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Abstract

Netgraph query language is a query system 
for  linguistically  annotated  treebanks  that 
aims to be sufficiently powerful for linguis-
tic needs and yet simple enough for not re-
quiring any programming or mathematical 
skill  from its users.  We provide an intro-
duction to the system along with a set  of 
examples how to search for some frequent 
linguistic phenomena. We also offer a com-
parison to the querying power of TGrep – a 
traditional and well known treebank query 
system.

1 Introduction

Searching in a linguistically annotated treebank re-
quires a sophisticated tool, the more so the more 
complex  the  annotation  is.  Many  users  require 
(quite understandably) a simple and easy-to-learn 
tool, and yet they expect it to be satisfactorily pow-
erful. It is obvious that there is a trade-off between 
simplicity  of  a  query language  and its  searching 
power. 

Netgraph  has  been  designed  to  perform  the 
searching  with  maximum  comfort  and  minimum 
requirements on its users. Although it has been de-
veloped  primarily  for  the  Prague  Dependency 
Treebank 2.0  (Hajič  et  al.  2006),  it  can be used 
with  other  treebanks  too,  both  dependency  and 
constituent-structure types.

In  this  paper,  we present  Netgraph  query lan-
guage and show how it can be used to search for 
some frequent  linguistic  phenomena.  Afterwards, 
we try to compare the searching power of Netgraph 

query  system  to  the  power  of  traditional  TGrep 
(Pito 1994), in order to check if it  is at  least the 
same. Thus, we set a lower boundary to the power 
of Netgraph query language. Therefore we concen-
trate on showing that TGrep does not outperform 
Netgraph  and  only  mention  what  TGrep's  flaws 
are, also because we know that there exist TGrep2, 
TigerSearch and other more recent  tools.  But we 
consider the power of TGrep the first step on the 
way of Netgraph towards “a full-featured searching 
tool”. We plan to offer a comparison with the more 
recent tools in some future paper.

In  section  1 (after  this  introduction)  we  very 
briefly describe the Prague Dependency Treebank 
2.0, just to make the examples in the subsequent 
text  more  understandable.  Anyone  familiar  with 
this  treebank may safely skip  this  subsection.  In 
the  next  subsection  we  also  mention  in  a  few 
words the history of Netgraph and its properties as 
a tool.

In  section  2 we  offer  an  introduction  to  the 
query language of Netgraph along with the idea of 
meta-attributes  and  what  they  are  good  for,  and 
present  several  linguistically  motivated  examples 
of  queries  in  the  Prague  Dependency  Treebank. 
We also list all available meta-attributes.

In  section  3 we  compare  Netgraph  query lan-
guage to TGrep by translating TGrep predicates to 
Netgraph.

Finally, in  section 4 we offer some concluding 
remarks.

1.1 Prague Dependency Treebank 2.0

The Prague Dependency Treebank 2.0 (PDT 2.0, 
see Hajič et al. 2006, Hajič 2004) is a manually an-
notated  corpus  of  Czech.  It  is  a  sequel  to  the 



Prague Dependency Treebank 1.0 (PDT 1.0,  see 
Hajič et al. 2001a, Hajič et al. 2001b).

The texts in PDT 2.0 are annotated on three lay-
ers - the morphological layer, the analytical  layer 
and the tectogrammatical layer.  The corpus size is 
almost 2 million tokens (115 thousand sentences), 
although  “only” 0.8  million  tokens  (49  thousand 
sentences) are annotated on all three layers. By 'to-
kens' we mean word forms, including numbers and 
punctuation marks.

On the morphological layer (Hana et al. 2005), 
each token of every sentence is annotated with a 
lemma (attribute m/lemma), keeping the base form 
of the token, and a tag (attribute m/tag), keeping 
its  morphological  information.  Sentence  bound-
aries are annotated here, too.

The analytical layer roughly corresponds to the 
surface syntax of the sentence; the annotation is a 
single-rooted dependency tree with labeled nodes 
(Hajič et al. 1997, Hajič 1998). The nodes on the 
analytical layer  (except  for  technical  roots of the 
trees) also correspond 1:1 to the tokens of the sen-
tences.  The order of the nodes from left  to right 
corresponds exactly to the surface order of tokens 
in the sentence. Non-projective constructions (that 
are quite frequent both in Czech (Hajičová et al. 
2004) and in some other languages (see  Havelka 
2007)) are allowed. Analytical functions are kept at 
nodes  (attribute  a/afun),  but  in  fact  they  are 
names of the dependency relations between a de-
pending node (son) and its governing node (father).

