
Capturing The Meaning of Time Expressions – A Functional Approach

Petr Němec

Institute of Formal and Applied Linguistics,
Faculty of Mathematics and Physics, Charles University

Malostranské náměstı́ 25
118 00 Praha 1, Czech Republic

nemec@ufal.mff.cuni.cz

Abstract
In this paper we present a functional approach to capture the information conveyed by various time expressions within a discourse. The
approach is motivated by annotation scheme that captures general temporal relations between events expressed in a discourse. A parser
for Czech as well as an inference engine that makes it possible to compare functional compositions is implemented.

1. Introduction
In this paper we present a functional approach to cap-

ture the meaning of various time expressions within a dis-
course. This endeavor is motivated by the possibility to
use the information conveyed by these expressions to draw
event ordering inferences, thus improving the performance
of an automatic event-ordering system.

An inference engine that decides on the ordering of the
events associated with the respective time expressions is
also implemented. We also present one particular parsing
engine that produces the functional representation of time
expressions for Czech.

The paper is structured as follows: Section 2 introduces
the basic principles of the temporal annotation framework
that encapsulates the functional formalism used to cap-
ture meaning of time expressions. Section 3 describes
the formalism in detail. Section 4 gives a brief overview
of the annotated corpus. Section 5 introduces the imple-
mented inference engine that compares time extensions
represented by the respective functional compositions as
well as a parser that builds these compositions based on
a syntactic representation of Czech sentences. Section 6
compares the presented approach to similar work in the
field and Section 7 concludes the paper.

2. Annotation Scheme Overview
In this section we give a very brief overview of the

formalism used to capture temporal relations between re-
spective events expressed in a discourse . The scheme is
described in greater detail in (Němec, 2006). There are
alternative annotation schemata (such as TimeML (Puste-
jovsky et al., 2005)) but as the role of a particular scheme
is only auxiliary for the purposes of this paper we do not
compare respective approaches. The described scheme can
be viewed as a minimal “temporal core” shared by various
annotation schemata.

In accordance with (Novák, 2004) we recognize the
starting time point anchor Es and the ending time point an-
chor Ee of each event (process, activity, accomplishment,
state etc.) E expressed in a discourse. Es anchors the be-
ginning of the event whereas Ee anchors the time the event

is finished. If an event E takes place in one single time
point, we take Es = Ee. These anchors are interpreted as
time points on the real time axis.

The set of all the anchor pairs and the set of time–of–
speech points (one for each discourse utterance) together
form the temporal space of a discourse. Consider the fol-
lowing example:

1. A consortium of private investors operating as BPH
Funding Co. said yesterday that it could eventually
make a $300 million cash bid.

2. Today it announced that it no longer considers the
possibility.

The two time–of–speech points (1.t, 2.t) are present as
well as the starting and ending points for the events ex-
pressed by the words operating (op.s, op.e), said (say.s,
say.e), make (mk.s, mk.e), announced (anc.s, anc.e), and
(no longer) considers (cnsd.s, cnsd.e).

The task of the temporal annotation of a discourse is
to identify its temporal space and to determine relations
between these points.

The following relative ordering relations may hold be-
tween two time points p and q: precedence (p ≺ q),
precedence–or–equality (p ¹ q), antecedence (p Â q),
antecedence–or–equality (p º q) and equality (p = q). For
the example mentioned above some of the relative ordering
relations would be as follows:

• 1.t ≺ 2.t (sentence order)

• say.s = say.e ≺ 1.t (said expresses a single time
point event)

• 1.t ≺ mk.s = mk.e (make takes place in the future
if it takes place at all)

• anc.s = anc.e ≺ 2.t

• cnsd.s ≺ anc.s ≺ cnsd.e

• op.s ≺ 2.t ≺ op.e (the state of affairs is understood
to be true even in the time–of–speech of the other sen-
tence)

3. Functional Formalism
Some time points are more specifically determined

by functions of other time points or are even specified
absolutely. For example, in the sentence

Last year we spent our holiday in Austria and it was
very similar to our vacation in Germany in February
1980.

the event of spending the holiday in Austria is deter-
mined as a function of the time–of–speech point (returning
the extension of last year relative to time–of–speech)
whereas the event of spending the holiday in Germany
has been positioned absolutely to the interval of February
1980. Note that although we may not know the exact
value of speech time of the utterance we still understand
the sentence and should be able to annotate it.

