
3.3: Implementation of Tree Transfer System
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Chapter 1

Introduction

This document describes our implementation of the tree-transfer system as proposed in Bojar
and Čmejrek (2007). The reader is assumed to be familiar with the theoretical background.

Here we cover both the users’ manual as well as a brief overview of the source code for
software developers interested in re-using our code. The users’ manual includes the installation
and configuration process, command-line options and the structure of input and configuration
files. We also mention some basic experiments carried out with our system.

Chapter 2 is devoted to the tree alignment system, a tool for expectation-maximization (EM)
training of Synchronous Tree Substitution Grammars (STSG), including a discussion of current
problems with memory requirements of the model. Chapter 3 covers tree decoder, a system to
translate source dependency trees into dependency trees or strings in the target language.
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Chapter 2

Tree Aligner

2.1 Users’ Manual

We describe two implementations of a tree aligner based on Synchronous Tree Substitution
Grammar (STSG). The first one is the original Java implementation by Čmejrek (2006). The
only changes we made to this implementation are (1) loading a different input file format and
(2) using additional pruning methods. The second implementation is a complete rewrite in Perl
which we made in order to decrease memory requirements and to abridge the source code. Both
of the implementations were developed and tested under Linux, however they should be easily
portable to other platforms.

Sections 2.1.1 and 2.1.2 contain a quick introduction to both of the implementations and
step-by-step instructions to get working demos. Section 2.2 provides an overview of the align-
ment algorithms for two reasons: (1) to bridge the gap between the theoretical description
in Bojar and Čmejrek (2007) and the implementation, and (2) to lay foundations for the full
configuration possibilities of the two implementations in Sections 2.3.1 and 2.3.2.

2.1.1 Demo for Java Implementation

The demo of the Java implementation generates an STSG grammar based on 10 pairs of input
sentences and prints their most likely (“Viterbi”) alignments. To get a working demo of the
Java implementation, follow these few steps.

1. Install dependencies: you will need to install Sun Java Development Kit, and Apache Ant
building tool.

2. Get the package treeali-0.8-java.tgz containing the source codes and the demo input
files from the following page:

http://ufal.mff.cuni.cz/euromatrix/

3. To compile and build the system, run ant in the system root directory:

tar xzf treeali-0.8-java.tgz

cd treeali-0.8-java

ant

4. Now, everything is prepared to run the demo. Go to the demo directory and check out
its content:

cd demo

ls
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There are several files:

• demo.cs, demo.en—these are the input files containing tree pairs

• demo.properties—a demo configuration file

• iteration0.sh, iteration loop.sh—executable scripts

5. Run the initialization—observe synchronous rules in the input tree pairs

./iteration0.sh

The files demo0.log and model0 are created.

6. Run the Expectation Maximization loop (10 iterations)

./iteration_loop.sh

Rule probabilities are stored in the binary files model[0-10] (one for each iteration) and
the most likely alignments for all tree pairs are printed to standard output.

Each of the most likely alignments consists of treelet pairs which cover the whole input tree
pair. These treelet pairs are listed in a linearized form. Each line stands for a single treelet
pair. Left (Czech) and right (English) treelets are separated by four dashes ----. The treelets
are represented as lists of nodes. For each node, we print the node type (I for internal, F for
frontier), the index in the original sentence and the lexical value. An example of the most likely
alignment of one tree pair follows:

sentence1: dnes myslit_si ten být sen

sentence2: #PersPron seem dream #PersPron today

I,2,myslit_si I,4,být F,1,dnes F,3,ten F,5,sen

---- I,2,seem I,3,dream F,1,#PersPron F,4,#PersPron F,5,today

I,5,sen ---- I,4,#PersPron

I,3,ten ---- I,1,#PersPron

I,1,dnes ---- I,5,today

The tree structure is not included in this simple notation but the treelets are correct subtrees
of the input tree. To reconstruct the structure of the treelets, consult the input corpus files
(Section 2.1.3).

2.1.2 Demo for Perl Implementation

The demo of the Perl implementation does the same as the Java demo, i.e. it generates an
STSG grammar based on 10 pairs of input sentences and prints their most likely alignments.
To get a working demo of the Perl implementation, follow these few steps.

1. Install dependencies: you will need Perl (the implementation was tested on Perl version
5.8.8) and Perl modules Config::Tiny, Data::Dumper, BSD::Resource and Storable.

2. Get the package treeali-0.8-perl.tgz containing the source codes and the demo input
files from the following page:

http://ufal.mff.cuni.cz/euromatrix/

3. Check out the content of the directory treeali-0.8-perl, there are several files there:

• demo.cs, demo.en—input files containing tree pairs, identical to the input files in
the Java demo,
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• pstsg.conf—a demo configuration file.

• *.pm—Perl modules implementing STSG,

• observe synchronous rules.pl—implementation of initial extraction of synchronous
rules from tree pairs,

• em-iteration.pl—Perl implementation of an iteration of Expectation. Maximiza-
tion loop for refining of rule probabilities,

• em-loop.sh—a script for executing em-iteration.pl in a loop,

• iteration0.sh—a script for executing observe synchronous rules.pl on 10 tree
pairs of input files,

4. Everything is prepared, we can run the initial step:

tar xzf treeali-0.8-perl.tgz

cd treeali-0.8-perl

./iteration0.sh

This step will create the file model0 containing observed synchronous rules with initial
probabilities.

5. ... and the Expectation Maximization loop:

./em_loop.sh

This creates the files model[0-10], one for each iteration. Additionally, the most likely
treelet alignments are printed to the standard output in a linearized form as described in
Section 2.2.2 below.

2.1.3 Input Data Format

Input tree pairs are stored in a simple line-based format, each line corresponds to a tree. There
is one file for each language, the sentence-level alignment is given implicitly by the order of
lines. On every line, the tokens are separated by single spaces. The tokens are six-tuples of
“factors”, separated by the vertical bar symbol (|).

The use of the first three factors depends on the language, level of annotation and specifics
of the model, the 4th to the 6th factor represent the tree structure and the word alignment:
the linear order of the node in the sentence, the index of the parent node and the index of the
corresponding node in the other tree (we assume at most 1-1 node alignment coming e.g. from
an intersection of two 1-n alignments).

Figure 2.1 provides a sample pair of sentences, their representation on the tectogrammatical
layer (Mikulová et al., 2007) and the factored notation to express the tectogrammatical trees
in the source files. See Table 2.1 for the interpretation of factors used in our example.

Factor Index Czech English

1 base form or t-lemma of the word
2 semantic part of speech functor
3 formeme
4 word alignment
5 parent token
6 word order

Table 2.1: A possible usage of factors in Czech and English tectogrammatical trees.

8



Czech English

Original Sentence Jan má rád Marii. John likes Mary

Tectogrammatical
tree

t-lemma: mı́t

sempos: v

formem: v:fin

t-lemma: mary

functor: PAT

formem: n:obj

t-lemma: like

functor: PRED

formem: v:fin

t-lemma: jan

sempos: n.denot

formem: n:1

t-lemma: rád

sempos: adj.denot

formem: adj:compl

t-lemma: mary

sempos: n.denot

formem: n:4

t-lemma: john

functor: ACT

formem: n:subj

Factored notation jan|n.denot|n:1|1|2|1

mı́t|v|v:fin|0|0|2

rád|adj.denot|adj:compl|2|2|3

marie|n.denot|n:4|3|2|4

john|ACT|n:subj|1|2|1

like|PRED|v:fin|3|0|2

mary|PAT|n:obj|4|2|3

Figure 2.1: A sample input tree pair.

Algorithm 1 Observing all synchronous treelets usable for tree parsing.
1. function observe synchronous rules(left tree, right tree)
2. left treelets ← extract all treelets from left tree
3. prune left treelets
4. right treelets ← extract all treelets from right tree
5. prune right treelets
6. rule templates ← make pairs of left treelets and right treelets (all combinations)
7. prune rule templates
8. rules ← augment rule templates with all possible frontier mappings (pruned)
9. return rules
10. end

2.2 Overview of Alignment Algorithms

A (synchronous) rule in STSG consists of a pair of treelets and a mapping of their frontier
nodes. The task of finding a treelet-to-treelet alignment is the task of finding a set of rules that
synchronously generate the left and the right tree. We can also say that the left and right trees
are synchronously decomposed into treelets which are the left and right sides of synchronous
rules and attached at frontiers linked by the frontier mapping. The treelet-to-treelet alignment
is implied by the synchronous decomposition.

The method we use to align subtrees of the original pair of trees is an application of Ex-
pectation Maximization (EM) algorithm analogical to Inside-Outside algorithm for training
Probabilistic Context-Free Grammars (PCFGs). In each iteration, we count the inside and
outside probabilities for every node pair of every input tree pair using the model generated by
the previous iteration. Using these probabilities, we update expected counts of all rules and use
them to estimate rule-probabilities of the new model. The formulas for computations of inside
probabilities, outside probabilities can be found in Bojar and Čmejrek (2007).

The detailed procedure is described in Algorithms 2 and 3 that rely on a common subroutine
(Alg. 1). Alg. 2 describes the “zeroth” iteration—observing all the synchronous rules potentially
usable for parsing input tree pairs. Alg. 3 is one iteration of the EM algorithm. Alg. 3 is
repeated until convergence. The formal description in Bojar and Čmejrek (2007) shows that
the attachment of a treelet into a frontier node with different state is allowed in the derivation
step. Algorithms 2 and 3 do not use this derivation possibility as we do not add any rules not
seen in the data.

2.2.1 Safe Order of Synchronous Rules

When computing the inside probabilities in Alg. 3, the rules must be processed in a specific
order so that inside probabilities of all treelets attachable to the current rule have already been
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Algorithm 2 Compution of initial rule probabilities.
1. for each (left tree, right tree) ← tree-pair from input file
2. Rs ← observe synchronous rules(left tree, right tree)
3. for each rule R ∈ Rs
4. serialization ← serialize R
5. increment expected count of serialization
6. end
7. end
8. for each rule R ∈ Rs
9. compute probability of R out of its expected count
10. end

Algorithm 3 EM re-estimation of the probabilities.
1. for each (left tree, right tree) ← tree-pair from input file
2. Rs ← observe synchronous rules(left tree, right tree)
3. for each rule R∈Rs in safe order
4. count inside probability update of R for the chart cell
5. determined by left and right treelet bottom up indices
6. end
7. for each rule R∈Rs in reversed safe order
8. count outside probability update of R for the chart cell
9. determined by left and right treelet bottom up indices
10. end
11. for each rule R∈Rs
12. count expected count update of R
13. end
14. end

estimated. We call this order “safe”. Every safe order of rules follows bottom-up ordering of
nodes in the original trees, so we represent nodes in input trees using indices assigned from the
bottom to the top. Moreover, using a node as an internal always has to precede all rules that
use the node as frontier.

Table 2.2 lists all treelets generated independently from the left and right trees in Figure 2.1
in a safe order. The Cartesian product of these treelets makes the set of “rule templates”. If
the Cartesian product preserves the order of both input lists, the resulting rule templates are in
safe order, too. Safe order of rule templates ensures safe order of the rules—the frontier pairings
of each template can be ordered arbitrarily.

