
3.2: Mathematical Model of Tree

Transformations

Onďrej Bojar, Martin Čmejrek

Distribution: Public

EuroMatrix

Statistical and Hybrid Machine Translation

Between All European Languages
IST 034291 Deliverable 3.2

November 30, 2007

Project funded by the European Community

under the Sixth Framework Programme for

Research and Technological Development.

Project ref no. IST-034291
Project acronym EuroMatrix

Project full title Statistical and Hybrid Machine Translation Between All Eu-
ropean Languages

Instrument STREP
Thematic Priority Information Society Technologies
Start date / duration 01 September 2006 / 30 Months

Distribution Public
Contractual date of delivery December 6, 2007
Actual date of delivery November 30, 2007
Deliverable number 3.2
Deliverable title Mathematical Model of Tree Transformations
Type
Status & version
Number of pages 32
Contributing WP(s) 3
WP / Task responsible Jan Hajič
Other contributors
Author(s) Ondřej Bojar, Martin Čmejrek
EC project officer Xavier Gros
Keywords

The partners in EuroMatrix are: Saarland University (USAAR)
University of Edinburgh (UEDIN)
Charles University (CUNI-MFF)
CELCT
GROUP Technologies
MorphoLogic

For copies of reports, updates on project activities and other EuroMatrix-related in-
formation, contact:
The EuroMatrix Project Co-ordinator
Prof. Hans Uszkoreit
Universität des Saarlandes, Computerlinguistik
Postfach 15 11 50
66041 Saarbrücken, Germany
uszkoreit@coli.uni-sb.de
Phone +49 (681) 302-4115- Fax +49 (681) 302-4700

Copies of reports and other material can also be accessed via the project’s homepage:
http://www.euromatrix.net/

c© 2007, The Individual Authors
No part of this document may be reproduced or transmitted in any form, or by any means,
electronic or mechanical, including photocopy, recording, or any information storage and

retrieval system, without permission from the copyright owner.

Contents

1 Introduction 5

1.1 Motivation for Deep Syntactic Transfer . 6

2 Synchronous Tree Substitution Grammars 7

2.1 Informal Motivation . 7
2.2 Tree-to-Tree Mappings . 8
2.3 A Probabilistic Synchronous Tree Substitution Grammar 9

2.3.1 Non-synchronous Tree Substitution Grammar (TSG) 9
2.3.2 Inside-outside Algorithm for TSG . 12
2.3.3 Synchronous Tree Substitution Grammar 13
2.3.4 Inside-outside Algorithm for STSG . 14

2.4 Conclusion . 15

3 STSG in Machine Translation 16

3.1 Translation as Probability Maximization . 16
3.2 Log-linear Model . 17

3.2.1 STSG Model . 18
3.2.2 Reverse and Direct Treelet Models . 18
3.2.3 N-gram Language Models . 18
3.2.4 Binode Tree Language Model . 19
3.2.5 Additional Features . 19

3.3 Decoding Algorithms for STSG . 19
3.3.1 Top-Down Beam Search . 19
3.3.2 Bottom-up Dynamic-Programming Decoding Algorithm 20

3.4 Heuristic Estimation of STSG Model Parameters 21
3.5 Methods of Back-off . 22

3.5.1 Preserve All . 22
3.5.2 Drop Frontiers . 22
3.5.3 Translate Word by Word . 23
3.5.4 Keep Word Non-Translated . 24
3.5.5 Factored Input Nodes . 24
3.5.6 Factored Output Nodes . 24

3.6 Remarks on Implementation . 25

4 Empirical Evaluation 26

4.1 Data and Pipeline Setup . 26
4.2 Experimental Results . 27
4.3 Discussion and Future Research . 27

4.3.1 BLEU Favours n-gram LMs . 28
4.3.2 Error Cumulation . 28
4.3.3 Conflict of Structures . 28
4.3.4 Sentence Generation Tuned for Manual Trees 28
4.3.5 Errors in Source-Side Analysis . 28

3

4.4 Conclusion . 29

5 Appendices 30

5.1 Acknowledgment . 30
5.2 References . 30

4

Chapter 1

Introduction

First machine translation systems as well as prevailing commercial MT systems to date are
based on a set of hand-crafted rules typically following the Vaquois triangle (Figure 1.1). For
an input sentence represented as a string of words, some symbolic representation is constructed,
possibly in several steps. This symbolic representation, with the exception of a hypothetical
Interlingua, remains language dependent, so a transfer step is necessary to adapt the structure
to the target language. The translation is concluded by generating target-language string of
words from the corresponding symbolic representation.