To capture this kind of information we have devel-
oped an apparatus based on the operators and functions
described below1. It represents the contents of expressions
such as “last Friday”, “beginning of the next month”, “the
middle of 80s” etc. It allows for the construction of an
efficient algorithm for the computation of partial ordering
of these expressions on the real time axis as described in
Section 5.2..

Let us present the type system for these functions and
operators first:

3.1. Types
• t point is a concrete point on the real time axis.

• t interval is a concrete closed interval on the real
time axis, e.g. the time period between two time
points including the points

• t range is any amount of time (e.g. two seconds, four
months etc.)

• t etype represents a time entity type, currently it is
one of the following constants: millenium, century,
year, month, day, hour, minute, second

• t pe name is a named time entity representing a time
point such as midnight or noon

• t ie name is a named time entity representing a
time interval such as day parts (morning), sea-
sons (spring), weekdays (tuesday) and months
(january)

• t int,t uint represent a signed and unsigned integer
respectively

• t bool is the boolean type

There are also set types - appending s to the type name
yields the set of the objects of the given type, e.g. t points
denotes a set of points.

1Using these operators and functions we have been able to
capture all the absolute time expressions within the annotated
data. However, we do not claim that this list is sufficient to cap-
ture all time specifications. Its extension may be needed in the
future.

3.2. Functional Apparatus
We can now list the functions2 (the type of arguments

and result follow after colon, t denotes time–of–speech
point).

• const(Y, [M, D,H, M, S]) : (t int, [t uint, ...]) →
t interval

• constM(Millenium) : (t int) → t interval

• constC(Century) : (t int) → t interval

The constructors make it possible to construct a time
interval by specifying the respective parts (year (Y),
month (M), etc.). Only the year is obligatory in the
first version of the constructor. Note that all construc-
tors return an interval, i.e. const(1980,3,15,10,40,25)
does not denote the point 15.3.1980 10:40:25, but
rather the entire interval of the 25th second. To re-
trieve the point it is possible to use the start function:
start(const(1980, 3, 15, 10, 40, 25))

• entityRange(EntityType, Number) :
(t etype, t uint) → t range

returns the time range represented by Number time
entities of type EntityType, e.g.

entityRange(year, 2)

returns time range of two years.

• shift(Point, Distance, InPast) :
(t point, t range, t bool) → t point

returns the time point that succeeds or precedes
(depending on the value of InPast) Point by
Distance. For example

shift(t, entityRange(hour, 3), false)

returns the the time point exactly three hours after t.

• span(Point, EntityType) :
(t point, t etype) → t interval

returns the concrete time interval of the time entity of
type EntityType that contains the time point Point,
e.g.

span(start(const(2006, 11, 5)),month)

returns the interval corresponding to November 2006.

• findEntityType(Point, EntityType, Index) :
(t point, t etype, t int) → t interval)

finds the Index-th occurence of EntityType suc-
ceeding or preceding (if Index is negative) Point.
For example,

find(t, day, 1)

returns the day following the day containing t (i.e.
corresponds to ”tomorrow”).

2We only present the substantial functions, trivial operations
on the given types are also supported, e.g., start and end func-
tions that retrieve the starting and ending point of an interval,
respectively.

• findETByOrd(Point, EntityType,
Order, SupET, Index, This) :
(t point, t etype, t uint, t etype, t int, t bool) →
t interval)

finds the Index-th occurence of the Order-th
EntityType within SupET (superior entity type)
succeeding or preceding (if Index is negative) Point.
This determines whether the time entity containing
Point is taken into account or not. For example,

findETByOrd(t, day, 8,month,−1, true)

returns the interval corresponding to the last 8th day
in a month. If t lies in such a day, that day is returned
(the occurrence is counted).

• findIEByName(Point, Entity, Index, This) :
(t point, t ie name, t int, t bool) → t interval)

• findPEByName(Point, Entity, Index, This) :
(t point, t pe name, t int, t bool) → t point)

Both versions (for point and interval entities, respec-
tively) find the Index-th occurence of Entity suc-
ceeding or preceding (if Index is negative) Point.
This determines whether the time entity containing
Point is taken into account. For example,

findIEByName(t, january, 1, false)

finds the ”next January” from t regardless of whether
t lies in January.