The tectogrammatical layer captures the linguis-
tic meaning of the sentence in its context. Again, 
the annotation is  a  dependency tree with  labeled 
nodes.  The  correspondence  of  the  nodes  to  the 
lower layers is more complex here. It is often not 
1:1, it can be both 1:N and N:1. It was shown in 
detail in Mírovský (2006) how Netgraph deals with 
this issue.

Many nodes found on the analytical layer disap-
pear on the tectogrammatical layer (such as func-
tional words, prepositions, subordinating conjunc-
tions, etc.). The information carried by these nodes 
is stored in attributes of the remaining (autoseman-
tic) nodes and can be reconstructed. On the other 
hand, some nodes representing for example obliga-
tory positions of verb frames, deleted on the sur-
face, are regenerated on this layer.

The tectogrammatical layer goes beyond the sur-
face  structure  of  the  sentence,  replacing  notions 

such as Subject and Object by notions like Actor, 
Patient, Addressee etc (see Hajičová 1998).

Attribute  functor describes  the  dependency 
between  a  depending  node  and  its  governor  and 
again is stored at the son-nodes. A tectogrammati-
cal lemma (attribute  t_lemma) is assigned to ev-
ery node. Grammatemes are rendered as a set of 16 
attributes  grouped  by  the  “prefix”  gram (e.g. 
gram/verbmod for verbal modality).

The total of 39 attributes are assigned to every 
non-root  node  of  the  tectogrammatical  tree,  al-
though (based on the node type) only a certain sub-
set of the attributes is necessarily filled in.

Topic  and  focus  (Hajičová  et  al.  1998)  are 
marked  (attribute  tfa),  together  with  so-called 
deep word order reflected by the order of nodes in 
the annotation (attribute deepord). It is in gener-
al different from the surface word order, and all the 
resulting trees  are projective by the definition  of 
deep word order.

To  be  complete  (as  much  as  possible  in  this 
short description), let us add that coreference rela-
tions between nodes of certain category types are 
captured (Kučová et al. 2003), distinguishing also 
the type  of the relation (textual  or  grammatical). 
Each node has an identifier  (attribute  id) that is 
unique  throughout  the  whole  corpus.  Attributes 
coref_text.rf and  coref_gram.rf con-
tain  ids  of  coreferential  nodes  of  the  respective 
types.

1.2 Netgraph as a Tool

The development of Netgraph started in 1998 as a 
topic  of  Roman Ondruška's  Master's  Thesis  (On-
druška 1998), and has been proceeding along with 
the ongoing annotations of the Prague Dependency 
Treebank  1.0  and  later  the  Prague  Dependency 
Treebank 2.0. Now it is a fully functional tool for 
complex searching in PDT 2.0.

Netgraph  is  a  client-server  application  that  al-
lows multiple users to search the treebank on-line 
and simultaneously through the Internet. The serv-
er (written in C) searches the treebank, which is lo-
cated at the same computer or local network. The 
client (written in Java2) serves as a very comfort-
able graphical user interface and can be located at 
any node in the Internet. It sends user queries to 
the  server  and  receives  results  from it.  Both  the 
server and the client also can, of course, reside at 
the same computer. Authentication by the means of 



login names and passwords is provided. Users can 
have various access permissions.

A detailed description of the inner architecture 
of Netgraph and of the communication between the 
server  and the client was given in Mírovský, On-
druška and Průša (2002).

2 Netgraph Query Language

In this section we give an introduction to the Net-
graph query language. We show on a series of ex-
amples how some frequent  linguistic  phenomena 
can be searched for.

2.1 The Query Is a Tree

The query in Netgraph is a tree that forms a subtree 
in the result trees. The treebank is searched tree by 
tree and whenever the query is found as a subtree 
of a tree (we say the query and the tree match), the 
tree becomes part of the result.  The result is dis-
played tree by tree on demand. The query can also 
consist of several trees joined either by AND or OR 
relation. In that case, all the query trees at the same 
time (or at least one of the query trees, respective-
ly) are required to match the result tree.

The query has both a textual form and a graphi-
cal form. For lack of space, we will use its textual 
form in  this  paper.  However,  each  textual  query 
has its full graphical counterpart, which is always 
much more transparent.

