1
DSD noPenalize no 25.6±3.1 20.5±14.0 3.8±2.8
Baseline 1×ACT-PAT no 27.7±4.9 45.7±21.9 9.7±6.8
DSD noPenalize, ReqObl no 33.9±5.6 1.5±3.1 3.4±6.9
DSD Penalize no 38.5±8.5 6.0±5.2 13.7±11.0
Baseline 2×ACT-PAT no 38.8±4.9 22.8±11.0 9.7±6.8
Decomp no 43.0±1.5 4.2±2.1 4.3±2.0
DSD Penalize, ReqObl no 43.1±8.1 7.9±6.5 14.2±11.3
Baseline 3×ACT-PAT no 43.7±3.6 15.2±7.3 9.7±6.8
Baseline avg×ACT-PAT no 45.3±4.6 5.9±2.7 9.7±6.8
Baseline 4×ACT-PAT no 46.8±3.2 11.4±5.5 9.7±6.8
DSD Penalize CLUST 61.7±6.9 10.1±6.8 10.1±6.8
DSD Penalize, ReqObl CLUST 62.2±9.3 11.7±8.0 11.7±8.0
Decomp SIMPLE/CLUST 64.5±3.6 4.5±2.0 4.5±2.0
Baseline expected×ACT-PAT SIMPLE 65.3±3.8 9.7±6.8 9.7±6.8
WFD CLUST 66.0±3.1 13.4±8.6 13.4±8.6
WFD SIMPLE 67.8±1.1 12.7±3.3 12.6±3.3

Table 2.4: Evaluation of direct frame suggestion methods.

An inspection of detailed logs revealed that the methods differ in reasons of failure.
Both WFD and DSD tend to suggest too many different frames (which is confirmed by
a relatively higher recall). The reason for this overgeneration lies simply in abundance
of training frames leading to a big variety in frames suggested. By fitting the output
frame count to the expected number of frames, we significantly raise the ES. The very
extreme improvement can be seen for WFD, jumping from the worst rank (ES 21.4%)
to the best one (ES 67.8%).

For DSD, we evaluated two minor modifications of the method. First, as we see,
penalizing superfluous slots helps to find more relevant training observations (com-
pare Penalize vs. noPenalize). Second, we consider only such training observations
where all obligatory slots are most likely realised on the surface (ReqObl). The set
of training observations thus better represents the possible frames and DSD gains a
small improvement in ES. Alternatively, we could group training verb occurrences by
semantic class and use only a restricted set of most typical instance of a frame from
each group, partially approaching the method described in Section 2.9 below.

Decomp on the other hand fails because it produces too few (and too short) frames.
Only very few frame components such as ACT.obl.nom or PAT.obl.acc are proposed.
For other frame components, the learners have seen too many negative training ex-
amples (instances of other frames without that particular component) so they tend to
undergenerate.

In conclusion, the key aspect of frame suggestion as evaluated by ES, is to guess
correctly the number of frames. Beyond that, more complicated methods as Decomp
or DSD do not bring any improvement. A more promising approach is to carefully
filter training examples and to add additional features to the relatively straightfor-
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2.9 PATTERNSEARCH: GUESSING VERB SEMANTIC CLASS

ward method of WFD. We further discuss the problems of frame extraction methods
in Section 2.10 below.

2.9 PatternSearch: Guessing Verb Semantic Class

As seen in Section 2.8, direct methods of frame suggestion averaged over all verbs do
not bring any significant improvement over the baseline. In this section, we tackle
frame suggestion indirectly, via the semantic class of a verb (sense). In this pre-
liminary experiment published in Benešová and Bojar (2006), we focus on one class,
namely the verbs of communication (see Section 2.9.2 below).

As noted by Véronis (2003), syntax provides extremely powerful tool for sense
discrimination and likewise, verbs with a similar sense tend to have similar frames
(Levin, 1993). With these observations in mind, we formulate the syntactic pattern
typical for verbs expressing communication and search a given corpus C for verbs
appearing in the pattern (thus the name PatternSearch). If a substantial portion of the
verb’s occurrences matches the pattern, we assume the verb belongs to the communi-
cation class. As such, the VALLEX entry of the verb should include at least one frame
conveying the communication meaning.

In the following we provide details on semantic verb classes as available in VALLEX
(Section 2.9.1) and verbs expressing communication in particular. In Section 2.9.3, we
evaluate automatic identification of verbs belonging to this semantic class. Finally
Section 2.9.5 utilizes class identification to prescribe valency frames to unseen verbs.

2.9.1 Verb Classes in VALLEX

Verb classes were introduced to VALLEX primarily to improve data consistence be-
cause observing whole groups of semantically similar verbs together simplifies data
checking.

Classification of verbs into semantic classes is a topical issue in linguistic research
(see e.g. Levin’s verb classes (Levin, 1993), PropBank (Palmer et al., 2005) , LCS (Jack-
endoff, 1990; Dorr and Mari, 1996), FrameNet (Baker et al., 1998)). Verb classes as
defined in VALLEX 1.0 and 1.5, though influenced by the various streams of research,
are built independently and using a custom classification, mainly due to differences
in the theoretical background and in the methods of description. VALLEX classes are
built thoroughly in a bottom-up approach: frame entries already listed in VALLEX
are assigned to a common class mostly on the basis of syntactic criteria: the num-
ber of complements (actants and free modifications), their type (mainly obligatory or
optional), functors and their morphemic realizations. It should be noted that verb
classes and their descriptions in VALLEX 1.5 are still tentative and the classification
is not based on a defined ontology but it is to a certain extent intuitive.

VALLEX 1.5 defines about 20 verb classes (communication, mental action, per-
ception, psych verbs, exchange, change, phase verbs, phase of action, modal verbs,
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2 EXTRACTING VERB VALENCY FRAMES

motion, transport, location, expansion, combining, social interaction, providing, ap-
point verb, contact, emission, extent) that contain on average 6.1 distinct frame types
(disregarding morphemic realizations and complement types).

2.9.2 Verbs of Communication

The communication class is specified as the set of verbs that render the situation when
“a speaker conveys information to a recipient”. For the sake of simplicity, we use
the term verbs of communication to refer to verbs with at least one sense (frame)
belonging to the communication class.

Besides the slots ACT for the “speaker” and ADDR for the “recipient”, verbs of
communication are characterized by the entity “information” that is usually expressed
as a dependent clause introduced by a subordinating conjunction or as a nominal
structure.

There are some other classes (mental action, perception and psych verbs) that also
include the “information” element in the frame but they usually do not require any
slot for a “recipient”. However, in a small number of cases when the addressee which
represents the “recipient” does not appear explicitly in the valency frame of a verb of
communication (e.g. speak or declare), this distinctive criterion fails.

Verbs of communication can be further divided into subclasses according to the se-
mantic character of “information” as follows: simple information (verbs of announce-
ment: říci (say), informovat (inform), etc.), questions (interrogative verbs: ptát se (ask),
etc.) and commands, bans, warnings, permissions and suggestions (imperative verbs:
poručit (order), zakázat (prohibit), etc.). The dependent clause after verbs of announce-
ment is primarily introduced by the subordinating conjunction že (that), interrogative
by zda (whether) or jestli (if) and imperative verbs by aby (in order to) or ať (let).

2.9.3 Automatic Identification of Verbs of Communication

In the present section, we investigate how much the information about the valency
frame combined with the information about morphemic realizations of valency com-
plements can contribute to an automatic recognition of verbs of communication.

The experiment is primarily based on the idea that verbs of communication can be
detected by the presence of a dependent clause representing the “information” and
an addressee representing the “recipient”.

This idea can be formalized as a set of queries to search the corpus for occurrences
of verbs accompanied by: (1) a noun in one of the following cases: genitive, dative and
accusative (to approximate the ADDR slot) and (2) a dependent clause introduced by
one of the set of characteristic subordinating conjunctions (že, aby, ať, zda or jestli) (to
approximate the slot of “information”).

We disregard the freedom of Czech word order which, roughly speaking, allows
for any permutation of a verb and its complements. In reality, the distribution of
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the various reorderings is again Zipfian (Zipf, 1945) with the most typical ordering
(verb+N234+subord) being the most frequent. In a sense, we approximate the sum of
occurrences in all possible reorderings with the first, maximal, element only. On the
other hand we allow some intervening adjuncts between the noun and the subordi-
nating clause.

We use the Manatee corpus manager (Rychlý and Smrž, 2004) to interpret the
queries and search the Czech National Corpus.

2.9.4 Evaluation against VALLEX and FrameNet

We sort all verbs by the descending number of occurrences of the tested pattern. This
gives us a ranking of verbs according to their “communicative character”, typical
verbs of communication such as říci (say) appear on top. Given a threshold11, one can
estimate the class identification quality in terms of a confusion matrix: verbs above
the threshold that actually belong to the class of verbs of communication (according
to a golden standard) constitute true positives (TP), verbs below the threshold and
not in the communication class constitute true negatives (TN), etc.

A well-established technique of the so-called ROC curves allows to compare the
quality of rankings for all possible thresholds at once. We plot the true positive rate
(TPR = TP/P where P is the total number of verbs of communication) against the
true negative rate (TNR = TN/N, N stands for the number of verbs with no sense of
communication) for all thresholds.

We evaluate the quality of class identification against golden standards from two
sources. First, we consider all verbs with at least one frame in the communication class
from VALLEX 1.0 and 1.5 and second, we use all possible word-to-word translations
of English verbs listed in FrameNet 1.212 Communication frame and all inherited and
used frames (For an explanation, see (Fillmore et al., 2001; Fillmore, 2002); the English-
-to-Czech translations were obtained automatically using available on-line dictionar-
ies). As the universum (i.e. P + N), we use all verbs defined in the respective version
of VALLEX and all verbs defined in VALLEX 1.5 for the FrameNet-based evaluation.

Figure 2.5 displays the TPR/TNR curve for verbs suggested by the pattern V+N234+
+subord. The left chart compares the performance against various golden standards,
the right chart gives a closer detail on the contribution of different subordinating con-
junctions.

The closer the curve lies to the upper right corner, the better the performance is
compared to the golden standard. With an appropriate threshold, about 40% to 50%
of verbs of communication are identified correctly while 20% of non-communication
verbs are falsely marked, too. We get about the same performance level for both

11See Kilgarriff (2005) for a justification of this simple thresholding technique as opposed to more elabo-
rated methods of statistical significance testing.

12http://framenet.icsi.berkeley.edu/
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Figure 2.5: Verbs of communication as suggested by the pattern V+N234+subord, evaluated
against VALLEX and FrameNet (left) and evaluated against VALLEX 1.0 for the three main

contributing subordinating conjunctions (aby, že, zda) independently (right).

VALLEX and FrameNet-based evaluation. This confirms that our method is not too
tightly tailored to the classification introduced in VALLEX.

The right chart in Figure 2.5 demonstrates that the contribution of different sub-
ordinating conjunctions is highly varied. While aby and že contribute significantly to
the required specification, the verbs suggested by the pattern with zda are just above
the baseline. (The conjunctions ať and jestli had too few occurrences in the pattern.)

Weak Points of Patterns

On the one hand, our queries are not able to find all verbs of communication for the
following reasons: (1) We search only for cases where the “information” element is
expressed as a subordinate clause. While nominal structures can be used here, too,
allowing them in the queries would cause confusion with verbs of exchange (e.g. give
or take). (2) Verb occurrences with some of the core frame elements not expressed on
the surface are not identified by the queries.

On the other hand, the fact that conjunctions aby and že are homonymous lowers
the precision of the queries and introduces false positives. We tried to eliminate some
of incorrectly chosen verbs by a refinement of the queries. (For instance, we omitted
certain combinations of demonstratives plus conjunctions: tak, aby (so that), tak, že (so
that), etc.) A further problem is caused by cases when the identified dependent clause
is not a member of the valency frame of the given verb but depends on the preceding
noun. PatternSearch does not make use of the syntactic analysis of the sentence and
thus cannot reject such examples.
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2.10 DISCUSSION

Suggested frames ES [%]
Specific frame for verbs of communication, default for others 38.00 ± 0.19

Baseline 1: ACT(1) 26.69 ± 0.14

Baseline 2: ACT(1) PAT(4) 37.55 ± 0.18

Baseline 3: ACT(1) PAT(4) ADDR(3,4) 35.70 ± 0.17

Baseline 4: Two identical frames: ACT(1) PAT(4) 39.11 ± 0.12

Table 2.5: Expected saving when suggesting frame entries automatically.

2.9.5 Application to Frame Suggestion

The method of searching corpus for typical patterns described in the previous section
can contribute to frame extraction task in the following manner: for all verbs occurring
frequently enough in the typical pattern, we propose the most typical “communica-
tion frame” consisting of ACT, ADDR and PAT (all obligatory). For each verb inde-
pendently, we assign only conjunctions discovered by the queries to the PAT. Every
verb of communication can have some additional senses not noticed by our method
but at least the communication frame should be suggested correctly.

Table 2.5 displays the ES (expected saving, Section 2.5.1) as reported in Benešová
and Bojar (2006) of four various baselines and the result obtained by our method.
When we assume that every verb has a single entry and this entry consists of a single
frame with the ACT slot only, ES estimates that about 27% of editing operations was
saved. Suggesting an ACT and a PAT helps even better (Baseline 2, 38%), but sug-
gesting a third obligatory slot for an addressee (realized either as a dative (3) or an
accusative (4)) is already harmful, because not all the verb entries require an ADDR.

We can slightly improve over Baseline 2 if we first identify verbs of communication
automatically and assign ACT PAT ADDR with appropriate subordinating conjunc-
tions to them, leaving other verbs with ACT PAT only. This confirms our assumption
that verbs of communication have a typical three-slot frame and also that our method
managed to identify some of the verbs correctly.

Our ES scores are relatively low in general and Baseline 4 suggests a reason for
that: most verbs listed in VALLEX have several senses and thus several frames. In
this experiment, we focus on the communication frame only, so it still remains quite
expensive (in terms of ES) to add all other frames. In Baseline 4, we suggest a single
verb entry with two core frames (ACT PAT) and this gives us a greater saving because
most verbs indeed ask for more frames.

2.10 Discussion

All our direct methods (WFD, DSD and Decomp) perform relatively poorly compared
to the baselines. It is only the very specific experiment with verbs of communication
(Section 2.9) that provides somewhat promising results.
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Before suggesting general conclusions, let us briefly mention similar projects. Of
the many lexicographic enterprises we name just a few that closely relate to our ob-
servations.

2.10.1 Related Research

Rosen et al. (1992) describe formal representation of valency frames for the machine
translation system MATRACE (Hajič et al., 1992) and design a procedure to convert
subcategorization frames from Oxford Advanced Learners’ Dictionary (Hornby, 1974).

Skoumalová (2001) implements rules to convert surface frames collected from a
compilation of manual dictionaries (BRIEF, (Pala and Ševeček, 1997)) to tectogram-
matical valency frames, including explicit encoding of allowed passivization alterna-
tions. The resulting lexicon is utilized in a toy LFG grammar.

Bond and Fujita (2003) describe a successful semi-automatic method for extend-
ing a Japanese valency dictionary by copying frames from translation equivalents: a
verb not covered in the target valency dictionary is translated (using a simple transla-
tion dictionary) to English and back to arrive at a known verb. Frames of the known
verb are copied to the newly added verb, subject to various forms of manual filter-
ing. The experiment confirms that verb valency is strongly related to verb meaning
(exploiting the fact that translation preserves meaning). A surprising observation is
that manual checking whether the new frame belongs to a verb performed either by
untrained annotators validating correctness of a paraphrase or by trained lexicogra-
phers validating the frame assignment as such is equally time-consuming. In practice,
Bond and Fujita (2003) suggest to prefer the lexicographers because the whole entry
is checked and also because untrained annotators often judge the grammaticality of
the paraphrase unreliably. An automatic learner (C5.0, Quinlan (2002)) failed to im-
prove over the baseline and Bond and Fujita (2003) thus mention that frame entry
construction inevitably requires manual effort.

Kipper-Schuler (2005) follows up on experiments by Kingsbury (2004) to automat-
ically cluster verbs appearing in Penn Treebank for the purpose of VerbNet extension.
A manual evaluation of the clusters revealed that only about 5% of verbs were as-
signed to a reasonably accurate cluster and could have been added to the VerbNet.
Reasons for the little precision include (1) highly skewed domain of the Penn Tree-
bank (mostly financial texts), (2) lack of syntactic context in the sentences that would
enable to disambiguate between verb usages and finally (3) no semantic classification
of verbs’ arguments. Apart from the domain dependence, the same problems apply
to our automatic extraction of VALLEX frames. A more fruitful approach was to ex-
ploit clustering of verbs already present in WordNet from where 36–40% of suggested
verbs could have been used.

Dorr and Jones (1996) successfully use WordNet and syntactic descriptions of verbs
in LDOCE (Procter, 1978) to semantically classify verbs not covered in Levin’s verb
classes (Levin, 1993): for each new verb, synonyms are found in WordNet. All Levin

32



2.10 DISCUSSION

classes the synonyms belong to are considered as candidate classes, but only the single
class is chosen that best matches the syntactic description of the verb in LDOCE. The
procedure can also hypothesize a new class in case none of the verb’s synonyms is
covered in Levin’s classification or the syntactic descriptions of the class and the verb
differ too much. Manual evaluation on a small sample suggested 82% accuracy: the
class chosen was one of plausible classes for the verb in 82% of verbs. The syntactic
descriptions from LDOCE serve as a filter to restrict the set of classes suggested by the
synonyms. We believe that corpus evidence could be used as an alternative filtering
technique if LDOCE syntactic description were not available. The key component
though remains WordNet as the source of synonyms.

Schulte im Walde (2003) carries out extensive research on automatic clustering of
German verbs into semantic classes based on syntactic criteria and also selectional
restrictions. After fine-tuning the set of features she is able to automatically derive
semantic clustering of verbs that ignores sense ambiguity of verbs (hard clustering
method, each verb is assumed to belong to one class only). However, her classes are
described by a set of frames, so one could use this method to assign sets of frames
to verbs. The main difference between her and our goal is thus the surface vs. deep
syntactic layer of representation.

2.10.2 Lack of Semantic Information
The failure of our direct methods suggests that purely surface syntactic observations
are not sufficient to derive deep syntactic (or semantic) generalizations.

Successful projects mentioned above always include some ready-made component
capable of semantic generalization employed either for the verb itself or for the mod-
ifiers. For instance, synonyms of the verb from WordNet or synonyms derived via
translation to another language are used as source verbs to copy the syntactic infor-
mation from.

Though not clearly confirmed by Schulte im Walde (2003), selectional restrictions
on verb modifiers are a significant predictor of verb sense distinctions. We thus be-
lieve that both further refinement of VALLEX verb classes as well as the addition of
selectional restrictions could improve the precision of our application.

2.10.3 Deletability of Modifiers
One of the main problems of our direct methods is that they do not explicitly handle
“deleted” modifiers, i.e. frame slots that are not realized on the surface. It is only
the method PatternSearch that inherently solves the problem by ignoring all occur-
rences of the verb in question where some of the modifiers required by the pattern
are missing, though lowering the recall of the method.

