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Abstract
We present an evaluation of inter-sentential coreference annotation in the context of manually created semantic networks. The semantic
networks are constructed independently be each annotator and require an entity mapping priori to evaluating the coreference. We present
the model used for mapping the semantic entities as well as the algorithm used for our evaluation task. We present the raw statistics for
inter-annotator agreement and describe the inherent difficulty in evaluating coreference in semantic networks.

1. Introduction

This paper presents an analysis of inter-sentential coref-
erence relationships encoded in a manually annotated se-
mantic network. The MultiNet semantic network formal-
ism (Helbig, 2006) forms the basis of the annotation task
used in this work. Under this formalism, each sentence in
a discourse contributes information to the entire semantic
network. These partial semantic entities are joined together
by way of coreference links between unique concepts (i.e.
the objects which define unique entities). Our particular an-
notation task is the extension of the deep-syntactic annota-
tion currently available in the Prague Dependency Treebank
(PDT) (Hajič et al., 2006). This adds additional constraints
to the annotation which we describe in this paper.

Our annotators have manually constructed semantic net-
works for individual sentences while also maintaining
coreference links between sentences; thereby providing
complete semantic networks for an entire discourse. While
the notion of coreference is related to the traditional notion,
the goal here is to ensure that a coherent semantic network
is constructed. This means that the concepts (entity objects)
being annotated as coreferent must be interpreted as unique
entities. In the present work, we explore a technique which
maps the nodes of the semantic networks annotated by two
different annotators. We use this technique to analyze the
quality of the coreference annotations.

The remainder of the paper is organized as follows. In
Section 2. we introduce the theoretical background of the
MultiNet semantic network framework. Section 3. presents
a description of the data we used for the annotation task,
the model used to obtain a mapping between the labeling
of multiple annotators, and the algorithm used to identify
agreement. An evaluation of the coreference annotations is
presented in Section 4.. Finally, a discussion about the dif-
ficulties in the annotation process as well as the evaluation
is presented in section Section 5..

2. MultiNet Semantic Networks
The representational means of Multilayered Extended Se-
mantic Networks (MultiNet), which are described in (Hel-
big, 2006), provide a universal formalism for the treatment
of semantic phenomena of natural language. To this end,
the MultiNet is a parsimonious representation which pro-
vides an graphical interpretation of the semantic interac-
tions which are realized through a discourse. This has an
additional advantage of making the MultiNet networks eas-
ier to interpret without extensive training in the formalism
and therefore simplifies the training of annotators.
In Figure 1, we present an example MultiNet annotation
for the following sentence from the Wall Street Journal:
Stephen Akerfeldt, currently vice president finance, will
succeed Mr. McAlpine.
As this network is simply for one sentence, there are
no inter-sentential coreference links. There are, how-
ever, intra-sentential coreference links, those directed edges
which are labeled EQU (meaning there is equality between
the nodes C75 and C77 as well as C81 and C4). The net-
works is interpreted as follows: arcs indicate a semantic
relationship between nodes (or sets of nodes). There is
over 60 different categories of semantic relationships which
describe the interactions between concepts; the concepts
are encoded as nodes. Each concept is decorated further
with detailed information that describes the type of con-
cept. Note that an arc can be treated as a concept if in fact
the semantic relationship is being treated in the discourse
as a concept
In addition to the intra-sentential semantic relationships, a
concept may be linked to a previously used concept in the
discourse. For example, Mr. McAlpine had been mentioned
previously in the discourse where this sentence appeared.
Note that the text associated with node C4 does not actu-
ally appear in this sentence. C4 is a node from a previous
sentence which has been presented here to note the corefer-
ence. The annotator has placed an EQU arc between nodes
C4 and C81 to indicate there is a coreference relationship,
and that C4 preceeded C81 in the discourse. These are the



Figure 1: MultiNet annotation of the sentence “Stephen Akerfeldt, currently vice president finance, will succeed Mr.
McAlpine.” Nodes C4 and C8 are re-used from previous sentences.

intra-sentential coreference links necessary to transform the
set of localized semantic interactions into a complete se-
mantic network that describes the relationships of concepts
presented in a discourse.
A detailed annotation manual can be found at https:
//wiki.ufal.ms.mff.cuni.cz/projects:
content-annotation. Manual annotations are per-
formed using a graphical user interface, allow the labeler to
create nodes and arc and add labels to the nodes and arcs.
Recall that our goal is to incorporate these annotations into
the Prague Dependency Treebank. In order to facilitate
that, the Tectogrammatical Representation (deep-syntax)
trees of the PCEDT (PDT annotation of the Penn WSJ
Treebank) are used to induce a default network. The
nodes of the Tectogrammatical trees are directly mapped to
MultiNet concepts, which may be further modified by the
annotator. This imposes a loose constraint on the networks
that are produced by the annotators: the networks will
inherit structure from the Tectogrammatical trees.
In the follow sections, we will examine the positive impact
these annotation constraints have on the evaluation of net-
works annotated by multiple people.

