
Victor: the Web-Page Cleaning Tool

Miroslav Spousta, Michal Marek, Pavel Pecina

Institute of Formal and Applied Linguistics,
Charles University, Prague, Czech Republic
{spousta,marek,pecina}@ufal.mff.cuni.cz

Abstract
In this paper we present a complete solution for automatic cleaning of arbitrary HTML pages with a goal of using web data as a corpus
in the area of natural language processing and computational linguistics.We employ a sequence-labeling approach based on Conditional
Random Fields (CRF). Every block of text in analyzed web page is assigned a set of features extracted from the textual content and
HTML structure of the page. The blocks are automatically labeled either ascontent segmentscontaining main web page content, which
should be preserved, or asnoisy segmentsnot suitable for further linguistic processing, which should be eliminated. Our solution is based
on the tool introduced at the CLEANEVAL 2007 shared task workshop. In this paper, we present new CRF features, a handy annotation
tool, and new evaluation metrics. Evaluation itself is performed on a randomsample of web pages automatically downloaded from the
Czech web domain.

1. Introduction
The idea of using “web as a corpus” has been very attrac-
tive for many researchers in computational linguistics, nat-
ural language processing, and related areas, who would re-
ally appreciate having access to such amount of data. The
traditional way of building text corpora is a very expensive
and time-consuming process and does not satisfy current re-
quirements of modern methods. By automatic downloading
of textual data directly from the web we can build extremely
large corpus with relatively low cost and within short period
of time.
Creating such a corpus comprises two steps: a)web crawl-
ing – automatic browsing the web and keeping a copy of
visited pages and b)cleaningthe pages to be included in the
corpus. While there is a number of suitable web crawlers
available (e.g. Heritrix1, Holmes2 or Egothor (Galamboš,
2006)), challenging task to clean up acquired web pages re-
mains. Apart from main (linguistically valuable) content,
a typical web page contains also material of no linguistic
interest, such as navigation bars, panels and frames, page
headers and footers, copyright and privacy notices, adver-
tisements and other uninteresting data (often calledboiler-
plate). The general goal is to detect and remove such parts
from an arbitrary web page.
In this paper we describe a complete set of tools that en-
ables transformation of a large number of web pages down-
loaded from the Internet into a corpus usable for NLP and
computational linguistic research. The basis of our solu-
tion is the web-page cleaning tool first introduced at the
CLEANEVAL 2007 shared task workshop (Marek et al.,
2007). In order to approach structure of traditional corpora,
we significantly modified the cleaning requirements and re-
stricted the set of possible labels totextandheaderfor con-
tent segmentsto be preserved andother for noisy segments
to be eliminated.
First, we review the cleaning algorithm and its features,
then we introduce an annotation tool developed for our pur-
pose to prepare data for training and evaluation, and finally

1http://crawler.archive.org/
2http://www.ucw.cz/holmes/

we present several experiments and their results. Our fo-
cus on the Czech language (mainly in the evaluation sec-
tion) is induced by an intention to create a large Czech cor-
pus, comparable to the largest corpora currently available.
Needless to say, our tools are language independent and can
be used for any language.

2. Related Work

Most of the work related to web page cleaning originated
in the area of web mining and search engines, e.g. (Coo-
ley et al., 1999) or (Lee et al., 2000). In (Bar-Yossef and
Rajagopalan, 2002), a notion of pagelet determined by the
number of hyperlinks in the HTML element is employed to
segment a web page; pagelets whose frequency of hyper-
links exceeds a threshold are removed. (Lin and Ho, 2002)
extract keywords from each block content to compute its
entropy, and blocks with small entropy are identified and
removed. In (Yi et al., 2003) and (Yi and Liu, 2003), a
tree structure is introduced to capture the common presenta-
tion style of web pages and entropy of its elements is com-
puted to determine which element should be removed. In
(Chen et al., 2006), a two-stage web page cleaning method
is proposed. First, web pages are segmented into blocks
and blocks are clustered according to their style features.
Second, the blocks with similar layout style and content are
identified and deleted.