An approach similar to Sarkar and Zeman (2000) where frame subsets are consid-
ered or the hierarchical browsing of verb occurrences suggested by Bojar (2003) would
have to be incorporated into the methods.
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2.10.4 Need to Fine-Tune Features and Training Data

The features we use in our direct methods WFD and Decomp are rather straightfor-
ward observations from the close (syntactic) neighbourhood of the verb. We also train
our models on all available instances of all training verbs.

Possibly, the noise in the training data could be reduced to a great extent by care-
fully restricting the set of training verbs to a few representatives (e.g. one frame per
semantic class or a limited number of centroids selected automatically from all known
frames). We could also use some selection of training sentences, such as the promis-
ing method of selecting syntactically simple sentences as implemented in Bojar (2003)
but aiming at sentences with most modifiers realized on the surface.

Similarly, it is well known that feature selection is vital for performance of classi-
fication methods. In out preliminary experiments with WFD features, every feature
type contributed to the performance and we could not restrict the set of features in any
way without a loss. This suggests that additional features (or feature combinations)
are still to be sought for.

2.10.5 Lack of Manual Intervention

One of the reasons of the failure of our direct methods is undoubtedly the aim at an
end-to-end automatic approach.

Our PatternSearch experiment as well as related approaches include a manual fil-
tering step of either the suggestions the system has made or the patterns the system
searches for.

We envisage a lexicographers’ tool that automatically “summarizes” corpus evi-
dence to clusters based on e.g. DSD or the surface-syntactic features used in WFD. The
lexicographer would then mark occurrences not fitting well to the suggested cluster,
thus creating some WFD-annotated training data for the verb. In the next iteration,
the system would try to follow the suggested classification and summarize further
corpus data, possibly employing some semi-supervised clustering techniques (Basu,
2005). A similar approach, though limited to independent pairs of verb and one of
its modifiers and without the proposed annotation loop, is successfully employed in
Word Sketches (Rychlý and Smrž, 2004).

2.11 Conclusion and Further Research

Chapter 2 was devoted to methods of automatic extraction of valency frames based
on corpus evidence. We motivated the creation of valency dictionaries by expected
contribution to various NLP applications. Then we reviewed basic formal aspects of
valency frames in FGD and simplified the definition for our purpose.

A novel metric (ES) was proposed to evaluate directly how much of a lexicogra-
pher’s work is saved using a method of automatic suggestion of verb frames. We
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proposed three rather direct methods of frame suggestion (WFD, DSD and Decomp,
Section 2.7) and one indirect method that exploits semantic classification of the verbs
(PatternSearch, Section 2.9).

We have to conclude that the task of automatic creation of lexicon entries is a very
complex process. None of our direct methods was able to significantly improve over
the baseline. As confirmed by related research for other languages, manual interven-
tion in the process seems inevitable.

More or less successful methods such as (Bond and Fujita, 2003) or our own Pattern-
Search exploit the fact that verbs with a similar meaning have similar valency frames.
In general, an acceptable performance of the methods of extraction is achieved only in
setups aimed at high precision (and thus low recall) that heavily filter available data
but this may negatively affect the utility of the lexicons in applications (Zhang et al.,
2007).

Ideally, the lexicons we have just described would improve NLP applications, e.g. in-
crease the quality of machine translation (MT). To achieve this, the methods would
have to be extended to acquire bilingual valency dictionaries. As other research sug-
gests (Ikehara et al., 1991; Boguslavsky et al., 2004; Fujita and Bond, 2004; Liu et al.,
2005), such dictionaries might indeed help, though we are not aware of any conclusive
improvement over the state-of-the-art translation quality, see Section 5.1.3. For Czech-
-English pair, we carried out some preliminary experiments with extracting parallel
verb frames (Bojar and Hajič, 2005).

In the following, we do not take any side steps and move towards the goal of ma-
chine translation, describing a syntax-based (Chapter 3) and a phrase-based (Chap-
ter 4) MT system. Later, we will come back to a more general discussion on the utility
of lexicons in NLP applications in Chapter 5.
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3
Machine Translation via Deep Syntax

In the previous chapter we studied methods of automated lexical acquisition. Result-
ing syntactic lexicons can serve as a resource for various NLP applications. In order to
better empirically understand the applicability of lexicons, we now focus on a single
practical task, namely machine translation (MT). After a brief review of approaches
to MT (Section 3.1), we describe a syntax-based MT system. In theory, this is the
approach where deep syntactic lexicons could be later used.

3.1 The Challenge of Machine Translation

Machine translation (MT) is an intriguing task. Researchers have hoped in automated
text translation since the era of John von Neumann and Alan Turing (see Hutchins
(2005) or the IBM press release in 19541), and the field has seen both spectacular fail-
ures2 as well as surge of activity and success. For a review including a summary of
issues that an MT system has to overcome see e.g. Dorr et al. (1998).

While fully automatic high-quality MT is still far beyond our reach, restricted set-
tings often allowed to create highly successful applications such as computer tools
aiding human translation (e.g. translation memories, see Lagoudaki (2006)), closed-
-domain fully automatic systems (Chevalier et al., 1978), or tentative machine transla-
tion to enable at least a partial access to information in a foreign text (e.g. web services
Babelfish3 or Google Translation4).

In essence, the task of MT is to correctly reuse pieces of texts previously trans-
lated by humans to translate sentences never seen so far.5 Some methods follow the
line very tightly, not being able to produce any word or expression not seen in some
training text, while some methods (most notably all rule-based or dictionary-based
ones) operate with a very distilled representation of words and their translations. In
the latter setup, training texts as well as a broad world knowledge were processed

1http://www-03.ibm.com/ibm/history/exhibits/701/701_translator.html
2Failure to meet expectations causing a decline in funding for a decade (ALPAC, 1966; Hutchins, 2003)

or failure to produce any working system in the EUROTRA project (Oakley, 1995; Hutchins, 1996). Note
however, that there are quite conflicting objectives in MT research and even a failing project can bring a very
significant progress in theoretical understanding or language modelling, see Rosen (1996) for a discussion.

3http://babelfish.altavista.com/
4http://translate.google.com/
5Human translators proceed well beyond this boundary, trying to understand the described situation

based on other information sources and e.g. to enrich the translation with all explanation necessary for the
reader.
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3 MACHINE TRANSLATION VIA DEEP SYNTAX

by human experts, so there is no well defined set of training data and no direct link
between the data and the system.6 Further serious empirical questions arise as we
start to investigate what the best “piece” of a sentence to reuse might be, as discussed
below.

3.1.1 Approaches to Machine Translation

One of the key distinctions between various MT systems is the level of linguistic anal-
ysis employed in the system, see the MT triangle by Vauquois (1975) in Figure 3.1.
Roughly speaking, an MT system is “direct” or “shallow” if it operates directly with
words in source and target languages and it is “deep” if is uses some formal repre-
sentation (partially) describing the meaning of the sentence. We examine both of the
approaches further below.

deep

direct transferMorphological Layer

Surface Syntactic Layer

Deep Syntactic Layer

Interlingua

Figure 3.1: Vauquois’ triangle of approaches to machine translation.

Another distinction is made between “rule-based” and “statistical” (or “stochas-
tic” or “data-driven”) systems. In rule-based systems, all the implementation work is
done by human experts, in statistical systems, humans design a probabilistic model
describing the process of translation and use large amounts of data to train the model.

To an extent, we do not consider the difference between “rule-based” and “sta-
tistical” approaches being too big. In both cases, there has to be someone who does
some data abstraction at some point. In hand-crafted rule-based systems, the abstrac-
tion happens as human translators learn the two languages and formally describe the
rules of translation. In data-driven systems, the abstraction according to the speci-
fication of the model happens either at a pre-processing phase (collecting statistics)
or on the fly when searching for sentences similar to the one that is to be translated
(example-based methods). Moreover, many rule-based systems rely on large linguis-

6Some researchers argue that human experts may not have used any training parallel texts at all when
implementing the transfer rules. Still, while learning the two languages, they have at least discussed real-
life situations in the two languages with others, if not read a foreign language textbook.
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tic resources such as translation dictionaries anyway and in such cases, automated
creation of such resources is highly desirable (see Chapter 2).

Direct (Shallow) MT
Introduced by King (1956) and applied by Brown et al. (1988), shallow MT systems
treat words in a input sentence as more or less atomic units and attempt a direct con-
version of the input sequence of atomic units into the output sequence of atomic units.

For instance, the Czech sentence Dobré ráno can be translated to English Good morn-
ing using a simple word-to-word translation dictionary. The linguistic inadequacy of
the direct approach becomes apparent if we consider a similar sentence Dobrý večer
(Good evening). A completely uninformed system wastefully needs two new entries in
the dictionary (Dobrý for Good and večer for evening) because it has no idea that both
Dobré and Dobrý are just two morphological variants of the same word. In order to
reverse the translation direction, some additional information has to be provided to
make the system correctly choose between Dobrý and Dobré for Good.

In short, direct approaches start with little or no linguistic theory and introduce
further extensions to the process of translation only when necessary. As we will see in
Chapter 4, such systems can still deliver surprisingly good results, and more so once
some (limited) linguistic knowledge is implemented into the design of the system.

Deep Syntactic MT
First machine translation systems as well as prevailing commercial MT systems to
date (e.g. SYSTRAN) incorporate principles from various linguistic theories from the
very beginning.

For an input sentence represented as a string of words, some symbolic represen-
tation is constructed, possibly in several steps. This symbolic representation, with
the exception of a hypothetical Interlingua, remains language-dependent, so a trans-
fer step is necessary to adapt the structure to the target language. The translation
is concluded by generating target-language string of words from the corresponding
symbolic representation.

In the following, we focus on one particular instance of this symbolic represen-
tation, namely the framework of FGD (see Section 2.2). We experiment primarily
English-to-Czech translation via the t-layer (deep) and compare it to transfer at the
a-layer (surface syntax). Previous research within the same framework but limited to
rather surface syntax includes the system APAČ (Kirschner and Rosen, 1989).

Other examples of a deep syntactic representation, in essence very similar to FGD,
include Mel’čuk (1988), Microsoft logical form (Richardson et al., 2001) or the ideas
spread across the projects PropBank (Kingsbury and Palmer, 2002), NomBank (Mey-
ers et al., 2004) and Penn Discourse Treebank (Miltsakaki et al., 2004). MT systems are
also being implemented in less dependency-oriented formalisms such as the DELPH-
-IN initiative (Bond et al., 2005) for HPSG (Pollard and Sag, 1994). See e.g. Oepen et al.
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(2007) and the cited papers for a recent overview of the LOGON project that combines
various formalisms of deep syntactic representation.

3.1.2 Advantages of Deep Syntactic Transfer

The rationale to introduce additional layers of formal language description such as the
tectogrammatical (t-) layer in FGD is to bring the source and target languages closer
to each other. If the layers are designed appropriately, the transfer step will be easier
to implement because (among others):

• t-structures of various languages exhibit less divergences, fewer structural chan-
ges will be needed in the transfer step.

• t-nodes correspond to auto-semantic words only, all auxiliary words are identi-
fied in the source language and generated in the target language using language-
-dependent grammatical rules between t- and a- layers.

• t-nodes contain word lemmas, the whole morphological complexity of either of
the languages is handled between m- and a- layers.

• the t-layer abstracts away word-order issues. The order of nodes in a t-tree is
meant to represent information structure of the sentence (topic-focus articula-
tion). Language-specific means of expressing this information on the surface
are again handled between t- and a- layers.

Overall, the design of the t-layer aims at reducing data sparseness so less parallel
training data should be sufficient to achieve same coverage.

Moreover, the full definition of the t-layer includes explicit annotation of phenom-
ena like co-reference to resolve difficult but inevitable issues of e.g. pronoun gender
selection. As tools for automatic tectogrammatical annotation improve, fine nuances
could be tackled.

3.1.3 Motivation for English→Czech

This study focuses on translation from English to Czech. Apart from personal rea-
sons, our choice has two advantages: both languages are well studied and there are
available language data for both of the languages.

Table 3.1 summarizes some of the well known properties of Czech language7.
Czech is an inflective language with rich morphology and relatively free word or-
der. However, there are important word order phenomena restricting the freedom.
One of the most prominent examples are clitics, i.e. pronouns and particles that oc-
cupy a very specific position within the whole clause. The position of clitics is rather
rigid and global within the sentence. Examples of locally rigid structure include (non-
-recursive) prepositional phrases, coordination and to some extent also the internal

7Data by Nivre et al. (2007), Zeman (http://ufal.mff.cuni.cz/˜zeman/projekty/neproj), Holan (2003),
and Bojar (2003). Consult Kruijff (2003) for empirical measurements of word order freeness.
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Czech English
Morphology rich limited

≥ 4,000 tags 50 used
≥ 1,400 actually seen

Word order free with rigid rigid
global phenomena

Known dependency parsing results
Labelled edge accuracy 80.19% 89.61%
Unlabelled edge accuracy 86.28% 90.63%

Table 3.1: Properties of Czech compared to English.

order of noun phrases. Other elements, such as the predicate, subject, objects or other
modifiers of the verb may be nearly arbitrarily permuted. Such permutations corre-
spond to the topic-focus articulation of the sentence. Formally, the topic-focus artic-
ulation is expressed as the order of nodes at the t-layer.

Moreover, like other languages with relatively free word order, Czech allows non-
-projective constructions (crossing dependencies). Only about 2% of edges in PDT
are non-projective, but this is enough to make nearly a quarter (23.3%) of all the sen-
tences non-projective. While in theory there is no upper bound on the number of
gaps (Holan et al., 2000; Kuhlmann and Möhl, 2007) in a Czech sentence (see Fig-
ure 3.2), Debusmann and Kuhlmann (2007) observe that 99% of sentences in PDT
contain no more than one gap and are well-nested, which makes them parsable by
Tree-Adjoining Grammars (TAG, Joshi et al. (1975), see also the review by Joshi et al.
(1990)). Note that other types of texts may exhibit more complex sentence structure.

3.1.4 Brief Summary of Czech-English Data and Tools

Table 3.2 summarizes available Czech monolingual and Czech-English parallel cor-
pora, including the available annotation. We use the tools listed in Table 3.3 to au-
tomatically add any further layers of annotation and to generate plaintext from the
deep representation.

A new version of Prague Czech-English Dependency Treebank (PCEDT 2.0) is cur-
rently under development. PCEDT 2.0 will not only be about twice the size of PCEDT
1.0, but more importantly the annotation at both Czech and English t-layers will be
manual. This will allow to collect reliable estimates of structural divergence at the
t-layer and train deep-syntactic transfer models on highly accurate data.

3.2 Synchronous Tree Substitution Grammar
Synchronous Tree Substitution Grammars (STSG) were introduced by Hajič et al.
(2002) and formalized by Eisner (2003) and Čmejrek (2006). They capture the basic
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Proti odvolání
Against dismissal

se
aux-refl

zítra
tomorrow

Petr
Peter

v práci
at work

rozhodl
decided

protestovat
to object

Peter decided to object against the dismissal at work tomorrow.
The construction, taken from Holan et al. (2000), is based on two verbs and intermixed
modifiers where the dependency relations are disambiguated on the basis of syntac-
tic criteria (e.g. obligatory reflexive particle se or subcategorization for a particular
preposition or case) and semantic criteria (e.g. verb in past tense cannot accept time
modifier referring to future): The non-projective dependencies are se and Peter de-
pending on the main verb decided but appearing within the span of dependents of to
object: against dismissal, tomorrow, at work. With the main verb itself, there are 3 gaps
within the yield of to object.

Figure 3.2: Number of gaps in a Czech sentence is not bounded in theory.

assumption of syntax-based MT that a valid translation of an input sentence can be
obtained by local structural changes of the input syntactic tree (and translation of
node labels) while there exists a derivation process common to both of the languages.
Some training sentences may violate this assumption because human translators do
not always produce literal translations but we are free to ignore such sentences in the
training.

As illustrated in Figure 3.3, STSG describe the tree transformation process using
the basic unit of a treelet pair and the basic operation of tree substitution. Both source
and target trees are decomposed into treelets that fit together. Each treelet can be con-
sidered as representing the minimum translation unit. A treelet pair such as depicted
in Figure 3.4 represents the structural and lexical changes necessary to transfer local
context of a source tree into a target tree.

Each node in a treelet is either internal ( , constitutes treelet internal structure
and carries a lexical item) or frontier ( , represents an open slot for attaching another
treelet). Frontier nodes are labelled with state labels (such as “_Sb” or “_NP”), as is
the root of each treelet. A treelet can be attached at a frontier node only if its root state
matches the state of the frontier.

A treelet pair describes also the mapping of the frontier nodes. A pair of treelets
is always attached synchronously at a pair of matching frontier nodes. A treelet pair
can be seen as a bilingual frame.

Depending on our needs, we can encode ordering of nodes as part of each treelet.
If only local ordering is used (i.e. we record the position of a parent node among its
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Monolingual Corpora
Name and version Sents. Tokens

Annotation
Czech National Corpus (e.g. SYN2000d) 6.8M 114M

automatic m-layer, (Kocek et al., 2000)
PDT 2.0 50k/115k 0.8M/2.0M

manual t-layer/manual m-layer, (Hajič, 2004a)

Parallel Czech-English Corpora
Name and version Czech/English

Annotation Sents. Tokens
PCEDT 1.0 (Čmejrek et al., 2004) 22k/49k 0.5M/1.2M

Czech/English automatic m-, a- and t-layer
CzEng 0.7 (Bojar et al., 2008) 1.4M/1.4M 21M/23M

automatic sentence alignment, tokenized

Table 3.2: Available Czech monolingual and Czech-English parallel corpora.

sons), the output tree will be always projective. If we record global ordering of all
nodes in a treelet, the final output tree may contain non-projectivities introduced by
non-projective treelets (the attaching operation itself is assumed to be projective).

STSG is generic enough to be employed at or across various layers of annotation
(e.g. an English t-tree to a Czech t-tree or an English a-tree to a Czech a-tree). Our
primary goal is to transfer at the tectogrammatical layer. Other applications of STSG
include e.g. text summarization (Cohn and Lapata, 2007).

STSG can be also seen as a simplification of the (Synchronous) Tree-Adjoining
Grammars (TAG, Joshi et al. (1975)). In addition to the tree-substitution operation,
TAG allows to “adjoin” a tree at an internal node as illustrated in Figure 3.5.

3.3 STSG Formally

We now formally describe the core elements in STSG as motivated above to make
the text self-contained and also because we slightly differ from the definition e.g. by
Čmejrek (2006), see below.