Morphological Layer

Surface Syntactic Layer

Deep Syntactic Layer

Interlingua

Figure 1.1: MT via tectogrammatical annotation.

In the following, we focus on one particular instance of this symbolic representation1, namely
the framework of Functional Generative Description (FGD, Sgall et al. (1986)), a formal strat-
ificational language description that is being developed since late 1960’s and recently found
its implementation in the Prague Dependency Treebank (PDT, currently available in version
2.0, Hajič et al. (2006)) for Czech. An English implementation of FGD is under development
and will be released as part of a parallel manually annotated Prague Czech-English Depen-
dency Treebank (PCEDT; version 1.0 with automatic annotation is available as Čmejrek et al.
(2004)).

In FGD, the three layers of language representation are called morphological (or m-layer),
analytical (a-layer, corresponds to surface syntax) and tectogrammatical (t-layer, corre-
sponds to deep syntax). M-layer represents the sentence as a sequence of word forms accom-
panied by their lemmas (base forms) and morphological tags that include part-of-speech and
many other relevant categories such as case, gender, number, tense etc. A-layer and t-layer use
a rooted labelled dependency tree to encode the relations between elements of the sentence.
At the a-layer, nodes in the tree correspond one to one to words in the input sentence. At
the t-layer, only words bearing meaning have a corresponding node while all auxiliary words
are abstracted away, possibly contributing to some attributes of relevant nodes. On the other
hand, t-layer includes nodes for entities that were not explicitly expressed in the sentence but

1Other examples of deep syntactic representation, in essence very similar to FGD, include Mel’čuk (1988),
Microsoft logical form (Richardson et al., 2001) or the ideas spread across the projects PropBank (Kingsbury
and Palmer, 2002), NomBank (Meyers et al., 2004) and Penn Discourse Treebank (Miltsakaki et al., 2004).

5

the language syntax and lexicon indicate their presence in the described situation. This is one
of several other reasons that make t-layer language dependent. For an elaborated description
of the t-layer for Czech refer to Deliverable 3.1 (Mikulová et al., 2007).

1.1 Motivation for Deep Syntactic Transfer

The rationale to introduce additional layers of formal language description is to bring the source
and target languages closer to each other. If the layers are designed appropriately, the transfer
step will be easier to implement because (among others):

• t-structures of various languages exhibit less divergences, fewer structural changes will be
needed in the transfer step.

• t-nodes correspond to auto-semantic words only, all auxiliary words are identified in the
source language and generated in the target language using language-dependent gram-
matical rules between t- and a- layers.

• t-nodes contain word lemmas, the whole morphological complexity of either of the lan-
guages is handled between m- and a- layers.

• t-layer abstracts away word-order issues. The order of nodes in a t-tree is meant to rep-
resent information structure of the sentence (topic-focus articulation). Language-specific
means of expressing this information on the surface are again handled between t- and a-
layers.

Overall, the design of t-layer aims at reducing data sparseness so less parallel training data
should be sufficient to achieve same coverage.

Moreover, the full definition of t-layer includes explicit annotation of phenomena like co-
reference to resolve difficult but inevitable issues of eg. pronoun gender selection. As tools for
automatic tectogrammatical annotation improve, fine nuances could be tackled.

6

Chapter 2

Synchronous Tree Substitution
Grammars

The idea of a Synchronous Tree Substitution Grammar was first sketched in (Hajič et al., 2002)
and (Eisner, 2003). A rule of such a grammar has the form of a pair of so-called little trees (or
equivalently treelets) with aligned frontier nodes that constrain both the positions, where other
little trees can attach, and their type. The tree-to-tree transformation process covers the source
tree by the source little trees from the rule-set, the output tree is then being constructed from
the corresponding target little trees.

This chapter defines the theory of such synchronous tree substitution grammars including
necessary mathematical details. It starts with the monolingual case, then extends it into the
synchronous case. We also present algorithms for training the models on a corpus of parallel
trees. In Chapter 3, we focus on the decoding algorithms necessary for producing translation.