Many new approaches to web page cleaning were encour-
aged by the CLEANEVAL 2007 contest3 organized by
ACL Web as Corpus interest group. Competitors used
heuristic rules as well as different machine learning meth-
ods, including Support Vector Machines (Bauer et al.,
2007), decision trees, genetic algorithms and language
models (Hofmann and Weerkamp, 2007). Although meth-
ods are fundamentally different, many of them employ sim-
ilar set of mostly language-independent features such as av-
erage length of a sentence or ratio of capitalized words in a
page segment.

3http://cleaneval.sigwac.org.uk/

12

3. Victor the Cleaner
3.1. System Overview
Our system for web page cleaning, first described in (Marek
et al., 2007), is based on a sequence labeling algorithm with
CRF++4 implementation of Conditional Random Fields
(Lafferty et al., 2001). It is aimed at cleaning arbitrary
HTML pages by removing all text except headers and main
page content. Continuous text sections (sections not in-
cluding any HTML tags) are considered a singleblock that
should be marked by a label as a whole.
The cleaning process consists of several steps:

1) Filtering invalid documents
Text from input documents is extracted and simple n-gram
based classification is applied to filter out documents not in
a target language (Czech in our case) as well as documents
containing invalid characters (caused mainly by incorrect
encoding specified in HTTP or HTML header).

2) Standardizing HTML code
The raw HTML input is passed through Tidy5 in order to
get a valid and parsable HTML tree. During development,
we found only one significant problem with Tidy, namely
interpreting JavaScript inside the<script> element, and
employed a simple workaround for it in our system. Except
for this particular problem which occurred only once in our
training data, Tidy has proved to be a good choice.

3) Precleaning
Afterwards, the HTML code is parsed and parts that are
guaranteed not to carry any useful text (e.g. scripts, style
definitions, embedded objects, etc.) are removed from the
HTML structure. The result is valid HTML code.

4) Text block identification
In this step, the precleaned HTML text is parsed again
with a HTML parser and interpreted as a sequence of text
blocksseparated by one or more HTML tags. For exam-
ple, the snippet“<p>Hello world!</p>”
would be split into three blocks,“Hello” , “world” , and
“!” . Each of the blocks is then a subject of the labeling
task and cleaning.

5) Feature extraction
In this step, a feature vector is generated for each block.
The list of features and their detailed description is pre-
sented in the next section. All features must have a finite
set of values6. The mapping of integers and real numbers
into finite sets was chosen empirically and is specified in
the configuration. Most features are generated separately
by independent modules. This allows for adding other fea-
tures and switching between them for different tasks.

6) Learning
Eachblockoccurring in our training data was manually as-
signed one of the following labels:header, text (content
blocks) or other(noisy blocks).

4http://crfpp.sourceforge.net/
5http://tidy.sourceforge.net/
6This is a limitation of the CRF tool used.

The sequence of feature vectors including labels extracted
for all blocks from the training data are then transformed
into the actual features used for training the CRF model ac-
cording to offset specification described in a template file.

7) Cleaning
Having estimated parameters of the CRF model, an arbi-
trary HTML file can be passed through steps 1–4, and its
blocks can be labeled with the same set of labels as de-
scribed above. These automatically assigned labels are then
used to produce a cleaned output. Blocks labeled asheader
or text remain in the document, blocks labeled asotherare
deleted.

3.2. Feature Descriptions
Features recognized by the system can be divided by their
scope into three subsets: features based on the HTML
markup, features based on textual content of the blocks, and
features related to the document.

Markup-based Features
container.p, container.a, container.u, container.img,

container.class-header,
container.class-bold, container.class-italic,

container.class-list, container.class-form

For each parent element of a block, a corresponding
container.*feature will be set to 1, e.g. a hyperlink in-
side a paragraph will have the featurescontainer.pand
container.aset to 1. This feature is especially useful
for classifying blocks: For instance a block contained
in one of the<hx> elements is likely to be a header,
etc. Thecontainer.class-*features refer to classes of
similar elements rather than to elements themselves.

split.p, split.br, split.hr, split.class-inline, split.class-block

For each opening or closing tag encountered since the
last block, we generate a correspondingsplit.* feature.
This is needed to decide, whether a given block con-
nects to the text of the previous block (classified as
continuation) or not. Also, the number of encountered
tags of the same kind is recorded in the feature. This
is mainly because of the
 tag; a single line break
does not usually split a paragraph, while two or more

 tags usually do. Thesplit.class-*features again
refer to classes of similar elements.