Given a set of states Q and a set of word labels L, we define:
A treelet t is a tuple (V,Vi, E, q, l, s) where:
• V is a set of nodes,
• Vi ⊆ V is a nonempty set of internal nodes. The complement Vf = V \ Vi is

called the set of frontier nodes,
• E ⊆ Vi × V is a set of directed edges starting from internal nodes only and

forming a directed acyclic graph,
• q ∈ Q is the root state,
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Step Tool Used
English morphological analysis (text→m) Minnen et al. (2001)
English tagging (text→m) Ratnaparkhi (1996) or Brants (2000)
English constituency parsing (m→phrase structure) Collins (1996)
English dependencies (phrase structure→a) hand-written rules
English tectogrammatical parsing (a→t) rules similar to Čmejrek et al. (2003)
Czech morphological analysis (text→m) Hajič (2004b)
Czech dependency parsing (m→a) McDonald et al. (2005)
Czech tectogrammatical parsing (a→t) Klimeš (2006) or Žabokrtský and Bojar (2008)
Czech tectogrammatical generation (t→text) Ptáček and Žabokrtský (2006)

Table 3.3: Tools used for the preparation of training data and in the end-to-end evaluation.

• l : Vi → L is a function assigning labels to internal nodes,
• s : Vf → Q is a function assigning states to frontier nodes.
• Optionally, some additional structure can keep track of local or global ordering

of nodes.
For convenience, we will use the shorthand t.q for the root state, t.s for the frontier

state function, and other shortcuts for all other properties of t using the same analogy.
A treelet pair t1:2 is a tuple (t1, t2, m) where:
• t1 and t2 are treelets for source and target languages (L1 and L2) and states (Q1

and Q2),
• m is a 1-1 mapping between frontier nodes in t1 and in t2.
Given a starting synchronous state Start1:2 ∈ Q1×Q2, a synchronous derivation

δ = {t0
1:2, . . . , tk

1:2} constructs a pair of dependency trees (T1, T2) by:
• attaching treelet pairs t0

1:2, . . . , tk
1:2 at corresponding frontier nodes, and

• ensuring that the root states t0
1:2.q, . . . , tk

1:2.q of the attached treelets pairs t0
1:2, . . . ,

tk
1:2 match the frontier states of the corresponding frontier nodes.

Note that we differ from Čmejrek (2006) as we require (1) each treelet to contain
at least one internal node and (2) all frontier nodes in a treelet pair to be mapped, i.e.
the left and right treelets must contain the same number of frontier nodes. These two
additional requirements ensure that the translation procedure (1) will not loop (by
generating output treelets while not consuming anything from the input tree) and (2)
will not skip any subtree of the input tree.

For the purpose of further explanation, we define the source-side projection de-
noted source(δ) and the target-side projection denoted target(δ) of a derivation δ as
the trees T1 and T2 constructed by δ, respectively. Given a source tree T1, we use
∆(T1) = {δ | source(δ) = T1} to denote the set of derivations δ yielding T1 on the
source side.

Note that given a tree T , not all subtrees t ⊆ T can be considered as a part of (one
side of) a valid (synchronous) derivation because STSG derivations have no adjunc-
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# Asociace uvedla , že domácí poptávka v září stoupla .
# Sb Pred AuxX AuxC Atr Sb AuxP Adv Pred AuxK
# association said , that domestic demand in September grew .

# The association said domestic demand grew in September .
# DET NP VP ADJ NP VP PP NP .

Figure 3.3: A sample pair of analytical trees synchronously decomposed into treelets. For ex-
planation of the graphical symbols used see the text, linguistic annotation is provided for illus-

tration purposes only.

_Pred

_Sb uvedla , že _Pred
=

_VP

_NP said _VP

Figure 3.4: A sample analytical treelet pair.

tion operation. We say that a subtree t of a tree T satisfies the STSG property, if for
every internal node n ∈ t all immediate dependents (modifiers) of n in T are included
in t as well, either as internal or as frontier nodes. In other words, we assume no tree
adjunction operation was necessary to cover any children of n in T .

3.4 STSG in Machine Translation

Our goal is to translate a source sequence of words s1 into a target sequence of words
ŝ2, where ŝ2 is the most likely translation out of all possible translations s2:

ŝ2 = argmax
s2

p(s2 | s1) (3.1)

We introduce the source and target dependency trees T1 and T2 as hidden variables
to the maximization, assuming no other dependencies except those along the pipeline
indicated in Figure 3.1 (page 38):

45



3 MACHINE TRANSLATION VIA DEEP SYNTAX

F + F = F A +

A

A
=

A

A

Figure 3.5: Tree substitution at a frontier node F and tree adjunction at an internal node A.

ŝ2 = argmax
s2,T1,T2

p(T1 | s1) · p(T2 | T1) · p(s2 | T2) (3.2)

Rather than searching the joint space, we break the search into three independent
steps: parsing (3.3), tree transduction (3.4) and generation (3.5):

T̂1 = argmax
T1

p(T1 | s1) (3.3)

T̂2 = argmax
T2

p(T2 | T̂1) (3.4)

ŝ2 = argmax
s2

p(s2 | T̂2) (3.5)

We mention the tools used for parsing and generation in Table 3.3 on page 44.
STSG is used to find the most likely target tree T̂2 given T1. Applying the Viterbi
approximation we search for the most likely derivation δ̂ instead and take its target-
-side projection, see Figure 3.6 for a step-by-step justification.

To sum up, the most likely target tree T̂2 given T1 is found by searching for the
most likely synchronous derivation δ̂ that constructs T1 and T̂2:

T̂2 = argmax
T2

p(T2 | T1)
.
= target(δ̂) = target

(
argmax
δ∈∆(T1)

p(δ)
)

(3.6)

As defined above, a derivation δ consists of a sequence of treelet pairs. When
searching for δ̂, we thus consider all decompositions of T1 into a set of treelets t0

1, . . . , tk
1 ,

expand each treelet ti
1 into a treelet pair ti

1:2 using a treelet pair dictionary and eval-
uate the probability of the synchronous derivation δ = {t0

1:2, . . . , tk
1:2}. Having found

the most likely δ̂, we return the right-hand-side tree T̂2 constructed by δ̂.

3.4.1 Log-linear Model

Following Och and Ney (2002) we further extend 3.6 into a general log-linear frame-
work that allows us to include various features or models:
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T̂2 = argmax
T2

p(T2 | T1) marginalize over derivations δ

= argmax
T2

∑
δ

p(T2, δ | T1) apply chain rule

= argmax
T2

∑
δ

p(T2 | δ, T1)·p(δ | T1) p(T2 | δ, T1) =1 because T2 = target(δ)

= argmax
T2

∑
δ

p(δ | T1) apply Fundamental Law

= argmax
T2

∑
δ

p(δ, T1)

p(T1)
ignore p(T1), constant in maximization

= argmax
T2

∑
δ

p(δ, T1) p(δ, T1) =
˙p(δ) if δ ∈ ∆(T1) because T1 = source(δ)

0 otherwise

= argmax
T2

∑
δ∈∆(T1)

p(δ) approximate the sum by the largest element only

.
= argmax

T2

max
δ∈∆(T1)

p(δ) Viterbi approximation to search for δ instead of T2

.
= target(argmax

δ∈∆(T1)

p(δ))

Figure 3.6: Detailed explanation of why we search for the most likely derivation δ̂ instead of
the most likely T̂2 given T1 .

δ̂ = argmax
δ∈∆(T1)

exp
( M∑

m=1

λmhm(δ)
)

(3.7)

Each of the M models hm(δ) provides a different score aimed at predicting how
good the derivation δ is. The weighting parameters λm,

∑M

1 λm = 1, indicate the
relative importance of the various features and they are tuned on an independent
dataset.

To facilitate efficient decoding (see Section 3.4.2 below), we require most feature
functions hm(δ) to decompose in lockstep with the derivation, i.e. to take the form:

hm(δ) =

k∑
i=0

hm(ti
1:2) (3.8)

STSG Model

One of the most basic features is based on the STSG probability of the synchronous
derivation. STSG estimates the probability of the derivation δ as the multiplication of
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3 MACHINE TRANSLATION VIA DEEP SYNTAX

probabilities of individual attachments. The probability of each attachment i = 1 . . . k

is defined as the conditional probability of a treelet pair ti
1:2 given the synchronous

state q of the two frontiers where ti
1:2 is attached. The frontiers’ state q has to match

the root state of the treelet pair ti
1:2 so we can write the probability of the attachment

as p(ti
1:2 | ti

1:2.q). Here is the STSG probability of a synchronous derivation:

p(δ) = p(t0
1:2 | Start1:2) ∗

k∏
i=1

p(ti
1:2 | ti

1:2.q) (3.9)

To incorporate this probability into the log-linear model, we take the log of it, defin-
ing the STSG model:

hSTSG(δ) = log(p(δ)) = log(p(t0
1:2 | Start1:2)) +

k∑
i=1

log(p(ti
1:2 | ti

1:2.q)) (3.10)

Note that if hSTSG(·) were the only feature used, the log-linear model reduces to
the straightforward maximization of p(δ):

δ̂ = argmax
δ∈∆(T1)

exp
(
hSTSG(δ)

)
= argmax

δ∈∆(T1)

p(δ) (3.11)

Reverse and Direct Treelet Models

The STSG translation model assumes that the choice of a treelet pair t1:2 depends only
on the synchronous state q of the two frontiers where t1:2 is attached.

Inspired by the common practice of statistical machine translation (Och, 2002), we
include the channel model (“reverse”) and “direct” conditional probabilities:

hdirect(t
i
1:2) = log

(
p(ti

2 | ti
1)

)
(3.12)

hreverse(ti
1:2) = log

(
p(ti

1 | ti
2)

)
(3.13)

The reverse model is justified by Bayes decomposition of p(target|source)8 while
the direct model empirically proves as a comparably valuable source (see e.g. Och
(2002)).

8

p(target|source) =
p(target)
p(source)

p(source|target)
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N-gram Language Models

A probabilistic target-language model used to promote coherent hypotheses is a very
important predictor of translation quality (see e.g. Och (2002)), although usually too
weak to express any reasonable definition of grammaticality.

Pervasive n-gram language models estimate the probability of a sentence s as the
multiplication of probabilities of all n-grams in the sentence:

p(s) =

length(s)∏
i=1

p(wi|wi−1, . . . , wi−n+1) (3.14)

where wi is each word in the sentence and wi−1, . . . , wi−n+1 are (n − 1) preceding
words.

In the canonical mode, an STSG decoder is expected to produce an output depen-
dency tree and thus cannot directly employ n-gram language models. However, if no
structure is needed at the output (e.g. when translating to a-trees and directly reading
off node labels), we can safely destroy all target-side tree structure, representing T2 as
a sequence of output words w1, . . . , wJ. Naturally, until the complete target hypoth-
esis is constructed, we have to keep track of exact positions of yet-to-expand frontiers
within the sequence of output words.

In this special case, the traditional sequence (language) model can be used, with a
bit of careful delayed computation around unexpanded frontiers:

hLMn
(δ) = log

J∏
j=1

p(wj|wj−1 . . . wj−n+1) (3.15)

We assume wj to be set to a special out-of-sentence symbol for j < 1.

Binode Tree Language Model

Given an output dependency tree structure, a more natural language model estimates
the probability of the sentence based on edges in the tree. As documented e.g. by
Charniak (2001), such models can improve parsing accuracy.

We define binode probability of the target tree T2 as the multiplication of proba-
bilities of all the edges e ∈ T2. Given the governor g(e) and the child c(e) of e, we can
define three different probabilities, “direct”, “reverse” and “joint”, leading to three
separate models:
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hbiLM
direct(δ) = log

∏
e∈T2

p(g(e) | c(e)) (3.16)

hbiLM
reverse(δ) = log

∏
e∈T2

p(c(e) | g(e)) (3.17)

hbiLM
joint (δ) = log

∏
e∈T2

p(c(e), g(e)) (3.18)

Additional Features

Following the common practice in phrase-based machine translation (e.g. Koehn
(2004a) or Zens et al. (2005)), we include penalties to consider the number of treelets
and words used to construct a derivation:

htreelet penalty(δ) = −|δ| (3.19)

hword penalty(δ) = −

k∑
i=0

|ti
2| (3.20)

where |ti
2| denotes the number of internal nodes in target treelet ti

2.

3.4.2 Decoding Algorithms for STSG

The search space of all possible decompositions of input tree multiplied by all possible
translations of source treelets is too large to be explored in full, efficient approximation
algorithms have to be designed.

Top-Down Beam Search

The current version of our decoder implements a beam search inspired by the strategy
of phrase-based decoder Moses (Koehn et al., 2007). While Moses constructs partial
hypotheses in a left-to-right fashion (picking source phrases in arbitrary order), our
partial hypotheses are constructed top-to-bottom along with the source tree T1 being
covered from top to bottom. The algorithm, in essence very similar to the one de-
scribed recently by Huang et al. (2006) but dating back to Aho and Johnson (1976), is
outlined in Alg. 2. The main difference is that we tackle the exponential search space
of tree decompositions using a pre-processing phase while Huang et al. (2006) use
memoization.

The first step is the construction of translation options. For each input node x ∈ T1,
all possible treelets rooted at x are examined and if a translation of a treelet is found, it
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3.4 STSG IN MACHINE TRANSLATION

Algorithm 2 Top-down beam-search STSG decoding algorithm.
1. For an input tree T1 of n nodes, prepare the translation options table:
2. For each source node x ∈ T1

3. Construct all possible treelet pairs t1:2 where t1 is rooted at x

and covers a subtree of T1 .
4. The subtree has to satisfy the STSG property:
5. If y ∈ T1 is covered with an internal node of t1 , all dependents

of y have to be covered by t1 as well.
6. Record only τ best possible treelet pairs rooted at x.
7. Create stacks s0 , . . . , sn to hold partial hypotheses, stack si for hypotheses

covering exactly i input nodes.
8. Insert the initial hypothesis (a single frontier node) into s0 .
9. For i ∈ 0 . . . n − 1

10. For each hypothesis h ∈ si

11. Expand h by attaching one of possible translation options at a pair
12. of pending frontiers, extending the set of covered words and
13. adding output words.
14. Insert the expanded h ′ (j words covered) to sj .
15. Prune sj if contains more that σ hyps.
16. Output the topscoring h∗ from sn .

is stored as one of the translation options for x. Figure 3.7 illustrates sample translation
options for the auxiliary root (“#”), the main verb “said” and the full stop “.”. For
conciseness, the target treelet structure is omitted in the picture as if the target output
tree was directly linearized.

Figure 3.8 illustrates the second and main step, i.e. the gradual expansion of a
hypothesis using translation options constructed in the first step. Once all input nodes
are covered (and thus no frontiers are left in the partial output), the output hypothesis
is returned. In practice, we beam-search the space of derivations, studying only σ

best-scoring partial hypotheses of the same number of covered input nodes. Note that
each expansion is guaranteed to cover at least one more input node, so the algorithm
cannot loop.

Bottom-up Dynamic-Programming Decoding Algorithm

Čmejrek (2006) presents another possible method of searching for the most probable
translation T2 of a given input tree T1.

The most probable derivation is computed by a dynamic-programming style Alg. 3.
For each node c1 ∈ T1 in bottom-up order and for each synchronous state q ∈ Q,
we find and store the root treelet pair t1:2 of the most probable derivation δ̂c1

that
covers the whole subtree of T1 rooted at c1 and has q as the root synchronous state.
The treelets are stored in arrays Ac1

(q) and the corresponding probabilities of δ̂c1
are

stored in βc1
(q).
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# The association said demand grew .

Sample translation options at root: ⇒ Linearized target treelet:

_# _VP _t
⇒ # _Pred _AuxK

_# _VP
⇒ # _Pred .

Sample translation options at ’said’:

_NP _VP _VP

⇒ _Sb uvedla , že _Pred

Sample translation options at ’.’:

⇒ .

Figure 3.7: Sample translation options for translating an English a-tree to a Czech a-tree. The
target structure is immediately linearized.

The final derivation δ̂ covering whole T1 is constructed by starting from t0
1:2 =

AT1.r(Start1:2) and recursively including all treelet pairs ti
1:2 = Afi

1
(qi) to cover

all frontiers fi
1 (respecting the synchronous states qi) of previously included treelets

t0
1:2, . . . , ti−1

1:2 .

3.5 Heuristic Estimation of STSG Model Parameters
Given a sentence-parallel treebank, we can use the expectation-maximization algo-
rithm described by Čmejrek (2006) to obtain treelet-to-treelet alignments and estimate
STSG derivation probability as defined in Eq. 3.9. Our plan is to adopt this method,
but for the time being we restrict our training method to a heuristic based on GIZA++
(Och and Ney, 2000) word alignments. So instead of treelet-to-treelet alignments, we
base our probability estimates on node-to-node alignments only.

For each tree pair in the training data, we first read off the sequence of node labels
and use GIZA++ tool to extract a possibly N-N node-to-node-alignment.9 In the next
step, we extract all treelet pairs from each node-aligned tree pair such that all the
following conditions are satisfied:

• each treelet may contain at most 5 internal and at most 7 frontier nodes (the
limits are fairly arbitrary),

9GIZA++ produces asymmetric 1-N alignments, we follow standard practices to combine 1-N and N-1
alignments from two GIZA++ runs.
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# The association said demand grew .

Sample Derivation: Linearized output:

h0 _# ⇒ _#

After expanding at root:

h1 _# _VP
⇒ # _Pred .

After expanding at _Pred:

h2
_#

_NP _VP

⇒ # _Sb uvedla , že _Pred .

After expanding at _Pred:

h3
_#

_NP _NP

⇒ # _Sb uvedla , že _Sb stoupla .

Figure 3.8: Top-down hypothesis expansion using translation options from Figure 3.7. Dashed
circles indicate where treelet pairs are attached at each step.

• each internal node of each treelet, if aligned at all, must be aligned to a node in
the other treelet,

• the mapping of frontier nodes has to be a subset of the node-alignment,
• each treelet must satisfy STSG property.
All extracted treelet pairs contribute to our maximum likelihood probability es-

timates. In general, given a left treelet t1, a right treelet t2 and their respective root
states q1 and q2, we estimate three separate models: “stsg”, “direct” and “reverse”:

hstsg(t1:2) = log count(t1, q1, t2, q2)

count(q1, q2)
(3.21)

hdirect(t1:2) = log count(t1, q1, t2, q2)

count(t1, q1, q2)
(3.22)

hreverse(t1:2) = log count(t1, q1, t2, q2)

count(t2, q1, q2)
(3.23)

The extracted set of treelet pairs with their probabilities is a kind of bilingual (syn-
tactic) lexicon.
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Algorithm 3 Bottom-up decoding algorithm for STSG.
1. for each node c1 ∈ T1 .V in bottomup order
2. for each q ∈ Q let βc1

(q) = −∞
3. for each treelet t1 that fits c1 in a safe order
4. while t1:2=proposeNewTreeletPair(t1)
5. // we have to try all possible t2 , q, m, s

6. let prob = p(t1:2 | t1:2 .q) ·
∏

(d1,d2)∈m
βd1

(t1:2 .s((d1 , d2)))

7. if βc1
(q) < prob // found a higher scoring derivation

8. then let βc1
(q) = prob and Ac1

(q) = t1:2

3.6 Methods of Back-off
As expected, and also pointed out by Čmejrek (2006), the additional structural infor-
mation boosts data-sparseness problem. Many source treelets in the test corpus were
never seen in our training data. To make things worse, our heuristic treelet extraction
method constrains the set of extractable treelet pairs by three rigid structures: source
tree, target tree and the word alignment. A single error in the word alignment or
parsing prevents our method from learning a treelet pair. We thus have to face not
only natural divergence of sentence structures but also divergence caused by random
errors in any of the automatically obtained annotations.