We are aware of that the new theory is quite complicated. In order to help the reader to
understand the new concepts, we start with the Section 2.1 giving an informal overview of the
theory, jumping into the middle of the problem and trying to explain it using a “common sense”.
We hope that this figurative explanation makes the reading of the following pages easier.

2.1 Informal Motivation

Figure 2.1 contains an example of a tectogrammatical tree for a sample Czech sentence and
an analytical tree for its English equivalent. The Figure 2.2 then contains both trees split into
chunks. The chunk is usually formed by two little trees with filled (black) and empty (white)
nodes.

The filled nodes are called internal, the empty nodes are called frontier nodes. The frontier
nodes are connected by bows. The bows can be called alignment, matching, or mapping, and it
always means the same thing.

The chunk of both trees with aligned frontier nodes is a rule of the Synchronous Tree
Substitution Grammar.

The meaning of the first rule in Figure 2.2 is that the Czech informovat nesprávně is trans-
lated as the English were misinformed. The alignment between the frontier node PAT of the
Czech tree and the frontier node Sb of the English tree means that the frontier (white) nodes
must be filled at the same time by one rule. In this example, it is the rule vedeńı ↔ executives.
If a frontier node is not aligned, it means that it is not translated in the other tree.

If we follow the vertical alignment of frontier nodes and roots of the little trees below them,
we get the whole “parse tree”—in another words we can find a rule that will be “plugged” into
the aligned pair of frontier nodes.

The last but not least, the frontier nodes are labeled with syntactical functions1, we call it
frontier state. The Probabilistic Synchronous Tree Substitution Grammar models the probability

1But we could consider any reasonable labeling.

7

that a rule will be plugged into a given pair of matching frontier nodes with a given frontier
state.

The idea of tree-to-tree transductions is so general that it can be applied to transforma-
tions between any two types of trees. In English to Czech machine translation, configurations
transferring from English trees to Czech trees can operate either on the same analytical or
tectogrammatical level, or they can go diagonally, e.g. from the English analytical trees to
the Czech tectogrammatical trees. The tree-to-tree transductions could also be used for the
“parsing” step from the analytical to the tectogrammatical representation.

2.2 Tree-to-Tree Mappings

Our goal is to describe the transformations of sentence structures that we may observe during
the process of translation between two languages. Comparing the tectogrammatical tree for a
sample Czech sentence “Podle jeho názoru bylo vedeńı UAL o financováńı p̊uvodńı transakce
nesprávně informováno.”, with the analytical tree for its English translation “According to his
opinion UAL’s executives were misinformed about the financing of the original transaction.”
in Figure 2.1, we can find the corresponding groups of nodes (chunks) and list some of the
mismatches that we observe:

1. The 2–1 match between the PRED (predicate) of the Czech sentence informovat ne-
správně and its English counterpart misinformed,

2. the elision (a 1–0 match) of the generated ACT (actor) of the Czech sentence,

3. the three 1–1 matches (on ↔ his; p̊uvodńı ↔ original; vedeńı ↔ executives),

4. the Czech CRIT (criterium) názor expressed by the English Adv (adverbial) phrase ac-
cording to ... opinion can be either classified as a 1–3 match, or we can say that the
tectogrammatical functor CRIT forms the English Adv subtree According to and that the
lemma názor matches 1–1 with opinion,

5. the EFF (effect) financováńı can be taken either as in a 1–3 match with AuxP about the
financing, or we can think that the functor EFF generates the Adv node about and the
lemma financováńı generates the financing,

6. the PAT (patient) transakce generates AuxP of the ... transaction or, in two steps, the
functor PAT gives birth to AuxP of, the lemma transakce translates to the transaction,
and there is a 1–2 match transakce ↔ the transaction.

Such an informal description of observed transformations mixes lexical, functional, and
structural information present in this tree-pair. In the following, we will have to proceed through
several steps towards formal rules that capture all three types of information.

We can split the tree pair into corresponding chunks and number them as in Figure 2.2. A
translation rule is represented by a pair of corresponding chunks. Filled nodes carry the lexical
information; the other nodes are marked by their syntactical functions and can be substituted
by other chunks with the same syntactical function2. Finally, the dashed bows between unfilled
nodes indicate that the substitutions at these two nodes must proceed synchronously.