Content-based Features
char.alpha-rel, char.num-rel, char.punct-rel, char.white-

rel, char.other-rel

These features represent the absolute and relative
counts of characters of different classes (letters, dig-
its, punctuation, whitespace and other) in the block.

token.alpha-rel, token.num-rel, token.mix-rel, token.other-
rel token.alpha-abs,

token.num-abs, token.mix-abs, token.other-abs

These features reflect counts distribution of individual
classes of tokens7. The classes are words, numbers,
mixture of letters and digits, and other.

7Tokens being sequences of characters separated by whites-
pace for this purpose.

13

sentence.count

Number of sentences in a block. We use a naive algo-
rithm basically counting periods, exclamation marks
and question marks, without trying to detect abbrevi-
ations. Given that the actual count is mapped into a
small set of values anyway, this does not seem to be a
problem.

sentence.avg-length

Average length of a sentence, in words.

sentence-begin, sentence-end

These identify text blocks that start or end a sentence.
This helps recognizing headers (as these usually do
not end with a period) as well as continuation blocks
(sentence-end=0in the previous blocks andsentence-
start=0 in the current block suggest a continuation).

first-duplicate, duplicate-count

The duplicate-countfeature counts the number of
blocks with the same content (ignoring white space
and non-letters). The first block of a group of twins is
then marked withfirst-duplicate. This feature serves
two purposes: On pages where valid text interleaves
with noise (blogs, news frontpages, etc), the noise of-
ten consists of some phrases like “read more...”, “com-
ments”, “permalink”, etc, that repeat multiple times on
the page.

regexp.url, regexp.date, regexp.time

While we try to develop a tool that works inde-
pendently of the human language of the text, some
language-specific features are needed nevertheless.
The configuration defines eachregexp.*feature as an
array of regular expressions. The value of the feature
is the number of the first matching expression (or zero
for no match). We use two sets of regular expressions:
to identify times and dates and URLs.

div-group.word-ratio, td-group.word-ratio

The layout of many web pages follows a similar pat-
tern: the main content is enclosed in one big<div> or
<td> element, as are the menu bars, advertisements
etc. To recognize this feature and express it as a num-
ber, the parser groups blocks that are direct descen-
dants of the same<div> element (<td> element re-
spectively). A direct descendant in this context means
that there is no other<div> element (<td> element
respectively) in the tree hierarchy between the parent
and the descendant. For example in this markup

<div> a <div> b c </div> d <div> e
f </div> g </div>

the div-groups would be (a, d, g), (b,c) and (e, f).
Thediv-group.word-ratioandtd-group.word-ratioex-
press the relative size of the group in number of words.
To better distinguish between groups with noise (e.g.
menus) and groups with text, only words not enclosed
in <a> tags are considered.

langid1, langid2

These new features represent a probability that a text
block is in given language (Czech in our experiment).
We used our own implementation of two Language ID
approaches: (Beesley, 1988) and (Cavnar and Trenkle,
1994).

Document-related features

position

This feature reflects a relative position of the block
in the document (counted in blocks, not bytes). The
rationale behind this feature is that parts close to the
beginning and the end of documents usually contain
noise.

document.word-count, document.sentence-count,
document.block-count

This feature represents the number of words, sen-
tences and text blocks in the document.

document.max-div-group, document.max-td-group

The maximum over alldiv-group.word-ratioand a
maximum over alltd-group.word-ratiofeatures. This
allows us to express “fragmentation” of the document
– documents with a low value of one of these features
are composed of small chunks of text (e.g. web bul-
letin boards).