2.2.2 Serialization of Rules

The rules are stored in this serialized form:
(v → (Ijan)Imı́t(Fadj.denot)(Fn.denot))(PAT → FPAT)(1-1)

• (v → (Ijan)Imı́t(Fadj.denot)(Fn.denot)) represents the left treelet

• (PAT → FPAT) represents the right treelet

• (1-1) represents the frontier mapping of Fadj.denot and FPAT, the remaining frontier
node (Fn.denot) is mapped to the null tree

2.2.3 EM Iteration

A chart is constructed for each input tree pair. A chart is a matrix with rows numbered by left
tree nodes’ bottom-up indices and columns numbered by right tree nodes’ bottom-up indices.
A cell [i, j] contains inside and outside probabilities of the subtree pair rooted in nodes with
bottom up indices i and j from left and right input trees respectively.
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Left treelets Right treelets

1 nullState → nullLabel 1 nullState → nullLabel
2 n.denot → Ijan 2 ACT → Ijohn
3 n.denot → Fn.denot 3 ACT → FACT
4 adj.denot → Irád 4 PAT → Imary
5 adj.denot → Fadj.denot 5 PAT → FPAT
6 n.denot → Imarie 6 PRED → (Ijohn)Ilike(FPAT)
7 n.denot → Fn.denot 7 PRED → (FACT)Ilike(Imary)
8 v → (Ijan)Imı́t(Fadj.denot)(Fn.denot) 8 PRED → (FACT)Ilike(FPAT)
9 v → (Fn.denot)Imı́t(Irád)(Fn.denot) 9 PRED → FPRED

10 v → (Fn.denot)Imı́t(Fadj.denot)(Imarie)
11 v → (Fn.denot)Imı́t(Fadj.denot)(Fn.denot)
12 v → Fv

Table 2.2: Left and right treelets generated in a safe order from the sample tree pair in Figure 2.1.
Semantic parts of speech are used as Czech frontier states, functors as English frontier states,
tectogrammatical lemmas as both Czech and English internal node labels.

As can be seen in Alg. 3, all rules are iterated three times to update inside probabilities,
outside probabilities and to compute expected counts. Figure 2.2 shows an example of a cell’s
inside probability update by a rule. The safe order of rules ensures that the chart cells used for
update computation have already been finished. The update of outside probability estimates
and expected counts is done analogically.

(4)

(1) (3) (1) (2)

(3)má

rád

likes

increment inside[4, 3] by p(rule) × inside[1, 1] × inside[3, 2]

0 null 1 John 2 Mary 3 likes
0 null
1 Jan
2 rád

3 Marii
4 má

Figure 2.2: Example computation of inside probability update by a rule. The cell [4, 3] corre-
sponding to the pair of roots is updated using a grammar rule and the cells [1, 1] and [3, 2].

2.2.4 Backoff Models

A big problem of training STSG is huge data sparseness. The solution proposed by Čmejrek
(2006) is to use backoff models, i.e. models which use less fine-grained rule descriptions. The
granularity is defined by the following features:

1. the allowed size of the treelets, i.e. the number of frontier and internal nodes

2. the information stored in internal node labels,

3. the information stored in frontier states,

4. whether the tree structure is encoded in the rule or not.

We limit the maximum treelet size to at most 2 internal nodes and at most 5 frontier nodes.
The label and state strings are constructed from the three non-structural input factors, see
Section 2.1.3. If the tree structure is omitted, treelets become just sequences of nodes.
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Perl and Java implementations differ in possibilities of backoff models definitions. There
are several predefined backoff models in the Java implementation whereas it is possible to
directly choose the granularity of internal labels, frontier states and tree structure in the Perl
implementation. Table 2.3 lists the predefined backoff models with the corresponding feature
settings.

Factor 1 Factor 2 Factor 3
Predefined (Czech t-lemma) (Czech formem) (Czech sempos) Structure
backoff model (English t-lemma) (English formem) (English functor) preserved

Full Model label label state YES

Linear label label state NO

Linear Function
and Morphology ignored label state NO

Linear Function
and Function ignored ignored label, state NO

Structure ignored ignored ignored YES

Table 2.3: Predefined backoff models of the Java implementation. Each cell in the table specifies
which factor is used where, e.g. the “Linear Function and Morphology” model ignores factor 1,
uses factor 2 as the label of internal nodes and factor 3 as the state of frontier nodes.

2.3 Detailed Configuration Options

2.3.1 Configuring Java Implementation

The Java implementation of the aligner gets configuration from various sources: a configuration
file, command line options given to the aligner, command line options given to Java Virtual
Machine (JVM), and finally the input data used. We list the basic options and show how to set
them.

Training Data: command line options --leftTrees and --rightTrees given to aligner.

Subset of the Training Data: command line options --startFromSentence and --sentences

given to aligner. These options say which sentence to start from (the sentences are num-
bered from 0) and how many sentences to use for the training.

Backoff Models: the command line option --bm given to the aligner. The option can be
repeated to specify several models. The following backoff models are supported:

• FULL—Full model,

• FM—Linear Function and Morfology model

• FF—Linear Function and Function model

• S—Structure model

Pruning Method: the configuration file options initialPruning and iterationPruning.
The following pruning methods are supported, for a description see Section 2.4.6:

• TreeletsReflectWordAlignment

• InternalsReflectWordAlignment

• FrontierMappingsReflectWordAlignmentStrict

• FrontierMappingsReflectWordAlignmentBenevolent

Amount of Virtual Memory Space: command-line option -Xmx to the JVM.

12



Model Filename Prefix: command-line option --modelFN given to aligner.

For an example of the configuration file options, see the file demo.properties and for an
example of the command-line options see the file demo.sh both in the Java demo directory.

2.3.2 Configuring Perl Implementation

The Perl implementation gets configuration options from command line and from configuration
file. There are only two command-line options; --iteration specifies the number of iteration
of EM loop and --config specifies the configuration file containing all other options:

Backoff Models are specified by backoff models option. Its value are space separated back-
off model codes. Each code is in form of a-b-c, where

• a is a set of factor indices which determine frontier node state

• b is a set of factor indices which determine internal node label

• c is a boolean determining whether treelet structure is preserved

Pruning Methods are specified by left treelet pruning, right treelet pruning,
treelet pairs pruning and rule pruning options.

Amount of Virtual Memory Space is specified by virtual memory size option.

Model Filename Prefix is specified by model prefix option.

For an example of configuration file see the file pstsg.conf in the Perl demo directory.

2.4 Technical Issues

In the following, we describe several technical difficulties with the Java implementation of the
aligner and we examine ways of solving the problems.

The first simple problem was the format of input tree pairs. The original implementation
used a pair of CSTS1 files each containing trees for one language. We avoided the conversion of
our dataset into CSTS because of character encoding issues and changed the implementation
to accept the simple line-based input format as described in Section 2.1.3.

A more complex problem are immodest memory requirements of the software. We proposed
several independent ways to decrease the memory requirements. All the ways can be applied
together to get the best results.

In general, there are two ways of memory savings:

• decreasing the size of each rule—this method is discussed in Section 2.4.1,

• decreasing the number of stored rules—this method is discussed in Sections 2.4.2, 2.4.4,
2.4.5 and 2.4.6.

2.4.1 Detaching Lexical Information

We can save memory by decreasing the size of each rule stored. As the rules are stored in a
serialized form, our goal is to decrease the length of the serializations. We do this by detaching
lexical information into separated dictionaries. In other words, we create arrays of all possible
labels and states of the input nodes and store indices to the arrays instead of full strings to the
rules. As shown in Table 2.4, this shortens the length of a rule on average by 33 %. Further
reduction could be achieved by indexing lexical items in the order of decreasing frequency and
by using some variable-length encoding of integers, e.g. UTF-like notation or Elias gamma code.

1CSTS is an obsolete format for storing dependency trees, used in the Prague Dependency Treebank 1.0 and

Prague Czech-English Dependency Treebank 1.0.
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Lexical information Rules extracted Tree pairs processed

full 8,612,247 298
detached 12,993,863 419
stripped 16,848,309 646

Table 2.4: Comparison of rule counts that fit into 4 GB of memory depending on the method
of storing lexical information in rules. The third line shows the upper bound: the number of
rules with lexical information completely removed.

2.4.2 Estimation of the Number of Extractable Treelets

Given a tree pair of m and n nodes on the left and right sides respectively, let us estimate an
upper bound on the number of rules that can be extracted.

The number of treelets extracted from the left tree is sum of these counts:

• 1 null treelet,

• m treelets containing a single frontier node (and no internal node),

• m treelets containing a single internal node with all its children as frontier nodes,

• m − 1 treelets containing two internal nodes and all their children as frontier nodes (we
do not allow more than two internal nodes in the treelets).

To get the number of rules, we need to count all frontier nodes mapping of each treelet pair.
If fl and fr are the frontier node counts in left and right treelets respectively, the number of
mappings p can be computed using this formula:

p(fl, fr) =

min(fl,fr)
∑

k=0

(

fl

k

)

fr!

(fr − k)!
(2.1)

• k is the number of edges in the mapping, ranging from 0 to min(fl, fr) when all frontiers
in one of the treelets are mapped,

•
(

fl

k

)

is the number of all possible subsets of left frontier nodes that will be mapped to a
right frontier node (the remaining left frontiers are left unmapped),

• fr !
(fr−k)! is the number of possible assignments of right frontier nodes to the selected k left

frontier nodes. (Every linked left node gets its counterpart from the right nodes that has
not been used yet.)

Assuming the maximum branching factor is b, one-internal-node treelets contain at most b

frontiers and two-internal-node treelets contain at most 2b − 1 frontiers. Finally, null treelets
contain no frontier and single-frontier-node treelets contain one frontier.

To estimate the upper bound on extractable treelets, we assume the maximum branching
for every node. The number of extractable treelets is then the sum of:

• (m− 1)(n− 1) · p(2b− 1, 2b− 1) for pairs of two-internal-node treelets,

• m(n− 1) · p(b, 2b− 1) for pairs (one-internal-node treelet, two-internal-node treelet),

• (m− 1)n · p(2b− 1, b) for pairs (two-internal-node treelet, one-internal-node treelet),

• mn · p(b, b) for pairs of one-internal-node treelets,

• m(n− 1) · p(1, 2b− 1) for pairs (one-frontier-node treelet, two-internal-node treelet),

• (m− 1)n · p(2b− 1, 1) for pairs (two-internal-node treelet, one-frontier-node treelet),
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• mn · p(1, b) for pairs (one-frontier-node treelet, one-internal-node treelet),

• mn · p(b, 1) for pairs (one-internal-node treelet, one-frontier-node treelet),

• (n− 1) · p(0, 2b− 1) for pairs (null treelet, two-internal-node treelet),

• (m− 1) · p(2b− 1, 0) for pairs (two-internal-node treelet, null treelet),

• n · p(0, b) for pairs (null treelet, one-internal-node treelet),

• m · p(b, 0) for pairs (one-internal-node treelet, null treelet),

• n · p(0, 0) for pairs (null treelet, one-frontier-node treelet),

• m · p(0, 0) for pairs (one-frontier-node treelet, null treelet),

• m · p(0, 0) for pairs of one-frontier-node treelets,

• p(0, 0) for a pair of null treelets.