3. Annotation: Data, Methodology, and
Evaluation

The evaluation presented in this paper has been carried out
on a subset of The Wall Street Journal articles from the
Penn Treebank (Marcus et al., 1993b), which have been an-
notated at multiple levels of analysis according to the PDT
guidelines. The source data was publicly released as the
Prague Czech-English Dependency Treebank (Cuřı́n et al.,
2004), a corpus of parallel English and Czech annotations
of the Penn Treebank(Marcus et al., 1993a). In this work,
we have only explored the MultiNet annotation on the En-
glish component of this corpus.
The different levels of annotation are derived from

Sentences Words
Two-annotators 67 1793
Three-annotators 46 1236

Table 1: Annotated corpus. A subset of sentence from En-
glish side of the PCEDT (a PDT-style annotation of the
WSJ treebank).

the Functional Generative Description (FGD) of lan-
guage (Sgall et al., 1986) which is the basis of the PDT an-
notation effort. This include detailed morphological anal-
ysis, surface syntactic analysis, and deep-syntactic analy-
sis; the latter is called the Tectogrammatical Representa-
tion (TR) as it was referred to in the original FGD work.
Tectogrammatical trees are stripped of function words (or
syn-semantic lexical items), leaving only the content bear-
ing words as first-class nodes in the trees. Information de-
rived from the function words is encoded in the labels and
nodes of the TR dependency trees.
As mentioned above, the MultiNet annotation procedure
begins with a TR tree, from which the annotator is given
a default network that maintains links to the TR tree. The
annotator then creates new nodes and arcs as necessary, and
labels the nodes and arcs. Any concept, which is repre-
sented as a MultiNet node, which has previously been used
in the discourse is available to the annotation via the anno-
tation tool interface. When an annotator believe a concept
in the current sentence has been previously mentioned, they
can add this node to the current network (the node main-
tains it’s identifier from the previous context). The anno-
tator then creates an EQU link between the node for the
previously used concept and the newly observed concept.
We trained three annotators to use the MultiNet graphical
annotation tool (Novák, 2007). We reserved a set of sen-
tences from the corpus for training the annotators. These



sentences are excluded for the inter-annotator analysis pre-
sented here. The complete evaluation for the three anno-
tators contained 67 annotated sentences. Of these 67, only
46 sentences where annotated by all three annotators. The
remaining sentences were annotated by only two of the an-
notators. All annotators are native English speakers and
were trained on the held-out data.
The result of the annotation process is a set of manually
annotated graphs. These graphs contain links to the tec-
togrammatical trees, which provide reference points for
annotations from different annotators. Furthermore, the
coreference link are maintained through the reuse of con-
cept nodes when creating a graph. In order to evaluate
agreement between two annotators, we first focus on the
sentence-level graphs. We proceed as follows: first, we find
an absolute mapping between the annotators for the Multi-
Net nodes. Then, we evaluate the coreference chains by
identifying a canonical node that identifies the coreference
chain.

