
Learning to Search in Prague Dependency Treebank

Jiří Mírovský and Jarmila Panevová

Charles University in Prague

Institute of Formal and Applied Linguistics

{mirovsky|panevova}@ufal.mff.cuni.cz

Abstract

We present Netgraph – an easy to use tool for searching in linguistically annotated treebanks. On

several examples from the Prague Dependency Treebank we introduce the features of the searching

language and show how to search for some frequent linguistic phenomena.

1. Introduction

Searching in a linguistically annotated treebank helps linguistic research not only in the field of

computational linguistics but also in the theoretical linguistics. There exist various tools for searching

in treebanks and they vary in the amount of mathematical knowledge or programming skills they

require from users.

Netgraph is a searching tool designed to be as simple as possible. It tries to be easy to understand,

learn and use. The query language is very intuitive and motivated by linguistic needs. It follows the

idea “what you see is what you get“, or rather “what you want to see in the result is what you draw in

the query“. Of course, to be able to search in a treebank using Netgraph, the user has to know the

system of annotation of the treebank.

Netgraph has been primarily developed for searching in two structured layers of the Prague

Dependency Treebank (PDT) – the analytical layer (which is close to the surface syntax) and the

tectogrammatical layer (the deep syntax). Searching is possible on both the layers separately and also

in combination across the layers boundary. In this paper, we will use examples from both the

analytical and the tectogrammatical layers.

In section 2 we very briefly describe the Prague Dependency Treebank, just to make the examples

in the subsequent text more understandable. Anyone familiar with this treebank may safely skip this

section.

In section 3 we mention in a few words the history of Netgraph and its properties as a tool.

In section 4 we introduce the query language of Netgraph along with the idea of meta-attributes and

what they are good for, and present linguistically motivated examples of queries in the Prague

Dependency Treebank.

Finally, in section 5 we offer some concluding remarks.

2. The Prague Dependency Treebank

The Prague Dependency Treebank 2.0 (PDT 2.0, see Hajič et al. 2006, Hajič 2004) is a manually

annotated corpus of Czech. It is a sequel to the Prague Dependency Treebank 1.0 (PDT 1.0, see Hajič

et al. 2001a, Hajič et al. 2001b).

The texts in PDT 2.0 are annotated on three layers - the morphological layer, the analytical layer

and the tectogrammatical layer. The corpus size is almost 2 million tokens (115 thousand sentences),

although “only” 0.8 million tokens (49 thousand sentences) are annotated on all three layers. By

'tokens' we mean word forms, including numbers and punctuation marks.

On the morphological layer (Hana et al. 2005), each token of every sentence is annotated with a

lemma (attribute m/lemma), keeping the base form of the token, and a tag (attribute m/tag), keeping

its morphological information. Sentence boundaries are annotated here, too.

The analytical layer roughly corresponds to the surface syntax of the sentence; the annotation is a

single-rooted dependency tree with labeled nodes (Hajič et al. 1997, Hajič 1998). The nodes on the

analytical layer (except for technical roots of the trees) also correspond 1:1 to the tokens of the

sentences. The order of the nodes from left to right corresponds exactly to the surface order of tokens

in the sentence. Non-projective constructions (that are quite frequent both in Czech (Hajičová et al.

2004) and in some other languages (Havelka 2007)) are allowed. Analytical functions are kept at

nodes (attribute a/afun), but in fact they are names of the dependency relations between a dependant

(son) node and its governor (father) node.

The tectogrammatical layer captures the linguistic meaning of the sentence in its context. Again,

the annotation is a dependency tree with labeled nodes. The correspondance of the nodes to the lower

layers is more complex here. It is often not 1:1, it can be both 1:N and N:1. It was shown in detail in

Mírovský (2006) how Netgraph deals with this issue.

Many nodes found on the analytical layer disappear on the tectogrammatical layer (such as

functional words, e.g. prepositions, subordinating conjunctions, etc.). The information carried by

these nodes is stored in attributes of the remaining (autosemantic) nodes and can be reconstructed. On

the other hand, some nodes representing for example obligatory positions of verb frames, deleted on

the surface, and some other deletions, are regenerated on this layer (for a full list of deletions, see

Mikulová et al. 2006).

