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Abstract 

We describe a simple method of unsupervised morpheme segmentation of words in an unknown language. 
All what is needed is a raw text corpus (or a list of words) in the given language. The algorithm identifies 
word parts occurring in many words and interprets them as morpheme candidates (prefixes, stems and suf-
fixes). New treatment of prefixes is the main innovation over Zeman (2007). After filtering out spurious 
hypotheses, the list of morphemes is applied to segment input words. Official Morpho Challenge 2008 
evaluation is given along with some additional experiments evaluated unofficially. We also analyze and 
discuss errors with respect to the evaluation method. 

Categories and Subject Descriptors 

I.2 [Artificial Intelligence]: I.2.7 Natural Language Processing; I.2.6 Learning; H.3 [Information Storage and 
Retrieval]: H.3.3 Information Search and Retrieval 

General Terms 

Algorithms, Experimentation, Languages 

Keywords 

Morphology, Morphological analysis, Unsupervised methods 

1 Introduction 

Morphological analysis (MA) is an important step in natural language processing, needed by subsequent processes 
such as parsing or translation. Unsupervised approaches to MA are important in that they help process less studied 
(and corpus-poor) languages, where we have small or no machine-readable dictionaries and tools. Ideally, an unsu-
pervised morphological analyzer (UMA) would learn how to analyze a language just by looking at a large text in 
that language, without any additional resources, not even mentioning an expert or speaker of the language. 

Supervised approaches to MA can provide us with three types of information: 1. segmentation of the word into 
morphemes, i.e. smallest units bearing lexical or grammatical meaning; 2. functional explanation of the grammatical 
morphemes, often expressed in a morphological tag (e.g. the PDT1 tag AAMS2----3N---- would mean that all 
the grammatical morphemes together set the features gender = masculine, number = singular, case = genitive (2), 
degree = superlative (3) and negation = negative); 3. lexical anchoring of the lexical morpheme(s) using the lemma 
(part-of-speech information, although lexical, is usually encoded in the tag). Unsupervised approaches cannot use 
dictionaries nor do they know about arbitrary labels such as singular or genitive that people have attached to mor-
phemes. Thus, neither lexical nor grammatical explanation of the morphemes is possible. What unsupervised meth-
ods can attempt, however, is the proper morpheme segmentation. Algorithms may not know that a particular 
morpheme denotes plural, they may even disagree in where exactly the morpheme boundary lies but they can figure 
out that a particular morpheme A occurs at the end of a whole range of words (a linguist would say that all those 

                                                           
1 Prague Dependency Treebank (Böhmová et al., 2003) 
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words are in plural), and that it is optional, i.e. the words occur without the morpheme as well (in singular, the lin-
guist would comment). 

In many languages, the morphemes are classified as stems and affixes, the latter being further subclassified as 
prefixes (preceding stems) and suffixes (following stems). A frequent word pattern consists of one stem, bearing the 
lexical meaning, with zero, one or more prefixes (bearing lexical or grammatical meaning) and zero, one or more 
suffixes (bearing often grammatical meaning). In languages such as German, compound words containing more than 
one stem are quite frequent. While a stem can appear without any affixes, affixes hardly appear on their own, with-
out stems. For the purposes of this paper, a morphological paradigm is a collection of affixes that can be attached to 
the same group of stems, plus the set of affected stems. 

Although the segmentation of the word does not provide any linguistically justified explanation of the compo-
nents of the word, the output can still be useful for further processing of the text. Having got a paradigm, we can 
generate all unseen morpheme combinations satisfying that paradigm. We can recognize stems of new words. Thus, 
we are able to group all words with the same stem. The hope is that one stem means one lexical meaning. All words 
in a group will share the lexical meaning and differ in the grammatical one. By dropping just part of the meaning 
(hopefully the less important) we reduce the data sparseness of more complex models like syntactic parsing, ma-
chine translation, search and information retrieval. 

Zeman (2007) contains a comprehensive overview of related work. In addition, there are 7 new papers on this 
topic by Bernhard (2007), Bordag (2007), Chan (2007), McNamee (2007), Monson et al. (2007), Pitler and Keshava 
(2007), and Tepper (2007). The approach described in this paper is a direct extension of Zeman (2007) and we will 
frequently refer to him. 