The syntax of the language is very simple. In the 
textual  form, square brackets  enclose a node,  at-
tributes (pairs  name=value) are separated by a 
comma, quotation marks enclose a regular expres-
sion in a value. Parentheses enclose a subtree of a 
node, brothers are separated by a comma. In multi-
ple-tree queries, each tree is on a new line and the 
first line contains only a single AND or OR. Alterna-
tive  values  of  an attribute,  as  well  as  alternative 
nodes,  are  separated  by a  vertical  bar.  It  almost 
completes the description of the syntax, only one 
thing (references) will  be added in the following 
subsection.

The simplest possible query (and probably of lit-
tle interest on itself) is a simple node without any 
evaluation:  []. It matches all nodes of all trees in 
the treebank, each tree as many times as how many 
nodes there are in the tree. Nevertheless, we may 
add  conditions  on  its  attributes,  optionally  using 
regular expressions in values of the attributes. Thus 

we may search e.g. for all nodes that are Subjects 
and nouns but not in first case:
[afun=Sb, m/tag="N...[^1].*"].
We may notice here that regular expressions al-

low  the  first  (very  basic)  type  of  negation  in 
queries.

More interesting queries usually consist of sev-
eral nodes, forming a tree structure. The following 
example  query  searches  for  trees  containing  a 
Predicate  that  directly  governs  a  Subject  and  an 
Object:
[afun=Pred]([afun=Sb],[afun=Obj]).
Please  note  that  there  is  no  condition  in  the 

query on the order of the Subject and the Object, 
nor  on  their  left-right  position  to  their  father.  It 
does not  prevent  other  nodes to be directly gov-
erned by the Predicate either.

2.2 Meta-Attributes

This  simple  query language,  described  briefly in 
only a few examples, is quite useful but not power-
ful  enough.  There  is  no  possibility  to  set  a  real 
negation, no way of restricting the position of the 
query in the result tree or the size of the result tree, 
nor the order of nodes can be controlled. To allow 
these and other things,  meta-attributes  have been 
added to the query system.

Meta-attributes are not present in the corpus but 
they pretend to be ordinary attributes and the user 
uses  them the  same  way  like  normal  attributes. 
Their  names start  with  an underscore.  There  are 
eleven meta-attributes, each adding some power to 
the query language, enhancing its semantics, while 
keeping  the  syntax  of  the  language  on  the  same 
simple  level.  We present  several  of  the  meta-at-
tributes in this subsection, some others will be pre-
sented  in  the  subsequent  section,  when  they  are 
needed. A list of all meta-attributes is presented in 
the next subsection.

Coordination is a frequent phenomenon in lan-
guages. In PDT (and in most other treebanks, too) 
it is represented by a coordinating node. To be able 
to skip (and effectively ignore) the coordination in 
the queries, we have introduced the meta-attribute 
_optional that  marks  an  optional  node.  The 
node then may but does not have to be in the result. 
If  we  are  interested,  for  example,  in  Predicates 
governing Objects, we can get both cases (with co-
ordination and without it) in one query using this 
meta-attribute:



[afun=Pred]([afun=Coord,_option-
al=1]([afun=Obj])).
The Coordination becomes optional. If there is a 

node between the Predicate and its Object in the 
result tree, it has to be the Coordination. But the 
Object may also be a direct son of the Predicate, 
omitting the optional Coordination.

There  is  a  group  of  meta-attributes  of  rather 
technical nature. They allow setting a position of 
the query in the result tree, restricting the size of 
the result tree or its part, and restricting number of 
direct sons of a node. Meta attribute _depth con-
trols the distance of a node from the root (useful 
when searching for a phenomenon in subordinated 
clauses,  for example),  _#descendants controls 
number of nodes in the subtree of a node (useful 
e.g. when searching for „nice“ small examples of 
something),  _#sons controls  number  of  (direct) 
sons of a node.

Controlling number of direct sons (mainly in its 
negative sense) is important for studying valency 
of words (Hajičová and Panevová 1984). The fol-
lowing example searches on the tectogrammatical 
layer of PDT. We want a Predicate that governs di-
rectly an Actor and a Patient and nothing else (di-
rectly):
[functor=PRED,_#sons=2]([func-
tor=ACT],[functor=PAT]).
If  we  replaced  PAT  with  ADDR,  we  might 

search for errors in the evaluation, since the theory 
forbids Actor and Addressee being the only parts 
of a valency frame.