4. The Annotation Tool
In order to enable fast and efficient annotation of the web
page text blocks we developed a new annotation tool. Our
aim was to offer a possibility to see the web page in a simi-
lar fashion to regular web browsing. This greatly simplifies
the process of selection of the most important parts of given
web page and distinguishing important text passages from
other page sections.
Our annotation tool is a client–server based application us-
ing common web browser and JavaScript for the web page
annotation on the client side and PHP based server applica-
tion for serving pages to the client and storing current user
annotation judgments.
The tool accepts either a list of HTML pages for annotation
or a list of URLs to be downloaded and annotated. A simple
pre-processing is applied for every web page before it can
be annotated: all JavaScript is stripped and links are dis-
abled so that annotator cannot accidently exit current web
page.
The annotation process is quite straightforward (see Fig-
ure 1): user chooses a label selecting appropriate button
and marks text blocks by clicking on the beginning and end
of the text section to be marked. Different colors are used
for every annotation label. Current annotation mark-up is
stored on the server and can be easily retrieved and merged
into the original HTML document when the annotation is
finished.
We found that using a web browser for annotation signif-
icantly improves the annotation speed compared to using
word processor or simple text based selection tool. The ma-
jor speed up is due to the fact that not all the blocks must be

14

Figure 1: The annotation tool: browser window is split into two parts: narrow upper frame is used for annotation control,
lower frame contains the page to be annotated. Current annotation is shown using different colors for every label.

judged and annotated — remaining unannotated blocks are
implicitly classified asother. Our volunteer annotator was
able to achieve speed of 200 web pages per hour.

5. Evaluation
5.1. Data preparation

In order to perform the cleaning task, we have to train the
Conditional Random Fields algorithm on the data from pre-
annotated web pages. For training and evaluation purposes,
we selected a random sample of 2 000 web pages from the
data set downloaded using the Egothor search engine robot
(Galamboš, 2006) from the Czech web domain (.cz).
Large proportion of downloaded pages contains only
HTML mark-up with none or very small amount of tex-
tual information (root frames, image gallery pages, etc.).
In addition, many pages use invalid character encoding or
contain large passages in a language different from our tar-
get language. In order to exclude such pages from further
processing, we apply a Language ID filter. Each page is as-
signed a value which can be interpreted as a probability of
the page being in Czech. Pages not likely to be in Czech are
discarded. We used our own implementation of Language
ID methods by Beesley (1988) and Cavnar and Trenkle
(1994). Out of 2 000 web pages, only 907 were accepted
as reasonable documents containing non-trivial amount of
Czech text.
All documents were annotated using our HTML annota-
tion tool described in the previous section. We provided
only short annotation guidelines, discouraging a markup of
short, incomplete sections of the text (product descriptions,
lists of items, discussions) and only marking headlines be-
longing to already selected text sections. All non-annotated

text blocks are considered to be labeled asother.
According to the annotation, only 271 (29.9%) documents
contained text blocks with useful content (text and headers)
to be preserved. Complete overview of the label distribu-
tion can be found in Table 1.

label count %

header 1 009 1.14
text 5 571 6.32
other 81 528 92.53
total 88 108 100.00

Table 1: Label distribution in the development data set.

5.2. Experiments and Results

Following our experience from the CLEANEVAL 2007 we
found that computation of Levensthein algorithm for eval-
uation of cleaning results is usually very expensive. Our
approach of labeling consequent text blocks suggests an
accuracyas a measure of success for our task – the ratio
of correctly assigned labels. If we do not want differentiate
between blocks labeled astext or header(they are equally
good for our purposes and we would like them to be in-
cluded in our corpus) we can use alsounlabeled accuracy.
In our first experiment we used 271 manually annotated
pages containing at least one content block (labeled either
as text or header). Running a 10-fold cross-evaluation on
such data we were able to achieve accuracy of 91.13% and
unlabeled accuracy of 92.23%. This number, however, does
not tell much about quality of cleaning because of the dis-
crepancy in proportion of content (text, header) and noise

15

(other) blocks in our data (see table 1) which could be ex-
pected also in real pages downloaded from the web. A triv-
ial algorithm assigningother label to all blocks performs
with accuracy even higher (92.53)%.