To tackle the problem, our decoder utilizes a sequence of back-off models, i.e. a
sequence of several methods of target treelet construction and probability estimation.
Each subsequent model is based on less fine-grained description of the input treelet
and constructs the target treelet on the fly from independent components.

The order and level of detail of the back-off methods is fixed but easily customiz-
able in a configuration file.

3.6.1 Preserve All

The most straightforward method is to preserve all information in an observed treelet
pair. This includes:

• left and right treelet structure, including all frontiers and internals and preserv-
ing the linear order of the nodes

• full labels of left and right internals
• state labels of left and right frontiers
An example of a complete treelet pair is given in Figure 3.9.

3.6.2 Drop Frontiers

One of significant limitations of STSG is the lack of adjunction operation. In order to
handle input treelets with branching that was not seen in the training data, we collect
treelet pairs while ignoring any frontiers. An example of such treelet pair is given in
Figure 3.10.
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_Pred

_Sb uvedla , že _Pred
uvést , že
verb punct conj
past subord
fem

=

_VP

_NP said _VP
say
verb
past

Figure 3.9: A treelet pair with all information preserved.

_Pred

uvedla , že
uvést , že
verb punct conj
past subord
fem

=

_VP
said
say
verb
past

Figure 3.10: A treelet pair with no frontiers.

Once the translation using this model is attempted, we remove all frontiers from
the source treelet, map the “skeleton” to the target treelet and attach the required
number of frontier nodes to the target tree. The position and state label of the frontiers
is chosen based on a separate probabilistic model.

As a further refinement, one might think of dropping only frontiers representing
adjuncts but preserving frontiers for complements. Either a valency lexicon would
supply the distinction between argument and adjuncts, or we could use some heuristic
such as suggested by Bojar (2004).

In the current implementation, we employ this method of back-off only in cases
where the output is directly linearized. Therefore, the governing node for a frontier
has not to be determined when attaching the frontier and we can use a simple model
to “zip” the sequence of target internals and the sequence of target frontiers (we do
not allow any reordering of the frontiers). The target label of a frontier is chosen based
on the label of the source frontier.

3.6.3 Translate Word by Word

The technique of dropping frontiers cannot be used when producing output trees,
unless we design a frontier re-attachment model for output treelets. To overcome
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the no-adjunction limitation of STSG in this setting, we choose a simple solution: we
restrict treelet size to one internal only. In this case, the structure of the treelet is
known: the internal node is the root of the treelet and its immediate dependents are
all frontiers of the treelet, see e.g. Figure 3.11.

_Pred

_Sb uvedla _Conj
uvést
verb
past
fem

=

_VP

_NP said _VP
say
verb
past

Figure 3.11: A treelet pair with one internal node in each treelet.

We can easily decompose such treelets and translate independently: 1. the label of
the internal node, 2. each of the frontier labels. Again, we could consider reordering
of the nodes but until a satisfactory reordering model is designed, we keep the order
intact.

A clear disadvantage of this back-off method is that the number of nodes cannot
change in the process of translation. This poses a significant problem for transfer at
the a-layer, but for transfer at the t-layer, preserving tree structure is a viable approx-
imation (Čmejrek et al., 2003).

3.6.4 Keep Word Non-Translated

In the cases where a word was never seen in the training data, the methods described
so far would not provide any translation for the word, so the translation of the whole
sentence would fail producing no output. As a back-off, one can either try to look up
the word in a translation dictionary (possibly facing the issue of a different morpho-
logical form) or, as an ultimate rescue, keep the unknown word not translated and try
to translate the rest of the sentence.

Technically, we achieve this by adding a special rule that preserves the treelet struc-
ture, copies internal labels and independently translates each of frontier labels. In
practice, we prefer to restrict this method to treelets containing one internal only.

3.6.5 Factored Input Nodes

As described e.g. in Mikulová et al. (2006), and also indicated in Figure 3.9, internal
node labels are usually not atomic values. For example, an a-node usually bears the
value of word form, lemma, morphological tag (all inherited from the m-layer) and
analytical function (afun) label. For t-nodes, the set of attributes is significantly larger,
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as attributes explicitly encode linguistic features such as verbal tense, modality, iter-
ativeness, person, nominal gender, negation and many others.

Treating node labels as atomic and thus relying on all attributes to exactly match
the input leads to severe sparse data problem. We allow to specify only a subset of
input attributes (“factors”) to be taken into account while searching for a treelet trans-
lation. In practice, we usually use a sequence of models, each depending on fewer and
fewer input factors. For example, a back-off model for “preserve all” as illustrated in
Figure 3.9 could be based on source lemmas only. See Figure 3.12 for a hypothetical
rule for Czech-to-English transfer.

_Pred

_Sb uvést , že _Pred

=

_VP

_NP said _VP
say
verb
past

Figure 3.12: A treelet pair with source lemmas only.

3.6.6 Factored Output Nodes

Ignoring some attributes of input nodes is not sufficient as a back-off method alone.
For output factors, we have no option and eventually each node has to be provided
with all relevant attributes. We use the idea of “mapping” and “generation” steps
from factored phrase-based translation (Koehn and Hoang, 2007), details of which
are summarized in Section 4.2.4 below.

Currently, our implementation of factored models is limited to treelets containing
exactly one internal. We will extend this to treelets of any size. However, the size and
shape of the treelet (chosen according to a subset of input factors) will remain fixed
until all additional output factors are constructed.

Figure 3.13 illustrates a sequence of five decoding steps: three mapping steps that
convert source factors to target factors and two generation steps that ensure coherence
of output factors. For instance, the Czech word form is translated to an English form
in the first step. An independent second step translates the lemma. The third step
takes all source morphological attributes and translates them to target morphological
attributes. The coherence of the choices is ensured in steps 4 and 5 that bind together
the output form with the lemma (4) and the form with the morphological attributes
(5). It should be noted that many other configurations are possible.

In setups with multiple output factors, we apply also the language models de-
scribed in Section 3.4.1 and Section 3.4.1 several times using various subsets of output
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uvedla said
uvést say
verb verb
past past
fem

1
2

3

4
5

Figure 3.13: Sample decoding steps in word-for-word factored translation.

factors to provide a back-off for probability estimation. For instance, even if a node
pair was never seen in the exact configuration constructed in a sequence of decoding
steps, the pair of node lemmas may be quite common so we wish to score it with a
non-zero probability.

3.7 Remarks on Implementation

The STSG decoder called treedecode is being implemented in Mercury (Somogyi et
al., 1995)10 and currently consists of about 17,000 lines of code.

Supported features, apart from methods described in previous sections, include:
• parallel execution (both training and translation phases) on Sun Grid Engine11,
• efficient storage of translation tables using tinycdb12,
• binding to IrstLM (Federico and Cettolo, 2007) for n-gram language modelling,
• disk caching of various steps of computation to speed up consecutive startups

and reuse partial results upon failure (similar effects can be achieved using the
technique of “checkpointing”),

• basic debugging output in Scalable Vector Graphics (SVG),
• preliminary support for minimum error-rate training using two approaches,

(Och, 2003) and (Smith and Eisner, 2006a).
The source code is currently available upon request, future versions will be freely

accessible on a website, released as one of the deliverables of the EuroMatrix project.

3.8 Evaluating MT Quality

Estimating quality of machine translation is difficult because of many relevant criteria
(e.g. output fluency or faithfulness of translation, see e.g. Dorr et al. (1998)) and also
because many variations can be equally acceptable. Moreover, human evaluation is
subjective and thus difficult to replicate for similarly performing systems unless a very
large collection of judgements is created, not to mention the cost of such an evaluation.

10http://www.cs.mu.oz.au/research/mercury/
11http://gridengine.sunsource.net/
12http://www.corpit.ru/mjt/tinycdb.html
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eaca
eact etca

etct

epcp

generate

linearize

Morphological (m-) Layer

Analytical (a-) Layer

Tectogrammatical (t-) Layer

Interlingua

English Czech

Figure 3.14: Experimental settings of syntactic MT.

For the daily routine of MT systems development, many automatic metrics have
been proposed. Here we use one of the most common metrics, BLEU (Papineni et
al., 2002). Although there are metrics that achieve better correlation with humans
(Callison-Burch et al., 2007), such metrics are target-language dependent and have
not been adapted for Czech yet.

Please note that neither absolute BLEU scores nor relative improvements are com-
parable unless evaluated on the very same set of source sentences and reference trans-
lations. The results reported here for English-to-Czech are thus by no means compara-
ble to e.g. Czech-to-English MT by Bojar et al. (2006) or Čmejrek et al. (2003) evaluated
on a different test set and against 4 reference translations instead of just one used here.
See Bojar et al. (2006) for a fair comparison of those two experiments that also high-
lights the influence of rather subtle manipulations with the reference translations or
simple rules fixing tokenization issues to significantly raise BLEU scores.

We estimate empirical confidence bounds using the bootstrapping method de-
scribed by Koehn (2004b): Given a test set of sentences, we perform 1,000 random
selections with repetitions to estimate 1,000 BLEU scores on test sets of the same size.
The empirical 90%-confidence upper and lower bounds are obtained after removing
top and bottom 5% of scores. For conciseness, we report the average of the distance
between the standard BLEU value and the empirical upper and lower bound after the
“±” symbol.

3.9 Empirical Evaluation of STSG Translation

In an end-to-end evaluation, we try to cover a wide range of experimental settings
when translating from English to Czech, as illustrated in Figure 3.14, which is a re-
finement of Figure 3.1.

Our main focus is the translation from the English t-layer to the Czech t-Layer
(etct). The general applicability of STSG to any dependency trees allows us to test
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the same model also for analytical translation (eaca) or across the layers (etca and
eact). To a certain extent, our tree-based decoder can simulate a direct approach to
MT (phrase-based decoding, as will be discussed in Chapter 4) if we replace the de-
pendency structure of an a-tree with a simple left-to-right chain of words (“linear
tree”). The results obtained using this approach are labelled “epcp”. Our phrase-
-based approximation epcp is bound to work worse than other phrase-based systems
because we strictly follow the left-to-right order prohibiting any phrase reordering.

For each configuration, we extract treelet pairs using the heuristics described in
Section 3.5, possibly employing some of the back-off techniques from Section 3.6. The
EM training procedure as described by Čmejrek (2006), was not yet incorporated into
our training process.

3.9.1 Experimental Results

Apart from our STSG decoder, we use several additional tools along the training
and translation pipeline, as summarized in Section 3.1.4. We train our system on the
Project Syndicate section of CzEng 0.5 (Bojar and Žabokrtský, 2006) (also called News
Commentary corpus) and test it using the standard sets available for the ACL 2007
workshop on machine translation (WMT0713).

Table 3.4 reports the BLEU (Section 3.8) scores of several configurations of our sys-
tem, higher scores suggest better MT quality. We report single-reference lowercased
BLEU.14

The values in the column “LM Used” indicate the type of language model used in
the experiment. An n-gram model can be applied to the output sequence of words.
For setups where the final sequence of words is constructed using the generation com-
ponent by Ptáček and Žabokrtský (2006) with no access to a language model, we use
at least a binode LM to improve output tree coherence.

Appendix A provides examples of MT output from our “etct” method as well as
from phrase-based systems described in Chapter 4.

3.10 Discussion

At the first sight, our preliminary results support common worries that with a more
complex system it is increasingly difficult to obtain good results. However, we are
well aware of many limitations of our current experiments as discussed below.

Within the scope of our main focus, the tectogrammatical transfer (“etct”), we see a
dramatic improvement from BLEU 1.6 to BLEU 5.6. The score 1.6 is achieved using the
very baseline of STSG translation: nodes including all attributes are treated as atomic

13http://www.statmt.org/wmt07/
14For methods using the t→text generation system by Ptáček and Žabokrtský (2006), we tokenize the

hypothesis and the reference using the rules from the official NIST mteval-v11b.pl script. For methods
that directly produce sequence of output tokens, we stick to the original tokenization.
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Method of Transfer LM Used BLEU
epcp n-gram 10.9±0.6
eaca n-gram 8.8±0.6
epcp none 8.7±0.6
eaca none 6.6±0.5
etca n-gram 6.3±0.6
etct factored, preserving structure binode 5.6±0.5
etct factored, preserving structure none 5.3±0.5
eact, no output factors binode 3.0±0.3
etct, vanilla STSG (no factors), all node attributes binode 2.6±0.3
etct, vanilla STSG (no factors), all node attributes none 1.6±0.3
etct, vanilla STSG (no factors), just t-lemmas none 0.7±0.2

Table 3.4: English-to-Czech BLEU scores for syntax-based MT evaluated on DevTest dataset of
ACL 2007 WMT shared task.

units, only the maximum likelihood estimate of STSG probability (Section 3.4.1) is
used and no language model is applied. Our best “etct” result scoring 5.6 uses a
combination of back-off methods, including factored input and output nodes and two
binode models (one less fine-grained, again as a means of back-off).

3.10.1 BLEU Favours n-gram LMs

BLEU is known to favour methods employing n-gram based language models. Em-
pirical evidence supporting the claim can be observed in Table 3.4: an n-gram LM
gained 2 BLEU points for both “eaca” and “epcp”.

In future experiments we plan to attempt two ways to tackle the problem: em-
ploying some LM-based rescoring even after the generation component (Ptáček and
Žabokrtský, 2006), as well as using other automatic metrics of MT quality instead of
BLEU to avoid the bias.

3.10.2 Cumulation of Errors

All components in our setup deliver only the single best candidate. Any errors will
therefore accumulate over the whole pipeline. This primarily hurts the “etct” scenario
where all our tools are employed.

In future, we would like to pass and accept several candidates, allowing each step
in the calculation to do any necessary rescoring.

3.10.3 Conflict of Structures

Our current heuristic method of treelet extraction (Section 3.5) crucially depends on
the quality of both English and Czech trees as well as the node alignment between
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3 MACHINE TRANSLATION VIA DEEP SYNTAX

them. A single error in any of the rigid sources may prevent the extraction of a treelet
pair, not to mention natural divergence between the sentence and its translation. Pre-
cisely this reason explains the loss of performance of “eaca” compared to “epcp”.

We hope that using the EM procedure (Čmejrek, 2006) will gain some recall. The
current heuristic method can be also modified to accept a certain level of structure
divergence, such as a certain portion of node-alignments leading out of the treelet
pair. Alternatively, one could obtain not just the single best source and target tree, but
a set of candidates15 and choose such a pair of trees that matches best with the node
alignments.

Ultimately, the solution lies in designing additional back-off techniques that can
accommodate natural divergence appearing in Czech and English training sentences
and still exploit most of the data.

Smith and Eisner (2006b) attempt to loosen the rigidity of STSG structures by defin-
ing quasi-synchronous (monolingual) grammar for target language that prefers to
analyse or generate target-side sentence in alignment with the source-side tree but
is not restricted to do so.

Successful syntax-based approaches to MT, e.g. Quirk et al. (2005) or Huang et al.
(2006), benefit from the fact that the syntactic structure comes only from one language
and is only projected to the other language according to word alignments. Although
linguistic adequacy of the projected tree might suffer, much fewer structural conflicts
are observed.

3.10.4 Combinatorial Explosion

In the current implementation, target-side treelets are fully built during the prepara-
tory phase of translation option generation. Uncertainty in the many t-node attributes
leads to too many treelets with insignificant variations while e.g. different lexical
choices are pushed off the stack. While vital for final sentence generation (see Ta-
ble 3.4), fine-grained t-node attributes should be produced only once all key struc-
tural, lexical and form decisions have been made.

3.10.5 Sentence Generation Tuned for Manual Trees

The rule-based generation system (Ptáček and Žabokrtský, 2006) was designed to gen-
erate Czech sentences from full-featured manual Czech tectogrammatical trees from
the (monolingual) PDT.

Our target-side training trees are the result of an automatic analytical and tec-
togrammatical parsing procedure as implemented by McDonald et al. (2005) and Klimeš
(2006); Žabokrtský and Bojar (2008), resp. Further noise is added during the tree
transfer, so our final input to the generation component contains random errors in
tree structure as well as missing or bad attribute values.

15For dependency parsing, an efficient k-best parser was implemented by Hall (2007).
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As the manual annotation of PCEDT 2.0 proceeds, we may be able to train the
transfer system on manual Czech trees. Simultaneously, the generation component
will be improved to be more robust towards malformed input.

3.10.6 Errors in Source-Side Analysis

For the purpose of source-side English analysis, we still rely on very simple rules
similar to those used by Čmejrek et al. (2003) to convert Collins (1996) parse trees to
analytical and tectogrammatical dependency trees.

We hope the English-side pipeline can be improved using recent taggers and pars-
ers. Furthermore, the tectogrammatical analysis of English will be refined as manual
English t-trees become available during PCEDT 2.0 annotation, in progress.

Alternatively, we might include some attributes based directly on a-trees in the
source t-trees. This would serve as a back-off in case the a→t rules fail to provide all
necessary information.

3.10.7 More Free Parameters

Last but not least, the more complex the setup is (“etct” being our most complicated
design), the more free parameters there are in the system to configure. We have al-
ready mentioned many ways of replacing individual components, e.g. the parser ap-
plied or the method of treelet dictionary extraction. Moreover, each of the compo-
nents in the pipeline has many options to tune its behaviour.

Despite not reflected in the error-bar figures in Table 3.4, which describe the vari-
ance due to randomness in input data, we suggest that the variance or rather room
for improvement due to sub-component selection and configuration is much greater
for more complex scenarios.

It is an open software engineering and management question which of the free
parameters or which of the methods should be further studied.

Another drawback of the complex model is the abundance of model parameters
(λm in the log-linear model, Section 3.4.1). The optimization method commonly used
to set the parameters, so called minimum-error rate training (Och, 2003), does not
converge in our setup so we stick to a default: all models equally important.

3.10.8 Related Research

More or less direct comparison can be made with the system TectoMT developed by
Žabokrtský et al. (2008). TectoMT also uses t-layer for the transfer but instead of a
generic formal model, a sequence of many heuristic steps is used. Some of the heuris-
tics rely on probabilistic data such as a bilingual dictionary extracted automatically
from CzEng 0.7, but most are rather straightforward deterministic procedures. This
approach allows TectoMT to fully exploit the similarity of English and Czech t-layers
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3 MACHINE TRANSLATION VIA DEEP SYNTAX

and avoid the combinatorial explosion our system faces. See Table 4.5 on page 77
for human evaluation scores of TectoMT compared to phrase-based systems and Ap-
pendix A for examples and BLEU scores of “etct”, TectoMT and other systems.

