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Abstract. We describe a simple method of unsupervised morpheme segmenta-
tion of words in an unknown language. All that is needed is a raw text corpus 
(or a list of words) in the given language. The algorithm identifies word parts 
occurring in many words and interprets them as morpheme candidates (prefixes, 
stems and suffixes). New treatment of prefixes is the main innovation in com-
parison to [1]. After filtering out spurious hypotheses, the list of morphemes is 
applied to segment input words. Official Morpho Challenge 2008 evaluation is 
given together with some additional experiments. Processing of prefixes im-
proved the F-score by 5 to 11 points for German, Finnish and Turkish, while it 
failed to improve English and Arabic. We also analyze and discuss errors with 
respect to the evaluation method. 

1   Introduction 

Morphological analysis (MA) is an important step in natural language processing, 
needed by subsequent processes such as parsing or translation. Unsupervised ap-
proaches to MA are important in that they help process understudied (and corpus-
poor) languages, for which we have inadequate machine-readable dictionaries and 
tools. Ideally, an unsupervised morphological analyzer (UMA) would learn to analyze 
a language by looking at a large text in that language, without any additional re-
sources, not to mention an expert or speaker of the language. 

Supervised approaches to MA can provide us with three types of information: 1. 
segmentation of a word into morphemes, i.e. the smallest units bearing lexical or gram-
matical meaning; 2. functional explanation of grammatical morphemes, often expressed 
in a morphological tag (e.g. the PDT [2] tag AAMS2----3N---- would mean that all 
the grammatical morphemes together set the features gender = masculine, number = 
singular, case = genitive (2), degree = superlative (3) and negation = negative); 3. lexi-
cal anchoring of morphemes – a lemma (part-of-speech information, although lexical, is 
usually encoded in the tag). Unsupervised approaches cannot use dictionaries nor do 
they know about labels such as singular or genitive that people have attached to  
morphemes. Thus, neither lexical nor grammatical explanation is possible for any mor-
pheme. What unsupervised methods can attempt is morpheme segmentation. Algo-
rithms for such segmentation may not know if a particular morpheme denotes plural, 
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they may even disagree where exactly a morpheme boundary lies. But they can figure 
out that a particular morpheme occurs at the end of a certain set of words (a linguist 
would say that all these words are plural), and that it can be optional, i.e. a word may 
occur without it (identified as singular by the linguist). 

In many languages, morphemes are classified as stems and affixes with latter being 
further subclassified as prefixes (preceding stems) and suffixes (following stems). A 
common word pattern consists of a stem (bearing the lexical meaning) and, option-
ally, some prefixes (bearing lexical or grammatical meaning) and/or suffixes (often 
bearing grammatical meaning). In a language such as German, compound words con-
taining more than one stem are quite frequent. While a stem can appear without any 
affix, affixes hardly appear on their own. In this paper, a morphological paradigm is a 
collection of affixes that can be attached to the same group of stems, plus the set of 
affected stems. 

Although the segmentation of a word does not provide any linguistically justified 
explanation for any of its components, the output can still be useful for further proc-
essing. Having got a paradigm, we can generate all unseen morpheme combinations 
within that paradigm. We can recognize stems of new words and then group all words 
with the same stem. The hope is that a stem may have a lexical meaning. All words in 
a group will share this lexical meaning and differ grammatically. By dropping some 
part of the meaning (hopefully the less important part) we reduce the data sparseness 
of more complex models for syntactic parsing, machine translation, and information 
retrieval. 

A comprehensive overview of related work is given in [1]. In addition, there are 
several new papers on UMA describing results of the previous Morpho Challenge. 
The approaches in [3], [4] and [7] utilize segment predictability and transition prob-
abilities. [5] models character N-grams to find word stems. [8] is a semi-supervised 
method using a limited set of hand-written rules. [6] seems to be the most similar ap-
proach to ours, which is a direct extension of [1]. 

The rest of the paper is organized as follows: in Sections 2 and 3, we review the 
method of [1] for stem-suffix learning. The main innovation in learning and identify-
ing prefixes using two different methods is described in Section 4. The rest of the pa-
per presents our experiments and discusses their results. 

2   Learning Stems and Suffixes 

We begin with reviewing the paradigm acquisition that was first described in [1]. The 
algorithm searches for positions to cut words each into two parts: the stem and the suf-
fix. An important feature of such a split is that a stem occurs in training data with an 
arbitrary number of suffixes and a suffix occurs with multiple stems. Otherwise, the 
algorithm would just collect words with coincidentally identical parts. 

In the first step, all possible segmentations of every word are generated. For in-
stance, the word bank can be segmented as bank, ban+k, ba+nk, b+ank. We collect 
all stems and suffixes. For each stem, we store all co-occurring suffixes, and for each 
suffix we keep all co-occurring stems. 