For example, the rule 13 formalizes our observation from item 1, i.e. that the part of the
Czech tectogrammatical tree informovat nesprávně, preceded by some subtrees of ACT , CRIT ,
PAT , and EFF , will be translated by the part of the English analytical tree were misinformed,
preceded by some subtrees of Adv and Sb, and followed by some AuxP . Rule 1 also specifies
that the three pairs of subtrees of CRIT and Adv, PAT and Sb, and EFF and AuxP will be
substituted at the same time, or in other words, that these pairs of subtrees will be translations
of one another. Finally, the ACT node will not have any counterpart in the English tree.

2The label with the syntactical function refers to both the unfilled node and the substituting chunk below it.
3See numbers above the root node of each chunk in the Figure 2.2.

8

Rule 2 corresponds to the observation 2, i.e. the generated actor is not translated into
English. This rule maps the Czech chunk to a special null chunk on the English side.

The informal observation mentioned in item 4 is expressed by rules 3 and 4. Rule 3 says
that functor CRIT should be translated as according to, and rule 4 dictates the synchronous
translation of the actual lexical information názor ↔ opinion. 4

2.3 A Probabilistic Synchronous Tree Substitution Grammar

In this section, we describe the details of the probabilistic model of the transduction, the method
of parameter estimation, and the decoding algorithm.

In our formal description of the Synchronous Tree Substitution Grammar, we stick to the
symbolic markup used in (Hajič et al., 2002; Eisner, 2003) where possible.

We start with the definition of the non-synchronous Tree Substitution Grammar, and then
extend to the synchronous case. As an example, we will use again the same tree pair from
Figure 2.1, as in the previous section.

2.3.1 Non-synchronous Tree Substitution Grammar (TSG)

The Tree Substitution Grammar (TSG) is defined as follows:

1. Let Q be the set of states5, and let Start ∈ Q be the name reserved for the initial state.

2. Let L be the set of labels on the nodes (words) and edges (grammatical roles).

3. Let τ be the set of little trees or treelets t defined as tuples 〈V, V i, E, l, q, s〉, where

• V is a set of nodes,

• V i ⊆ V is a subset of internal nodes and its complement V f = V − V i is a set of
frontier nodes,

• E ⊆ V i × V is a set of directed edges that can start from internal nodes only. The
graph 〈V,E〉 must form a directed and acyclic tree.6

• The function s : V f → Q assigns a frontier state to each frontier node.

• Let r ∈ V be the root node of the tree, and let the root state q be assigned to the
root.7

• Let l : (V i ∪ E) → L be a function assigning a label to each internal node or edge.

4. Finally, the Tree Substitution Grammar (TSG) is defined as the tuple 〈Q,L, τ〉.

For convenience, we will use the shorthand t.q for the root state, t.s for the frontier state
function, and other shortcuts for all other properties of t ∈ τ using the same analogy.

Let d ∈ V f be a frontier node of t, and t′ be a little tree such that t.s(d) = t′.q – in other
words, the frontier state of d matches the root state of t′. We may define the operation of

4One could object that there is no mechanism that would prevent from using rule 4 first (substituting at CRIT

and Adv frontier nodes of rule 1), so that using rule 3 would not be possible any more, and the resulting sentence
(missing the words According to) would be ungrammatical. This can be fixed by extending the set of syntactical
functions, e.g. the unfilled Czech and English nodes of rule 3 could have labels CRIT ′ and Adv′, respectively.
An alternative way of fixing this problem is to consider one larger rule CRIT názor ↔ Adv According to ...

opinion.
5In our example we use the grammatical roles from the PDT
6We can see that the tree representing the whole sentence complies with the definition of the little tree with

the empty set of V f .
7If the root r is a frontier node, we can consider s such that s(r) 6= q.