A method closely related to our STSG is reported by Riezler and John T. Maxwell
(2006) who extract parallel snippets of LFG analyses. Their system performs better
than phrased-based translation (as rated by two human judges) in a very restricted
setting: the test set contains only sentences of 5 to 15 words. 44% of such sentences
fall within the coverage of the core LFG grammar and human judges evaluated (a
sample of) these 44% sentences. When evaluated with NIST (Doddington, 2002), an
automatic n-gram-based metric similar to BLEU, phrase-based translation appears
insignificantly better on the 44% in-coverage sentences and significantly better on the
full test set where a back-off LFG grammar had to be used. We can draw the fol-
lowing conclusion: if a sentence can be parsed by the core LFG grammar, it will be
probably better translated by the grammar-based system. This fortunate and deter-
minable occasion happens on average in 44% of sentences of 5 to 15 words; for other
sentences, a phrase-based system should be used. Another possible interpretation of
the experiment is that while the core of their LFG grammar allowed to achieve better
translation quality, the back-off grammar was not observed to generalize better than
a phrase-based system (Chapter 4) does.

3.11 Conclusion

The previous Chapter 2 was devoted to automatic acquisition of syntactic lexicons,
which can serve as an valuable resource for many NLP applications. Interested in
applicability of the lexicons in practice, we chose one particular task in this chapter:
English-to-Czech machine translation.

We briefly reviewed approaches to MT and summarized a mathematical model of
tree transformations (STSG) that fits nicely in the framework of FGD. The model is
applied to convert the dependency analysis of a source sentence into the dependency
analysis of the sentence in a target language.

We designed a decoding algorithm to search for the most probable translation of an
input tree and implemented a first version of the decoder. Several methods of back-off
have been proposed and included in the implementation. Finally, the whole pipeline
of the translation process has been set up and allows for an end-to-end evaluation.

We did not get to the point where we could directly incorporate a valency lexi-
con into the transfer step, apart from the t-to-surface generation system (Ptáček and
Žabokrtský, 2006) that uses VALLEX to choose an appropriate morphological realiza-
tion of verb modifiers. However, the treelet pairs described in Section 3.2 can be seen
as a form of bilingual valency frames and it would be quite straightforward to de-
sign a valency language model similar to the binode model (Section 3.4.1) promoting
translations where output valencies are confirmed by the lexicon.
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3.11 CONCLUSION

The empirical evaluation (Section 3.9) reveals more important problems than the
lack of a valency lexicon in the transfer: the more complex setup is used, the worse
results are obtained. We discussed the problems, known limitations and many open
questions in Section 3.10. We also pointed out that a more complex system has more
free parameters to tune and thus a greater potential for an improvement. We have to
leave this for future research.

As our empirical results indicate, the current best scores were obtained using a
simple phrase-based approach. That is why we explore this direct method of MT in
the following chapter.
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4
Improving Morphological Coherence in

Phrase-Based MT

The previous chapter was devoted to a study of a deep-syntactic MT system and one of
its components, tree-to-tree transfer, in particular. Completely reversing our research
priorities, we now tackle the task of MT in a very direct end-to-end fashion, employing
very little of linguistic analysis.

4.1 Introduction

Best empirical results in MT are currently achieved by phrase-based systems for many
language pairs.1 Known limitations of phrase-based MT include worse quality when
translating to morphologically rich languages as opposed to translating from them
(Koehn, 2005) and worse grammatical coherence of longer sentences.

We participated in the 2006 summer engineering workshop at Johns Hopkins Uni-
versity2 that attempted to tackle these problems by introducing separate factors in MT
input and/or output to allow explicit modelling of the underlying language struc-
ture. The support for factored translation models was incorporated into the Moses
open-source MT system3. Our contribution to the workshop was the design of factors
improving English-to-Czech translation.

In this chapter, we discuss the experiments, focusing on one particular aspect,
namely the morphological coherence of phrase-based MT output. Following a brief
overview of factored phrase-based MT (Section 4.2), we summarize some possible
translation scenarios in Section 4.4. Section 4.5 studies the level of detail useful for
morphological representation and Section 4.6 compares the results to a setting with
more data available, albeit out of domain. Section 4.7 provides human evaluation of
our systems and Section 4.8 is devoted to a brief analysis of MT output errors.

4.1.1 Motivation for Improving Morphology

As documented in Table 3.1 on page 41, Czech has very rich morphology. The Czech
morphological system (Hajič, 2004b) defines 4,000 tags in theory and 2,000 were actu-
ally seen in a big tagged corpus. (For comparison, the English Penn Treebank tagset

1http://www.nist.gov/speech/tests/mt/
2http://www.clsp.jhu.edu/ws2006/
3http://www.statmt.org/moses/
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This time around, they ’re moving = Nyní zareagovaly
even faster = dokonce ještě rychleji

. . . . . . . . .

Figure 4.1: Sample word alignment and sample phrases consistent with it (not all consistent
phrases have been marked).

contains just about 50 tags.) In our parallel corpus (see Section 3.1.4), the English
vocabulary size is 35k distinct token types but more than twice as big in Czech, 83k
distinct token types.

As we will see in the following overview of factored phrase-based MT, the model
is designed to directly handle any information that corresponds 1-1 to input or output
words. For morphological information, this is indeed the case (every input word form
can have a lemma and a morphological tag attached), so we can hope the model will
make best use of this information.

To further emphasize the importance of morphology in MT to Czech, we can com-
pare the standard BLEU (Section 3.8) of a baseline phrase-based translation with BLEU
which disregards word forms (a lemmatized MT output is compared to the lemma-
tized reference translation). The lemmatized BLEU represents MT quality if morpho-
logical errors are not penalized at all. The comparison gives us the theoretical mar-
gin for improving MT quality by choosing more appropriate word forms (but leaving
word order and lexical selection intact). The margin amounts to about 9 BLEU points:
the same MT output scores 12 points in standard BLEU and 21 points in lemmatized
BLEU.

4.2 Overview of Factored Phrase-Based MT

4.2.1 Phrase-Based SMT

In statistical MT (SMT), the goal is to translate a source (foreign) language sentence
fJ
1 = f1 . . . fj . . . fJ into a target language (Czech) sentence cI

1 = c1 . . . cj . . . cI. In
phrase-based SMT (e.g. Koehn (2004a), Zens et al. (2005)), the assumption is made that
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4.2 OVERVIEW OF FACTORED PHRASE-BASED MT

the target sentence can be constructed by segmenting source sentence into K phrases4,
translating each phrase and finally composing the target sentence from phrase trans-
lations. See Figure 4.1 for an example of phrases automatically extracted from a word-
-aligned sentence pair. We denote the segmentation of the input sentence into K

phrases as sK
1 . Among all possible target language sentences, we choose the sentence

with the highest probability:

ĉÎ
1 = argmax

I,cI
1
,K,sK

1

{Pr(cI
1|fJ

1, sK
1 )} (4.1)

4.2.2 Log-linear Model

In a log-linear model (Och and Ney, 2002), the conditional probability of cI
1 being the

translation of fJ
1 under the segmentation sK

1 is modelled as a combination of indepen-
dent feature functions h1(·, ·, ·), . . . , hM(·, ·, ·) describing the relation of the source and
target sentences:

Pr(cI
1|fJ

1, sK
1 ) =

exp(
∑M

m=1 λmhm(cI
1, fJ

1, sK
1 ))∑

c ′I ′
1

exp(
∑M

m=1 λmhm(c ′I ′

1 , fJ
1, sK

1 ))
(4.2)

The denominator in 4.2 is used as a normalization factor that depends on the source
sentence fJ

1 and the segmentation sK
1 only and is omitted during maximization. The

model scaling factors λM
1 are trained either to the maximum entropy principle or op-

timized with respect to the final translation quality measure.
In our experiments, we use the minimum-error rate training (MERT, (Och, 2003))

tuned to highest BLEU scores using a separate heldout set of data.

4.2.3 Phrase-Based Features

Most of our features are phrase-based and we require all such features to operate
synchronously on the segmentation sK

1 and independently of neighbouring segments.
In other words, we restrict the form of phrase-based features to:

hm(cI
1, fJ

1, sK
1 ) =

K∑
k=1

h̃m(c̃k, f̃k) (4.3)

where f̃k represents the source phrase and c̃ represents the target phrase k given the
segmentation sK

1 .
4Is should be noted that the term “phrases” refers merely to a sequence of words and is not related to

linguistically grounded phrases from e.g. Chomskian grammars.
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4.2.4 Factored Phrase-Based SMT

In factored SMT, source and target words f and c are represented as tuples of F and
C factors, resp., each describing a different aspect of the word, e.g. its word form,
lemma, morphological tag, role in a verbal frame. The process of translation consists
of decoding steps of two types: mapping steps and generation steps. If more steps
contribute to the same output factor, they have to agree on the outcome, i.e. partial
hypotheses where two decoding steps produce conflicting values in an output factor
are discarded.

A translation scenario is a fixed configuration describing which decoding steps to
use in which order. Figure 3.13 on page 58 illustrates one possible translation scenario,
we examine several options in Section 4.4 below.

Mapping Steps

A mapping step from a subset of source factors S ⊆ {1 . . . F} to a subset of target factors
T ⊆ {1 . . . C} is the standard phrase-based translation model (see e.g. (Koehn, 2004a))
and introduces a feature in the following form:

h̃
map:S→T
m (c̃k, f̃k) = log p(f̃S

k|c̃T
k) (4.4)

The conditional probability of f̃S
k, i.e. the phrase f̃k restricted to factors S, given

c̃T
k , i.e. the phrase c̃k restricted to factors T is estimated from relative frequencies:

p(f̃S
k|c̃T

k) = N(f̃S, c̃T )/N(c̃T ) where N(f̃S, c̃T ) denotes the number of co-occurrences of
a phrase pair (f̃S, c̃T ) that are consistent with the word alignment. The marginal count
N(c̃T ) is the number of occurrences of the target phrase c̃T in the training corpus.

For each mapping step, the model is included in the log-linear combination in
source-to-target and target-to-source directions: p(f̃T |c̃S) and p(c̃S|f̃T ). In addition,
statistical single word based lexicons are used in both directions. They are included
to smooth the relative frequencies used as estimates of the phrase probabilities.

The set of phrases, their translations and the probabilities forms an automatically
extracted bilingual lexicon, sometimes called “phrase table”.

Generation Steps

A generation step maps a subset of target factors T1 to a disjoint subset of target factors
T2, T1,2 ⊂ {1 . . . C}. In the current implementation of Moses, generation steps are
restricted to word-to-word correspondences:

h̃
gen:T1→T2

m (c̃k, f̃k) = log
length(c̃k)∏

i=1

p(c̃T1

k,i|c̃
T2

k,i) (4.5)
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where c̃T
k,i is the i-th words in the k-th target phrase restricted to factors T . We esti-

mate the conditional probability p(c̃T2

k,i|c̃
T1

k,i) by counting over words in the target-side
corpus. Again, the conditional probability is included in the log-linear combination
in both directions.

4.2.5 Language Models

In addition to features for decoding steps, we include arbitrary number of language
models5 over subsets of target factors, T ⊆ {1 . . . C}. We currently use standard n-gram
language model:

hT
LMn

(fJ
1, cI

1) = log
I∏

i=1

p(cT
i |cT

i−1 . . . cT
i−n+1) (4.6)

While generation steps are used to enforce “vertical” coherence between “hidden
properties” of output words, language models are used to enforce sequential coher-
ence of the output (a very rough approximation of grammaticality).

4.2.6 Beam Search

Operationally, Moses performs a stack-based beam search very similar to Pharaoh
(Koehn, 2004a). Thanks to the synchronous-phrases assumption, all the decoding
steps can be performed during a preparatory phase. For each span in the input sen-
tence, all possible translation options are constructed using the mapping and gener-
ation steps in a user-specified order. Low-scoring options are pruned already during
this phase. Once all translation options are constructed, Moses picks source phrases
(all output factors already filled in) in arbitrary order, subject to a reordering limit
and a probabilistic reordering cost, producing the output in left-to-right fashion and
scoring it using the specified language models exactly as Pharaoh does.

4.3 Data Used

The experiments reported in this chapter were carried out with the News Commen-
tary (NC) corpus as made available for the SMT workshop6 of the ACL 2007 confer-
ence.7

The Czech part of the corpus was tagged and lemmatized using the tool by Hajič
and Hladká (1998), the English part was tagged using MXPOST (Ratnaparkhi, 1996)

5This might be perceived as a non-standard use of the term, because the models may contain more than
just word forms. More generally, these models represent a specific case of a probabilistic sequence model.

6http://www.statmt.org/wmt07/
7Our preliminary experiments with the Prague Czech-English Dependency Treebank, PCEDT v.1.0

(Čmejrek et al., 2004), 20k sentences, gave similar results, although with a lower level of significance due to
a smaller evaluation set.
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and lemmatized using the Morpha tool (Minnen et al., 2001). After some final cleanup,
the corpus consists of 55,676 pairs of sentences (1.1M Czech tokens and 1.2M English
tokens). We use the designated additional tuning and evaluation sections consisting
of 1023, resp. 964 sentences.

In all experiments, word alignment was obtained using the grow-diag-final heuris-
tic for symmetrizing GIZA++ (Och and Ney, 2003) alignments. To reduce data sparse-
ness, the English text was lowercased and Czech was lemmatized for alignment es-
timation, a setup confirmed as very useful in our previous Czech-to-English MT ex-
periments (Bojar et al., 2006).

Language models are based on the target side of the parallel corpus only, unless
stated otherwise.

We report BLEU (Section 3.8) scores for systems trained and tested in case-insensitive
fashion (all data are converted to lowercase, including the reference translations), un-
less stated otherwise.

4.4 Scenarios of Factored Translation English→Czech
We experimented with the following factored translation scenarios.

The baseline scenario (labelled T for translation) is single-factored: input (English)
lowercase word forms are directly translated to target (Czech) lowercase forms. A 3-
-gram language model (or more models based on various corpora) checks the stream
of output word forms. The baseline scenario thus corresponds to a plain phrase-based
SMT system:

English Czech
lowercase lowercase +LM

lemma lemma
morphology morphology

In order to check the output not only for word-level coherence but also for mor-
phological coherence, we add a single generation step: input word forms are first
translated to output word forms and each output word form then generates its mor-
phological tag.

Two types of language models can be used simultaneously: a (3-gram) LM over
word forms and a (7-gram) LM over morphological tags.

We used tags with various levels of detail, see Section 4.5. We call this the “T+C”
(translate and check) scenario:

English Czech
lowercase lowercase +LM

lemma lemma
morphology morphology +LM

As a refinement of T+C, we also used T+T+C scenario, where the morphological
output stream is constructed based on both output word forms and input morphol-
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ogy. This setting should reinforce correct translation of morphological features such
as number of source noun phrases. To reduce the risk of early pruning, the genera-
tion step operationally precedes the morphology mapping step. Again, two types of
language models can be used in this “T+T+C” scenario:

English Czech
lowercase lowercase +LM

lemma lemma
morphology morphology +LM

The most complex scenario we used is linguistically appealing: output lemmas
(base forms) and morphological tags are generated from input in two independent
translation steps and combined in a single generation step to produce output word
forms.

The “T+T+G” setting allows us to use three types of language models. Trigram
models are used for word forms and lemmas and 7-gram language models are used
over tags:

English Czech
lowercase lowercase +LM

lemma lemma +LM
morphology morphology +LM

4.4.1 Experimental Results: Improved over T

Table 4.1 summarizes estimated translation quality of the various scenarios. In all
cases, a 3-gram LM is used for word forms or lemmas and a 7-gram LM for morpho-
logical tags.

BLEU
T+T+G 13.9±0.7
T+T+C 13.9±0.6
T+C 13.6±0.6
Baseline: T 12.9±0.6

Table 4.1: BLEU scores of various translation scenarios.

The good news is that multi-factored models always outperform the baseline T.
Unfortunately, the more complex multi-factored scenarios do not bring any signif-

icant improvement over T+C. Our belief is that this effect is caused by search errors:
with multi-factored models, more hypotheses get similar scores and future costs of
partial hypotheses might be estimated less reliably. With a limited stack size (not
more than 200 hypotheses of the same number of covered input words), the decoder
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may more often find sub-optimal solutions. Moreover, the more steps are used, the
more model weights have to be tuned in the minimum error rate training. Consider-
ably more tuning data might be necessary to tune the weights reliably.

4.5 Granularity of Czech Part-of-Speech Tags

As stated above, the Czech morphological tag system is very complex: in theory up to
4,000 different tags are possible. In our T+T+C scenario, we experiment with various
simplifications of the system to find the best balance between richness and robustness
of the statistics available in our corpus. (The more information is retained in the tags,
the more severe data sparseness is.)
Full tags (1200 unique seen in the 56k corpus): Full Czech positional tags are used.

A tag consists of 15 positions, each holding the value of a morphological prop-
erty (e.g. number, case or gender).8

POS+case (184 unique seen): We simplify the tag to include only part and subpart
of speech (also distinguishes partially e.g. verb tenses). For nouns, pronouns,
adjectives and prepositions9, also the case is included.

CNG01 (621 unique seen): CNG01 refines POS. For nouns, pronouns and adjectives
we include not only the case but also number and gender.

CNG02 (791 unique seen): Tag for punctuation is refined: the lemma of the punctu-
ation symbol is taken into account; previous models disregarded e.g. the distri-
butional differences between a comma and a question mark. Case, number and
gender added to nouns, pronouns, adjectives, prepositions, but also to verbs
and numerals (where applicable).

CNG03 (1017 unique seen): Optimized tagset:
• Tags for nouns, adjectives, pronouns and numerals describe the case, num-

ber and gender; the Czech reflexive pronoun se or si is highlighted by a
special flag.

• Tag for verbs describes subpart of speech, number, gender, tense and as-
pect; the tag includes a special flag if the verb was the auxiliary verb být (to
be) in any of its forms.

• Tag for prepositions includes the case and also the lemma of the preposi-
tion.

• Lemma included for punctuation, particles and interjections.
• Tag for numbers describes the “shape” of the number (all digits are re-

placed by the digit 5 but number-internal punctuation is kept intact). The
8In principle, each of the 15 positions could be used as a separate factor. The set of necessary generation

steps to encode relevant dependencies would have to be carefully determined.
9Some Czech prepositions select for a particular case, some are ambiguous. Although the case is never

shown in the surface form of the preposition, the tagset includes this information and Czech taggers are
able to infer the case.
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tag thus distinguishes between 4- or 5-digit numbers and it indicates the
precision of floating point numbers.

• Part of speech and subpart of speech for all other words.

4.5.1 Experimental Results: CNG03 Best

Table 4.2 summarizes the results of T+T+C scenario with varying detail in morpho-
logical tag.

BLEU
Baseline: T (single-factor) 12.9±0.6
T+T+C, POS+case 13.2±0.6
T+T+C, CNG01 13.4±0.6
T+T+C, CNG02 13.5±0.7
T+T+C, full tags 13.9±0.6
T+T+C, CNG03 14.2±0.7

Table 4.2: BLEU scores of various granularities of morphological tags in T+T+C scenario.