Various techniques are applied to filter out spurious paradigm candidates (see [1] 
for more details and examples): 
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1. If there are more suffixes than stems in a paradigm, the paradigm is removed. 
2. If all suffixes in a paradigm begin with the same letter, there is another para-

digm where the letter is part of the stem. The rule is to prefer longer stems and 
shorter suffixes. It means that the paradigm in which the border letter is part of 
stems will be preserved, and the other will be removed. 

3. If the suffixes of paradigm B form a subset of suffixes of paradigm A ( BA ⊃ ) 
and there is no C, different from A, such that B is also subset of C 

( ( )CBAC ⊄≠∀ : ), we add the stems of B to the stems of A, and remove B. 

A subset paradigm is merged with its superset, as long as there is only one su-
perset candidate. As mentioned in [1], the process of identifying subsets is com-
putationally quite expensive. We replaced the algorithm used in [1] by a new 
one based on dynamic programming. Starting with the longest suffix sets, we 
gradually identify their possible subsets by dropping one element at a time. The 
resulting graph of superset-subset relations contains suffix sets that do not occur 
in any paradigm. However, building it is linear in original number of paradigms 
and their mean size. Traversing the graph is trivial and relatively few steps are 
required to find the closest real superset paradigms. In the case of approx. 
69,000 English paradigms, the old approach required billions of hash queries, 
whereas now we need only about 600,000 steps together for constructing and 
querying the graph. The new algorithm makes the method capable of processing 
more data in less time, allowing for morphologically more complex languages 
and/or more benevolent filtering in the preceding steps. 

4. Paradigms with only one suffix are removed. 

The final set of paradigms yields the lists of known stems and suffixes. The informa-
tion what stem can occur with what suffix is also available. Note however, that due to 
subset merging, the expression “can occur” is no longer equivalent to “has occurred in 
training data”. Also, some words are covered by no known stem and/or suffix because 
all their segmentations were removed during the paradigm filtering. 

The three lists (known stems, known suffixes, and known stem-suffix pairs) are the 
output of the learning phase. They are now used to identify morphemes in new words. 

3   Morphemic Segmentation 

Given the lists obtained during training, we want to find the stem-suffix boundary in a 
word of the same language. We can also find out that the word does not have any suffix. 

Again, we consider all possible segmentations of each analyzed word. For each 
stem-suffix pair, we look up the table of learned stems and suffixes. The following 
cases are possible: 

1. Both stem and suffix are known and allowed to occur together. 
2. Both parts are known but they are not known to occur together. 
3. Only the stem is known. 
4. Only the suffix is known. 
5. Neither the stem nor the suffix is known. 
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If both parts were known (case 2), the procedure from [1] marked the segmentation as 
certain. If only one part was known (cases 3 and 4), the segmentation was labeled as 
possible. If there were certain segmentations, they were returned as competing analy-
ses of the word. Otherwise, the possible segmentations were returned. If there was no 
possible segmentation either, the whole word was returned as a single morpheme. 

4   Learning and Detecting Prefixes 

The main weakness of the approach in [1] is that it assumes one or two morphemes 
per word. There is no means of correctly segmenting words that contain both prefixes 
and suffixes, and compound words. In the present work, we explored two ways of 
identifying prefixes in addition to the stem-suffix splitting. Both methods work sepa-
rately from the stem-suffix learning, so after learning a separate list of prefixes, modi-
fied segmentation algorithm has to be employed. 

4.1   Reversed Word Method 

The least expensive prefix-learning approach seems to be to take the whole apparatus 
and apply it on reversed words (right-to-left). The strings that the system marks as 
suffixes are reversed again and marked as prefixes. The problem is that we now have 
two sets of stems: one from the suffix learning, one from the learning of prefixes. For 
instance, the English word un+beat+able yields the stems unbeat and beatable, re-
spectively. The following algorithm uses the four lists (prefixes, prefix-stems, suffix-
stems and suffixes) to find one or more segmentations of a word: 

1. For all split points, check whether the left part is a known prefix and the right 
part is a known prefixed stem. (This corresponds to certain segmentations of 
[1].) If so, remember the prefix as applicable. 

2. For all split points, check whether the left part is a known suffixed stem and the 
right part is a known suffix. (This corresponds to certain segmentations of [1].) 
If so, remember the suffix as applicable. 

3. Remember also the empty prefix and the empty suffix as applicable. 
4. Loop over all combinations of applicable prefixes and suffixes. Make sure that 

they do not overlap and that at least one character of the word remains to play 
the role of stem. Save segmentations found this way. 