So far, we could only restrict number of nodes. 
But we often want to restrict a presence of a certain 
type of node. We want to specify that there is not a 
node of a certain quality. For example, we might 
want to search (again on the tectogrammatical lay-
er)  for  an  Effect  without  an  Origo  in  a  valency 
frame. The meta-attribute that allows this real type 
of negation is called _#occurrences. It controls 
the  exact number of occurrences of a certain type 
of node, in our example of Origos:
[functor=PRED]([functor=EFF],[fu
nctor=ORIG, _#occurrences=0]).
It says that the Predicate has at least one son – 

an Effect, and that the Predicate does not have an 
Origo son.

There is still one important thing that we cannot 
achieve with the meta-attributes presented so far. 
We cannot set any relation (other than dependen-

cy) between nodes in the result trees (such as or-
der, agreement in case, coreference). All this can 
be done using the meta-attribute _name and a sys-
tem of references. The meta-attribute  _name sim-
ply names a node for a later reference from other 
nodes.

Curly brackets enclose a reference to a value of 
an attribute of the other node (with a given name) 
in the result tree. This, along with the dot-referenc-
ing inside the reference and some arithmetic possi-
bilities, completes our description of the syntax of 
the query language from subsection 2.1.

In the following example (back on the analytical 
layer and knowing that attribute ord keeps the or-
der of the node (~ token) in the tree (~ sentence)), 
we search for  a Subject  that  is  on the right  side 
from an Object:
[afun=Pred]([afun=Sb,ord>{N1.ord
}],[afun=Obj,_name=N1]).
We have named the Object node N1 and speci-

fied that ord of the Subject node should be bigger 
than  ord of  the  N1 node.  If  we  used 
ord>{N1.ord}+5, we would require them to be 
at least five words apart.

2.3 List of All Meta-Attributes

To complete our description of Netgraph query 
language, we present all  available meta-attributes 
in one list, along with a short description:
_transitive
This meta-attribute defines a transitive edge. It 

has two possible values:  true means that a node 
may appear anywhere in the subtree of its query-
father,  exclusive means,  in  addition,  that  the 
transitive edge cannot share nodes in the result tree 
with other exclusively transitive edges.
_optional
It defines an optional node. It may but does not 

have to appear in the result. However, if there is a 
node in the result at this particular place (father in 
grandfather-father-son  hierarchy),  it  must  be  the 
one defined in the query. Depending on the value 
of this meta-attribute, one or more nodes may be 
skipped. A special value  true skips an unlimited 
chain of the specified nodes.
_#sons
It defines an exact number of sons of a query-

node in the result tree.



_#hsons
It defines an exact number of hidden sons of a 

query-node in the result tree. Hidden nodes are es-
pecially marked nodes in the tree that provide con-
nection to the information on the lower layers  of 
annotation. They are useful when the relation be-
tween nodes at  different  layers  is  not 1:1.  A de-
tailed  description  of  the  system of  hidden  nodes 
was given in Mírovský (2006).
_#descendants
This meta-attribute defines an exact number of 

all descendants of a node (number of nodes in its 
subtree), excluding the node itself.
_#lbrothers
This meta-attribute defines an exact number of 

left brothers of a node.
_#rbrothers
Similarly,  it  defines  an  exact  number  of  right 

brothers of a node.
_depth
It defines a distance between a node and a root 

in the result tree.
_#occurrences
This meta-attribute specifies an exact number of 

occurrences  of  a  particular  node  at  a  particular 
place in the result tree. It controls how many nodes 
of the kind can occur in the result tree as sons of 
the father of the node (including the node itself). It 
can  be  combined  with  meta-attribute  _transi-
tive for transitive meaning of the above defini-
tion.
_name
It names a node for references to values of its at-

tributes in the result tree.
_sentence
The value  of  this  meta  attribute  is  simply the 

sentence  the  result  tree  belongs  to  in  its  linear 
form. It can be used for linear searching in the sen-
tence (using regular expressions).

3 Comparison to TGrep

In this section, we compare the query language of 
Netgraph to the query language of TGrep, in order 
to show that the power of Netgraph query language 
is at least the same as the power of TGrep. We also 
show at the end that Netgraph has a greater power.