• partByEntityType(Interval, Part, Order) :
(t interval, t etype, t int) → t interval

• partByIEntity(Interval, Part, Order) :
(t interval, t ie name, t int) → t interval

• partByPEntity(Interval, Part,Order) :
(t interval, t pe name, t int) → t point

All the three versions (for entity type and point and
interval entities, respectively) retrieve the Order-
th Part within the specified Interval. (Order is
counted from the end if negative.) For example,

partByPEntity(const(1970, 3), noon, 2)

returns the interval corresponding to the noon of
2.3.1970. Vague subintervals are also supported, e.g.

partByIEntity(const(1970), beginning)

corresponds to the expression ”beginning of 1970”.

• partByFraction(Interval, N1, D1, N2, D2) :
(t interval, t uint, t uint, t uint, t uint) →
t interval

returns the Interval’s subinterval determined by the
two fractions (numerators N1, N2 and denominators
D1, D2). For example

partByFraction(const(1980), 1, 4, 1, 2)

returns the second quarter of 1980.

• seriesETByInterval(EntityType, Interval) :
(t etype, t interval) → t intervals

• seriesIEByInterval(Entity, Interval) :
(t ie name, t interval) → t intervals

• seriesPEByInterval(Entity, Interval) :
(t pe name, t interval) → t points

All the three versions return all the occurrences of the
specified Entity (or EntityType) within the speci-
fied Interval. For example,

seriesIEByInterval(monday, const(1980, 4))

returns the set of all Mondays within April 1980.

• seriesETByCount(Point, EntityType, C, Pst) :
(t point, t etype, t uint, t bool) → t intervals

• seriesIEByCount(Point, Entity, C, Pst) :
(t point, t ie name, t uint, t bool) → t intervals

• seriesPEByCount(Point, Entity, C, Pst) :
(t point, t pe name, t uint, t bool) → t points

All the three versions return C occurrences of the
specified Entity (or EntityType) from Point (to
the past if Pst is set). For example,

seriesETByCount(t, day, 4)

returns the set of 4 days before t.

These functions and operators may be composed to
form the resulting functional composition. A time point
can then be related to this functional composition yielding
the complete specification. E.g. the starting point sp.s of
spend from our introductory example can be positioned to
“last year” as follows

sp.s ∈ findEntityType(t, year,−1)

The same mechanism can be used to specify absolute
distance between two time points etc. Note that the set
of provided functions is not parsimonious (e.g. some part
functions can be replaced by their find counterparts) but it
corresponds more directly to the syntactic structure of time
expressions which leads to less complicated compositions.

4. Annotated Corpus
Although the annotation scheme itself is language in-

dependent and can be used to annotate plain texts, it is par-
ticulary convenient to link the temporal annotation with the
existing level of tectogrammatic (deep–syntax) annotation
within the framework of the Prague Dependency Treebank
(PDT) (Bohmová et al., 2002).

The tectogrammatic representation (TR) of a sentence
captures its deep–syntax properties and relations as a tec-
togrammatical tree structure (TGTS). A TGTS is a de-
pendency tree, the nodes of which represent the autose-
mantic (content, i.e., not auxiliary) words of the sentence.
Each node is labelled with an inflectionally reduced word–
form called the lemma and a functor that describes the
deep syntactic relationship to its governor (parent node)

such as actor (ACT), patient (PAT), temporal specification
(TWHEN), locative etc. Additionally, the nodes are la-
belled with grammatemes that capture further morphologi-
cal and semantic information corresponding to the autose-
mantic words such as tense, aspect, gender, number, mood,
modality etc. An example of a simplified tectogrammatic
tree is depicted in Figure 1. For a detailed description of
the TGTS annotation scheme see (Bohmová et al., 2002).
The temporal annotation can be therefore viewed as a nat-
ural extension to the PDT framework.

meet(PRED)

llllllllll
RRRRRRRRRR

[[[[[[[[[[[[[[[[[[[[[[[[[[

John(ACT) Mary(PAT) Monday(TWHEN)

Figure 1: A simplified tectogrammatic tree representing
the sentence “John met Mary on Monday.” Only the func-
tors are displayed.