In our experiments, we restrict the branching factor to value 5. All trees containing a node
with 6 or more children are not processed. With this branching factor and assuming 20 words
per sentence, our formula gives us about 63 · 109 rules. This worst case estimate is obviously
very pessimistic as not all nodes have the maximum branching factor, but if we assign b=3, the
estimate still remains unfavourable giving 601,585 rules extractable from a single tree pair.

2.4.3 Branching Factor Estimation

We can estimate the average branching more precisely by exploration of our training data: the
parallel corpus CzEng (Bojar et al., 2008) containing 1 million sentences in both Czech and
English. The distributions of nodes’ branching factors in Czech and English parts of input data
are shown in Table 2.5 and Table 2.6 respectively.

Branching factor 0 1 2 3 4 5 6 – 50

Thousands of nodes 4,935 3,030 1,572 629 213 56 21

Table 2.5: Branching factor distribution in Czech data.

Branching factor 0 1 2 3 4 5 6 – 50 51 – 3561

Thousands of nodes 6,198 2,286 1,523 681 265 91 64 7

Table 2.6: Branching factor distribution in English data.

To get an upper and lower estimate of total count of rules extractable from the input data,
we find maximal branching factor in each tree. The lower estimate is then calculated as number
of rules generated by treelet pair composed of a single-internal-node treelet on each side, where
the internal node has the maximal branching factor (i.e. a subset of all rules generated by the
tree pair). The upper estimate is calculated assuming each node in a tree has the maximal
branching factor of the tree and summing similarly as in previous section.

Based on CzEng data, the upper estimate of rule count per sentence is 2, 1 · 109 and the
lower estimate per sentence is 1560. If we assumed absolutely no lexical overlap between various
sentences, the extracted grammar would need to contain something between 1.5·109 and 2.1·1015

rules. Though quite imprecise, these estimations show that the number of extractable rules is
huge and a pruning method is necessary.

15



2.4.4 Pruning of Rules with a Low Probability

A very straightforward pruning method is to disqualify rules which obtain a very low probability
after a few iterations of the EM algorithm. This can be achieved by setting a threshold of some
minimum required probability. Another possibility is to keep only a fixed number of the most
probable rules for each left hand side of rule (root state).

This approach still has several problems. First, the pruning is applicable only after a few
iterations so memory requirements of the first few iterations stay unreduced. Second, the prun-
ing must be in general less restrictive than in e.g. phrase-based machine translation because the
set of rules has to cover the whole training corpus whereas in phrase-based machine translation,
there is only one sentence affected by the pruning at a moment. Additionally, a single threshold
is hardly applicable for conditional probabilities: too many rules would be pruned for frequent
root states, too few rules would be pruned for rare root states.

2.4.5 Pruning of Low Frequency Treelets

Pruning of low frequency treelets is a similar method but it does not suffer from the listed
problems. This method requires a prior processing of both sides of the training parallel corpus.
All one-side treelets are extracted and counts of their occurrences are stored. In the phase of
observing synchronous rules, only rules consisting of frequent treelets are preserved.

Note that in contrast to previous pruning method, this one gives benefit of memory savings as
the rules are pruned even in the “zeroth iteration”. Additionally, the pruning is well motivated:
the rules with low frequency treelets could be marginal or erroneous.

2.4.6 Pruning Using Word-Alignment

Another pruning methods take into account information of word alignment for disqualifying
rules. We use the intersection of GIZA++ Czech-English and English-Czech word alignments.
We distinguish several pruning methods:

TreeletsReflectWali is the most straightforward pruning method. It disqualifies each rule
which contains a node (on left or right side) aligned to a node outside of the rule (i.e. all
word-alignment edges have to stay within the left and right treelets).

InternalsReflectWali is similar to the previous method, except that only alignments starting
in internal nodes are considered. A word-alignment link starting in a frontier node and
leading outside of the rule thus does not prevent the extraction.

FrontierMappingsReflectWaliStrict restricts allowed rules on the basis of frontier mapping.
If the mapping specifies a link between two frontier nodes, the nodes have to be aligned
using the word alignment, too.

FrontierMappingsReflectWaliBenevolent is a more benevolent variant of the previous method.
It allows a frontier node to be word-aligned to any node in the subtree of the paired frontier
node.

Unfortunately, the combination of the limit of treelet size and word-alignment pruning can
completely prohibit the synchronous parsing. Figure 2.3 shows schemas of two situations which
lead to such inappropriate pruning.

Consider Figure 2.3 (a) and the pruning method InternalsReflectWali. For contradiction,
suppose there exists a synchronous decomposition respecting the indicated word-alignment and
containing at most 2 internal nodes in every treelet. Due to the treelet size limit, the node a has
to be in a different treelet than the node b. The word alignment pruning forces the node a′ to
be in the same treelet pair as the node a. Similarly, the node b′ must be in the same treelet pair
as the node b. The contradiction comes from the order of the treelet pairs: based on the left
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Figure 2.3: Problematic situations for word-alignment pruning. The dotted lines indicate the
word alignment.

tree, the treelet containing a has to precede the treelet containing b but the right tree requires
the reverse order. Therefore such a synchronous decomposition cannot exist.

Figure 2.3 (b) remains parsable under InternalsReflectWali: the derivation can proceed
in two steps, we start with a treelet pair containing a and a′ (and the son of a′ as another
internal node), and follow with a treelet pair containing b and b′ (and the parent of b′ as
another internal node). With the more restrictive pruning of TreeletsReflectWali, there is
no way to decompose the sentence. Every treelet containing the node a must include the node
b at least as a frontier. The corresponding nodes a′ and b′ are however too distant to belong to
a single treelet (even if b′ were to be a frontier node).

An example of such situations in the data is shown in Figure 2.4. We see both the head
switching (regardless an error in the automatic word alignment) as well as too distant nodes:
The nodes “a”, “jiný1”, “and”, “other” play the roles of the nodes a′, b′, a, b from Figure 2.3 (b),
respectively. The only chance to construct the illustrated tree pair is to use a less restrictive
pruning method and (asynchronously) deconstruct one side and construct the other always using
treelet pairs where one of the treelets is null.

a

vedět doba mı́sto

odjakživa
i

jiný2

jiný1známý

have

life awareness
#PersPron

#PersPronall
and

other time place

Figure 2.4: An example of a tree pair which is not covered by pruned set of rules.

Figure 2.4 illustrates one more problem. The synchronous decomposition has to start with
a treelet pair rooted in the pair of roots of the trees. If all such treelet pairs are pruned (which
happens in Figure 2.4), then the decomposition is impossible at all. This can be fixed by the
addition of technical roots to all trees.

2.4.7 Experiments with Pruning Methods

Table 2.7 summarizes our experiments with various pruning methods and the corpus CzEng.
With no pruning at all, only 419 sentences could have been processed before the fixed limit
of 4 GB RAM was exhausted (about 13 million rules were created, giving us about 31 thou-
sand rules per sentence). With the most restrictive pruning based on word alignment, i.e.
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TreeletsReflectWali, 833 thousands sentences were processed before the memory was ex-
hausted with about 37 rules per sentence. However, the strict pruning drastically reduced the
coverage: only 43% of sentences had a synchronous parse using the extracted rules (see “Tree
pairs reconstructed”). The most promising combination so far appears to be FrontierMapping-
ReflectWaliBenevolent + InternalsReflectWali: the whole corpus can be processed and
the rules still fit to the 4 GB limit, however, the coverage remains rather poor: only about 37%
of sentences can be reconstructed.

Tree pairs Tree pairs
Pruning method Rules extracted processed reconstructed

No pruning 12,993,863 419 419
TreeletsReflectWali 30,977,163 833,133 354,264
InternalsReflectWali 16,475,748 7,183 3,282
FrontierMappingsReflectWaliStrict 1,852,532 1,475 1,475
FrontierMappingsReflectWaliBenevolent 2,404,958 1,475 1,475
Pruning of low frequency treelets 7,715,266 1,007,305 63,350
FrontierMappingReflectWaliBenevolent
+ InternalsReflectWali 68,725,228 1,007,305 370,591

Table 2.7: Comparison of various pruning methods.

2.5 Remarks on Perl Reimplementation

2.5.1 Motivation

The Perl implementation was developed in order to meet following goals:

1. To abridge the source code: The original Java implementation is a multi-purpose software,
it is able to load several input formats, to use Prague Dependency Treebank data specifics
and contains several obsolete configuration options. In contrast, the Perl implementation
is kept as small as possible having the single functionality of training STSG.

2. To decrease memory requirements: all structure which appear many times during com-
putation (e.g. treelets and rules) are represented by space-saving data structures with
minimal overhead costs. Moreover Perl seems to have less memory consuming implemen-
tation of associative arrays (hashes).

Both of these goals were achieved. The source code of the whole program is only about
1000 lines long. The size of largest grammar that fits in the memory is greater than in the Java
implementation. The comparison of the implementations is shown in Table 2.8.

Implementation Rules extracted Trees pairs processed

Java 6,387,168 297
Perl 12,993,863 419

Table 2.8: Comparison of Java and Perl implementation

2.5.2 Modules Documentation

The Perl implementation consists of five executables and three modules:

observe synchronous rules.pl: the “zeroth” iteration of observing and storing all (possibly
pruned) synchronous rules in the training corpus. Probabilities estimated by maximum
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likelihood are assigned to the rules. The initial scoring model used by first iteration of
EM loop consists of these rule–probability pairs.

em iteration.pl: an iteration of EM loop.

filter sentences.pl: simple filter which omits trees containing a node with 6 or more chil-
dren.

treelet counts.pl: computes the number of treelet occurences in the training corpus. These
counts are used for pruning of low frequency treelets as described in Section 2.4.5.

transcode words to numbers.pl: filter which numbers lemmas, formems and functors / sem-
poses in the input files in order to decrease size of a rule as described in Section 2.4.1.

PSTSG Input.pm: module of subroutines for reading the input file and converting its lines to
tree structures.

PSTSG Treelets.pm: module of subroutines for extracting and serialization of treelets, treelet
pairs and synchronous rules and subroutines for all kinds of pruning.

PSTSG Config.pm: module which reads both command-line and configuration-file options.

2.6 Future Plans

2.6.1 Using External Storage

We could either use a custom implementation to write observed rules directly to disk and use
external sort to obtain their tree counts or we could simply tie Perl hashes to an external
database using e.g. the module DB File.

2.6.2 Improving Pruning Methods and Combining with Backoff Models

All the experiments reported in Section 2.4.7 use the full model. While the pruning of low
frequency single treelets prunes too many rules (coverage drops to 6% of sentences) in the full
model, it could perform substantially better with less fine-grained backoff models.

We could also reduce the constraints of the alignment based methods, e.g. the Internals-

ReflectWordAlignment could demand only one of the internals to be aligned correctly as most
of the rules kept by this method are only one-internal ones.

Moreover, other pruning methods can be developed, e.g. we could demand a similar position
(or distance from the root node) in the paired treelets.

2.6.3 Impact on TreeDecode

The transfer step (see Chapter 3) still uses heuristics to extract the dictionary of treelets. We
will soon investigate the performance of the transfer step, if treelets are extracted and more
importantly scored using the tree aligner.
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Chapter 3

Tree Decoder: TreeDecode

In this chapter, we describe the implementation of the tree decoder, TreeDecode. TreeDe-

code was developed for Linux, primarily intended for the i686 and x86 64 architectures, but
we believe that without much effort, it should be portable to other platforms and architectures
as well.