3.1. Mapping Multiple Annotations
Mapping the MultiNet concepts as annotated by multiple
annotators is necessary before any further analysis can be
done. The annotators are free to create new concept nodes
if they deem it necessary to describes the semantic concepts
within a sentence. One annotator may find it sufficient to
use a node derived from the tectogrammatical tree, while
another another may find the default node sufficient. In or-
der to evaluate inter-annotator agreement for the network
structure, we derived a technique to find an minimum-error-
mapping for the nodes of a sentence. We employ the same
technique in this work, where the goal is to evaluate coref-
erence.
We employed a relatively obvious technique for mapping
the two graphs. First, all nodes that are derived from the
tectogrammatical tree have an absolute identifier: the orig-
inal tectogrammatical node. Therefore, the mapping be-
tween TR-derived nodes is fixed. The remaining concept
nodes in the MultiNet tree are aligned in order to mini-
mize the inter-annotator error for the graph annotation ef-
fort (independent of coreference annotations). It turns out
that there are usually only a few new concept nodes created
by the annotators for any one sentence, therefore, we can
simply explore all mappings.
Formally, we start with a set of tectogrammatical trees con-
taining a set of nodes N . The annotation is a tuple G =
(V,E, T,A), where V are the vertices, E ⊆ V ×V ×P are
the directed edges and their labels (e.g., agent of an action:
AGT ∈ P ), T ⊆ V ×N is the mapping from vertices to the
tectogrammatical nodes, and finally A are attributes of the
nodes, which we ignore in this initial evaluation.1 Analo-
gously, G′ = (V ′, E′, T ′, A′) is another annotation of the
same sentence and our goal is to quantify the differences
between G and G′. This requires a mapping from V to V ′.
To find the optimal mapping we need a set Φ of admissi-
ble one to one mappings between vertices in the two an-
notations. A mapping is admissible if it connects vertices

1We simplified the problem also by ignoring the mapping from
edges to tectogrammatical nodes and the MultiNet edge attribute
knowledge type.

which are indicated by the annotators as representing the
same tectogrammatical node:

Φ =

{
φ ⊆ V × V ′

∣∣∣
∀

n∈N
v∈V

v′∈V ′

((
(v,n)∈T∧(v′,n)∈T ′

)
→(v,v′)∈φ

)
∧ ∀

v∈V
v′,w′∈V ′

((
(v,v′)∈φ∧(v,w′)∈φ

)
→(v′=w′)

)
∧ ∀

v,w∈V
v′∈V ′

((
(v,v′)∈φ∧(w,v′)∈φ

)
→(v=w)

)}

In Equation 1, the first condition ensures that Φ is con-
strained by the mapping induced by the links to the tec-
togrammatical layer. The remaining two conditions guar-
antee that Φ is a one-to-one mapping.
Then we can define the optimal mapping φ∗ as

φ∗ = argmax
φ∈Φ

(F (G,G′, φ)) (1)

where F is similar to the F1-measure:

Fm(G,G′, φ) =
2 ·m(φ)
|E|+ |E′|

(2)

where m(φ) is the number of edges that match given the
mapping φ.

m(φ) = |Mdl|+
3
4
· |Mwl|+

1
2
· |Mdw|+

1
4
· |Mww| (3)

|Mdl| is the number of edges where both direction and the
label matches, |Mwl| is the number of edges, where the di-
rection is wrong but the label matches, |Mdw| is the num-
ber of edges, where the direction is the same but the labels
differ, and |Mww| is the number of edges, where the both
direction and the label differ.
The coefficients in Equation 3 were chosen by hand in or-
der to prefer mappings of the edges with more matching
parameters and at the same time mappings where there are
at least some structural correspondences. The relation type
received more weight than the edge direction, because it is
more informative. In the sequel, all results presented are
obtained using the optimal mapping φ∗ for each sentence.
The coreference evaluation algorithm is presented in Fig-
ure 2. Each concept (node) which occurs in more than
one sentence is evaluated (these are the coreferent con-
cepts which connect the sentence-level semantic networks).
We choose a canonical concept for the one of the annota-
tors by following the coreference chain to the earliest point
at which the concept is mentioned in the discourse. This
canonical concept is then identified in the second annota-
tors graph. For every occurrence of the concept in each
annotators graphs, we identify whether it is mapped under
the previously describe sentence-level mapping. For any
concept that is mapped, we identify whether it’s canonical
concept is also mapped. If so, this is a match under our
metric. The complete algorithm is presented in Figure 2.



Input: Alternative annotations, G = (V,E, T,A) and G′ = (V ′, E′, T ′, A′)
Output: List of coreference agreements and disagreements
foreach v ∈ V subject to |{n ∈ N ; (v, n) ∈ T}| > 1 do

Find the first occurrence of the concept n0 ∈ N , where (v, n0) ∈ T ;
Find the v′0 ∈ V ′ such that (v′0, n0) ∈ T ′;
if there is no such v′0 then

print(”missingR0 for ” + v);
else

foreach n ∈ N where n 6= n0 ∧ (v, n) ∈ T do
Find the v′ ∈ V ′ such that (v′, n) ∈ T ′;
if there is no such v′ then

print(”noMap for ” + v + ” at ” + n);
else

if v′ = v′0 then
print(”ok for ” + v + ” at ” + n);

else
print(”mismatch of ” + v′ + ” and ” + v′0);

Figure 2: Comparing of two alternative coreference annotations. The asymptotic algorithmic complexity is O(|V | + |T |)
because every inner loop iterates over different sets of n.