The rest of the paper is organized as follows: in Section 2, we review the method of Zeman (2007) for stem-
suffix learning. In Section 3, the proper morpheme segmentation (identifying the learned morphemes in new words) 
is explained. The main innovation, learning and identifying prefixes using two different methods, is described in 
Section 4. Section 6 presents results of experiments, Section 7 brings some examples from the data to see what is 
wrong and why. Section 8 discusses some other problems that are left for future work. 

2 Learning stems and suffixes 

We begin with reviewing the paradigm acquisition first described in Zeman (2007). The algorithm searches for posi-
tions where words can be cut in two parts. In accordance with the motivation, the first part is called the stem and the 
second part is called the suffix. An important feature of each split is that the stem occurs in training data with multi-
ple suffixes (or without any suffix) and the suffix has been observed with multiple stems. Otherwise, the algorithm 
would be just collecting words with coincidentally identical parts. 

In the first step, all possible segmentations of every word are generated. 
Example: The word bank can be segmented as bank, ban+k, ba+nk, b+ank. 
We remember all stems and suffixes. For each stem, we remember all co-occurring suffixes, and for each suf-

fix we remember all co-occurring stems. A group of suffixes with a common set of stems is called a paradigm. 
Various techniques are applied to filter out spurious paradigm candidates (see Zeman (2007) for more details 

and examples): 
1. If there are more suffixes than stems in a paradigm, the paradigm is removed. 
2. If all suffixes in a paradigm begin with the same letter, there is another paradigm where the letter is 

part of the stem. The rule is to prefer longer stems and shorter suffixes. It means that the paradigm 
where the border letter is part of stems will be preserved, and the one where the letter is in suffixes will 
be removed. 

3. If the suffixes of paradigm B form a subset of suffixes of paradigm A (A ⊃ B) and there is no C, dif-
ferent from A, such that B is also subset of C ( ( )CBAC ⊄≠∀ : ), we add the stems of B to the 
stems of A, and remove B. A subset paradigm is merged with its superset, as long as there is only one 
superset candidate. As mentioned in Zeman (2007), the process of identifying subsets is computation-
ally quite expensive. We replaced the algorithm used by Zeman (2007) by a new one based on dy-
namic programming. Starting at the longest suffix sets, we gradually identify their possible subsets by 
dropping one element at a time. The resulting graph of superset-subset relations contains suffix sets 
that do not occur in any paradigm. However, building it is linear in original number of paradigms and 
their mean size. Traversing the graph is trivial and relatively few steps are required to find the closest 
real superset paradigms. In the case of ~ 69,000 English paradigms, where the old approach required 
billions of hash queries, we now observed just about 600,000 steps together for constructing and query-
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ing the graph. The new algorithm makes the method capable of processing more data in less time, al-
lowing for morphologically more complex languages and/or more benevolent filtering in the preceding 
steps. 

4. Paradigms with only one suffix are removed. 
 
Zeman (2007) showed examples of largest paradigms for all four Morpho Challenge 2007 languages plus 

Czech. We illustrate the paradigms on a language that is new in this year’s Morpho Challenge: Arabic. The first line 
of each example contains suffixes, the second line shows stems. 

 
0, �, �, �����, �, �	, 
	 

��������� ����� ���� ���	� ����� ������������ �������� 
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0, ', �������!�, (�����, ����)�, �
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The final set of paradigms yields the lists of known stems and suffixes. The information what stem can occur 

with what suffix is also available. Note however, that due to subset merging, the expression “can occur” is no longer 
equivalent to “has occurred in training data”. Also, some words are covered by no known stem and/or suffix because 
all their segmentations were removed during the paradigm filtering. 

The three lists (known stems, known suffixes, and known stem-suffix pairs) are the output of the learning 
phase. They are now used to identify morphemes in new words.2 

3 Morphematic segmentation 

Given the lists obtained during training, we want to find the stem-suffix boundary in a word of the same language. 
We can also find out that the word is a stem without any suffix. 

Again, we consider all possible segmentations of each analyzed word. For each stem-suffix pair, we look up 
the table of learned stems and suffixes. The following cases are possible: 

1. Both stem and suffix are known and allowed to occur together. 
2. Both parts are known but they are not known to occur together. 
3. Only the stem is known. 
4. Only the suffix is known. 
5. Neither the stem nor the suffix is known. 
 
Zeman (2007) did not take the case 1 into account. If both parts were known (case 2), he marked the segmenta-

tion as certain. If only one part was known (cases 3 and 4), he marked the segmentation as possible. After trying all 
segmentations, if one or more were certain, they were returned as competing analyses of the word. Only if there 
were no certain segmentation, the possible segmentations were returned. If there were no possible segmentation ei-
ther, the whole word was returned as a single morpheme. 