5. If at least one morpheme boundary has been found, remove the “dummy” seg-
mentation (which marks the whole word as a stem). 

4.2   Rule-Based Method 

The other approach we tested defines a prefix using the following set of parameterized 
rules. The values of the four parameters are estimates based on a few experiments. We 
wanted to keep the approach language-independent, so we did the experiments with 
English data only, and used the same values for all languages. We set K = 5, L = 2, M = 
5 and N = 100. 
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1. A prefix is formed by 1 to K word-initial characters. 
2. Minimal length of the stem (the remainder of the word after removing the pre-

fix) is L. 
3. The prefix occurs at least with N stems for which the following condition holds. 
4. The stems with which the prefix occurs also occur without the prefix or with an-

other prefix. The number of different prefixes (including the empty one) seen 
with the common stem must be at least M. 

The algorithm to find prefixes is simple. First split each word in up to K positions, ob-
serving conditions 1 and 2, and generate the initial set of prefix candidates. Then loop 
over them and discard those not complying with conditions 3 and 4. This process 
typically needs to be repeated iteratively because discarding a prefix decreases the 
number of prefixes at other stems, which in turn could invalidate another prefix, al-
though it already passed the first check-up. Note that the prefixes counted in condition 
4 have to conform to the definition themselves. We observed that the process con-
verged rather quickly. For instance, the English data generated 119,000 first-round 
candidates. Only 678 candidates passed to the second round, and the set converged to 
665 prefixes after four rounds. 

We would prefer to get even smaller set of prefixes but were unable to find better 
setup. Either the system discarded all candidates, or at least the real prefixes did not 
survive (while some garbage did). For more details, see Section 6. 

A few other comments on the method: We further revised the morphemic segmen-
tation based on prefixes. We ignored the stems found with prefixes. We took the 
stem-suffix segmentation found by [1] and just looked for a known prefix in the be-
ginning of the stem. If we found it, the prefix was made a separate morpheme (regard-
less whether the stem was actually seen with this prefix). 

5   Results 

Results are compared to gold standard segmentation created by a supervised morpho-
logical analyzer. The evaluation method must reflect the limitations of unsupervised 
approaches, thus the only information being compared with the gold standard is the 
fact that two words share a morpheme with the same label. Even the order of the mor-
phemes is not significant, although [1] stated the contrary. List of pairs of words and 
the morphemes they share is created first for both the gold standard and the output of 
the unsupervised analyzer. The next step is computing precision (what portion of the 
morphemes shared in system output were shared correctly, i.e. were also shared in the 
gold standard?) and recall (what portion of the morphemes shared in gold standard 
were also shared in system output?) The F score is then computed the usual way, i.e. 
F = (P + R) / 2PR. For more details on the evaluation procedure, see [9]. 

The main result of the experiment is the comparison of the two methods for finding 
prefixes. The reversed word method generally brings very high precision and very 
low recall and F-score. The rule-based method improves results for three languages. It 
generally decreases precision as a price for improving both recall and F-score. It is not 
clear what kind of damage the method caused on English and Arabic. This calls for 
further investigation because previous evaluation on smaller data suggested improve-
ment on all the languages [10]. 
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Table 1. Results. Next to the language name is the best F-score of the other participants. 
“Stem+suff” is equivalent to [1] (submitted to MC2008 as “method 1”). “Rev strict” adds the 
reversed prefix method (submitted as “method 3”). “Rule weak” is unofficial post-deadline re-
sult (but evaluated on the same data). 

English (56.26) German (54.06)  
P R F 

 
P R F 

stem+suff 52.98 42.07 46.90  53.12 28.37 36.98 
rev strict 76.92 8.47 15.27  72.27 7.15 13.01 
rule weak 27.72 62.47 38.40  41.75 41.97 41.86 

 
Finnish (48.47) Turkish (51.99)  

P R F 
 

P R F 
stem+suff 58.51 20.47 30.33  65.81 18.79 29.23 
rev strict 72.41 3.42 6.54  73.30 3.01 5.79 
rule weak 50.12 35.85 41.80  52.54 33.43 40.86 

 
Arabic (40.87) Ar 144 K  

P R F 
 

En 385 K 
stem+suff 77.24 12.73 21.86  Tr 617 K 
rev strict 89.62 5.18 9.79  De 1.3 M 
rule weak 68.96 11.20 19.27  

Voca-
bulary 
sizes: 

Fi 2.2 M 

The processing of one language took from about 5 minutes (Arabic) to almost 1 
hour (Finnish) on a 64bit AMD Opteron. 