We first give the reader a general overview of TreeDecode’s functionality and then describe
the important steps and their configuration in detail.

3.1 General Overview and Features

TreeDecode runs experiments defined by the user on some given training data and input
data. The result of an experiment is the translated text as well as an automatic estimate of
output quality, if some reference translation was provided in the input.

Each experiment is fully described by its configuration file.

3.1.1 TreeDecode Operation

Based on a single configuration file, TreeDecode performs the following tasks, see Figure 3.1
for a flow chart:

1. Load the configuration file.

2. Train and/or load translation and scoring models.

3. Optionally tune model weights in several MERT iterations:

(a) Load tuning input sentences with reference translations.

(b) Translate the sentences using current weights.

(c) Evaluate output n-best lists using BLEU or tree edit distance.

(d) Use MERT procedure to find new weights.

(e) Repeat the translation with new weights until locally optimal weights are found.

4. Load test input sentences (optionally with reference translations).

5. Translate input sentences; each sentence is translated in the following stages:

(a) Create translation options for each node in the source tree.

(b) Gradually expand partial hypotheses using translation options, covering the source
tree top-to-bottom and constructing possible target trees synchronously.

(c) Extract n-best list of the highest-scored target trees.

(d) Optionally linearize the target trees with an external linearizer and rescore them
using an n-gram LM.
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Figure 3.1: Data flow in TreeDecode.

6. Optionally evaluate output translations using BLEU (linearized output) or tree edit dis-
tance.

3.1.2 Parallelization and Caching

We use two complementary techniques to greatly speed up the run of TreeDecode:

• Both training (collection of treelet counts) as well as translation of tuning and input
sentences can be parallelized using Sun Grid Engine.

• Intermediate results are persistently cached (i.e. stored on the disk). For instance, if a
model is created according to some configuration, both the exact configuration as well as
the pathname to the model are stored in a disk cache. If any other TreeDecode process
needs to build a model based on the same configuration, the cached model is reused. File
locking is used to force all TreeDecode processes to wait for the single first worker, if
the model is not finished yet.

The caching and parallelization fit nicely together. In parallel execution, there is a master
process that uses SGE to launch slave processes. Slave processes can run on different computers
so there is no way to share memory with them. It would also be greatly inefficient to send all
model data to them using inter-process communication (e.g. a bi-directional pipe). Instead, we
rely on a shared disk (NFS) and send only the configuration to the slaves. As the slaves try to
construct all the models needed for the configuration, they find the models already constructed
in the cache and all they have to do is to load them.

Data serialization techniques we use (the module pickle from Manarchive) are dependent on
both the platform (i686 vs. x64) as well as the exact type definition of the serialized data term.
To ensure compatibility between the master and the slaves, both functionality is implemented
in the same executable file treedecode. When launched with some special arguments on the
command line (never used by users directly), the code runs in one of so-called “slave modes”,
waiting for serialized input on stdin and serializing the output of the required predicate back
to stdout. For each externalized predicate (i.e. the predicate that runs sometimes in a separate
process), there is a special slave mode. Each of the supported slave modes thus corresponds to
one of the externalizable predicates.

TreeDecode in the main process tries to correctly handle various exception cases that
can occur in slave processes. Some situations may still have remained untreated, which usually
results in broken communication between the master and a slave. The master then complains
with messages like “unable to unpickle functor lex”. In such cases, the actual error is reported
in the logfile of the respective slave process.
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3.2 Users’ Manual

3.2.1 Installation

TreeDecode requires a Mercury compiler of the development version rotd-2007-05-05 or
later. The latest stable version as of the writing of this document, 13.1, is not sufficient, as
TreeDecode uses some advanced features introduced into the compiler after the release.

1. Get the source codes and the demo input files from the following page:

http://ufal.mff.cuni.cz/euromatrix/

To simplify the installation process, treedecode-0.8.tgz package is self-contained.

2. Extract the archive:

tar xzf treedecode-0.8.tgz

3. Compile the contents:

cd treedecode-0.8/src

make

3.2.2 Quick Run

To perform a simple experiment, run:

make demo-tecto

See the file Makefile for the exact command issued. The demo will uncompress a tiny sample
training corpus, run an experiment using the configuration confs/basic tecto to tecto/conf

(see Appendix B) and print where the log files are.
The final summary at the end of the standard error log file (the file err) indicates that

the demo translated 10 sentences. The most frequently used model was to keep a node not
translated (“unk”). The input trees had 14.4 nodes on average. Based on the tree edit distance
metric, the agreement with the reference translation was about 45 % (or about 48 % if only node
lemmas are considered):

Translated 10 sentences (0 had no translation) in 1.13s (0.1+-0.1s/sent, ...

Tropts used: unk:56 tr:52 wfw:30 wfwlemfunc:3

For the translated: avg input words: 14.4+-6.2, output words 14.4+-5.8, ...

10 sents: exact=45.45%, wprec 24.3%, wrec 20.0% (0 unscored), f0t_lemma=47.65%...

The outputs are stored in the out file. Each output sentence is on a separate line and the
output tree structure is rendered using square brackets and the hash symbol (#) to indicate the
position of the father node among its sons, e.g. (line breaks and indentation added for clarity,
listing of node attributes abbreviated):

[--root--

#

[noon

[t_lemma|dalšı́|||functor|RSTR|||gram/sempos|adj.denot... # ]

[balkan # ]

[t_lemma|vysoký|||functor|RSTR|||gram/sempos|adj.denot... # ]

#

]

]
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The auxiliary root is always labelled --root--. Nodes without a translation usually consist
of one output factor only (e.g. noon), other nodes are printed with all output factors.

For debugging and illustration purposes, the input tree, best hypothesis and the reference
translations of each sentence are also produced as a scalable vector graphics (SVG) file, e.g.
clip1.svg in our example. The SVG output is not only easier to interpret, but it also indicates
the decomposition of the input tree and the corresponding composition of target-side treelets.

3.2.3 Configuring an Experiment

Each experiment is fully described by a structured configuration file. In the following pages,
we shall describe the syntax of the configuration file formally so that there are no ambigui-
ties. For the meaning of some options, the reader is referred to Bojar and Čmejrek (2007) for
mathematical and algorithmic description of tree transduction.

TreeDecode is implemented in Mercury and uses its syntax (which is vaguely similar to
that of Prolog) for the configuration file. When loading the file, TreeDecode looks for the
term config/13 and tries to interpret it using the rules below. No further checking is done—
if the term is successfully parsed, it is deemed sane and the process described in Section 3.1
proceeds to step 2.

TreeDecode allows users to declare variables in the configuration file. These are provided
only as a means to reduce redundancy and improve clarity and are not visible anywhere later in
the process. At the end of the loading of the configuration, they are substituted into the main
term. The file may contain an arbitrary number of variable definitions, but their names must
not clash and each variable must be used after it is defined.

Note that in the present version, we include some runtime environment settings in con-
figuration files as well. We plan to separate all settings that do not influence the output into
special files so that the configuration would describe only the experiment regardless of its actual
execution.

Formal Syntax of a Configuration File

In the following, we will use this font to denote terminals (i.e. strings that occur verbatim
in the configuration file), this font to denote non-terminals (i.e. types, in fact) and this font

to denote built-in types. Also, [X ] will denote a list whose elements are X ’s (be it terminals,
non-terminals, built-in types or combinations of these). Similarly as in Prolog, having e.g.
three elements a, b and c, the list that contains these elements in the given order is written as
[a,b,c]. [] is the lexical representation of an empty list.

The built-in types are integer, float and string. Their lexical form is the same as that of the
corresponding types in the C language.

Configuration files may also contain comments of two kinds: Prolog-style, i.e. from the
character “%” to the end of the line, and C-style, i.e. from “/*” to “*/”. White space (other
than that in string tokens) is ignored.

The formal syntax of the configuration file (represented here by the non-terminal ConfigFile)
after the removal of comments and non-significant whitespace characters is the following:

• ConfigFile → VariableAssignments ConfigTerm

Variable assignments are defined as follows:

• VariableAssignments → λ

• VariableAssignments → VariableName = AssignableTerm. VariableAssignments

– VariableName → string

variable name must conform Prolog-like notation, i.e. an uppercase letter optionally
followed by alphanumeric characters or underscores.
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Only a subset of all terms is allowed to be assigned to a variable:

– AssignableTerm → factors config(FactorsConfig)
for the definition of FactorsConfig , see page 26.

– AssignableTerm → factors to use(FactorsToUse)
for the definition of FactorsToUse , see page 28.

– AssignableTerm → corpus(Corpus)
for the definition of Corpus , see page 26.

– AssignableTerm → limits(TreeletSizeLimit)
for the definition of TreeletSizeLimit , see page 24.

– AssignableTerm → dirconf(DirConf )
for the definition of DirConf , see page 27.

– AssignableTerm → fftable(FFConfig)
for the definition of FFConfig , see page 28.

– AssignableTerm → int(integer)

an integer value.

After variable expansion, the main configuration term has the following syntax:

• ConfigTerm → config(OutputType, TreeletSizeLimit, StackSizeLimit, Tweaks, Weights,
MERT, TestDataSource, FactorsConfig, Evaluation, DirConf , RecombEquality, TrgConf ,
OutputCollectors).

Omissions of some of the arguments or substitution of variables at wrong places results in a
type error.

We shall now describe each of the items in detail.

OutputType determines the sort of the result of the whole process. Valid options are

• OutputType → produce string

the output is a text (string).

• OutputType → produce tree

the output is a tree.

TreeletSizeLimit are the limits for treelet size. In the main config term, the limits are
applied to input trees before translation. In the individual models, the limits are applied
to both source and target trees when extracting treelets.

Treelets exceeding these size constraints are discarded. In some cases, this can result in
sentences with no translation at all (e.g. due to excessive branching).

• TreeletSizeLimit → limits(MaxInternal, MaxFrontier, MaxBranching)

– MaxInternal → integer

maximum number of internal nodes.

– MaxFrontier → integer

maximum number of frontier nodes.

– MaxBranching → integer

maximum branching factor of the treelet, i.e. the maximum number of children
of each node.

StackSizeLimit is an integer that specifies the maximum length of the beam-search stack.

• StackSizeLimit → integer
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Tweaks were introduced to simplify adding new options to the decoder without the need to
change the main config type. This allows to keep old config files unchanged, even if a new
tweak is added. The old config file will be launched with the tweak set to a default value.

Moreover, there is a quick way of adding a new command-line option to set the value
of a particular tweak. So in a way, tweaks can be seen as a direct reflection of some
command-line options in the model.

The experience so far suggests that there are rather only few situations where these non-
structured configuration options are useful. In general, it is better to keep the flags close
to the modules that use them.

Tweaks are defined as an associative list, i.e. a list of key-value pairs:

• Tweaks → [TweakName-TweakValue]

– TweakName → tropt limit

limits the number of translation options

– TweakValue → i(integer)

Weights is a list of floating-point numbers that determine the weights of the scorers. If the
list is empty, the word and phrase penalty scorers are set to -1 and the rest to 1. If the
number of weights does not match the number of lambdas introduced by models in the
configuration, TreeDecode aborts.