Our results confirm improvement over the single-factored baseline. Detailed knowl-
edge of the morphological system also proves its utility: by choosing the most relevant
features of tags and lemmas but avoiding sparseness, we can improve on BLEU score
by about 0.3 absolute over T+T+C with full tags.

4.6 More Out-of-Domain Data in T and T+C Scenarios

In order to check if the method scales up with more parallel data available, we ex-
tend our training data using the CzEng parallel corpus (Bojar and Žabokrtský, 2006).
CzEng contains sentence-aligned texts from the European Parliament (about 75%), e-
-books and stories (15%) and open source documentation. By “NC” corpus we denote
the in-domain News Commentary corpus only, by “mix” we denote the combination
of training sentences from NC and CzEng (1070k sentences, 13.9M Czech and 15.5
English tokens) where in-domain NC data amounts only to 5.2% sentences. The third
option, “weighted”, is a combination of NC and mix with a scaling factor α optimized
in MERT (i.e. NC is included twice).

Table 4.3 gives full details on our experiments with the additional data. We varied
the scenario (T or T+C), the level of detail in the T+C scenario (full tags vs. CNG03)
and the size of the training corpus. We extract phrases from either the in-domain
corpus only (NC) or the mixed corpus (mix). We use either one LM per output fac-
tor, varying the corpus size (NC or mix), or two LMs per output factors with weights
trained independently in the MERT procedure (weighted). Independent weights al-

75



4 IMPROVING MORPHOLOGICAL COHERENCE IN PHRASE-BASED MT

NC NC CzEng

mix

weighted = αNC + (1 − α)mix

Scenario Phrases from LMs BLEU
T NC NC 12.9±0.6
T mix mix 11.8±0.6
T mix weighted 11.8±0.6
T+C CNG03 NC NC 13.7±0.7
T+C CNG03 mix mix 13.1±0.7
T+C CNG03 mix weighted 13.7±0.7
T+C full tags NC NC 13.6±0.6
T+C full tags mix mix 13.1±0.7
T+C full tags mix weighted 13.8±0.7

Table 4.3: The effect of additional data in T and T+C scenarios.

low us to take domain difference into account, but we exploit this in the target LM
only, not the phrases.

The only significant difference is caused by the scenario: T+C outperforms the
baseline T, regardless of corpus size. Other results (insignificantly) indicate the fol-
lowing observations:

• Ignoring the domain difference and using only the mixed domain LM in general
performs worse than allowing MERT to optimize LM weights for in-domain and
generic data separately.10

• CNG03 outperforms full tags only in small data setting, with large data (treating
the domain difference properly), full tags perform better.

4.7 Human Evaluation

The best system described in this chapter (T+C full tags with additional CzEng data)
took part in an open MT evaluation campaign carried out during ACL 2007 Second
Workshop on Statistical Machine Translation11. Table 4.4 reproduces the results from
Callison-Burch et al. (2007) for English to Czech MT quality. The adequacy scale de-
scribes how well the translation conveys the original meaning, the fluency reflects
how grammatically correct the MT output is and rank shows how often would hu-
man judges prefer to get output from that particular system compared to other sys-

10In our previous experiments with PCEDT as the domain-specific data, the difference was more appar-
ent because the corpus domains were more distant. In the T scenario reported here, the weighted LMs did
not bring any improvement over “mix” and even performed worse than the baseline NC. We attribute this
effect to some randomness in the MERT procedure.

11http://www.statmt.org/wmt07/
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System Adequacy Fluency Rank Constituent
Our T+C (cu) 0.523 0.510 0.405 0.440
PC Translator (pct) 0.542 0.541 0.499 0.381
Single-Factored Moses (uedin) 0.449 0.433 0.249 0.258

Table 4.4: Human judgements of English→Czech MT quality at ACL WMT 2007.

Commentary News
System (in-domain) (out-of-domain)
Our T+C (cu-bojar) 71.4% 63.4%
PC Translator 66.3% 71.5%
TectoMT (cu-tectomt) 48.8% 49.4%
Single-Factored Moses (uedin) 48.6% 50.2%

Table 4.5: Percentage of sentences where the system was ranked better than or equal to any
other system (human judgements, ACL WMT08).

tems. The constituent rank is a new scale introduced by Callison-Burch et al. (2007)
that tries to simplify the task of ranking hypotheses by asking the judges to rank only
randomly selected sections of sentences.

Our system improved over the phrase-based baseline (provided by University of
Edinburgh, uedin) and got very close to a major English-Czech commercial MT sys-
tem PC Translator12 by LangSoft (a rule-based system with a long history of develop-
ment). Despite the comparison not being completely fair (PC Translator is a generic
MT system while our system was trained and evaluated in the known domain of news
commentaries), we consider the result very promising.

We participated with a very similar setup also in ACL 2008 WMT shared task13

(Bojar and Hajič, 2008). The only differences were that (1) we trained our system on
the recent release of CzEng 0.7 (Bojar et al., 2008) which is slightly bigger, (2) we used
“true-cased” data (preserve capitalization of names but drop capitalization of sen-
tence beginnings), and most importantly (3) we included the Czech National Corpus
SYN2006 (365M tokens) in a 4-gram language model over word forms and 7-gram
language model over morphological tags. As documented in Table 4.5 (results from
Callison-Burch et al. (2008)), the additional data allowed us to improve over PC Trans-
lator for in-domain setting (Commentary). In the generic domain of News, PC Trans-
lator performs better.

A somewhat surprising result of WMT08 evaluation of English-to-Czech transla-
tion is that while the systems fall into two rather distinct groups of performance, it

12http://www.translator.cz/
13http://www.statmt.org/wmt08/
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Translation of Verb Modifier
…preserves meaning 56% 79%
…is disrupted 14% 12%
…is missing 27% 1%
…is unknown (not translated) 0% 5%

Table 4.6: Analysis of 77 verb-modifier pairs in 15 sample sentences.

is always a statistical and a rule-based system that form a group (our T+C and PC-
-Translator vs. TectoMT (Žabokrtský et al., 2008) and single-factored Moses). We see
that even very complementary strategies can lead to comparable MT quality, which
suggests that the potential gain from systems combination may be quite high.

Examples of output of various MT systems including the recently launched Google
Translate are available in Appendix A. Apart from indicating the overall state-of-
-the-art quality of MT, the examples also illustrate how difficult it is to compare MT
systems, both manually or automatically.

4.8 Untreated Morphological Errors

The previous sections described improvements gained on small data sets when check-
ing morphological agreement using T+T+C scenario (BLEU raised from 12.9% to 13.9%
or up to 14.2% with manually tuned tagset, CNG03). However, the best result achieved
is still far below the margin of lemmatized BLEU (21%), as mentioned in Section 4.1.1.

When we searched for the unexploited morphological errors, visual inspection of
MT output suggested that local agreement (within 3-word span) is relatively correct
but verb-modifier relations (i.e. the realization of the valency between a verb and a
depending noun phrase) are often malformed causing e.g. a bad case for the modi-
fier. To quantify this observation we performed a micro-study of our best MT output
using an intuitive metric. We checked whether verb-modifier relations are properly
preserved during the translation of 15 sample sentences.

The source text of the sample sentences contained 77 verb-modifier pairs. Table 4.6
lists our observations on the two members in each verb-modifier pair. We see that
only 56% of verbs are translated correctly and 79% of nouns are translated correctly.
The system tends to skip verbs quite often (27% of cases).

More importantly, our analysis has shown that even in the cases where both the
verb and the modifier are lexically correct, the relation between them in Czech is
either non-grammatical or meaning-disrupted in 56% of these cases. Commented
samples of such errors are given in Figure 4.2 below. The first sample shows that a
strong language model can lead to the choice of a grammatical relation that neverthe-
less does not convey the original meaning. The second sample illustrates a situation
where the system failed to choose an acceptable form for the relation between rush out
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Input: Keep on investing.
MT output: Pokračovalo investování. (grammar correct here!)
Gloss: Continued investing. (Meaning: The investing continued.)
Correct: Pokračujte v investování.

Input: brokerage firms rushed out ads …
MT Output: brokerské firmy vyběhl reklamy
Gloss: brokerage firmspl.fem ransg.masc adspl.voc,sg.gen

pl.nom,pl.acc

Correct: brokerské firmy vychrlily reklamypl.acc

Comprehensible: brokerské firmy vyběhly s reklamamipl.instr

Figure 4.2: Two sample errors in translating verb-modifier relations from English to Czech.

and ads most probably because it backed off to a generic pattern verb-nounaccusative.
This pattern is quite common for expressing the object role of many verbs (such as
vychrlit, see the Correct option in Figure 4.2), but does not fit well with the verb
vyběhnout. If the dictionary forced the system to use vyběhnout, a different prepo-
sition and case should have been chosen to render the output at least comprehen-
sible (the lexical choice is still problematic, the best equivalent would probably be
vyrazily s reklamami). While the target-side data may be rich enough to learn the
generalization vyběhnout–s–instr, no such generalization is possible with language
models over word forms or morphological tags only. The target side data will be
hardly ever rich enough to learn this particular structure in all correct morphological
and lexical variants: vyběhl–s–reklamou, vyběhla–s–reklamami, vyběhl–s–prohlášením, vy-
běhli–s–oznámením, …. We would need a mixed model that combines verb lemmas,
prepositions and case information to properly capture the relations.

Unfortunately, our preliminary experiments that made use of automatic Czech an-
alytical trees to construct a factor explicitly highlighting the verb (lexicalized), its mod-
ifiers (case and the lemma of the preposition, if present) and boundary symbols such
as punctuation or conjunctions and using a dummy token for all other words did not
bring any improvement over the baseline. A possible reason is that we employed
only a standard 7-gram language model to this factor. A more appropriate treatment
is to disregard the dummy tokens in the language model at all and use a “skipping”
n-gram language model that looks at last n − 1 non-dummy items.

4.9 Related Research

Class-based LMs (Brown et al., 1992) or factored LMs (Bilmes and Kirchhoff, 2003) are
very similar to our T+C scenario. Given the small differences in all T+…scenarios’
performance, class-based LM might bring equivalent improvement. Yang and Kirch-
hoff (2006) have recently documented minor BLEU improvement using factored LMs
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4 IMPROVING MORPHOLOGICAL COHERENCE IN PHRASE-BASED MT

in single-factored SMT to English. The multi-factored approach to SMT of Moses is
however more general.

Many researchers have tried to employ morphology in improving word alignment
techniques (e.g. (Popović and Ney, 2004)) or machine translation quality (Nießen and
Ney (2001), Koehn and Knight (2003), Zollmann et al. (2006), among others, for var-
ious languages; Goldwater and McClosky (2005), Bojar et al. (2006) and Talbot and
Osborne (2006) for Czech), however, they focus on translating from the highly inflec-
tional language.

Durgar El-Kahlout and Oflazer (2006) report preliminary experiments in English
to Turkish single-factored phrase-based translation, gaining significant improvements
by splitting root words and their morphemes into a sequence of tokens. It might be
interesting to explore multi-factored scenarios for different Turkish morphology rep-
resentation suggested in the paper.

De Gispert et al. (2005) generalize over verb forms and generate phrase translations
even for unseen target verb forms. The T+T+G scenario allows a similar extension if
the described generation step is replaced by a (probabilistic) morphological generator.

Nguyen and Shimazu (2006) translate from English to Vietnamese but the mor-
phological richness of Vietnamese is comparable to English. In fact the Vietnamese
vocabulary size is even smaller than English vocabulary size in one of their corpora.
The observed improvement due to explicit modelling of morphology might not scale
up beyond small-data setting.

As an alternative option to our verb-modifier experiments, structured language
models (Chelba and Jelinek, 1998) might be considered to improve clause coherence.
Birch et al. (2007) reports improvements in sentence coherence using factored transla-
tion with CCG supertags. For languages with significant but predictable syntactic di-
vergence such as German-to-English translation, automatic preprocessing of the word
order significantly increases MT quality (Collins et al., 2005). Cuřín (2006) reports im-
provement for Czech-to-English translation using a similar preprocessing technique
focused on introducing required English auxiliary words. And surely, another option
to improve output grammaticality is to employ full-featured syntax-based MT models
(Wu and Wong (1998), Yamada and Knight (2002), Eisner (2003), Chiang (2005), Quirk
and Menezes (2006) and our own experiments in Chapter 3 among many others).

4.10 Conclusion

Moving away from basic research of lexical acquisition (Chapter 2) and a linguisti-
cally justified but complex system of syntax-based machine translation (Chapter 3) to
a goal-oriented direct method, this chapter introduced so-called phrase-based trans-
lation, currently best performing MT technique for many language pairs.

We summarized the extension of phrase-based systems to multi-factored MT and
experimented with various setups of additional factors (translation scenarios), the
level of detail in morphological tags and additional training data.
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4.10 CONCLUSION

Our results on English-to-Czech translation demonstrate significant improvement
in BLEU scores by explicit modelling of morphology and using a separate morpho-
logical language model to ensure the coherence. To our knowledge, the original ex-
periments as described in (Bojar, 2007) were among the first to show the advantages
of using multiple factors in MT. With some additional data, we were able to improve
over a commercial MT system in a known domain in 2008.

Errors in expressing verb-modifier relations have been studied and a factor cap-
turing these dependencies has been proposed. Unfortunately, this factor has yet to
bring any improvement.
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5
Concluding Discussion

The underlying topic of this book is the relation between linguistic data and applica-
tions. We focused on creating a deep syntactic lexicon and on two methods of machine
translation: a deep syntax-based MT and a shallow phrase-based MT.

To provide a larger picture, we survey available literature with a simple question
in mind: Do lexicons bring an improvement to NLP applications? Not surprisingly,
there is not a simple and conclusive answer to this question. Hopefully, we managed
to keep a balanced view and to mediate some interesting lessons to learn from the
past projects.

5.1 When Lexicons Proved to Be Useful

Litkowski (2005) gives a good overview of the current state in computational lexicog-
raphy including illustrations of NLP tasks and explanations of how lexicons can be
employed in them. Litkowski’s main belief in lexicon utility comes from the “seman-
tic imperative”: “In considering the NLP applications of word-sense disambiguation,
information extraction, question answering, and summarization, there is a clear need
for increasing amounts of semantic information. The main problem facing these ap-
plications is a need to identify paraphrases, that is, identifying whether a complex
string of words carries more or less the same meaning as another string.” Later, he
notes: “As yet, the symbolic content of traditional dictionaries has not been merged
with the statistical properties of word usage revealed by corpus-based methods.”

Of the many dictionary-like resources available, there seems to be only one that
has been applied to a wide range of applications more or less successfully: WordNet
(Fellbaum, 1998).

In some situations, lexicons are used to improve coverage (recall). For instance,
WordNet can be used as a back-off to replace words not known to the system with a
suitable synonym or hyperonym. In some situations, lexicons might improve the pre-
cision, such as a morphological lexicon in speech recognition (morphological lexicon
is generally more accurate than rules describing valid word forms). A lexicon can be
also used as an authoritative source of terms, expressions of constructions (e.g. Eu-
roVoc1). The system can then guarantee a certain level of output quality.

1http://europa.eu/eurovoc/
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5.1.1 Lexicon Improves Information Retrieval

In an information retrieval system described by Woods et al. (1999), the addition of a
morphological dictionary, taxonomic information between concepts (WordNet-like)
and rules describing general entailment between words and concepts improved sig-
nificantly the performance. An additional improvement was achieved by employing
a morphological guesser to analyse words not listed in the lexicon. As a matter of
fact, both the taxonomic (semantic) and the morphological guesser were used in an
over-generation fashion: the input query was relaxed using the lexicons. All the doc-
uments that match the relaxed queries are then sorted so that documents with a closer
match (less relaxation) appear on top. The lexical information is thus used to improve
recall only, while the sufficient precision is ensured at no additional cost by input data.

Similar techniques are used for morphologically rich languages in search engines.
An old example for Czech dates back to the ASIMUT system (Králíková and Panevová,
1990).

5.1.2 Subcategorization Improves Parsing

Subcategorization information can serve as an example where the lexicon improves
the precision of the system. A parse (i.e. a syntactic analysis of a sentence) is sup-
pressed, if the pattern of a word’s modifications is not approved by a subcategoriza-
tion lexicon.

As documented in (Carroll et al., 1998) and cited papers, including statistics on
the co-occurrence of lexical heads of phrases and the configurations of members in
the phrase (i.e. complements and adjuncts) brings substantial improvements in pars-
ing accuracy. Zeman (2002) also reports a significant improvement in parsing accu-
racy of his dependency-based statistical parser when subcategorization information
was added. However, the absolute level of his parser’s accuracy remains below mod-
ern versions of phrase-based parsers that include head-lexicalized statistics such as
Collins et al. (1999).

More importantly, we are not aware of any published result demonstrating that
subcategorization lexicons (built manually or automatically) would be used in top-
-performing parsers.2

The claim we want to make is that while subcategorization information is impor-
tant and it indeed helps parsing, it can be extracted automatically and most probably
in a simple form tailored for the task and thus more suitable than lexicons prepared
independently. In some settings though, the lexicons might provide a bigger coverage
than what can be observed in the training data.

2An exception is the employment of VerbaLex lexicon in a Czech parser. Hlaváčková et al. (2006) demon-
strate a dramatic reduction in parse ambiguity thanks to VerbaLex entries. However, they do not evaluate
the actual parsing accuracy.
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5.1.3 Lexicons Employed in MT

Liu et al. (2005) describe a log-linear model for word alignment where a bilingual
lexicon can be added as a feature. A hand-made lexicon of word-to-word translation
equivalents contributed slightly to the overall good performance of the system. The
structure of the lexicon is very simple and also the evaluation is measured in terms of
alignment error rate (AER) against alignments annotated by humans. It is not clear,
if we would observe an improvement in an end-to-end evaluation of an MT system.
(AER is known not to directly correlate with MT quality measures (Lopez and Resnik,
2006))

Fujita and Bond (2002) describe a method of augmenting a translation dictionary
with subcategorization information available for similar words (other possible trans-
lation equivalents) already listed in the dictionary. The utility was evaluated on the
ALT-J/E rule-based MT system (Ikehara et al., 1991): based on a human judgement by
a single native speaker, the translation quality of only about 100 evaluation sentences
improved in 31% of cases and degraded in 8% of cases. Fujita and Bond (2004) report
a similar experiment where available verb alternation data was used to add the miss-
ing half of the translation lexicon entry of an alternating verb. The method requires
a list of verbs participating in a specific alternation, the description of the alternation
in terms of valency slot changes, including changes in syntactic structure and selec-
tional restrictions, and a seed bilingual translation dictionary. No completely new
verbs are added to the dictionary, but the existing entries are augmented with the
missing halves of the alternation. Evaluated by two native speakers on 124 test sen-
tences, the augmented lexicon leads to a better translation in about 46% of sentences
and to a worse translation in about 15% of cases. However, the ALT-J/E system has
probably never been evaluated on a standard test set so it is difficult to assess its real
usability.