4 Learning and segmenting prefixes 

The main weakness of the 2007 approach is that it assumes one or two morphemes per word. There is no means of 
correctly segmenting words that contain both prefixes and suffixes,3 and compound words. In the present work, we 
explored two ways of identifying prefixes in addition to the stem-suffix splitting. Both methods work separately 
from the stem-suffix learning, so after learning a separate list of prefixes, modified segmentation algorithm has to be 
employed. 
                                                           
2 In fact, the lists can be used to segment any word, whether new or old, whether or not from the training data. As the method is 
unsupervised, and the “training data” is merely a word list, there is no reason why training data should be less suitable for testing 
than any other list of words from the given language. 
3 Note that it is theoretically possible for a word that contains only one prefix and one stem to be segmented using the old ap-
proach: the prefix would be taken for stem and the stem for suffix. However, the filtering rules are set up not in favor of such 
solutions. 



 4 

4.1 Reversed word method 

The least expensive prefix-learning approach seems to be to take the whole apparatus and apply it on reversed words 
(right-to-left). The strings that the system marks as suffixes are reversed again and marked as prefixes. Problem is, 
we now have two sets of stems: one from the suffix learning, one from learning of prefixes. For instance, the English 
word un+beat+able yields the stems unbeat and beatable, respectively. The following algorithm uses the four lists 
(prefixes, prefix-stems, suffix-stems and suffixes) to find one or more segmentations of a word: 

1. For all split points, check whether the left part is a known prefix and the right part is a known prefixed 
stem. (This corresponds to certain segmentations of Zeman (2007).) If so, remember the prefix as ap-
plicable. 

2. For all split points, check whether the left part is a known suffixed stem and the right part is a known 
suffix. (This corresponds to certain segmentations of Zeman (2007).) If so, remember the suffix as ap-
plicable. 

3. Remember also empty prefix and empty suffix as applicable. 
4. Loop over all combinations of applicable prefixes and suffixes. Make sure that they do not overlap in 

the word and that at least one character of the word remains to play the role of the stem. Save segmen-
tations found this way. 

5. If at least one segmentation into two or more parts has been found, remove the “dummy” segmentation 
(whole word is a stem). 

4.2 Rule-based method 

Since it became clear that there are many problems bound to the Reversed word method, we started experimenting 
with a more conservative approach. We defined a prefix as follows: 

1. A prefix is formed by 1 to K word-initial characters. 
2. Minimal length of the stem (the remainder of the word after removing the prefix) is L. 
3. The prefix occurs at least with N stems for which the following condition holds. 
4. The stems with which the prefix occurs also occur without the prefix or with another prefix. The num-

ber of different prefixes (including the empty one) seen with the common stem must be at least M. 
 
We set K = 5, L = 2, M = 5 and N = 100. 
The algorithm to find prefixes is simple. First split each word in up to K positions, observing conditions 1 and 

2, and generate the initial set of prefix candidates. Then loop over them and discard those not complying with condi-
tions 3 and 4. This process typically needs to be repeated iteratively because discarding a prefix decreases number of 
prefixes at other stems, which in turn could invalidate another prefix, although it already passed first check up. Note 
that the prefixes counted in condition 4 have to conform to the definition themselves. We observed that the process 
converged rather quickly. For instance, the English data generated 119,000 first-round candidates. Only 678 candi-
dates passed to the second round, and the set converged to 665 prefixes after four rounds. 

We would prefer to get even smaller set of prefixes but were unable to find better setup. Either the system dis-
carded all candidates, or at least the real prefixes did not survive (while some garbage did). For more details, see 
Error analysis. 

A few other comments on the method: We further revised the morphematic segmentation based on prefixes. 
We ignored the stems found with prefixes. We took the stem-suffix segmentation found by Zeman (2007) and just 
looked for a known prefix in the beginning of the stem. If we found it, the prefix was made a separate morpheme 
(regardless whether the stem was actually seen with this prefix). 

Also note that a group of several prefixes can occur in a word. This fact is ignored during training and it can 
happen that two consecutive prefixes are learned as one prefix. We could also look for the known prefixes repeti-
tively; however, due to the noise and very short suspicious prefixes in the set, we believe that this would cause more 
harm than good. 