In subsection 3.1 we compare the ability of ex-
pressing an evaluation of a node. In the next two 
subsections (3.2 and 3.3) we translate TGrep posi-
tive  and  negative  predicates  to  Netgraph expres-
sions.  In  subsection  3.4  we  give  an  example  of 
Netgraph expressions that cannot be searched for 
in TGrep.

3.1 Node Evaluation

TGrep  is  a  one-attribute  searcher.  Each  node  is 
supposedly labeled only either  by a non-terminal 
symbol  or  a token.  Netgraph,  on the other  hand, 
can deal with multiple attributes and set conditions 
on them separately and even form groups of them 
that are labeled differently (so called “alternative 
nodes”). Leaving this aside, we can say that Net-
graph has (at least) the same expressing power in 
the sense of node values as TGrep does,  as both 
tools allow using regular expressions and set alter-
native values. Thus, we can almost simply repeat 
the example of a search pattern from TGrep manu-
al:
in TGrep:
/^[Cc]hild.*$/|kid|youngster

in Netgraph:
"[Cc]hild.*"|kid|youngster

Netgraph regular expressions are automatically an-
chored and are enclosed in quotation marks. The 
complete query in Netgraph in the text form would 
then  be  (it  also  has  to  be  “escaped”  in  the  text 
form, though not in the graphical form):
[token="\[Cc\]hild.*"|kid|young-
ster]
The wildcard represented by two underscores in 

TGrep is reproducible in Netgraph by not specify-
ing any attribute at the node: [].

3.2 Tree Structure

The close similarity between Netgraph and TGrep 
in  expressing  node  evaluations  disappears  com-
pletely  when  it  comes  to  defining  relations  be-
tween nodes.  Here,  these  two tools  have quite  a 
different  approach.  The  main  difference  is  that 
TGrep uses predicates to express dependency be-
tween nodes, while Netgraph expresses dependen-
cy directly in the syntax of the query. In this sub-
section, we try to match TGrep positive predicates 
with  similar  constructions  in  Netgraph.  We  take 
predicates  (relationships  between  nodes)  from 



TGrep manual  one by one and translate  them to 
equivalent Netgraph expressions.

The first line of each example (starting with  T) 
always shows the expression in TGrep, while the 
second line (starting with  N and occasionally fol-
lowed by other lines) shows the equivalent expres-
sion in Netgraph. 
 

A immediately dominates B:
T: A < B
N: [A]([B])

B is the X-th son of A:
T: A <X B
N: [A]([B,_#lbrothers=X-1])

We use meta-attribute _#lbrothers here, which 
specifies how many left brothers a node has. X-th 
to last  son is similar,  we only use meta-attribute 
_#rbrothers (number of right brothers).

A dominates B (A is dominated by B similarly):
T: A << B
N: [A]([B,_transitive=true])
Meta-attribute _transitive defines the father edge 

as transitive.

B is the leftmost (rightmost) descendant of A:
T: A <<, B
N: 
[A]([B,_transitive=true,_name=N1],
[_transitive=true,ord<{N1.ord},
_#occurrences=0]).
B is a transitive descendant of A and there is no 

transitive descendant of A that has smaller ord than 
B.  Rightmost  descendant  is  similar 
(ord<{N1.ord}).

A immediately precedes B:
T: A . B
N: AND
[A,_name=N1]
[B,ord={N1.ord+1}]
Since we generally do not know what dependen-

cy relation between the two nodes is, we must de-
fine them as two separate trees in a multiple-tree 
query (another possibility is to use a wildcard and 
two transitive sons). A precedes B is similar, we 
only use a different expression in the second tree:
N: [B,ord>{N1.ord}]

A and B are brothers:
T: A $ B

N: []([A],[B]) 
We use the wild card here since we generally do 

not know anything about the father (we only know 
that there must be one).

A and B are brothers  and A immediately pre-
cedes B:
T: A $. B
N: []([A,_name=N1][B,
_#brothers={N1._#brothers}+1])

We  have  to  use  meta-attribute  _#brothers 
here instead of attribute ord, because there may be 
other nodes (not brothers of A and B) in between 
them  in  left-right  order  of  nodes.  On  the  other 
hand, if we wanted to take the other nodes into ac-
count, we might use attribute ord.