• Weights → [float]

MERT configures the settings of Minimum Error Rate Training, the iterated weight optimiza-
tion procedure.

• MERT → no mert

do not use MERT, translate with the specified (or default) weights.

• MERT → mert(NBestList, RandomStarts, MERTDevSource, FactorsConfig, MERTDevRefs)
perform the MERT training as described in Och (2003), using BLEU as the objective
function.

– NBestList → integer

the length of the n-best list to use.

– RandomStarts → integer

the number of random starts.

– MERTDevSource → string

source file to be used for the training process. The fourth argument of the mert

term specifies the interpretation of the factors given in the file (for definition of
FactorsConfig , see below).

– MERTDevRefs → [string]
reference files for BLEU.

• MERT → try some([Probe ], string, FactorsConfig, Evaluation)
this option is useful for more or less manual exploration of the weights vector space.

As opposed to MERT, which performs a search through the vector space, this method
finds the best vector of a given fixed set of vectors. The evaluation method to use is
determined by Evaluation (see page 27 for its definition).

Probes provide generic methods for generation of the weight vectors.

– Probe → all equal

vector with all scorers’ weights set to 1.
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– Probe → wordpenalties negative

vector with all scorers’ weights set to 1, except scorers for source and target word
penalties, which are set to -1.

– Probe → one vs rest(float, float)

all vectors with one component set to the value of the first argument and the
remaining to the value of the second argument.

– Probe → one vs rest vs wordpenalties(float, float, float)

all vectors with word penalty scorers weitghts set to the value of the third ar-
gument, one of the remaining components set to the value of the first argument
and the remaining components set to the value of the second argument.

TrainDataSource defines the source of the training data.

• TrainDataSource → stdin

the data will be read from the standard input.

• TrainDataSource → file(string)

the data will be read from the file specified in the argument.

Corpus is used to specify a training parallel corpus.

• Corpus → corpus(string, FactorsConfig, FactorsConfig)
TreeDecode’s view of a bilingual corpus determined by the corpus file name (the
first argument), and the interpretation of source and target language word factors
(the second and third argument, respectively).

FactorsConfig provides mapping from factors in the input data to factors in the internal
structures. In the main configuration term, the FactorsConfig is concerned with the
interpretation of input test file, in the Corpus term, FactorsConfig describes the corpus
file.

• FactorsConfig → factors config(GovFactor, WordFactor, FstateFactor)

GovFactor says which factor is to be used as the index of each node’s head (the root
of the tree has index 0).

– GovFactor → verbatim(integer)

use the factor at the index given by the argument.

– GovFactor → verbatim rehanging final punct to root(integer, integer)

fix parses parsed by the Collins parser: if the word form (pointed to by the first
argument) of the last word is ‘.’ or ‘?’, set the value to 0, otherwise use the
value of the factor given by the second argument.

– GovFactor → linear tree

construct a linear tree, i.e. the head is always the previous word.

WordFactor defines the factors for internal nodes.

– WordFactor → wordfactor([string-FactorConstructor ])
an associative list that assigns names (the first element of each pair) to factor
constructors. (For the definition of FactorConstructor , see below.)

FstateFactor defines the factor for frontier state whenever a node is used as a frontier.

– FstateFactor → fstatefactor(FactorConstructor)

FactorConstructor describes what factors from the input data to pick and bind together.

• FactorConstructor → unit

the factor does not carry any information.
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• FactorConstructor → verbatim(integer)

take the exact value of the given factor (as specified by the index).

• FactorConstructor → cs agr 1(integer, integer, integer)

constructor for modelling agreements (for Czech) based on (Bojar, 2007) – the argu-
ments refer to (in the following order) the word form, lemma and tag factors.

• FactorConstructor → en fm phr pos(integer, integer, integer)

constructor for joining the word form, phrase and tag factors; again, the arguments
correspond to the factor indices.

• FactorConstructor → complex([string-integer])
an associative list used to construct an atomic factor by “gluing together” an arbi-
trary combination of input factors. The first element of each string-int pair allows
yout to provide a name of the component of the complex factor. The second element
is the index of the input factor.

Evaluation configures the evaluation of a translation output.

• Evaluation → no evaluation

do not perform any evaluation of the output.

• Evaluation → evaluate bleu([string])
for linearized output, evaluate the quality of translation using BLEU. The argument
defines the names of reference files to use.

• Evaluation → evaluate trees(TreeEvaluation, LinearizedEvaluation)
for non-linearized output, evaluate the quality of translation using a tree edit distance
metric (see (Shasha and Zhang, 1997)) and/or using BLEU after linearization.

– TreeEvaluation → no tree evaluation

do not score the output trees.

– TreeEvaluation → treedist(string, FactorsConfig, [EvalFactor ])
evaluate the tree distance of the output to the reference translations.

∗ EvalFactor → all factors

use all factors.

∗ EvalFactor → single factor(integer)

use a single factor, the argument being its index. Note that although WordFactor
is an associative list that assigns each internal node factor a name, for im-
plementation reasons we index the factors by the order they appeared in the
list.

∗ EvalFactor → section of complex factor(integer, string)

pick a single section from a complex factor. As above, the word factor is
referenced to by its order of appearence in the list instead of its name.

– LinearizedEvaluation → no linearized evaluation

do not perform evaluation of linearized output.

– LinearizedEvaluation → linearize and bleu(string, [string])
linearize output trees and score the sequences using BLEU. The first argument
is the full path to an external linearizer, the second is a list of reference files for
the BLEU metric.

DirConf is the runtime environment configuration, declaratively not related to translation
results.

• DirConf → dirconf(CacheDesc, ModelDirName, LocalTemp, ScratchSpace)

CacheDesc configures the generic cache for cached predicate calls:
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– CacheDesc → cache desc(string, CacheSubdirs)
The first argument defines the path to the cache directory.

∗ CacheSubdirs → no

do not use subdirectories for the cache.

∗ CacheSubdirs → yes(integer)

use the given number of subdirectories for the cache. This reduces the num-
ber of files per directory and can thus improve the performance of e.g. NFS
file servers.

ModelDirName is the path to the directory in which TreeDecode will store finished
models:

– ModelDirName → string

LocalTemp configures the usage of a local temporary directory for models that use
the module biprobdb for distributed estimation of probabilities (newer models use
hugemap instead):

– LocalTemp → local temp directory(string)

write intermediate files to a local temporary directory first and move them to
the models directory after they are finished. In cluster environments, this can
help reduce the network load.

– LocalTemp → write directly

write intermediate files directly to the models directory.

ScratchSpace sets up the working directories of other implementation mechanisms,
such as journals used by the module hugemap.

– ScratchSpace → fixed scratch space(string)

use the fixed path given in the argument for the scratch space.

– ScratchSpace → guess scratch space from hostname

guess the scratch space from the host name. Note that the way the scratch space
name is guessed is specific to ÚFAL network.

RecombEquality defines the equivalence class of partial hypotheses for the purpose of reducing
unnecessary work by expanding similar hypotheses only once per the entire class.

• RecombEquality → opened positions equal

hypotheses are recombined if the sets of currently pending frontier nodes including
state labels are equal.

• RecombEquality → opened positions and some father attrs equal(FactorsConfig,
FactorsToUse)
hypotheses are recombined if the sets of pending frontier nodes including state labels
and the selected factors of their parent (internal) nodes match.

– FactorsToUse → [string]
the list of names of factors that are to be used.

FFConfig specifies the configuration of a probabilistic mapping from source to target frontier
states. This mapping is used in various translation option generators (see below).

• FFConfig → not inited(config(string, DirConf , Corpus, FstateFstateLimit,
SrcParentFactors, TgtParentFactors, BackoffToUnconditioned, DefaultFstate))

the first argument defines scorer prefix for the generator, DirConf is the environment
configuration, Corpus selects the source corpus (for the definition of Corpus , see page
26).
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FstateFstateLimit is an integer specifying how many target frontiers states should be
considered for a source frontier state.

SrcParentFactors and TgtParentFactors specify a subset of the factors of source and
target governing nodes to condition the mapping on.

BackoffToUnconditioned optionally allows to use parent-unconditioned frontier state
mapping if the conditioned situation was never seen. Valid options are:

– BackoffToUnconditioned → backoff to unconditioned

– BackoffToUnconditioned → dont backoff to unconditioned

DefaultFstate is used as an ultimate backoff for unknown source frontier states. Valid
options are:

– DefaultFstate → no

don’t allow ultimate backoff, just fail to translate the frontier state.

– DefaultFstate → yes(string) use the specified string as the frontier state if noth-
ing better available.

TrgConf configures the sequence of translation option generators and their settings.

• TrgConf → trg(TrProviderConfig)
register a translation option generator. For the definition of TrProviderConfig , see
below.

• TrgConf → first of([TrgConf ])
given a list of translation option generators, pick the first one that succeeds.

• TrgConf → merge all([TrgConf ])
try all of the listed translation option generators and merge the results.

Note that the current implementation of merge all suffers two problems: (1) if
several generators produce the same output, the translation option is considered
several times in the main search, and (2) each translation option is scored only by
the single generator that produced it, other scores are set to zero (e.i. probability of
1). Ideally, each option should be scored by all translation option generators.

• TrProviderConfig → t preserve all(PreserveAll)
the basic translation output generator (see Section 3.5.1 in Bojar and Čmejrek
(2007)).

– PreserveAll → config(string, DirConf , Corpus, FactorsToUse, TreeletSizeLimits,
Generation, Filter, Matching, DropAdjuncts, TreeletConversion)
the first argument defines scorer prefix for the generator, DirConf is the en-
vironment configuration, Corpus selects the source corpus (for the definition of
Corpus , see page 26) and FactorsToUse source factors to be used. TreeletSizeLimits
are the limits of the size of treelets generated during the training phase.
Generation determines the way how the pairs of source-target language treelets
are generated:

∗ Generation → ignore ali

ignore alignment altogether, i.e. generate all possible combinations.

∗ Generation → linked roots

roots of both treelets must be aligned.

∗ Generation → linked roots covered internals

roots must be in alignment and for each internal, if aligned at all, the align-
ment link must remain within the treelet pair.

∗ Generation → climb linked roots covered internals

is an extension of linked roots covered internals that allows head switch-
ing: the roots have to be aligned, but not necessarily to each other. Align-
ment to any internal node in the other treelet is sufficient.
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Filter defines the constraints for exclusion of some generated treelets.

∗ Filter → no filter

do not filter out anything.

Matching determines how to generate the links between frontier nodes.

∗ Matching → any

generate all possible combinations.

∗ Matching → none

do not link together any frontiers.

∗ Matching → ali compatible

generate all combinations that are compatible with the alignment.

DropAdjuncts defines the condition for dropping adjuncts from the generated
treelet.

∗ DropAdjuncts → keep all adjs

do not drop any nodes.

∗ DropAdjuncts → drop adjs where src fstate is([string])
assume all frontier nodes with one of the labels given in the argument are
adjuncts and drop them from the treelet. During the translation, adjuncts
are translated independently and using the same distribution for all treelets.

TreeletConversion specifies the finalizing conversion of the left-side (i.e. source)
treelets.

∗ TreeletConversion → no conversion

do not perform any conversion, keep the treelets as they were.