Annotator Sentences Unique concepts (non-singleton) Non-singletons per sent (std. dev.)
SM 46 1248 (120) 2.6 (1.86)
CW 67 1713 (248) 3.7 (2.05)
CB 67 1800 (174) 2.6 (1.24)

4. Empirical Evaluation
We have run the coreference agreement evaluation on our
annotated data and report the raw results in Table 2. We
have chosen not to report any further statistical evaluation
due to 1) the limited amount of data available for analy-
sis, and 2) the subtle dependency on the mapping procedure
used as a basis for the analysis.
The results in are divided into four categories of corefer-
ences:

mismatch One annotator uses a different canonical con-
cept as the coreference target.

missingR0 The first mention of the concept in one anno-
tator’s graphs does not have a counterpart in the best
matching network of the other annotator.

noMap The concept which is coreferring to a previous
sentence in one annotators graph has no mapping to in
the other annotators graph.

ok The coreferring concept used in the sentence by one an-
notator is mapped to a concept in the other annotator’s
graph and the canonical concepts from both annotators
are mapped.

In Figure 3, we present a depiction of the agreement results
that shows there is quite a bit of variance under the metric
for ok agreements. Note that annotator SM appears to have
less agreement in general.

5. Error Analysis
We have manually reviewed the disagreements as found us-
ing the above described metric. We have found that there

are one of two explanations for many of the errors. One
reason for disagreement appears to be an inadequate de-
scription of the coreference task in the annotation guide-
lines. The other error is related to the automatic mapping
technique used in our evaluation.
The annotation guidelines do not indicate which
previous concept to use when annotating coref-
erence. An example of this was found for net-
work annotations for sentences following this sen-
tence from section F20 of the Penn WSJ Treebank:
The U.S. trade representative, Carla Hills, . . .
In the subsequent text, Carla Hills is used to identify the
person. One annotator chose to use Carla Hills as the
coreferent concept, but another chose to use The U.S.
trade representative. The equality of a entities found in
appositions of this sort can be resolved either by refining
the annotation guideline or automatically preprocessing
the data to identify appositive phrases.
The other source of error is related to the automatic map-
ping technique described in this paper. When one annota-
tors structural annotation is significantly different than the
alternative annotation, the mapping algorithm will arbitrar-
ily choose a mapping. This in turn misguides the corefer-
ence annotation algorithm.

6. Conclusion and Future Work
We have presented a technique to evaluate coreference links
in a semantic network annoation framework as well as the
evaluation results on a small set of data annotated by three
independent labalers. The current techniques are inconclu-
sive due to the complex nature of the annotation scheme
and the integrated labeling of both structure an coreference



Status mismatch missingR0 noMap ok
Article Pair
F20 CB-CW 17 1 5 14

SM-CB 15 0 24 11
SM-CW 23 1 22 4

F21 CB-CW 3 0 6 8
SM-CB 6 0 1 3
SM-CW 5 0 2 3

F22 CB-CW 9 1 7 8
SM-CB 7 1 0 3
SM-CW 10 0 5 7

F26 CB-CW 6 0 5 7
F27 CB-CW 5 0 6 16

Table 2: Experimental results of pairwise coreference annotation agreement evaluation. The labels CB, CW, and SM,
identify the individual annotators.
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Figure 3: The agreement for all pairs of annotators, CBCW, SMCB, and SMCW. The data shows high variance w.r.t. the
distribution of ok cases.

structures.
Semantic network annotation is a relatively complex task
which requires a high cognitive load even with the most
parsimonious representations. Our preliminary results
show that annotators are capable of producing similar an-
notations under the MultiNet representation. We hope that
refinement in both the annotation guidelines and the evalu-
ation technique will prove that MultiNet is an appropriate
representation for high-agreement semantic network anno-

tations.
We intend to use the proposed technique for subsequent
coreference tasks for the purpose of consistency checking.
We note that our technique is effective at determining that
both the structural and coreference annotations agree,
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