Boguslavsky et al. (2004) describe a range of dictionaries used in ETAP-33 (Apresjan
et al., 2003). Unfortunately, the MT system has probably neither been evaluated on a
standard test set nor has taken part in an evaluation competition, but the authors claim
and the web demo suggests that the coverage of the system is sufficiently large. Based
on the Meaning-Text-Theory (Mel’čuk, 1988) and implemented as hand written rules,
the system heavily depends on the quality of encoded lexicons. The applicability of
ETAP-3 therefore confirms the utility of its lexicons.

5.1.4 Lexicons Help Theories

A lexicon is also an indispensable tool in refining linguistic theories. As explained
above, a lexicon serves as a mapping between units on (typically) two layers of lan-
guage description. Given a multi-layer linguistic theory that formally defines units at
the various layers, a lexicon can prove or disprove the appropriateness of the theory.

3http://cl.iitp.ru/
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If the lexicographic work proceeds smoothly and large data is covered with lexical en-
tries, then the theory was all right. If problems are noticed, the theory can be adjusted
accordingly as e.g. in Lopatková and Panevová (2005).

5.2 When Lexicons Were Not Needed

This section surveys some practical NLP tasks that are often used to motivate the
creation of lexicons. As we will see, depending on the specifics of the task and method
chosen, surprisingly good results can be often achieved without any such lexicon.

5.2.1 PP Attachment without Lexicons

Calvo et al. (2005) conducts, to the best of our knowledge, the only experiment directly
evaluating the utility of a hand-written lexicon (WordNet in particular) against a lex-
icon derived automatically from corpus data to solve a common task: attachment of
prepositional phrases (PP).

The authors describe a method of automatically building a thesaurus and using
the thesaurus as a back-off for the PP attachment problem. A comparison with a
similar method based on manual (WordNet) data indicates that the results based on
a manual and automatic resources are nearly identical. Higher precision scores of PP
attachment are achieved without any back-off, but the coverage is very poor.

However, the task of PP attachment is notoriously hard and given the relatively
low performance of both the dictionary-based and the automatic method, we cannot
confidently claim superiority of any of the methods.

5.2.2 MT without Lexicons

For the time being, top performing MT systems include statistical phrase-based meth-
ods (Callison-Burch et al., 2007) and in some evaluations the phrase-based systems
win by a large margin.4 These systems do not rely on any translation dictionaries
but rather build them automatically, given a collection of word-aligned parallel texts.
The “structure” of such lexicons is typically very simple, they contain just pairs of
(sequences of) word forms in the source and target languages with no additional lin-
guistic information, except for a co-occurrence count/probability.

Stevenson (2003) reviews the hopes of word-sense disambiguation (WSD) useful-
ness in various NLP tasks including MT. It seems that only very recent experiments
follow Stevenson’s wish: “the only way in which it can be accurately determined
whether these systems [e.g. MT] will benefit from the information produced by some
[WSD] component is to integrate it as part of the final system and record the change
in performance.” Experiments to date provide mixed results: Carpuat and Wu (2005)
describe several techniques of a loose combination of a WSD and an MT system that

4NIST 2005 official evaluation, http://www.nist.gov/speech/tests/.
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fail to bring any significant improvement. While this particular experiment has some
peculiarities5, the same doubt on WSD utility came up in Senseval-3 panel discus-
sions6 in 2004. It is also worth mentioning that already Senseval-2 included “system
evaluation” as one of its subgoals7 but it does not seem that much success with WSD
application has been reported in subsequent Senseval competitions.

Only recently Carpuat and Wu (2007) achieved consistent improvements by cou-
pling the MT system with a WSD method rather tightly. One of the interesting dif-
ferences between the failing and the succeeding experiments is that the latter do not
rely on human-constructed lexicons of senses but rather use phrase tables extracted
automatically from a parallel corpus. We can thus say that while WSD techniques can
bring an improvement in MT quality, this was not yet demonstrated using human-
-annotated lexical data.

One of the motivations for building valency lexicons and one of the main reasons
for introducing syntax-based models to MT is the aim to produce correct valency
structures of verbs and other elements in the sentence. If a word is not accompanied
by all grammatically required modifiers or if there are unexpected additional mod-
ifiers, the sentence feels disfluent. Dependency grammars equipped with a valency
dictionary such as we have seen in Chapter 2 should be able to identify the problem
and prefer a different translation. STSG models valency explicitly, treelet pairs can be
seen as bilingual valency frames.

In real world sentences though, dependency edges are relatively short (Holan,
2003) and thus can be approximated reasonably well by plain adjacency of sentence el-
ements (words). The phrase-based approach described in Chapter 4 can thus in many
cases capture and translate valency frames correctly, provided the phrase-length limit
is large enough. The only real advantage of syntax-based methods is a better ability
to generalize, e.g. abstract away all adjectives intervening between a verb and its ob-
ject. It would be interesting to evaluate how often does such a generalization capacity
promise to bring an improvement in a real MT task with fixed training and test data.

Finally, Och (2005) demonstrates that (according to current evaluation metrics) the
key features of MT systems that lead to success are: (1) simplicity, such as a combi-
nation of independent features, relatively simple from the linguistic point of view, (2)
minimality of design and representation, such as stemming of words, or only a few
bits to represent probabilities, and (3) vast amounts of textual data. These features are
somewhat contradictory to what we obtain from elaborated lexicons.

5The WSD task is used for 20 words only with 2 to 8 senses per word and there is only 37 occurrences of
the words in the training data. Also, the WSD module is not used as a feature in the SMT system, but rather
employed in two hard ways: either in post-processing by replacing the output word with the translation
equivalent suggested by WSD (this can break the cohesion of the sentence), or to prune all paths in the
lattice that do not contain the target word. A finer combination of WSD and SMT would allow to tune a
weight assigned to the WSD module.

6http://www.senseval.org/senseval3/panels
7http://www.itri.brighton.ac.uk/events/senseval/SENSEVAL2/task-design.ps
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5.2.3 Question Answering without Deep Syntax

Mooney (2000) describes a system CHILL that converts questions in a natural lan-
guage into Prolog queries. The answers are obtained by evaluating the query on a
database. The system performs very well on restricted domains (geographical knowl-
edge about the U.S., a thousand of restaurants in northern California or job opportu-
nities). In the system, the deep syntactic layer is simply skipped. To start working on a
new domain, only a set of (a few hundreds of) sample questions and expected Prolog
queries are needed as the training data. CHILL learns a shift-reduce parser for input
sentences to produce directly the Prolog query. In Wong and Mooney (2007), the di-
rect translation from plain text sentence to the Prolog query is casted as synchronous
context-free grammar derivation, skipping any syntactic layer again.

As Litkowski (2005) summarizes: “From the beginning, researchers viewed this
NLP task [Question Answering] as one that would involve semantic processing and
provide a vehicle for deeper study of meaning and its representation. This has not
generally proved to be the case, but many nuances have emerged in handling different
types of questions.”

5.2.4 Summarization without Meaning and Grammaticality without
Valency Lexicon

Barzilay and McKeown (2005) describe a sentence fusion technique employed in sum-
marization of multiple source documents, the Newsblaster8 (McKeown et al., 2002).
Only shallow syntactic analysis of the input text (dependency parsing) and generic
knowledge collected from a larger text corpus are needed. Output sentences are gen-
erated by reusing and altering phrases from several source sentences. More specifi-
cally, a centroid sentence (an input sentence most similar to other input sentences) is
selected and its dependency tree is gradually altered by adding information present
only in (a majority of) other sentences and by removing information not supported
by a reasonable share of other sentences. Grammaticality is ensured by keeping all
modifications very conservative: information is added, only if the root node of the
added subtree can be aligned to a node already present in the centroid sentence, and
nodes are deleted only in a small pre-defined set of cases (such as removing compo-
nents from conjunctions or removing adverbs). The lack of an explicit valency lexicon
is thus compensated by making use of “valency exhibited” in input sentences.

Barzilay and McKeown (2005) also mention problems with the linearization of
the output dependency structure using a large-scale unification-based text generation
system FUF/SURGE. FUF/SURGE requires edges in the input dependency trees to be
labelled with syntactico-semantic roles such as “manner” or “location”. If the roles
are added automatically (and there is no other option for machine-generated input
trees), errors lead to completely scrambled output, wrong prepositions etc. Barzilay

8http://www.cs.columbia.edu/nlp/newsblaster/
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and McKeown (2005) achieve better results with a statistical linearization component,
which is not only more robust to errors but also more efficient, because it can make use
of phrases readily available in the data. The FUF/SURGE generation system produces
every phrase from scratch. Due to limitations inherent to current n-gram based lan-
guage modelling techniques, suboptimal linearizations are sometimes chosen. Once
language modelling techniques are improved with respect to syntactic properties of
the language, more grammatical output will be produced. (As always, language-
-specific issues have to be taken into account when drawing conclusions from other
observations. If the target language were a morphologically rich language such as
Czech, the language model employed in the statistical linearizer would perform sig-
nificantly worse.)

5.3 Discussion

Is there a common property of the above mentioned applications that were successful
without performing too deep analysis or needing advanced lexicons? In our opinion,
the most important common feature of the methods is that the intelligence is left to
the human.

• Grammaticality is ensured by reusing a text produced by humans (sentence fu-
sion).

• Selection of the translation equivalent (i.e. WSD) is based on the choice of a
human in a similar context (MT).

• Overgeneration never hurts, if the output of the system is intersected with some
man-made data (information extraction).

Why are independently designed (manual or automatic) lexicons relatively rarely
used in applications? Our guess is the difficulty of adapting the formats and more
importantly the difference in types of decisions an application has to make and hints
a lexicon can offer.

On the other hand, we have mentioned several applications that build their own
lexicons (or probabilistic tables), the features of which are very much influenced by
linguistic insights incorporated in human lexicons.

Our belief is that linguistic theories provide an indispensable source of inspiration
that is being slowly reflected in the design of applications. Any data produced by
computational linguists remain difficult to reuse in practical NLP systems because
they provide answers for questions the system is nowhere near to ask.

5.4 Summary

The first part of the book (Chapter 2) examined automatic ways of constructing a va-
lency dictionary, an important resource for various applications including rule-based
or syntax-based MT. Several methods of frame extraction were designed and evalu-
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ated using a novel metric that gives a partial credit even for not quite complete frames
by estimating the savings in a lexicographer’s work.

The second part (Chapters 3 and 4) focused directly on linguistic data within the
task of MT. First, we designed, implemented and evaluated a full-fledged syntax-
-based MT system. The generic engine was applied in various settings ranging from
transfer at a deep syntactic layer to an approximation of an uninformed phrase-based
translation. The results indicate that the best translation quality is still achieved by
the most simple methods; the main reasons for this being the cumulation of errors,
the loss in training data due to both natural and random syntactic divergence between
Czech and English and finally a combinatorial explosion in the complex search space.

In Chapter 4 we moved to a relatively simple model of phrase-based MT and we
improved its accuracy by adding a limited amount of linguistic information. While
word lemmas and morphological tags can be successfully exploited by the phrase-
-based model thanks to their direct correspondence to the sequence of words achiev-
ing a better morphological coherence of MT output, the applicability of syntactic in-
formation remains an open research question.

To sum up, we hope to have contributed to the art of natural language processing
and machine translation in particular by designing and evaluating:

• an automatic metric estimating the savings in a lexicographer’s work;
• experiments with various methods for automatic deep valency frame acquisi-

tion based on corpus observations;
• a machine translation system with a deep syntactic transfer, including the eval-

uation of an end-to-end pipeline; the system can be applied also at a surface-
-syntactic layer;

• various configurations of factored phrase-based models for English-to-Czech
translation improving target-side morphological coherence.

Our results so far suggest that it is the simplest models that perform best. Still,
we were able to improve on the phrase-based benchmark by following linguistic no-
tions and explicitly modelling target-side morphology. To complement our experi-
ments, Chapter 5 surveyed a broader range of NLP applications, examining the util-
ity of (manual and automatic) lexicons in the respective tasks and discussing common
properties of the successful approaches.

As it tends to happen, research sometimes opens more questions than it actually
solves. Many suggestions on how to further improve or extend our methods were
mentioned throughout the book. We plan to continue our efforts by further combining
successful simple models with linguistically-informed methods.
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A
Sample Translation Output

A.1 In-Domain Evaluation
This section illustrates the performace of various MT systems on articles from Project
Syndicate.1 We can talk about “in-domain” evaluation for our systems (etct and two
configurations of Moses), because other texts from the same source are part of our
training data.

Because both the original and the reference translations are publicly available on
Project Syndicate website, we can speculate whether e.g. Google Translate had an
opportunity to train on parts of this particular test set.

Source text, WMT 08 Commentary Test
Berlusconi at Bay
…Fifteen years later, Signor Berlusoni understood that the Italian state’s monopoly of television
would not survive and jump-started what became Italy’s main privately owned media group.
But you don’t win in TV and the real estate business without the right political connections.
On both occasions, Berlusconi outwitted his competitors by siding with the Socialists, at the
time the rising stars of Italian political life. His long association with Bettino Craxi, Milan’s
most influential politician in the 1970’s and Italy’s prime minister through much of the 1980’s,
started early. On the other hand, political connections do not make a politician.
A Field Guide to Israeli Hawks
Prime Minister Ariel Sharon’s announcement that he plans to dismantle Jewish settlements in
the Gaza Strip, as well as some settlements in the West Bank, has shocked and caught people off
guard both in Israel and around the world. Many denounced Sharon’s plan as a trick. But that
surprise was wrong-headed from the start. Despite the way it often looks to outsiders, debates
in Israel about the future of the occupied territories have never been confined to hawks and
doves. Like everything in Israel, the process is more complicated, especially where the hawks
are concerned. Basically, there are two species of Israeli hawks: call one kind ideological and
the other strategic.

etct, factored output nodes, preserve structure BLEU 4.98%
Berlusconi v zálivu.
…Fifteen let už signoru berlusonus chápal, že italský stát je monopol televize, nakonec, nežije

1http://www.project-syndicate.org/
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a, nastartuje začne, co se stalo, itálie je hlavní soukromá vlastní mediální skupina. Však vám
je, zvítězí v televizi a skutečného nemovitosti obchodu správných politických vztahů. Oba
příležitostí berlusconi outwit její konkurence stranění socialisté v době rostoucích hvězd ital-
ského politického života. Její dlouhodobá vazba bettino craxus milán je nejvlivnější politik 70
je a itálie je ministerská vláda velké 80 je začne brzy. Na druhé straně politické konexe jsou
politik.
Oblasti vede izraelských jestřábů.
Premiér ministr ariel šaron je oznámení, že je hodlá odstranit židovských osad gaza strip jak,
tak, některá urovnání na západním břehu, je, šokoval a chytili lidé gardy jak v izrael a po světě.
Mnohém odsoudil, šaron je, plán trik. A to překvapení bylo správné , vede od začátku. Way, její
často vypadá cizinců, se debaty izrael o budoucnosti okupovaných území nikdy týkaly jestřábů
a holubičky. Všechna v izrael proces je složitější, především kde se jestřábi týkají. Vlastní jsou
two druhové izraelských jestřábů : výzvou jistou takovou ideologické a další strategické.

TectoMT BLEU 9.28%
Berlusconi na zálivu.
…O patnáct roků později pán Berlusoni rozuměl, že by se italský státní monopol televize nepře-
žil a jump-started, co se stalo hlavní soukromě vlastní sdělovací skupinou Itálie. Ale nevyhra-
jete se v TV a ve skutečném realitním obchodu bez pravých politických spojení. Na obou příleži-
tostech Berlusconi přelstil svoje konkurenty obklad se socialisty na času rostoucí hvězdném
italského politického života. A jeho dlouhého sdružení s nulou politikem v roce 1970 Craxiho
Milán nejvlivnější ministerský ministerský Itálie velké 80. let výchozích rané. Na jiné ruce pol-
itická spojení neučiní politika.
Polní vodítko k Izraelcům jestřábům.
Ministerské ministerské Ariel oznámení Sharonu, že plánuje demontáž židovských urovnání
v Gaze Gazy i jako některá urovnání ve West bance šokovalo a chytilo lidi dozorce obojím
v Izraeli a po světě. Mnoha vypověděl plán Sharonu jako trik. Ale toto překvapení bylo wrong-
-headed ze začátku. Navzdory způsobu, to často vypadá k cizincům, debaty v Izraeli o budouc-
nosti okupovaných území nikdy nebyly omezeny k jestřábům a k holubům. Jako vše v Izraeli
proces je složitější, že se zejména kde jestřábi jsou týkáni. Vlastně jsou dva druhy izraelských
jestřábů: hovor jeden věcný ideologický a jiné strategický.

PC Translator 2007 BLEU 8.48%
Berlusconi v úzkých
…Patnáct let později, pán Berlusoni rozuměl , že italský státní monopol na televizi by ne by
nepřežila a strmý start co stal se Itálií- ovo hlavní v soukromém vlastnictví mediální skupina.
Ale vy nevyhrajete v TV a obchodu nemovitostí bez pravých politických spojení. Na obou
příležitostech, Berlusconi přechytračený jeho konkurenti výhybkou se Socialists, v době ros-
toucí hvězdy italského politického života. Jeho dlouhé spojení s Bettino Craxi, Milan- ovo nej-
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vlivnější politik v 1970- ovo a Itálie- ovo ministerský předseda skrz velkou část 1980- ovo, začít
brzo. Na druhé straně, politické spojení neudělají politika.
A polní průvodce po izraelských jestřábech
Ministerský předseda Ariel Sharon- ovo oznámení že on plánuje rozebrat židovská osídlení
v Pásmu Ghazy, stejně jako nějaká osídlení na západním břehu, šokovali a chycené lidi mimo
stráž v Izraeli a kolem světa. Mnoho odsuzovaného Sharon- ovo plánu jak trik. Ale to přek-
vapení bylo zarputilé od začátku. Navzdory cestě to často vzhlíží k outsider, diskuse v Izraeli
o budoucnosti obsazených oblastí nikdy nebyly uvězněné v jestřábech a skokách. Jako všechno
v Izraeli, proces je víc komplikovaný, zvláště kde jestřábové se týkají. Základním způsobem,
tam jsou dva druzi izraelských jestřábů: volat jednoho druha ideologického a další strategick-
ého.