We have annotated the Czech translation of a part3 of
the Wall Street Journal (WSJ) as present in the parallel
Prague Czech–English Dependency Treebank (PCEDT)
corpus (Čmejrek et al., 2004). Currently, the development
testing data set (233 sentences) and the evaluation testing
data set (231 sentences) are annotated for temporality and
used as testing data for our experiments. Both contain ap-
proximately 100 time specifications (and much more event
ordering relations).

5. Parsing and Inferencing
In order to infer relative ordering relations based on

time expressions it is necessary to construct the functional
composition and to compare the respective compositions.
The former task is addressed by the parser, the latter by the
inference engine.

5.1. Parser
The construction of the compositions is handled by a

parser module that scans TGTSs for occurrences of sub-
trees that are accepted by a tree grammar. The functional
composition is then built incrementally.

The tree grammar consist of rules whose left–hand side
is a non–terminal representing a dependency subtree and
the right–hand side represents the head of that subtree and
its immediate descendants – children. A child (or the head)
might be either a terminal node (corresponding to a node
in the parsed tree) or a non–terminal defined by another
rule. In this way the grammar makes it possible to process
layers (a head and its children) of the time expression sub-
tree one by one. There is an interpretation function associ-
ated with each rule (which corresponds to a tree layer). It
combines the interpretations – functional compositions of
the respective non–terminal children with the lexical and
structural information contained in the processed layer to
yield the interpretation for this layer.

3parts of sections 22, 23 and 24

An example is depicted in Figure 2. S, FRCT and
EXP are non–terminal symbols representing the respec-
tive subtrees (S is the start symbol). part, preposition,
numerator and denominator represent nodes in the
parsed TGTS that fulfill corresponding lexical conditions.
InterpretV aguePart and InterpretFraction are inter-
pretation functions creating the functional compositions
that correspond to the information provided by the given
layer. For example, InterpretV aguePart applies the
partByIEntity function (see Section 3.2.) on the inter-
pretation resulting from the subtree FRCT supplying the
argument part.

S: part (beginning)

qqqqqqq
MMMMMMM InterpretVaguePart

preposition (in) FRCT

FRCT: numerator (quarter)

qqqqqqq
MMMMMMM InterpretFraction

denominator (second) EXP

EXP: (rest of the subtree)

Figure 2: Examples of rules recognized by the tree gram-
mar.

The majority of simple expressions such as “two days
ago”, “tomorrow”, ”in the beginning of the next week”, “in
1987”, “in the end of the last summer” etc. are parsed by
our parser.

The evaluation of the performance of the time expres-
sion identification system is not straightforward. Our an-
notation schema does not contain a level of “shallow”
time expression recognition which would allow us to count
the number of recognized time expressions. For ex-
ample, consider the sentence “The meeting of the pres-
idents will take place on Monday.” appearing in a
newspaper article. The expression on Monday anchors
four time points – the starting and the ending points of
meeting and take place and only the corresponding four
specifications are present in the annotation. Moreover,
the determination of the correct functional composition
(findIEntityByName(t,Monday, 1) in this case) re-
quires pragmatic inference – we have to know that we
speak of the next Monday. The evaluation is therefore
based on the complete specifications rather than the sep-
arate time expressions. We measure the performance of
the time expression identification system by the follow-
ing metrics. Precision P denotes the ratio of the cor-
rectly determined specifications and all the determined re-
lations. Recall R denotes the ratio of the correctly deter-
mined specifications and all the existing (annotated) spec-
ifications. In order to somehow demonstrate the “shallow
time expression recognition capability” of the system we
also introduce the versions of precision and recall Pp and
Rp respectively that: a) take misplaced functional compo-

P R F Pp Rp Fp

65.33 44.95 53.25 82.66 56.88 67.38

Table 1: The performance of the time expression recogni-
tion system.

sitions (i.e. compositions which are correct but attached to
an incorrect time point) as correct and b) take underspeci-
fied compositions as correct (e.g. part(X, Monday, 1) in-
stead of findIEntityByName(t, Monday, 1)). We also
compute the corresponding F–measures4 F and Fp. Ta-
ble 1 lists the results. The errors are caused mainly by the
errors in the TGTS annotation.