∗ TreeletConversion → sort treelet

sort the frontier nodes of source treelets alphabetically by their labels. This
reduces data sparseness, but also decreases accuracy because source word
order is ignored.

• TrProviderConfig → t word for word factored(WordForWordFactored)
factored word-for-word translation.

Note that this translation option generator can be used also for non-factored word-
for-word translation and for keeping untranslated words as described in Sections 3.5.2
and 3.5.4 of Bojar and Čmejrek (2007).

– WordForWordFactored → config(string, DirConf , Corpus, [Step], TargetFstateFrom,

FFConfig, FactStackLimit)
the first argument defines scorer prefix for the generator, DirConf is the envi-
ronment configuration, Corpus selects the source corpus (for the definition of
Corpus , see page 26).

∗ Step → translate(FactorsToUse, FactorsToUse, FactorsToUse)
based on the value of some FactorsToUse (arg. 1) of the source parent node
and some FactorsToUse (arg. 2) of the source internal node, predict or check
the value of some FactorsToUse of the target internal node.

∗ Step → generate(FactorsToUse, FactorsToUse)
based on FactorsToUse (arg. 1) of the target node, predict or check other
FactorsToUse of the target node.

∗ Step → copy(FactorsToUse, FactorsToUse)
copy some source FactorsToUse (arg. 1) to some target FactorsToUse (arg.
2) verbatim, i.e. do not translate the values. The two lists of factors must
be of the same length.

∗ Step → delay(FactorsToUse)
mark some target factors as “delayed”, i.e. do not generate their values
until the whole tree is constructed in the main search. Note that the current
implementation does not support the final filling of delayed factors yet.
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∗ TargetFstateFrom → target fstate from factor(string)

the root state of the translation option (i.e. where can the translation option
attach to) is taken from the given target factor.

∗ TargetFstateFrom → target fstate probabilistically

the root state of the translation option is generated probabilistically based
on the source root state using the mapping specified by FFConfig .

∗ FFConfig (see page 28) is used to map source frontier states to target frontier
states.

∗ FactStackLimit → integer

size of stack for generating partial hypotheses in this step.

• TrProviderConfig → convert number encs(FFConfig)
convert a number written in an English style to the Czech style. E.g. “4.5” is con-
verted to “4,5”. FFConfig is used to map frontier states. This rule-based translation
option generator is not suitable for factored output.

OutputCollectors collect and optionally rescore generated output sentences, which is done
through an automatically assigned lambda.

• OutputCollectors → oc segments(config(not inited(LMConf ))
output collector for serialized (text) output. The items are optionally scored using a
language model.

– LMConf → no lm

do not use any language model.

– LMConf → lmconf(LMOrder, LMFile, LMNgramFutureCost)
use an n-gram language model:

∗ LMOrder → integer

the order of the model (n).

∗ LMFile → string

path to the file containing the model.

∗ LMNgramFutureCost → float

determines how much is an unfinished hypothesis charged for all n-grams
that still have to be scored.

• OutputCollectors → oc tree(OutputType, [BinodeLM ], LinearizedRescoring) out-
put collector for trees. The items are scored using a bi-node language model and
optionally by a language model after linearization.

– BinodeLM → not inited(config(string, DirConf , Corpus, FactorsToUse,
FactorsToUse))
use a bi-node language model.

– LinearizedRescoring → no linearized rescoring

– LinearizedRescoring → linearized rescoring(Linearizer, [not inited(LMConf )])
do rescore the tree after linearization using language models (the second argu-
ment).

∗ Linearizer → string

the path to the external linearizer.

3.2.4 Running TreeDecode

TreeDecode is influenced by several command-line options and environment variables.
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Command-line Options

TreeDecode recognizes the following command-line options:

• -h or --help
show a help message.

The following options influence the way TreeDecode is run.

• -c FILE or --config FILE

use FILE as the configuration file. This option is required.

• --chdir DIR

change the working directory to DIR before doing anything. This is useful if the config
file specifies paths relative to a different origin.

• --chdir-back

after finishing all work, change the working directory back to the working directory from
which TreeDecode was run. This is useful for profiling the program because profiler
logs are always written to the current working directory after the program finished.

The following options override of the settings from the experiment’s configuration file, see
Section 3.2.3.

• -i FILE or --input FILE

use FILE as the input file

• -w WEIGHTS or --weights WEIGHTS

define weights for the scorers. WEIGHTS should be a comma-delimited list of floating point
numbers. The number and order of the weights is implied by the models used in the
configuration file and the list of weights specified using --weights has to conform to that.

• -s LIMIT or --stack-limit LIMIT

set the beam-search stack size to LIMIT.

• -t LIMIT or --tropt-limit LIMIT

set the maximum number of translation options to LIMIT.

Environment Variables for Memory and Grid Usage

KILL LIMIT=80.0 specifies TreeDecode’s memory resource limit as set by the the setrlimit

system call. It is a percentage of the computer’s memory TreeDecode is allowed to use
(e.g. 80%). If the limit is exceeded, the kernel aborts the process with a segfault. (A
normal segfault is not distinguishable from this kernel-assisted suicide.)

SGEJOBS TRAIN=Num, SGEJOBS TEST=Num, GRIDJOBS=Num specify the number of jobs sub-
mitted to the Sun Grid Engine. When set to 0, the Grid Engine is not used at all. While
GRIDJOBS is used when collecting treelet counts in training, SGEJOBS TEST specifies the
number of parallel jobs when translating. SGEJOBS TRAIN is becoming obsolete but it is
still used in some older models in the training phase.

Environment Variables for Debugging of the Models

The following environment variables can be used to obtain additional debugging outputs. Most
of the variables function as simple switches, if set to a value (e.g. “yes”), the respective debug-
ging output is printed to standard error output.

Carefully check the size of the logs created to avoid excessive load of your network or file
server.

32



JUSTSENT=Num1, Num2, . . . restricts the translation only to the test sentences Num1,Num2, . . .

and disables both caching and parallel execution of the translation. Useful when tracking
down a problem occurring at a particular sentence.

LOADTREE=yes and line to alitrees=yes print detailed information about every line read
from the training or evaluation corpora. Beware, verbosely dumping your training corpus
is likely to ruin your network or disk capacity.

TROPT=yes prints a summary of translation options generated and kept at every node.

TROPTDETAIL=yes prints detailed information about every translation option considered and
generated, regardless if it eventually survives in the translation options stack.

DUMPSTACKSIZES=yes prints the number of partial hypotheses in each stack after every itera-
tion.

DUMPSTACK=yes prints a summary of all partial hypotheses in a stack that are about to be
processed.

EXPAND=yes prints each hypothesis that is about to be expanded.

EXPANDNEW=yes prints also the output of each hypothesis expansion.

RECOMB=yes prints all hypothesis pairs considered for recombination.

TRACEBACK=H30H,40,... allows to specify a set of partial hypotheses you wish to closely ana-
lyze. Once a hypothesis with one of the required ids is created, the history of the hypoth-
esis is printed (i.e. the sequence of gradual expansions). Hypotheses can be specified as
integers or as integers marked with H. . . H.

Search for the text “Traceback of” in the logfile.

TRACESONS=H1H,H30H,40... allows to specify a set of partial hypotheses you wish to
closely analyze. Whenever one of the selected hypotheses is successfully expanded to
create a new son, the new son is printed. Hypotheses can be specified as integers or as
integers marked with H. . . H.

Search for the text “Son of” in the logfile.

GETNBEST=yes prints detailed information from the backward search through the stacks when
generating n-best lists.

RESCORE=yes prints hypotheses and scores before and after the final linearized rescoring.

SVGLOG=filename%.svg saves the source, hypothesis and reference trees for sentence i to file
filenamei.svg in SVG format.

SVGLOGCOMMENTS=reffile.txt,commentsfile.txt augment the SVG logs generated by SVGLOG

with plaintext comments from all specified files. Please note that all the files have contain
exactly as many lines as there are input sentences.

NOCACHE=yes completely blocks the disk cache. All intermediate results including training of
models will be recomputed.

Environment Variables for Debugging of the Decoder

The following environment variables are useful rather for developers of TreeDecode.

STACK=yes print information about inserting and pruning the stack of translation options.

BACKOFF=yes prints detailed logs on when each of the back-off models was used during trans-
lation options generation.
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BIGEN, BIGENFILTER, and GENLINKEDCOVERED=yes print information about observed and fil-
tered treelet pairs and treelet pairs generated using the method linked roots covered internals.

t preserve all, t word for word factored, t drop fr reins, and binodelm=yes print de-
tailed information from the corresponding model. Please note that each of the models
provides different type of debugging output.

biprobdb=yes, multiprob map=yes, and hmp map=yes print detailed information about the
corresponding probabilistic map. biprobdb.m is the oldest implementation, multiprob map.m

is somewhat newer, but the most recent models should always use hmp map.m.

biprobdb save plaintext=yes save the database also in plaintext format, in addition to the
standard tinycdb database file.

3.2.5 Troubleshooting

Here is a short list of common problems with TreeDecode.

Outdated or incompatible cache files. TreeDecode uses a binary format to cache vari-
ous intermediate results on disk. If you compile TreeDecode on various platforms or
modify cached data structures, existing cache files may become incompatible with the
TreeDecode executable. TreeDecode may complain about the problem when deseri-
alizing the files, e.g.:

cached: Checking the cache or waiting for others: "/home/.../cache/..."

cached: Loading cached /home/.../cache/c000.782

Uncaught Mercury exception:

Software Error: nonsense, are your caches fresh?

Stack dump not available in this grade.

To fix the problem, just delete at least one of the relevant cache files, e.g. c000.782 in
our example. TreeDecode will re-create the models as needed.

Sometimes you may wish to delete the whole cache directory. Depending on your config-
uration, TreeDecode can use different cache directories for different purposes, so you
may need to delete several directories.

In very rare cases, the difference in binary representation might be so subtle that TreeDe-

code will not notice (but the results will be wrong) or it will misinterpret the data and
start allocating insane chunks of memory. In general, trust your configuration files and
delete the caches if in doubt. If the problem persists, you have found a bug.

Not enough memory to finish the experiment. The training process is memory-demanding
and Mercury’s current garbage collector doesn’t help very much—it is not uncommon for
TreeDecode to abort after exceeding the memory limits imposed by the environment
variable KILL LIMIT.

If this happens, try increasing KILL LIMIT and re-running the experiment. Sometimes
even a fresh run with the same KILL LIMIT may help because the previous predicate calls
will be cached and not recomputed, greatly reducing the memory demands of the process.

3.3 Input Data Formats

TreeDecode reads data in the following formats:

Word-aligned bitext is similar to that described in Section 2.1.3 at page 8. It is a plain text
format whose rows consist of three columns, each separated by a tab:
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• source language text

• target language text

• word alignment

Words in the source and target language columns are separated by a single space and may
consist of factors that are separated by a ‘|’ character.

The word alignment is defined by a list of edges between source and target language words,
with the first word in each column having index 0.

Translation input corresponds to the “source language text” column as defined above.

Reference files correspond to the “target language text” column in the word-aligned bitext
above—for BLEU, words do not consist of factors, for tree-distance based metrics, factors
are required.

3.4 Experimental Loop

TreeDecode has been implemented to manage the whole process of running and evaluating
an experiment. In the main TreeDecode Makefile, we provide some basic functionality to
run many experiments and compare the performance. This generally speeds up the loop of
designing an experiment, running it (which can take hours to days of CPU time), evaluating it
and modifying it to achieve further improvements.