6   Error Analysis 

The training data is noisy and contains many typos. Our system does not use up the 
word frequency statistics that could help to filter out noise. The damaging impact that 
noise can cause can be illustrated on the group of English words abrupt – abruptly – 
abruptness – *abrupty. The first three words form a well understood pattern that  
occurs with a few hundred other stems (absent-minded, aimless, anxious, artless, as-
sertive… etc.) The fourth word, abrupty, is in fact a misspelled version of abruptly. 
The typo in the suffix prevented this group from being included in the main paradigm. 
Typos are infrequent (compared to correct material) and there was only one other 
stem (explicit) that occurred with the same kind of error. As a result, the group formed 
a separate paradigm and got filtered out on the rule 1 (more suffixes than stems). 

Since the rule was introduced to exclude spurious paradigms with a one-letter stem 
and thousands of suffixes, we tried to weaken it and allow paradigms that have N 
times more suffixes than stems for a small N (≤5). However, the change decreased re-
call as well as the overall F-score, so we did not include it in our final experiments. 

Two-way checking of morphemes in the reversed word method is the probable 
cause for the high precision and extremely low recall for all languages. The learned 
paradigms look reasonable, although they are not too large. Some examples are: (Eng-
lish) three-, two-, four-, 0 + decade-old, foot-thick, fifths, hour-plus; 0, re, re-, over + 
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capitalise, stimulate, tighten, commit; (German) südo, nordo, o, südwe, nordwe, we + 
stprovinz, sthorizont, stchinesischen, stpolnischen, stafrikanischen, stzipfel, 
stdeutsche, stengland, stchina; 0, ab, ein, aus, zu + gewanderter, gewanderten, 
wanderungsdruck, gewanderte, wanderungswelle. The first German example well il-
lustrates that it would make more sense to put the border characters to the prefix in-
stead of the stem. The reversed word method found 3,279 English prefixes, 12,585 
German, 20,537 Finnish, 5,127 Turkish and 261 Arabic. 

The rule-based prefix method is generally more restrictive in learning prefixes, al-
though the segmentation approach we combined with it is more benevolent. The rule-
based algorithm learned 665 English, 1,890 German, 4,628 Finnish, 2,178 Turkish 
and 331 Arabic prefixes. There are three kinds of prefixes: 1. very short strings that 
are probably not true prefixes but are too frequent to be filtered out (aa, abf, abg, ac, 
ag, ah, ai, ak…); 2. real prefixes (English anti, anti-, auto, by, co, co-, dis, ex, mis, re, 
un, …; German ab, an, anti, anti-, anzu, auf, aufge, aufzu, aus, ausge, be, dar, …); 3. 
first parts of compounds (English ash, back, bank, bell, down, five-, half, …; German 
abend, acht, aids, aids-, akten, alarm, alpen, …). 

7   Ways to Improve 

Some options have already been mentioned: using word frequencies to eliminate ty-
pos, more or less strict stem matching in the segmentation phase. There are alterna-
tives to the strictest matching (stem and suffix must have occurred together). For in-
stance, instead of requiring that the stem and the suffix occur together, we can ask 
whether the stem occurred with N other suffixes that co-occur with the tried suffix in 
at least one paradigm. Another option is to try to figure out whether the word can be-
long to a paradigm that allows for such suffix. For example, the strictest method did 
not split a-com’s to a-com and ’s, although the word a-com was in training data and ’s 
is part of many paradigms. However, this particular segmentation got discarded in the 
filtering phase. 

A better approach to compound words is needed. The prefix processing is able to 
separate first parts of compounds in many instances. However, there are many other 
compounds that are not solved satisfactorily. Either their first part is longer than the 
threshold, or they have more than two parts. 

The naming of morphemes matters! Even when the way how the evaluation works 
is designed not to depend on the labels, we are still responsible for giving same labels 
to same things. If we fail to recognize that “-d” and “-ed” is essentially the same Eng-
lish morpheme (which can easily happen if they came from different paradigms), we 
will be penalized in F-score. 

The border letters that occur in all words of a paradigm can trouble subset merging 
mechanisms. For instance, the largest German paradigm has suffixes 0, m, n, r, re, 
rem, ren, rer, res, s. All stems of this paradigm end in e. There is another paradigm 
with suffixes 0, e, em, en, er, ere, es. Here the e must remain in suffixes because of 
the only exception, the empty suffix 0. The two paradigms cannot be merged. How-
ever, if the e in the former paradigm was shifted to the suffixes, merging would be 
trivial and immediate. The question is, how do we know that in this particular case the 
bordering letters should be treated differently? 
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8   Conclusion 

Our method can be used for unsupervised segmentation of words into morphemes. 
The main improvement over [1] is the unsupervised learning of prefixes. Compounds 
and typos are the most important yet-to-be-addressed issues. 

Acknowledgements. My thanks go to the anonymous reviewers for their helpful 
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