5 Other modifications 

All hyphens are replaced by spaces at the end of the segmentation phase. This adds morpheme boundaries unless the 
hyphen already is at a morpheme boundary. Hyphens almost always occur in compound words or after some generic 
English prefixes. 
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6 Results 

Results are compared to a gold standard segmentation created by a supervised morphological analyzer. The evalua-
tion method must reflect the limitations of unsupervised approaches, thus the only information being compared with 
the gold standard is the fact that two words share a morpheme with the same label.4 List of pairs of words and the 
morphemes they share is created first for both the gold standard and the output of the unsupervised analyzer. The 
next step is computing precision (what portion of the morphemes shared in system output were shared correctly, i.e. 
were also shared in the gold standard?) and recall (what portion of the morphemes shared in gold standard were also 
shared in system output?) The F score is the harmonic mean of precision and recall: 

 

PR
RP

P
2

+=  

 
The results were evaluated by the official Morpho Challenge 2008 evaluation scripts, sam-

ple_word_pairs.pl and eval_morphemes.pl.5 Some experiments were evaluated using the whole gold 
standard data set (available only to the challenge organizers; this is called the official evaluation) while other were 
evaluated using only a subset of 500 gold standard words (available to everyone; this is called the unofficial evalua-
tion). Morpho Challenge 2008 involved variously-sized data of 5 languages: English (384,903 words), German 
(1,266,159), Finnish (2,206,719), Turkish (617,298) and Arabic (143,966). The complete results are available at 
http://www.cis.hut.fi/morphochallenge2008/results.shtml. 

We submitted two sets of results. The method of Zeman (2007) was submitted as method 1 to this year’s com-
petition. The data submitted as method 3 (from “three morphemes”) resulted from the reversed word method de-
scribed in Section 4.1. Here it is marked “of. rev. prf.”, while the unofficial results of the rule-based method from 
Section 4.2 are marked “un. rul. prf.” This experiment also contains the hyphen segmentation described in Section 5. 

 
English German  

P R F 
 

P R F 
official 52.98 42.07 46.90  53.12 28.37 36.98 
unofficial 53.39 44.53 48.56  30.28 25.47 27.67 
of. rev. prf. 76.92 8.47 15.27  72.27 7.15 13.01 
un. rul. prf. 54.88 46.72 50.48  46.02 37.92 41.58 

 
Finnish Turkish  

P R F 
 

P R F 
official 58.51 20.47 30.33  65.81 18.79 29.23 
unofficial 47.44 22.99 30.97  59.46 22.53 32.68 
of. rev. prf. 72.41 3.42 6.54  73.30 3.01 5.79 
un. rul. prf. 46.94 35.18 40.22  60.57 37.21 46.10 

 
Arabic   

P R F 
 

   
official 77.24 12.73 21.86     
unofficial 79.86 8.76 15.78     
of. rev. prf. 89.62 5.18 9.79     
un. rul. prf. 80.90 13.41 23.00     

 
The main result of the experiment is the comparison of the two methods for finding prefixes. The reversed word 
method generally brings very high precision and very low recall and F-score. The rule-based method, on the other 
hand, is an improvement over both the official and the unofficial baseline results. It generally decreases precision as 
a price for improving both recall and F-score. 

                                                           
4 Even the order of the morphemes is not significant, although Zeman (2007) stated the contrary. 
5 The detailed description of the evaluation method and the scripts for download are at 
http://www.cis.hut.fi/morphochallenge2008/evaluation.shtml. 
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The processing of one language took from about 5 minutes (Arabic) to almost 1 hour (Finnish) on a 64bit 
AMD Opteron. 

7 Error analysis 

The training data is noisy and contains many typos. Our system does not use up the word frequency statistics that 
could help to filter out noise. The damaging impact that noise can cause can be illustrated on the group of English 
words abrupt – abruptly – abruptness – *abrupty. The first three form a well understood pattern that occurs with a 
few hundred other stems (absent-minded, aimless, anxious, artless, assertive… etc.) The fourth word, abrupty, is in 
fact a misspelled version of abruptly. The typo in the suffix prevented this group from being included in the main 
paradigm. Typos are infrequent (compared to correct material) and only one other stem exhibited this particular one: 
explicit. As a result, the group formed a separate paradigm and got filtered out on the rule 1 (more suffixes than 
stems). 

Since the rule was introduced to exclude spurious paradigms with one one-letter stem and thousands of suf-
fixes, we tried to weaken it and allow paradigms that have N times more suffixes than stems for a small N (:5). 
However, the change decreased recall as well as the overall F-score, so we did not include it in the final experi-
ments. 