Source configuration files are stored in the confs/ subdirectory, with filenames ending with
“.conf”.

3.4.1 Starting an Experiment

To start an experiment based on a config file confs/CONFIG-NAME.conf, issue the following
command:

make CONFIG-NAME.run

# this will start the experiment in the background

make CONFIG-NAME.runhere

# this will start the experiment in the console using ’less’ to paginate

# the log

Each experiment is launched in a fresh time-stamped directory to avoid any potencial clash
of experiments executed in parallel. We call these time-stamped directories “runs” and store
them in the runs/ subdirectory.

For a full reference and to be absolutely sure which configuration file and which version of
TreeDecode was used for a particular run, a copy of the config file is saved to runs/〈run〉/conf
and a copy of the executable is saved to runs/〈run〉/exe. Along with the executable and the
configuration, there are standard error (err) and standard output (out) from the run. Later,
you may not only wish to examine the configuration or log files, but you may also restart the
experiment simply by issuing the following commands:

cd runs/THE-RUN-TO-RE-RUN

./exe -c conf > NEW-out 2> NEW-err

Other advantages of this strict separation of individual runs are that log files from slave
jobs submitted to Grid Engine are stored together with the main log file of the experiment and
also that e.g. profiler files won’t get overwritten and several profiling experiments can be run
in parallel.
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3.4.2 Working Directory of an Experiment

As indicated in the previous example, a local copy of TreeDecode is launched in the directory
of the run. All paths to corpora or caches in the config file have to be specified either absolute
or relative to the directory of the run.

For instance, if all experiments should access the same cache directories, the path to the
cache should start with ../../ to leave the run and runs/ directories first.

3.4.3 Cloning an Experiment

The whole experimental loop typically consists of the following steps:

1. Create or modify a config file, e.g. confs/TEST.conf.

2. Start an experiment: make TEST.run.

3. Repeat.

After several iterations we may wish to return to an older version of the configuration.
Similarly, after several related experiments have finished, we may wish to use the configuration
of the best performing one for further improvements. The script cloneconf simplifies the
copying of the config from a run directory back to confs/:

make TEST.run

# now watch runs/TEST-TIMESTAMP-1/err

# modify confs/TEST.conf, start other experiments

./cloneconf runs/TEST-TIMESTAMP-1/err

# the configuration in confs/TEST.conf is now back at the state

# used for runs/TEST-TIMESTAMP-1, modify or just rerun the experiment.

3.4.4 Giving Experiments Symbolic Names

After having launched several experiments, the run directory can become cramped. If an
experiment has already finished, you may freely rename the experiment directory.

To provide a simple means of labelling experiments when starting them, you may use the
environment variable NAME:

NAME=extra-info make CONF.run

# this will run an experiment using the configuration from confs/CONF.conf

# and store it in runs/CONF.extra-info.20080811-18...

3.4.5 Collecting Results from Many Experiments

Typing make bleu will collect translation quality estimates from the err files from all runs to
a single table, saved to the file bleu.

3.5 Source Code Overview

TreeDecode is implemented in Mercury (Somogyi et al., 1995) with some functionality pro-
vided by additional C/C++ libraries. The whole system is compiled to a single executable
file.
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3.5.1 Libraries Used

TreeDecode releases have a flat directory structure with all source files in a single directory.
During the development, individual libraries are kept separate:

Manarchive1 is an archive of various Mercury predicates and functions for general use. Manar-
chive extends the standard Mercury library with functionality like fast and space-efficient
serialization (pickling), file locking, reporting and reacting to current memory usage. Many
routines in Manarchive were improved during the development of TreeDecode.

Obomerclib is a private collection of Mercury modules for accomplishing various tasks de-
veloped mainly by Ondřej Bojar. Once the interface and implementation of a module
becomes relatively stable, the module is publicly released in Manarchive. Obomerclib
contains modules for e.g. generic regular expressions and finite-state automata, limited
support of Unicode, binding to zlib for direct access to gzip-compressed data, binding
to the statistical software R, launching and communicating with external processes, per-
sistent caching of predicate outputs (module cached), high-level API for drawing SVG
pictures, and various versions of “externalization”, i.e. the option to run a Mercury
predicate in a separate process, including the support to run many of such externalized
predicates in parallel on a multi-processor machine or on a Sun Grid Engine2

IRSTLM (Federico and Cettolo, 2007) is an open-source n-gram language modelling in
C/C++. TreeDecode implements a Mercury binding to the library.

MERT is Philipp Koehn’s C/C++ implementation of minimum error rate training by Och
(2003), as made publicly available in the Moses decoder. We include Philipp’s code in
TreeDecode and implement a Mercury binding to it.

3.5.2 Description of Core TreeDecode Modules

The following modules constitute the core of TreeDecode:

treedecode.m is the main module of TreeDecode. It implements the main/2 predicate, loops
through input sentences, MERT loop for weights optimization, as well as the core part of
the search: gradual expansion of partial hypotheses, hypothesis recombination and stack
management, n-best list extraction, and n-gram rescoring of linearized hypotheses.

Upon startup, treedecode checks the command line arguments. If they indicate a request
for a slave mode, treedecode just runs the respective externalized predicate and exits
afterwards. Otherwise, the usual (“master”) code is performed.

core defs.m defines some widely-used data types. E.g., a “word” is an array of “factors”
(strings), while a “partial word” might still have some factors not filled. Finally a “re-
stricted word” (defined in the module restrict.m) is a word restricted to a subset of
factors.

Apart from the basic definitions, various global defaults are stored in core defs.m, e.g.
how much memory should be used for in-memory caching when collecting treelet counts
in the training phase.

config.m defines the core of configuration data type, loads the configuration file, parses command-
line options and incorporates them to the configuration.

tropt.m defines and handles translation options. In other words, it is responsible for initial-
ization (and training) of all models used for translation option generation as specified
in the configuration. The module tropt.m also implements the first stage in a sentence
translation, the creation of all possible translation options using these models.

1http://manarchive.sf.net/
2http://gridengine.sunsource.net/
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t generic.m defines an abstract interface for all translation option generators that are trained
by collecting counts in a corpus. The module t generic.m simplifies as generalizes the
access to the corpus and counting in parallel on SGE.

Various translation option generators, each corresponding to a back-off model, are imple-
mented in other t *.m modules such as t preserve all.m or t word for word factored.m.
There, the abstract t generic interface is filled, and more importantly, the specific
procedure of translation option generation is coded. The functionality is also used in
fstatefstate.m, a module for probabilistic mapping of frontier states.

bitree corpus.m implements routines for loading word-aligned parallel dependency treebank,
including heuristics for constructing more coarse-grained Czech morphological tagsets from
Bojar (2007).

compact lt.m and treelet define the data type for a little tree and a treelet. A little tree
keeps track of the structure of the tree, labels of internal and frontier nodes, and mutual
order of sons of an internal node, including the position of the father among the sons. A
treelet represents also the root label of the little tree.

bilt.m defines the data type for a pair of dependency trees as loaded from a parallel treebank
(the type t(LabelOfInternals,LabelOfFrontiers)) as well as the type for a pair of
little trees extracted from the trees (the type bilt).

bigen.m generates all possible treelet pairs from input trees according to various configuration
options (e.g. ignoring certain types of frontiers).

linearizer.m implements line-oriented bi-pipe interface to external tree linearizers. The lin-
earizer is responsible for converting a dependency tree to a plaintext representation of the
sentence. We currently support two t-to-text linearizers: Ptáček and Žabokrtský (2006)
and Žabokrtský (2008).

lm.m defines the configuration options for n-gram language models and provides routines for
scoring sequences of strings using IRST LM.

binodelm.m defines the configuration options for bi-node language models, implements routines
for collecting maximum-likelihood estimates of bi-node LM probabilities and provides
routines for scoring trees using bi-node LMs.

oc generic.m defines the type class for collecting decoder output (output collectors, hence
oc). The decoder is currently capable of collecting the output either as dependency trees
(oc tree.m) or directly linearized output (oc segments). This abstraction and the fact
that language models are applied to decoder output only (ignoring the original tree) allows
to use the appropriate language model for output collectors (i.e. lm.m for os segments.m

and binodelm.m for oc tree.m).

scorers.m provides an API for consistent handling of model weights (lambdas) and hypothesis
scores. Each model used in an experiment has to register to obtain an identifier describing
the lambdas the model needs. When the model assigns a score to a hypothesis, the
identifier is used to find the appropriate element of the score vector.

evaluation.m defines the configuration options for evaluating MT quality against some ref-
erence translation. The module currently supports evaluation using BLEU (for output
collected as segments, oc segments.m, or for tree output linearized with an external lin-
earizer), and using tree edit distance (for tree output, oc tree.m).

bleu.m implements the BLEU metric of MT quality, including a pre-computation for efficient
MERT optimization of weights on an n-best list of translations.
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drawing.m implements routines to display various data structures (e.g. a tree or a little tree)
in SVG for the purposes of graphical representation of the log.

mert.m is the Mercury interface to Philipp Koehn’s C/C++ implementation of minimum error-
rate training.

Some of TreeDecode modules are rather generic and implement various useful data struc-
tures and algorithms:

grid feeder.m is an abstract line-orientated file reader that may be run on SGE. To implement
a specific reader, the user has to provide the main predicate used to observe data from
one line of the file, as well as a few support predicates to set up a blank memory for
data collection and to serialize and merge filled memories. Depending on the environment
variable GRIDJOBS, the file is read in the current process, or a set of slave processes is
submitted to the cluster, each collecting counts in a separate section of the file.

tinycdb.m is a Mercury interface to tinycdb by Michael Tokarev, a very time efficient library
for on-disk hashing. Both the key and the value can be arbitrary sequence of bytes. The
database is “constant” (i.e. read-only) once created.

hugemap.m implements an abstract data type for mapping keys to values. While each key-value
pair has to fit to memory, the whole mapping is stored on disk and it does not need fit to
memory. The map is constructed during a “growing” phase: as new keys and values are
added to the map, either a RAM cache is updated, or they are saved to a journal. This
can be combined with grid feeder.m to prepare several journals in parallel. At the end
of the growing phase, all the journals are merged (multiple values attached to a single
key are joined using a user-supplied predicate) and the resulting mapping is stored as a
tinycdb. For the purpose of journalling and storing items in the tinycdb, the user has to
provide also serialization predicates for both the key and the value.

hmp map.m extends the functionality of hugemap to provide not only values for a given key,
but also arbitrary user-defined probabilities estimated using MLE from some observed
counts. The user has to specify: (1) what constitutes the key (the left-hand side of the
mapping) and the value (the right-hand side of the mapping) given an “event”, i.e. an
observation; (2) what various counts should be collected from the corpus (e.g. the number
of observations, the total number of observations of the key); and (3) final formulas to
calculate the probabilities for all left-right pairs from the collected counts (e.g. the count
of left-right pairs divided by the count of left observations).