Moses T+C, CzEng 0.7 data only BLEU 14.64%
Berlusconi v koutě
…Patnáct let nato, přičemž Berlusoni signor italského státního monopolu televize, a to by nebylo
přežít a impulsem začalo to, co se stalo v Itálii v hlavním soukromém vlastnictví mediální
skupiny. Ale cožpak zvítězit v televizi a nemovitosti podnikatelské bez patřičné politické
konexe. V obou případech Berlusconi outwitted soupeřům tím, že stranění socialistů, v době
rostoucí hvězdy italského politického života. Jeho dlouhá spojitost se Bettino Craxi, Milan ’s
nejvlivnější političkou v sedmdesátých a italského premiéra po většinu osmdesátých let, začala
brzy. Na druhé straně však politické konexe nejsou vytvořit politik.
Směřování k izraelským jestřábům oblasti,
Ministerského předsedy Ariela Šarona ”je oznámení, že plány na odstranění židovských osad
v pásmu Gazy, stejně jako některé osady na západním břehu, má zaskočen a chycen lidí mimo
gardy, a to jak v Izraeli a po celém světě. Mnozí odsoudili Šaronův plán jako trik. Ale to, že
překvapení se mýlí hlavou od začátku. Navzdory tomu, aby byla často vypadá pro nezasvěcené
debaty v Izraeli o budoucnosti na okupovaných územích nebyly nikdy neomezují na jestřábi a
holubi. Jako vše v Izraeli, proces je mnohem složitější, zvláště pokud jestřábi jsou znepokojeni.
V zásadě existují dva druhy izraelských jestřábů: volání jednoho druhu ideologické a ostatní
strategické.

Moses T+C, LM from SYN2006 BLEU 15.91%
Berlusconi v zálivu
…O patnáct let později, signor Berlusoni pochopili, že italský státní monopol televize by to
nepřežije a skok - začalo to hlavní, co se stalo v Itálii v soukromém vlastnictví mediální skupiny.
Ale vy zvítězit v televizi a realitní činnost bez patřičné politické konexe. V obou případech
Berlusconi outwitted soupeřům tím, že stranění socialistů, v době stoupající hvězdy italského
politického života. S Bettino Craxi jeho dlouhé sdružení, Milan ’s nejvlivnějším politikem
v sedmdesátých a italský premiér po většinu z osmdesátých let, začal brzy. Na druhé straně
však politické konexe nejsou vytvořit politikem.
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Vodítko pro oblasti izraelských jestřábů
Premiéra Ariela Šarona ”je oznámení, že plány na odstranění židovských osad v pásmu Gazy,
stejně jako některé osady na západním břehu, byl šokován a chytil od lidí, kteří střeží jak
v Izraeli a na celém světě. Mnozí odsoudil Šaronovu plánu jako trik. Ale to překvapení bylo
špatné - stojí od samého začátku. Navzdory tak, jak to často vypadá pro cizince v Izraeli, de-
baty o budoucnosti na okupovaných územích nikdy nebyly omezeny na jestřábi a holubi. Jako
vše v Izraeli, proces je mnohem složitější, a to zejména v případě, že jestřábi jsou znepokojení.
V zásadě existují dva druhy izraelských jestřábů: volání jednoho druhu ideologické a další
strategické.

Google Translate, as of May 15, 2008 BLEU 21.14%
Berlusconi v úzkých
…Patnáct let poté, Signor Berlusoni pochopil, že italský státní monopol na televizní by nepřežili
a jump-začalo to, co se stala Itálie v soukromém vlastnictví, hlavní mediální skupiny. Ale ne-
musíte vyhrát v TV a realitní činnost bez právo politické spojení. V obou případech Berlusconi
outwitted jeho konkurenti o vlečka s socialistů, v době stoupající hvězdy na italského politick-
ého života. Jeho dlouhé spolupráci s Bettino Craxi, Milan nejvlivnějším politikem v 1970 a
Itálie premiér prostřednictvím mnohem z roku 1980 se začal brzy. Na druhou stranu, politické
propojení nenuťte politikem.
Pole Průvodce izraelské Hawks
Ministerský předseda Ariel Sharon je oznámení, že plány likvidace židovských osad v pásmu
Gazy, stejně jako některých osad na západním břehu Jordánu, byl šokován a ulovené lidí z stráže,
jak v Izraeli a po celém světě. Mnoho vypovězena Šaronův plán jako trik. Ale to překvapení
bylo špatné-čele od začátku. Navzdory tomu, že způsob, jak to často vypadá na outsidery,
diskuze v Izraeli o budoucnosti okupovaných území, nebyla nikdy omezena na jestřábi a holu-
bice. Stejně jako všechno v Izraeli, že celý proces je mnohem složitější, zejména pokud se jedná o
jestřábi. V zásadě existují dva druhy izraelských jestřábů: Výzva jednoho druhu ideologických
a jiných strategických.

Reference translation
Berlusconi v úzkých
…O patnáct let později signor Berlusconi pochopil, že se italský státní televizní monopol neu-
drží, a chopil se příležitosti, která dala vzniknout největší italské mediální skupině v soukro-
mých rukou. V televizním a realitním byznysu ovšem nemůžete vítězit bez správných poli-
tických styků. V obou případech Berlusconi vyzrál nad svými konkurenty tím, že stranil so-
cialistům, tehdejší stoupající hvězdě italského politického života. Velmi brzy začalo jeho dlou-
holeté přátelství s Bettinem Craxim, nejvlivnějším milánským politikem 70. let a italským mi-
nisterským předsedou po většinu 80. let. Na druhé straně platí, že politické konexe nevytvoří
politika.
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Klíč k určování izraelských jestřábů
Prohlášení ministerského předsedy Ariela Šarona, že hodlá odstranit židovské osady z pásma
Gazy a některé osady ze Západního břehu Jordánu, šokovalo a zaskočilo lidi jak v Izraeli, tak
po celém světě. Mnozí Šaronův plán odsoudili jako úskok. Ona překvapenost ale byla od
počátku pomýlená. Navzdory tomu, jak se věc často jeví cizincům, vnitroizraelské debaty o
budoucnosti okupovaných území se nikdy neomezovaly na jestřáby a holubice. Tento proces,
jako všechno v Izraeli, je složitější, obzvláště co se jestřábů týče. V zásadě existují dva druhy
izraelských jestřábů: jednomu říkejme ideologický a druhému strategický.

A.2 Out-of-Domain Evaluation

This sections illustrates the performance of various MT systems on news text. For
our contributions (etct and two setups of Moses), we can talk about evaluation out of
the original domain, because no texts from a similar source or of a similar type are
available in our training data.

As this particular test set was translated on demand for the purposes of WMT 08,
we can be nearly sure that none of the third-party systems had access to the reference
translations.

Source text, WMT 08 News Test
Food: Where European inflation slipped up
The skyward zoom in food prices is the dominant force behind the speed up in eurozone infla-
tion. November price hikes were higher than expected in the 13 eurozone countries, with Octo-
ber’s 2.6 percent yr/yr inflation rate followed by 3.1 percent in November, the EU’s Luxembourg-
-based statistical office reported. Official forecasts predicted just 3 percent, Bloomberg said. As
opposed to the US, UK, and Canadian central banks, the European Central Bank (ECB) did
not cut interest rates, arguing that a rate drop combined with rising raw material prices and
declining unemployment would trigger an inflationary spiral. The ECB wants to hold inflation
to under two percent, or somewhere in that vicinity.
New Russia-Ukraine gas row fears
A fresh gas price dispute is brewing between Ukraine and Russia, raising the risk that Russian
exports of the fuel to western Europe may be affected. Most of Russia’s gas exports to the Eu-
ropean Union (EU) are piped through Ukraine and any row between the two nations is keenly
watched. Kiev has warned that if Moscow raises the price it has to pay for the gas it will charge
Russia higher transit fees. A previous dispute between the two last year reduced supplies to
EU states.
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etct, factored output nodes, preserve structure BLEU 3.36%
Food :, když kde evropská inflace zakopla.
Skyward zoom potravin cen je dominantní síla rychlosti vysoké eurozone inflace. Listopadu
cenové zvýšení bylo vyšší, než očekával ve 13 eurozone zemích, říjen 2.6 procenta yr / yr inflace
míra šel 3.1 procenta v listopadu, unie je lucembursko až, založený statistický úřad report.
Představitel odhady předpovídal pouhé 3 procenta, bloomberg řekl. Odmítal usa, británie a
kanadských centrálních bank evropská centrální banka ecb omezí úrokové sazby, tvrdil, že míry
pokles, spojuje rostly hrubé materiálu ceny a klesala zaměstnanosti by vyvolá inflační spirálu.
Ecb chce, má inflaci two procenta a ona v tomto okolí.
Nová rusko ukrajiny plynu řada se obává.
Nového plynu ceny sporu, je, brewing mezi ukrajinou a mezi rusko zvýšil riziko, že ruské
vývozy paliva západní evropa mohly ovlivňovat. Největší rusko je plynu exporty evropské
unie eu vzdušné ukrajiny a jakákoli řada mezi two zeměmi naléhavě sleduje. Kyjev varoval, že,
moskva zvýší cenu, je má, platí plynu, její zaplatí rusko vyšší dopravy poplatky. Poslední spor
mezi two posledním rokem snížil zdroje eu států.

TectoMT BLEU 6.94%
Potravina: kde evropská inflace klopýtla.
Skyward, že se zvětší, v cenách potraviny je dominantní platnost za rychlostí nahoru v eurozóně
inflaci. Že zvýšení listopadu ceny byla vyšší, než se očekával ve 13 eurozónách zemích s říjnem
2,6 desetiprocentní yr/yr inflační sazbou následující 3,1 procentem v listopadu, Luxembourg-
-based statistický úřad EU uvedl. Že úředník předpovědi předpověděl právě 3 procenta, Bloom-
berg řekl. Že se stavěl proti USA proti UK a proti kanadským centrálním bankám, Evropan
centrální banka (ECB) nesnížila úrokové sazby člověk, že by paušální kapka kombinovaná růst
surových cen materiálu a poklesem nezaměstnanosti vyvolala inflační spirály. ECB chce držet
inflaci k pod dvěma procentu nebo někde v této blízkosti.
Nové e plynové řádky strachy.
Čerstvé plynové cenové sporné, že je pivo mezi Ukrajinou a mezi Ruskem zvýšení, riziko že
ruské vývozy paliva do západní Evropy mohou být ovlivněny. Největší vývozů Ruska plynu
do Evropana svazu (EU) je píchnut Ukrajinou a jakýkoli řádek mezi dvěma národy pronikavě je
sledován. Kyjev varoval, že, pokud Moskva zvýší cenu, že to má zaplatit za plyn, to bude účto-
vat Rusko vyšší tranzitní poplatky. Předchozí spor mezi dvě posledním rokem snížil dodávky
na EU státy.

PC Translator 2007 BLEU 8.41%
Jídlo: Kde evropská inflace klopýtla
K nebi najet transfokátorem potravinové ceny je dominantní síla za rychlostí nahoru v eurozone
inflaci. Listopad zvýšení cen byla vyšší než očekávaný v 13 eurozone zemích, s říjnovým 2.6
procent yr/yr míry inflace následované 3.1 procent v listopadu, EU- ovo Luxembourg - based
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statistický úřad ohlásil. Oficiální předpovědi předpovídaly jen 3 procent, Bloomberg řekl. Jak
protichůdný k US, UK, a kanadské ústřední banky, Evropská centrální banka (ECB) ne řeže
úrokové sazby, argumentování ten přepočítací pokles v kombinaci se stoupáním surovina ceny
a sestupná nezaměstnanost spoušť inflační spirála. ECB Chci držet inflaci pod dva procent,
nebo kdesi v tom sousedství.
Nová Russia - Ukraine plynová řada bojí se
A čerstvý plynový cenový spor vaří mezi Ukrajinou a Ruskem, pěstování riziko ty ruské exporty
paliva západní Evropa může být ovlivněný. Většiny ruských plynových exportů k Evropské
unii (EU) jsou vedení potrubím skrz Ukrajinu a nějaký /každý /žádný řada mezi dvěma národy
je nadšeně sledovaný. Kyjev varoval že jestli Moskva zvedne cenu, kterou to musí platit za plyn,
který to bude účtovat Rusku vyšší poplatky tranzitu. A předchozí spor mezi dvěma minulým
rokem snížené dodávky EU stojí.

Moses T+C, CzEng 0.7 data only BLEU 9.75%
Jídlo: kam evropská inflace sklouzla nahoru,
K tomu, že vzlétl ještě výše přiblížit ceny potravin je dominantní silou v pozadí urychlí v eu-
rozóně inflace. Listopadové cenové zvýšení bylo vyšší, než se očekávalo, že v říjnu 13 země
eurozóny, s tím, že 2, 6 procenta Yr / Yr míru inflace následovaná 3, 1 procenta v listopadu, EU
a Lucembursko - založený statistický úřad ohlásil. Oficiální předpovědi předpověděly právě,
3 procent, Bloomberg řekl. Na rozdíl od USA, Británii a kanadskou centrální banky, evrop-
ská centrální banka (ECB), nikoliv snížit úrokové sazby, a tvrdí, že sazby klesnou spojovány
s rostoucími cenami surovin a klesající nezaměstnanosti vyvolává inflační spirále. ECB si chce
udržet inflaci, aby se podle dvou procent, nebo někde v těchto místech.
Nové Rusko - Ukrajina plynu obává pořadí.
A čerstvé ceny plynu bublají spor mezi Ukrajinou a Ruskem, zvýší riziko, že ruský export paliva
pro západní Evropu, může být ovlivněn. Většina ruských vývozů plynu do evropské unie (EU)
je zaveden prostřednictvím Ukrajiny a každá řada mezi oběma zeměmi je naléhavě sledoval.
Kyjev upozornila, že pokud Moskva zvýší cena, která má platit za plyn bude účtovat Rusko
vyšších tranzitních poplatků. A předchozí spor mezi těmito dvěma loni sníží dodávky do člen-
ských států EU.

Moses T+C, LM from SYN2006 BLEU 11.93%
V případě potravin sklouzla do evropské inflace:
Vzhledem k tomu, že vzlétl ještě výše přiblížit ceny potravin je dominantní silou za urychlení
v eurozóně inflace. V listopadu byly vyšší než očekávané zvýšení ceny v oblasti země eurozóny,
13. října ’s 2, 6 procenta s Yr / Yr míru inflace 3, 1 procenta, následované v listopadu, EU
v Lucemburku statistický úřad hlásí založený. Jen 3 procenta oficiální předpovědi předpověděl,
Bloomberg řekl. Na rozdíl od amerických, britských a kanadských centrálních bank, evropská
centrální banka (ECB), nikoliv snížit úrokové sazby, a tvrdí, že sazby klesnou spolu s rostoucími
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cenami surovin a klesající nezaměstnanosti vyvolalo inflační spirále. ECB chce udržet inflaci
do dvou procent, nebo někde v těchto místech.
Nové Rusko - Ukrajina plynu obává řádek.
A čerstvé ceny plynu bublají spor mezi Ukrajinou a Ruskem, zvýší riziko, že ruský vývoz paliva
do západní Evropy, může být ovlivněn. Většina ruských vývozů plynu do evropské unie (EU)
jsou píšťala přes Ukrajinu a každý řádek mezi oběma národy je naléhavě střežen. Kyjev již
varoval, že pokud Moskva zvyšuje cenu, která se má platit za plyn bude účtovat vyšší tranzitní
poplatky v Rusku. A předchozí spor mezi dvěma v loňském roce snížené dodávky pro státy
EU.

Google Translate, as of May 15, 2008 BLEU 12.82%
Strava: Tam, kde se evropské inflace strčila do
Na obloze zoom cen potravin, je dominantní silou urychlení inflace v eurozóně. Listopad
růst cen byl vyšší než se očekává v 13 zemích eurozóny, v říjnu na 2,6 procenta r / r míra
inflace následoval o 3,1 procenta v listopadu, EU, Lucembursko-založené statistického úřadu
hlášena. Úřední prognózy předpovědět jen 3 procenta, Bloomberg řekl. Na rozdíl od USA,
Velké Británii, a kanadské centrální banky, Evropská centrální banka (ECB) nebyla snížení
úrokových sazeb a tvrdil, že míra poklesu v kombinaci s rostoucí ceny surovin a klesající neza-
městnanosti by podnítit inflační spirály. ECB chce držet inflaci pod dvě procenta, nebo někde
v blízkosti.
Nové Rusko-Ukrajina plynový řádku obavy
A fresh cen zemního plynu je pivovarské spor mezi Ukrajinou a Ruskem, a tím zvýšit riziko, že
ruský vývoz paliva do západní Evropy může být ovlivněna. Většina z ruského vývozu zemního
plynu do Evropské unie (EU) je propojen přes Ukrajinu a jakékoli řádku mezi oběma národy je
horlivě sledoval. Kyjev má varoval, že pokud Moskva se zvyšuje cena, kterou musí zaplatit za
benzín, že Rusko bude účtovat vyšší poplatky za tranzit. Předchozí spor mezi dvěma posled-
ním roce snížena dodávky do států EU.

Reference translation
Inflace v Evropě poskočila kvůli potravinám
Zrychlující se inflace naměřená v eurozóně je způsobena především neustálým růstem cen po-
travin. Listopadový růst cen ve 13 zemích eurozóny byl nad očekávání vyšší, po 2,6 procenta
v říjnu byla zaregistrována roční inflace 3,1 procenta, oznámil lucemburský statistický úřad
Unie. Oficiální předpověď předpokládala pouze 3 procenta, sdělila agentura Bloomberg. Na
rozdíl od americké, britské a kanadské emisní banky Evropská centrální banka (ECB) nesnížila
základní úrokovou sazbu s tím, že snížení by spolu se zvyšujícími se cenami surovin a klesající
nezaměstnaností vedlo ke vzniku inflační spirály. ECB by ráda udržela míru inflace pod dvěma
procenty, ovšem v jejich blízkosti.
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Obavy z nové hádky o plyn mezi Ruskem a Ukrajinou
Mezi Ruskem a Ukrajinou právě probíhá spor o ceny zemního plynu, a tak se zvyšuje riziko
toho, že mohou být ovlivněny ruské dodávky tohoto paliva do západní Evropy. Většina ruského
paliva vyváženého do Evropské unie (EU) je vedena potrubím přes Ukrajinu a jakýkoliv spor
mezi těmito dvěma zeměmi je ostře sledován. Kyjev varoval, že pokud Moskva zvedne Ukrajině
ceny plynu, bude Rusku účtovat vyšší tranzitní poplatky. Předchozí spor mezi těmito dvěma
minulý rok snížil dodávky do států EU.
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Summary

This study explores the mutual relationship between linguistic theories, data and
applications. We focus on one particular theory, Functional Generative Description
(FGD), one particular type of linguistic data, namely valency dictionaries and one
particular application: machine translation (MT) from English to Czech.

First, we examine methods for automatic extraction of verb valency dictionaries
based on corpus data. We propose an automatic metric for estimating how much
lexicographers’ labour was saved and evaluate various frame extraction techniques
using this metric.

Second, we design and implement an MT system with transfer at various layers of
language description, as defined in the framework of FGD. We primarily focus on the
tectogrammatical (deep syntactic) layer.

Third, we leave the framework of FGD and experiment with a rather direct, “phrase-
-based” MT system. Comparing various setups of the system and specifically treating
target-side morphological coherence, we are able to significantly improve MT quality
and out-perform a commercial MT system within a pre-defined text domain.

The concluding chapter provides a broader perspective on the utility of lexicons
in various applications, highlighting the successful features.
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