5.2. Inference Engine
The purpose of the inference engine is to compare

time specifications in order to be able to determine rel-
ative ordering relation between the corresponding time
points without having to know the precise value of time–
of–speech. Two time specifications are compared against
each other by another module that traces the composi-
tion “inside–out” (from the innermost function) and uses
a “beam” structure to keep record of the distance (or ab-
solute value) of the outcome of the last visited function
to the source interval or point. If the source point is a
variable only the estimates are provided while tracing the
composition. If the compositions are comparable (e.g., the
highest estimate carried by the beam of one composition is
lower or equal to the lowest estimate carried by the beam
of the other composition) then the ordering of the events
anchored by the corresponding time expression may be in-
ferred.

6. Related Work
There has been a substantial amount of previous work

on the processing of time expressions. Some approaches
such as (Mani et al., 2001) or (Schilder and Habel,
2001) work only with extensions of time expressions and
are therefore unable to process discourses whose time–of–
speech is unknown. More recent TimeML (Pustejovsky
et al., 2005) annotation scheme introduces time functions
for indexical expressions but to our best knowledge there is
no implemented inference engine that would compare the
functions directly.

Systems that extract and normalize time expres-
sions from raw text (for example (Schilder and Habel,
2001), (Wilson et al., 2001)) usually achieve high F–
measure scores. As explained in Section 5.1. these results
are not directly comparable to the performance of our sys-
tem as they do not fully address the issue of the attachment
of the information provided by a time expression to respec-
tive events.

7. Conclusion
We have introduced a functional approach to capture

the meaning of various time expressions and showed its

4the harmonic mean of precision and recall

usability for automatic inference of event ordering rela-
tions. The main advantage of this approach in comparison
to systems that rely on computing the extensions (normal-
ized values) of time expressions is its ability to process dis-
courses (documents, speeches etc.) whose time–of–speech
is unknown. The disadvantage of the presented approach
lies in the lack of intermediate layers. As mentioned ear-
lier there is no “shallow” representation of an isolated time
expression. The existence of such layers would contribute
to greater modularity of the system making it possible to
separate e.g. semantic properties of a time expression and
pragmatic inferences. It would also allow for a more direct
comparison between alternative approaches.

8. Acknowledgements
The development of the presented work has been sup-

ported by the following organizations and projects: the
LC536 grant of the Ministry of Education of the Czech Re-
public, Information Society Project No. 1ET201120505
of the Grant Agency of the Academy of Sciences of the
Czech Republic, Grant No. 0530118 of the National Sci-
ence Foundation of the USA, and Grant No. 352/2006 of
the Grant Agency of Charles University. Any opinions,
findings, and conclusions or recommendations expressed
in this material are those of the author and do not necessar-
ily reflect the views of the respective grant agencies.

9. References
Bohmová, Alena, Jan Hajič, Eva Hajičová, and Barbora

Vidová-Hladká, 2002. The Prague Dependency Tree-
bank: Three-level annotation scenario. Treebanks:
Building and Using Syntactically Annotated Corpora.

Mani, Inderjeet, George Wilson, Beth Sundheim, and Lisa
Ferro, 2001. Guidelines for annotating temporal infor-
mation. In HLT 2001, First International Conference on
Human Language Technology Research.

Novák, Václav, 2004. Towards logical representation of
language structure. The Prague Bulletin of Mathemati-
cal Linguistics, (82):5–86.

Němec, Petr, 2006. Annotation of temporal relations
within a discourse. In Proceedings of Text, Speech and
Dialogue. Brno, Czech Republic.

Pustejovsky, James, Bob Ingria, Roser Sauri, Jose Cas-
tano, Jessica Littman, Rob Gaizauskas, Andrea Setzer,
G Katz, and I Mani, 2005. The specification language
TimeML. I.Mani, J. Pustejovsky, and R. Gaizauskas,
(eds.), The Language of Time: A Reader.

Schilder, Frank and Christopher Habel, 2001. From tem-
poral expressions to temporal information: Semantic
tagging of news messages. In ACL-2001 Workshop on
Temporal and Spatial Information Processing.

Čmejrek, Martin, Jan Cuřı́n, and Jiřı́ Havelka, 2004.
Prague czech-english dependency treebank: Any hopes
for a common annotation scheme ? Proceedings of
HLT-NAACL Workshop: Frontiers in Corpus Annota-
tion:47–54.

Wilson, George, Inderjeet Mani, Beth Sundheim, and Lisa
Ferro, 2001. A multilingual approach to annotating and
extracting temporal information. In ACL-2001 Work-
shop on Temporal and Spatial Information Processing.