A similar functionality was provided by the modules biprobdb.m and multiprob map.m.
These are now obsolete and should be avoided in further development.

bmp.m, bmp unlimited.m and wisebmp.m implement a bitmap. While bmp.m uses a single in-
teger to store the bitmap and it is thus limited by the architecture to 32 or 64 bits,
bmp unlimited.m uses sparse bitset from Mercury standard library. The module wisebmp.m
combines the two by using the more compact representation as long as possible and re-
sorting to the unlimited case once higher bits are needed.

stack.m, recombstack.m and multistack.m implement “stacks” for beam search algorithms,
i.e. priority queues with pruning of low-scoring items. The basic stacking and pruning
functionality is provided by the module stack.m, recombstack.m can combine two hy-
potheses based on user-supplied equivalence test to avoid exploration of the same region
of the search space several times, and multistack.m ensures variance in user-specified fea-
tures of hypotheses by using separate stacks (this can lead to excessive number of stacks
if there are too many incomparable hypotheses).
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initable.m provides a unified access to structures that are often needed in two forms: a se-
rializable “configuration” and a non-serializable “inited” form. For example, a program
pathname and some command line arguments is a configuration while a bi-directional
pipe to the process launched using the arguments is the “inited” form that cannot be
serialized. While the inited form can be unambiguously constructed from the configura-
tion, the reverse is not possible in general. The module initable.m keeps track of both
instatiations of the structure, allowing to implement serialization and deserialization of
non-serializable things by serializing the configuration instead and re-using the inited form
after deserialization.

From the user’s perspective, if you have some objects that take the two forms: the serial-
izable configuration (of type Config) and the inited version (of type Inited), use the type
initable(Config, Inited) to refer to either of them. The module initable.m then pro-
vides an easy access to both of the variants as needed using the functions det inited/1

and det config/1. Before being able to access the inited form using det inited/1, be
sure to call ensure inited/5 at least once.

Another advantage of using initable.m is that ensure inited/5 keeps and internal cache
and avoids duplicit initialization if the Config was already inited. If you wish to indeed
initialize some structure several times (such as opening several bi-directional pipes to
several processes), you need to include some distinguishing information in the Config.

3.5.3 Wishlist of Future Improvements

We plan to modify or implement these features in future releases of TreeDecode:

• Get rid of complex factor and extend t preserve all to factored output.

• Introduce corpus “header files” that specify factor names instead of FactorsConfig .

• Separate runtime settings (i.e. the DirConf sections from the configuration file and some
of the environment variables such as SVGLOG) to a runtime configuration file.

• Improve combination of translation option generators in merge all:

– if two generators create the same output, keep only one, but merge the scores,

– if an option is generated by only one generator, the scores for other generators should
get the lowest probability, not the highest.

• Extend the range of options when loading training corpus:

– k-best select (select the parse that best matches word alignment),

– parse projection (construct target-side parse by projecting syntax structure from the
source side).

• Finish the implementation of delayed output factor generation,

• Improve debugging output for error analysis:

– Why this part of the reference tree was not created by our system?

∗ words not available in training data,

∗ available in training data, but inextractable (conflict of word alignment),

∗ lower score than the solution we found.

– SVG output with more details (unused translation options, ...)

– Save SVG output after every sentence.

– Analysis of combinatorial explosion:
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∗ How many translation options and hypotheses are pruned?

∗ Which translation option generators explode most often and how much?

∗ Which input words/nodes cause the explosion most often?
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In prep.

42



Appendix B

Example TreeDecode Configuration

File

See Section 3.2.3 for reference.

% Sample configuration file demonstrating basic tree-to-tree translation.

%%%%% Setting Variables:

% How many partial hypotheses are considered when constructing translation

% options step by step.

FactoredStackSize = int(10).

% Runtime options: where to store cached partial results, finished models

% and temporary files.

DirConf = dirconf(dirconf(

cache_desc("$TREEDECODEROOT/cache", yes(1000)),

"$TREEDECODEROOT/models",

write_directly,

fixed_scratch_space("/tmp")

)).

% Interpretation of factors on the English (source) side of our corpus:

EnFactorsConfig = factors_config(factors_config(

verbatim(3), % the dependency structure is stored in factor 3

wordfactor([

"t_lemma" - verbatim(0),

"functor" - verbatim(1),

"gram/sempos" - verbatim(4),

"gram/number" - verbatim(5),

"gram/negation" - verbatim(6),

"gram/tense" - verbatim(7),

"gram/verbmod" - verbatim(8),

"gram/deontmod" - verbatim(9)

]),

fstatefactor( % the frontier state is taken verbatim from factor 1

verbatim(1)

)

)).

% This is just a summary of all known English factors.
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EnFactAll = factors_to_use(

[

"t_lemma",

"functor",

"gram/sempos",

"gram/number",

"gram/negation",

"gram/tense",

"gram/verbmod",

"gram/deontmod"

]).

% A subset of English factors for back-off models.

EnFactLemFunc = factors_to_use(

[

"t_lemma",

"functor"

]).

% Interpretation of Czech (i.e. target) side of our corpus:

CsFactorsConfig = factors_config(factors_config(

verbatim(3), % the dependency structure is stored in factor 3

wordfactor([

% There is only one output factor that combines all attributes

% of Czech nodes.

"all_in_one" - complex([

"t_lemma" - 0,

"functor" - 1,

"gram/sempos" - 4,

"gram/number" - 5,

"gram/negation" - 6,

"gram/tense" - 7,

"gram/verbmod" - 8,

"gram/deontmod" - 9,

"val_frame.rf" - 10,

"gram/indeftype" - 11,

"subfunctor" - 12,

"nodetype" - 13,

"gram/aspect" - 14,

"gram/numertype" - 15

])

]),

fstatefactor( % the frontier state is taken verbatim from factor 1

verbatim(1)

)

)).

% This is just a summary of all known Czech factors:

CsFactAll = factors_to_use( [ "all_in_one" ] ).

% The training corpus file and description of its factors:

TrainCorpus = corpus(corpus(

"$TREEDECODEROOT/corpora/basic_tecto_to_tecto.train.wali",

EnFactorsConfig,
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CsFactorsConfig

)).

% Configuration of a probabilistic mapping from source frontier states

% to target frontier states.

FFTable = fftable(not_inited(config(

"ff", % The model will use weights labelled using the prefix ’ff’

DirConf, % Use the common cache and model directories.

TrainCorpus, % Use the common training corpus to train the model.

3, % How many target fstates per source fstate should be considered.

% Condition the mapping on the following factors:

["t_lemma"], % of the source node’s parent

["all_in_one"], % of the target node’s parent

backoff_to_unconditioned, % but also back off to the unconditioned

% distribution if no detailed mapping is available.

yes("default-fstate") % Ultimate back-off value for unseen source frontier

% states.

))).

% We allow at most 2 internal nodes, 4 frontier nodes and branching of 10

% in the demo.

Limits = limits(limits(2,4,10)).

%%%%% Main configuration term:

config(

produce_tree, % Output is saved as a tree.

Limits, % Use the Limits defined above when decomposing input trees.

100, % Stacklimit, at most 100 hypotheses covering the same number of words

% are expanded.

% List of tweaks:

[

tropt_limit - i(100) % Translation options limit.

],

[ ], % Models weights, the empty list indicates to use the default setting.

% Do not use any Minimum Error-Rate Training.

no_mert,

% Input file:

file("$TREEDECODEROOT/corpora/basic_tecto_to_tecto.dev.en.in"),

% The interpretation of factors in the input file:

EnFactorsConfig,

% Directly evaluate the output:

evaluate_trees( % We’re producing trees, so evaluate trees.

treedist(config( % Evaluate using tree distance:

% The reference file:

"$TREEDECODEROOT/corpora/basic_tecto_to_tecto.dev.cs.ref",

% Interpretation of factors of the reference file:

CsFactorsConfig,
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% Evaluate tree distance several times, each time using a different

% subset of output factors.

eval_factors([

all_factors,

section_of_complex_factor(0, "t_lemma"),

section_of_complex_factor(0, "functor")

])

)),

% Do not linearize the output trees, do not evaluate the linearized form.

no_linearized_evaluation

),

DirConf, % Use the common cache and temporary directory.

opened_positions_equal, % Two hypotheses are recombined if they share

% the set of pending frontier nodes (including their state labels).

% Translation options generators (models) to use:

first_of([ % Use the first model that produces an output.

trg(

% Translate a whole treelet at once, preserving the structure,

% internal labels, frontier states and ordering of the nodes.

t_preserve_all(config(

"tr", % The model will use weights with label prefixed by "tr"

DirConf, % Use the common cache, model and temp directory

TrainCorpus, % Use the common training corpus.

EnFactAll, % Use all source factors.

Limits, % Use the Limits defined above when training the model.

climb_linked_roots_covered_internals, % A heuristic for finding

% corresponding treelets in the training corpus.

forbid_dangling_nodes, % Further refinement of the heuristic.

ali_compatible, % Further refinement of the heuristic.

keep_all_adjs, % Don’t drop any frontier nodes, even for "adjuncts".

no_conversion % Don’t modify observed treelets in any way (e.g.

% disregarding node order by sorting the treelets first).

))),

trg(

% Translate treelets consisting of single internal nodes:

t_word_for_word_factored(config(

"wfw", % The model will use weights with label prefixed by "wfw"

DirConf, % Use the common cache, model and temp directory

TrainCorpus, % Use the common training corpus.

% Translation steps: there is only one step, translate all English

% factors to all Czech factors.

[ translate([], EnFactAll, CsFactAll) ],

target_fstate_probabilistically, % The root state of the target

% treelet is translated using the FFTable.

FFTable, % The above defined probabilistic mapping of frontier states.

% It is used both for all sons of the translated internal node as

% well as for the root state of the target treelet.

FactoredStackSize % Use the common stack size when generating

% output options.

))),

trg(
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% Translate treelets consisting of single internal nodes:

t_word_for_word_factored(config(

"wfwlemfunc", % The prefix for weight labels.

DirConf, % Use the common cache, model and temp directory

TrainCorpus, % Use the common training corpus.

% Translation steps: use English lemma to guess all Czech factors.

[ translate([], EnFactLemFunc, CsFactAll) ],

target_fstate_probabilistically, % see above

FFTable, % see above

FactoredStackSize % see above

))),

trg(

% Back-off: keep the lemma of an unknown node untranslated:

% The back-off model is actually implemented using the

% t_word_for_word_factored

t_word_for_word_factored(config(

"unk", % The prefix for weight labels.

DirConf, % see above

TrainCorpus, % see above

% Translation steps: just copy English t_lemma to the single Czech

% (output) factor/

[ copy(["t_lemma"], ["all_in_one"]) ],

target_fstate_probabilistically, % see above

FFTable, % see above

FactoredStackSize % see above

)))

]),

% Details on output:

oc_tree(config(

just_factor(0), % When producing final output tree, which factors should be

% exported?

% The list of language models to use:

[

% This is a sample binode LM configuration.

% Should you face memory problems, just comment this section out,

% the model is can be too big because it is based on all Czech atributes

% at once and not restricted to e.g. the t_lemma only.

not_inited(config(

"binodelm", % The prefix for weight labels.

DirConf, % see above

TrainCorpus, % see above

[ "all_in_one" ], % Attributes of the dependent node to consider.

[ "all_in_one" ] % Attributes of the governing node to consider.

))

],

no_linearized_rescoring % Do not linearize output trees, do not rescore

% them using any n-gram language model.

))

).
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