The tectogrammatical layer goes beyond the surface structure and corresponds to the semantic

structure of the sentence, replacing notions such as Subject and Object by functors like Actor, Patient,

Addressee etc (see Hajičová 1998, for a full list of functors, see Mikulová et al. 2006).

Attribute functor describes the dependency between a dependant node and its governor and

again is stored at the son-nodes. A tectogrammatical lemma (attribute t_lemma) is assigned to every

node. Grammatemes are rendered as a set of 16 attributes grouped by the “prefix” gram (e.g.

gram/verbmod for verbal modality).

The total of 39 attributes are assigned to every non-root node of the tectogrammatical tree, although

(based on the node type) only a certain subset of the attributes is necessarily filled in.

Topic and focus (Hajičová et al. 1998) are marked (attribute tfa), together with so-called deep

word order reflected by the order of nodes in the annotation (attribute deepord). It is in general

different from the surface word order, and all the resulting trees are projective by the definition of

deep word order.

To be complete (as much as possible in this short description), let us add that coreference relations

between nodes of certain category types are captured (Kučová et al. 2003), distinguishing also the

type of the relation (textual or grammatical). Each node has an identifier (attribute id) that is unique

throughout the whole corpus. Attributes coref_text.rf and coref_gram.rf contain ids of

coreferential nodes of the respective types.

3. Netgraph As a Tool

The development of Netgraph started in 1998 as a topic of Roman Ondruška's Master's thesis

(Ondruška 1998), and has been proceeding along with the ongoing annotations of the Prague

Dependency Treebank 1.0 and later the Prague Dependency Treebank 2.0, taking into account a new

system of annotation and feedback from the users. Now it is a fully functional tool for complex

searching in PDT 2.0.

Netgraph is a client-server application that allows multiple users to search the treebank on-line and

simultaneously through the Internet. The server (written in C programming language) searches the

treebank, which is located at the same computer or local network. The client (written in Java2) serves

as a very comfortable graphical user interface and can be located at any node in the Internet. It sends

user queries to the server and receives results from it. Both the server and the client also can, of

course, reside at the same computer. Authentication by the means of login names and passwords is

provided. Users can have various access permissions.

A detailed desctiption of the inner architecture of Netgraph and of the communication between the

server and the client was given in Mírovský, Ondruška and Průša (2002).

4. The Query Language

In this chapter, we describe the query language of Netgraph. We start from very simple examples and

proceed to more complex ones.

4.1. The Query Is a Tree

The query in Netgraph is a tree that forms a subtree in the result trees. The treebank is searched tree

by tree and whenever the query is found as a subtree of a tree, the tree becomes part of the result. The

query has both a textual form and a graphical form. For lack of space, we will use its textual form in

this paper. Each textual query has its full graphical counterpart.

The simpliest possible query (and of little interest) is a simple node without any evaluation: []. It

matches all nodes of all trees in the treebank, each tree as many times as how many nodes there are in

the tree. Nevertheless, we may add conditions on its attributes, optionally using regular expressions in

values of the attributes. Thus we may search e.g. for all nodes that are Subjects and nouns but not in

first case: [afun=Sb, m/tag=“N...[^1].*“]1. We may notice here that reqular expressions allow the

first (very basic) type of negation in queries.

More interesting queries usually consist of several nodes, forming a tree structure. The following

example query searches for trees containing a Predicate that directly governs both a Subject and at

least one Object: [afun=Pred]([afun=Sb],[afun=Obj])2. Please note that there is no condition in the

query on the order of the Subject and the Object, nor on their left-right position to their parent. It does

not prevent other nodes to be directly governed by the Predicate either.

4.2. Meta-attributes

This simple query language, described briefly in only a few examples, is quite useful but not powerful

enough. There is no real possibility of setting more complex negation, no way of restricting the

position of the query tree in the result tree or the size of the result tree, nor the order of nodes can be

controlled. To allow these and other things, meta-attributes have been added to the query system.