Of  course,  things  get  more  complex when we 
start combining these expressions. We believe that 
in Netgraph the complex expressions remain well 
readable. Sometimes we may be lucky and have a 
convenient meta-attribute at our disposal, just like 
in the following example, taken again from TGrep 
manual, which specifies all nodes A that dominate 
either two or three sons:
T: A <2 __ !<4 __
N: [A,_#sons=2|3]

3.3 Negation

Netgraph's  way  of  specifying  relations  between 
nodes,  especially  their  dependency,  is  primarily 
positive and it has some difficulty expressing nega-
tive relations. For this reason, it is sometimes not 
easy or even possible to match directly and exactly 
TGrep  negative  expressions  without  “saying” 
something positive about the nodes, too.

A does not immediately dominate B:
T: A !< B
N: [A]([B,_#occurrences=0]).

B is not the X-th son of A:
T: A !<X B
N: A([B,_#lbrothers!=X-1])
But note that it also means that B is a son of A. 

Using meta-attribute _#occurrences again, we may 
have another try on this example with a different 
meaning:
N: [A]([B,_#lbrothers=X-1,_#occur
rences=0])



Here, B still may be a son of A, but not neces-
sarily, and in any case not the X-th one.

A does not dominate B:
T: A !<< B
N: [A]([B,_transitive=true,_#occur
rences=0])

B is not the leftmost descendant of A:
T: A !<<,B
This again must be considered in two separate 

cases: positive and negative. If we only want to say 
that the leftmost descendant of A has another prop-
erty than B, the query in Netgraph would be:
N: [A]([!B,_transitive=true,
_name=N1],[_transitive=true,
ord<{N1.ord},_#occurrences=0]).
On the other hand, if we want to say that B is a 

descendant of A that is  not the leftmost one, the 
query would be:
N: [A]([B,_transitive=true,
_name=N1],[ord<{N1.ord},_#occur-
rences>=1,_transitive=true])

A does not immediately precede B:
T: A !. B
N: AND
[A,_name=N1]
[!B,ord={N1.ord+1}]
Which is very similar to the positive case from 

the  previous  subsection.  Note  that  it  also  means 
that there is a directly subsequent node !B in the 
result tree (a node that does not have B-property). 

A does not precede B:
T: A !.. B
Just like before, two possible interpretations of 

this expression lead to two different realizations in 
Netgraph. The positive meaning is quite simple – 
A does  not  precede B is  equal  to  B precedes  A 
(since nodes cannot have the same left-right order). 
The negative meaning (there is A that is not fol-
lowed by B) would be translated:
AND
[A,_name=N1]
[B,ord>{N1.ord},_#occurrences=0]

A is not a brother of B:
T: A !$ B
N: []([A],[B,_#occurrences=0])

If  we  also  wanted  to  use  B  positively  in  the 
query, we might add another tree of a multiple-tree 
query.

It is not true that A $. B (similarly A !$.. B)
T: A !$. B
Many possible interpretations of this expression 

lead to many different realizations of the equiva-
lent Netgraph query. We will not show all of them 
(they are  all  similar  to  the  previous  queries)  but 
only choose the most direct one, B is a brother of 
A but does not immediately follow A: 
N: []([A,_name=N1],
[B,_#lbrothers!={N1._#lbrothers}+1
])

3.4 The Other Way

Since TGrep always searches for one pattern only, 
it cannot reproduce multiple-tree queries from Net-
graph,  combined  with  expression  OR.  Meta-at-
tribute  _optional also represents a type of OR-
expression on the tree structure and even the sim-
ple example given in subsection 2.2 cannot be re-
produced in TGrep:
[afun=Pred]([afun=Coord,_option-
al=1]([afun=Obj])).

4 Conclusion

We have presented Netgraph query language on a 
set of linguistically motivated examples. We have 
compared Netgraph query power to the power of 
TGrep query language in order to show that it is 
not  lesser,  by translating  all  TGrep predicates  to 
expressions in Netgraph. We have also shown that 
some Netgraph expressions cannot be translated to 
TGrep.

Many  constructions  in  Netgraph  seem  more 
complicated than respective expressions in TGrep. 
The reason is that we matched TGrep predicates. It 
is clear that any other system that uses a different 
set  of  predicates  cannot  be  as  straightforward as 
TGrep in  mimicking these  predicates.  It  is  suffi-
cient for our purpose that the translation is possi-
ble.

We can conclude that Netgraph query language 
is at least as strong as TGrep query language. The 
impossibility  of  translating  OR-expressions  from 
Netgraph to TGrep shows that Netgraph query lan-
guage is stronger than TGrep query language.
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