Precision and Recall

In such cases, usingprecisionandrecall measures would be
more appropriate. We do not differentiate between blocks
labeled astextor header(they are equally good for our pur-
poses and we would like them to be included in our corpus)
and defineprecisionandrecall as follows:

Precision=

THcorrect

THlabeled

Recall=
THcorrect

THannotated

whereTHcorrect refers to a number of correctly labeled con-
tent blocks8, THlabeled is the total number of labeled con-
tent blocks andTHannotatedis the total number of all blocks
annotated as content blocks (textor header).
Precision and recall scores of our first experiment are
shown in the first column of the table bellow. We can expect
the pages to be cleaned with 80.75% precision and 79.88%
recall, i.e. 19.25% of blocks in the cleaned data are noise
and we miss 21.12% of content blocks that should be pre-
served.

using LangID no yes

Text/Header/Other
Accuracy 91.13 90.82
Text+Header/Other
Accuracy 92.23 91.84
Precision 80.75 83.80
Recall 79.88 72.95

Table 2: Effect of Language ID features.

Language ID features

In the next experiment we evaluated the Language ID fea-
tures newly used by the CRF component of our system and
representing probability that a text block is in given lan-
guage (see section 3.2.). As it can be seen in the second
column of Table 2, using these features we were able to
increase the precision up to 83.8%.

Balancing Precision and Recall

The huge number of texts available on the web even for
relatively rare languages such as Czech, enables us to focus
on acquisition of high quality data only. In other words, we
prefer high-precision cleaning procedure to the high-recall
one.
While CRF algorithm does not offer a direct method to fine-
tune precision and recall trade-off, we propose an alterna-
tive approach to achieve this. For every block, it is possible

8Textblocks mislabeled asheaderand vice versa are counted
too.

to obtain marginal probability assigned to all possible la-
bels. In common sequence-labeling scenario, the label with
highest probability wins, not matter what is a distribution
of other labels’ probabilities. In order to achieve higher
precision, we only allowtext andheaderlabels to win if
probability ofother label is under given threshold. Figure 2
illustrates, that we are really able to achieve arbitrary pre-
cision by giving preference to theother label.

0.0 0.1 0.2 0.3 0.4 0.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

’Other’ threshold

Precision
Recall

Figure 2: Precision and recall graph obtained by setting
the threshold value ofother label in the interval [0, 0.5].
Default value of the threshold is 0.5.

training data size (documents) 271 907

Text/Header/Other
Accuracy 91.13 95.92
Text+Header/Other
Accuracy 92.23 96.15
Precision 80.75 74.78
Recall 79.88 66.95

Table 3: Results of 10-fold cross-evaluation on 271 anno-
tated documents (containing at least one block marked as
textor header) and entire set of 907 annotated documents.

The last experiment we performed was a comparison of two
systems: the one as in the first experiment trained on the
271 manually annotated pages containing at least one con-
tent block (labeled either astext or header) and the other
(more real) one trained on all 907 manually annotated pages
that passed the Language ID test. The performance of these
two systems can be compared only in terms of precision and
recall (the number of content blocks remains the same, but
number of the noise blocks is much higher for the latter sys-
tem). As it is shown in Table 3 the additional low quality
data added to the second systems significantly hurt its per-
formance. Precision dropped from 80.75% to 74.78% and
recall from 79.88% to 66.95%. We can conclude that the
precleaning step where the low-quality web pages (naviga-

16

tional, image-only, etc.) are removed completely, should be
improved.
The speed of the cleaning tool is about 3.5 pages (80 kB)
per second. Approximate time for cleaning entire web data
set we have (30 million web pages) is 10 days on 10 com-
mon CPU cores. We didn’t perform this task yet, though.

6. Conclusion and Further Work
We presented a complete solution for cleaning the web
pages content, including annotation tool and evaluation
metrics. However, this is still an ongoing work and we
will continue in research of this challenging task. Cur-
rent versions of our tools are available for download at
http://ufal.mff.cuni.cz/victor/ .
In the near future, we would like to focus also on real ap-
plications – to compare traditional corpora with our web-
based corpus using a task that requires large textual data.
For Czech, we propose an experiment to compare perfor-
mance of Czech part-of-speech tagger trained using unsu-
pervised training (Spoustová, 2008) on the data obtained
from the cleaned web pages and data from the Czech Na-
tional Corpus (Institute of Czech National Corpus, 2005).