Meta-attributes are not present in the corpus data but they pretend to be ordinary attributes and in

fact are treated the same way like normal attributes. There are about ten of them, each adding some

power to the query language, enhancing its semantics, while keeping the syntax of the language on

the same simple level. We will present several of the meta-attributes, along with the linguistic

motivation that lead to their addition.

Coordination is a frequent phenomenon in languages. In PDT (and in most other treebanks, too) it

is represented by a coordinating node. To be able to skip (and effectively ignore) the coordinating

node in the queries, we have introduced the meta-attribute _optional that marks an optional node. It

then may but does not have to appear in the result. If we are interested, for example, in Predicates

governing Objects, we can get both cases (with coordination and without it) in one query using this

meta-attribute: [afun=Pred]([afun=Coord,_optional=true]([afun=Obj])). The Coordination node

1 We do not expect to find many real counterexamples. In any case, square brackets enclose a node, attributes are

separated by a comma, quotation marks enclose a regular expression.

2 Parentheses enclose a subtree of a node, brothers are separated by a comma

becomes optional. If there is a node between the Predicate and its Object in the result tree, it has to be

the Coordination. But the Object may also be a direct son of the Predicate, omitting the optional

Coordination node.

There is a group of meta-attributes of rather technical nature. They allow setting a position of the

query tree in the result tree, restricting the size of the result tree or its part, and restricting number of

direct sons of a node. Meta attribute _depth controls the distance of a node from the root (useful when

searching for a phenomenon in subordinated clauses, for example), _#descendants controls number of

nodes in the subtree of a node (useful e.g. when searching for „nice“ small examples of something),

_#sons controls number of (direct) sons of a node.

Controlling number of direct sons (mainly in its negative sense) is important for studying valency

of words (Hajičová et al. 1984). The following example searches on the tectogrammatical layer of

PDT. There is a Predicate that governs directly an Actor and a Patient and nothing else (directly):

[functor=PRED,_#sons=2]([functor=ACT],[functor=PAT]). If we replaced PAT with ADDR, we

might search for errors in the evaluation, since the theory forbids Actor and Addressee being the only

parts of a valency frame.

4.3. Negation

So far, we only could restrict number of nodes. But we often want to restrict a presence of a certain

type of node. We want to specify that a node of a certain quality is not present at a particular place in

the result tree. For example, we might want to search (again on the tectogrammatical layer) for a

Predicate governing an Effect but not an Origo. The meta-attribute that allows this real type of

negation is called _#occurrences. It controls the exact number of occurrences of a certain type of

node, in our example of Origos: [functor=PRED]([functor=EFF],[functor=ORIG,

_#occurrences=0]). It says that the Predicate has at least one son – an Effect, and that the Predicate

does not have an Origo son.

4.4. References to Other Nodes

There is still one important thing that we cannot achieve with the meta-attributes presented so far. We

cannot set any relation (other than dependency) between nodes in the result trees (such as order (for

word-order studies), agreement in case, coreference). All this can be done using the meta-attribute

_name and a system of references. The meta-attribute _name simply names a node for a later

reference from other nodes. In the following example (back on the analytical layer and knowing that

attribute ord keeps the order of the node (~ token) in the tree (~ sentence)), we search for a Subject

that is on the right side from an Object:

[afun=Pred]([afun=Sb,ord>{N1.ord}],[afun=Obj,_name=N1])3. We have named the Object node

3 Curly brackets enclose a reference to a value of an attribute of another node (with a given name) in the result tree.

N1 and specified that ord of the Subject node should be bigger than ord of the N1 node. If we used

ord>{N1.ord}+5, we would require them to be at least five words apart.

4.5. Linear Searching

Sometimes we only know what sequence of words we are searching for and do not know how or do

not want to bother to write a structured query. For this, there is a meta-attribute _sentence. If we were

to search for all trees containing the phrase „v souvislosti s“, we might simply write a query:

[_sentence=“.*[Vv] souvislosti s.*“]. Nevertheless, it serves only as a simplification of these special

cases, Netgraph remains a tool for searching in tree structures.

5. Conclusion

This has only been a very quick glance at the Netgraph query language. Nevertheless, we hope that

we have been successful in showing that it allows to write quite complex queries in a simple way.