About two thirds of English words do not survive the paradigm filtering. There are 385 Kwords on input and 
122 thousand segmentations on output. (In fact, more must have been dropped, as some new segmentations were 
introduced during the subset merging.) 

Two-way checking of morphemes in the reversed word method caused the high precision and extremely low 
recall for all languages. The learned paradigms look reasonable, although they are not too large. Some examples are: 
(English) three-, two-, four-, 0 + decade-old, foot-thick, fifths, hour-plus; 0, re, re-, over + capitalise, stimulate, 
tighten, commit; (German) südo, nordo, o, südwe, nordwe, we + stprovinz, sthorizont, stchinesischen, stpolnischen, 
stafrikanischen, stzipfel, stdeutsche, stengland, stchina; 0, ab, ein, aus, zu + gewanderter, gewanderten, wande-
rungsdruck, gewanderte, wanderungswelle. The first German example well illustrates that it would make more sense 
to put the border characters to the prefix instead of the stem. The reversed word method found 3,279 English pre-
fixes, 12,585 German, 20,537 Finnish, 5,127 Turkish and 261 Arabic. 

The rule-based prefix method is generally more restrictive in learning prefixes, although the segmentation ap-
proach we combined with it is more benevolent. The rule-based algorithm learned 665 English, 1,890 German, 
4,628 Finnish, 2,178 Turkish and 331 Arabic. There are three kinds of prefixes: 1. very short strings that are proba-
bly not true prefixes but are too frequent to be filtered (a, a-, aa, abf, abg, ac, ag, ah, ai, ak…); 2. real prefixes (Eng-
lish anti, anti-, auto, by, co, co-, dis, ex, mis, re, un, …; German ab, an, anti, anti-, anzu, auf, aufge, aufzu, aus, 
ausge, be, dar, …); 3. first parts of compounds (English ash, back, bank, bell, down, five-, half, …; German abend, 
acht, aids, aids-, akten, alarm, alpen, …). 
 

8 Ways to improve 

Some options have already been mentioned: using word frequencies to eliminate typos, more or less strict stem 
matching in the segmentation phase. There are alternatives to the most strict matching (stem and suffix must have 
occurred together). For instance, instead of requiring that the stem and the suffix occur together, we can ask whether 
the stem occurred with N other suffixes that co-occur with the tried suffix in at least one paradigm. Another option is 
to try to figure out whether the word can belong to a paradigm that allows for such suffix. For example, the strictest 
method did not split a-com’s to a-com and ‘s, although the word a-com was in training data and ‘s is part of many 
paradigms. However, this particular segmentation got discarded in the filtering phase. 

A better approach to compound words is needed. The hyphen rule did a good job for English, and the prefix 
processing is able to separate first parts of compounds in many instances. However, there are many other com-
pounds that are not solved satisfactorily. Either their first part is longer than the prefix threshold, or they have more 
than two parts. 

The naming of morphemes matters! Even when the way how the evaluation works is designed not to depend 
on the labels, we are still responsible for giving same labels to same things. If we fail to recognize that “-d” and “-
ed” is essentially the same English morpheme (which can easily happen if they came from different paradigms), we 
will be penalized in F-score. A related problem is learning phonological changes that occur in some languages on 
the stem-affix border. 
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The border letters that occur in all words of a paradigm (and can thus be assigned to both stems or suffixes) can 
trouble subset merging mechanisms. For instance, the largest German paradigm has suffixes 0, m, n, r, re, rem, ren, 
rer, res, s. All stems of this paradigm end in e. There is another paradigm with suffixes 0, e, em, en, er, ere, es. Here 
the e must remain in suffixes because of the only exception, the empty suffix 0. The two paradigms cannot be 
merged. However, if the e in the former paradigm was shifted to the suffixes, merging would be trivial and immedi-
ate. The question is, how do we know that in this particular case the bordering letters should be treated differently? 

Compound suffixes are currently treated as one suffix. The German suffixes er, ere, eres, erem, eren should in 
fact be treated as pairs of suffixes er+0, er+e, er+es, er+em, er+en. We could search for a subset of the suffix set 
that is contained twice, once with a prefix and once without it. Testing of this condition would have to be fuzzy. 

9 Conclusion 

We have presented a paradigm acquisition method that can be used for unsupervised segmentation of words into 
morphemes. The main improvement over Zeman (2007) is the unsupervised learning of prefixes. Compounds and 
typos are the most important yet-to-be-addressed issues. 
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