Acknowledgments
This work has been supported by the Ministry of Education
of the Czech Republic, project MSM 0021620838 and the
Czech Science Foundation, project 201/05/H014.
We would like to thank Dr. Leo Galamboš for allowing
us to obtain the web data and our anonyMouse volunteer
annotators for their effort.

7. References
Ziv Bar-Yossef and Sridhar Rajagopalan. 2002. Template

detection via data mining and its applications. InWWW
’02: Proceedings of the 11th international conference on
World Wide Web.

Daniel Bauer, Judith Degen, Xiaoye Deng, Priska Herger,
Jan Gasthaus, Eugenie Giesbrecht, Lina Jansen, Christin
Kalina, Thorben Krüger, Robert Märtin, Martin Schmidt,
Simon Scholler, Johannes Steger, Egon Stemle, and Ste-
fan Evert. 2007. Fiasco: Filtering the internet by au-
tomatic subtree classification. InProceedings of the
Web as Corpus Workshop (WAC3), Cleaneval Session,
Louvain-la-Neuve, Belgium.

K. Beesley. 1988. Language identifier: A computer pro-
gram for automatic natural-language identification on
on-line text.

William B. Cavnar and John M. Trenkle. 1994. N-gram-
based text categorization. InProceedings of SDAIR-94,
3rd Annual Symposium on Document Analysis and Infor-
mation Retrieval, Las Vegas, US.

Liang Chen, Shaozhi Ye, and Xing Li. 2006. Template de-
tection for large scale search engines. InSAC ’06: Pro-
ceedings of the 2006 ACM symposium on Applied com-
puting, Dijon, France.

Robert Cooley, Bamshad Mobasher, and Jaideep Srivas-
tava. 1999. Data preparation for mining world wide web
browsing patterns.Knowledge and Information Systems.

Leo Galamboš. 2006. Egothor, full-featured text search en-
gine written entirely in java. http://www.egothor.org/.

Katja Hofmann and Wouter Weerkamp. 2007. Web corpus
cleaning using content and structure. InProceedings of
the Web as Corpus Workshop (WAC3), Cleaneval Ses-
sion, Louvain-la-Neuve, Belgium.

Institute of Czech National Corpus. 2005.Český národní
korpus – SYN2005. http://ucnk.ff.cuni.cz/.

John Lafferty, Andrew McCallum, and Fernando Pereira.
2001. Conditional random fields: Probabilistic models
for segmenting and labeling sequence data. InProc. 18th
International Conf. on Machine Learning. Morgan Kauf-
mann, San Francisco, CA, USA.

Mong-Li Lee, Tok Wang Ling, and Wai Lup Low. 2000.
Intelliclean: a knowledge-based intelligent data cleaner.
In Knowledge Discovery and Data Mining.

Shian-Hua Lin and Jan-Ming Ho. 2002. Discovering in-
formative content blocks from web documents. InPro-
ceedings of the ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (KDD-2002),
Edmonton, Alberta, Canada.

Michal Marek, Pavel Pecina, and Miroslav Spousta. 2007.
Web page cleaning with conditional random fields. In
Proceedings of the Web as Corpus Workshop (WAC3),
Cleaneval Session, Louvain-la-Neuve, Belgium.

Drahomíra "johanka" Spoustová. 2008. Combining statis-
tical and rule-based approaches to morphological tag-
ging of czech texts.To appear in Prague Bulletin of
Mathematical Linguistics, 89.

Lan Yi and Bing Liu. 2003. Web page cleaning for web
mining through feature weighting. InProceedings of
Eighteenth International Joint Conference on Artificial
Intelligence (IJCAI-03), Acapulco, Mexico.

Lan Yi, Bing Liu, and Xiaoli Li. 2003. Eliminating noisy
information in web pages for data mining. InProceed-
ings of the ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD-2003),
Washington, DC, USA.

17