Although it has been primarily designed for searching in Prague Dependency Treebank, the query

language is general and it can be used for other treebanks and other languages, too.

Acknowledgement

The research reported in this paper was supported by the Grant Agency of the Academy of Sciences

of the Czech Republic, project IS-REST (No. 1ET101120413), and by the Grant Agency of the Czech

Republic, project 405/06/0589.

References

Hana J., Zeman D., Hajič J., Hanová H., Hladká B., Jeřábek E. (2005): Manual for Morphological

Annotation, Revision for PDT 2.0. ÚFAL Technical Report TR-2005-27, Charles University in Prague,

2005.

Hajič J. (1998): Building a Syntactically Annotated Corpus: The Prague Dependency Treebank. In Issues of

Valency and Meaning, Karolinum, Praha 1998, pp. 106-132.

Hajič J. (2004): Complex Corpus Annotation: The Prague Dependency Treebank. Jazykovedný ústav Ĺ.

Štúra, SAV, Bratislava, 2004.

Hajič J., Vidová-Hladká B., Panevová J., Hajičová E., Sgall P., Pajas P. (2001a): Prague Dependency

Treebank 1.0 (Final Production Label). CD-ROM LDC2001T10, LDC, Philadelphia, 2001.

Hajič J., Pajas P. and Vidová-Hladká B. (2001b): The Prague Dependency Treebank: Annotation Structure

and Support. In IRCS Workshop on Linguistic databases, 2001, pp. 105-114.

Hajič J. et al. (1997): A Manual for Analytic Layer Tagging of the Prague Dependency Treebank. ÚFAL

Technical Report TR-1997-03, Charles University in Prague, 1997.

Hajič J. et al. (2006): Prague Dependency Treebank 2.0. CD-ROM LDC2006T01, LDC, Philadelphia, 2006.

Hajičová E. (1998): Prague Dependency Treebank: From analytic to tectogrammatical annotations. In:

Proceedings of 2nd TST, Brno, Springer-Verlag Berlin Heidelberg New York, 1998, pp. 45-50.

Hajičová E, Panevová J. (1984): Valency (case) frames. In P. Sgall (ed.): Contributions to Functional Syntax,

Semantics and Language Comprehension, Prague, Academia, 1984, pp. 147-188.

Hajičová E., Partee B., Sgall P. (1998): Topic-Focus Articulation, Tripartite Structures and Semantic

Content. Dordrecht, Amsterdam, Kluwer Academic Publishers, 1998.

Hajičová E., Havelka J., Sgall P., Veselá K., Zeman D. (2004): Issues of Projectivity in the Prague

Dependency Treebank. MFF UK, Prague, 81, 2004.

Havelka J. (2007): Beyond Projectivity: Multilingual Evaluation of Constraints and Measures on Non-

Projective Structures. In Proceedings of ACL 2007, Prague, pp. 608-615.

Kučová L., Kolářová-Řezníčková V., Žabokrtský Z., Pajas P., Čulo O. (2003): Anotování koreference v

Pražském závislostním korpusu. ÚFAL Technical Report TR-2003-19, Charles University in Prague, 2003.

Mikulová M., Bémová A., Hajič J., Hajičová E., Havelka J., Kolářová V., Kučová L., Lopatková M., Pajas

P., Panevová J., Razímová M., Sgall P., Štěpánek J., Urešová Z., Veselá K., Žabokrtský Z. (2006):

Annotation on the tectogrammatical level in the Prague Dependency Treebank. Annotation manual. Tech.

Report 30, ÚFAL MFF UK, 2006.

Mírovský J. (2006): Netgraph: a Tool for Searching in Prague Dependency Treebank 2.0. In Proceedings of

TLT 2006, Prague, pp. 211-222.

Mírovský J., Ondruška R., Průša D. (2002): Searching through Prague Dependency Treebank - Conception

and Architecture. In Proceedings of The First Workshop on Treebanks and Linguistic Theories, Sozopol,

2002, pp. 114—122.

Ondruška R. (1998): Tools for Searching in Syntactically Annotated Corpora. Master Thesis, Charles

University in Prague, 1998.