9

P
R

E
D

in
fo

rm
ov

at

A
C

T
&

G
en

;
C

R
IT

n
áz

or

P
A
T

ve
d
eń

ı

E
F
F

fi
n
an

co
v
áń

ı

M
A

N
N

n
es

p
rá

v
n
ě

A
P

P
on

R
S
T

R

U
A

L

P
A
T

tr
an

sa
kc

e R
S
T

R
p̊
u
vo

d
ń
ı

P
re

d

m
is

in
fo

rm
ed

A
d
v

A
cc

or
d
in

g
S
b

ex
ec

u
ti
ve

s

A
u
x
V

w
er

e
A

u
x
P

ab
ou

t

A
u
x
P

to

A
u
x
P

’s

A
d
v

fi
n
an

ci
n
g

A
d
v

op
in

io
n

A
tr

U
A

L

A
tr

th
e

A
u
x
P

of

A
tr

h
is

A
tr

tr
an

sa
ct

io
n

A
tr

th
e

A
tr

or
ig

in
al

Figure 2.1: The tree pair for the tectogrammatical representation of the Czech sentence “Podle
jeho názoru bylo vedeńı UAL o financováńı p̊uvodńı transakce nesprávně informováno.” and
the analytical representation of the corresponding English translation “According to his opinion
UAL’s executives were misinformed about the financing of the original transaction.”

10

1

in
fo

rm
ov

at

A
C

T
C

R
IT

P
A
T

E
F
F

n
es

p
rá

v
n
ě

1

m
is

in
fo

rm
ed

A
d
v

S
b

w
er

e
A

u
x
P

2

&
G

en
;

3

C
R

IT

3

A
cc

or
d
in

g to

A
d
v

4

n
áz

or

A
P

P

4

op
in

io
n

A
tr

on
h
is

ve
d
eń

ı R
S
T

R

ex
ec

u
ti
ve

s

A
u
x
P

E
F
F

ab
ou

t

A
d
v

fi
n
an

co
v
áń

ı

P
A
T

fi
n
an

ci
n
g

th
e

A
u
x
P

U
A

L
’s

U
A

L

P
A
T

of

A
tr

tr
an

sa
kc

e R
S
T

R

tr
an

sa
ct

io
n

th
e

A
tr

p̊
u
vo

d
ń
ı

or
ig

in
al

Figure 2.2: Aligned chunks of the tree structure for the tectogrammatical representation of the
Czech sentence “Podle jeho názoru bylo vedeńı UAL o financováńı p̊uvodńı transakce nesprávně
informováno.” and the analytical representation of the corresponding English translation “Ac-
cording to his opinion UAL’s executives were misinformed about the financing of the original
transaction”.

11

substituting t at d with t′. The result of this operation is defined as little tree:

SUBST (t, d, t′) =〈t.V i ∪ t′.V i,

t.V f ∪ t′.V f − {d},

t.E∗ ∪ t′.E,

t.l ∪ t′.l,

t.q,

t.s ∪ t′s − {〈d, t′.q〉}〉.

(2.1)

We obtain t.E∗ from t.E, by “redirecting” the edge originally pointing to d to the root of t′.
The process of derivation from the initial state Start in the TSG is described by Alg. 1:

Algorithm 1 The derivation process in TSG.
1. Start with any little tree t ∈ TSG, such that t.q = Start.
2. while t.V f 6= ∅
3. select d ∈ t.V f

4. select t′ such that t.s(d) = t′.q

5. t := SUBST (t, d, t′)

Line 4 of the algorithm hinted us to model the probability distribution over all possible little
trees with root state q. Then the tree t′ would be chosen with the probability p(t′ | q).

Thus the probability of the derivation qt0 . . . tk starting from t0 and using k substitutions
with little trees t1, . . . , tk can be defined as:

p(q, t0, . . . , tk) = p(t0|q) ∗
k

∏

i=1

p(t′i | t′i.q) (2.2)

The probabilistic TSG does not require t.s(d) to be the same as t′.q.

2.3.2 Inside-outside Algorithm for TSG

The probabilities p(t | q) can be automatically obtained from a treebank using the EM algorithm.
By analogy with the measures and quantities used for the training of probabilistic context-free
grammars (Jelinek, 1985), we will define inside and outside probabilities, expected counts, and
state the re-estimation formula.

We say that “the tree t′ fits node d” if there is some derivation, in which t′ substitutes t at
d and the result of the derivation is T . Note that the root state of t′ can be any of Q, since the
nodes of the resulting tree T do not imply any restrictions on states used during the derivation.
Thus the iteration over all little trees t′ fitting d includes variants for all q ∈ Q.

The probability that the grammar TSG generates the tree T from the state Start is the
sum of probabilities of all possible derivations, and can be computed as the inside probability

βT.r(Start) by the induction in Alg. 2:

Algorithm 2 The inductive algorithm for computing inside probabilities.
1. for each node c of T in bottom-up order
2. for each q ∈ Q, let βc(q) = 0
3. for each little tree t that fits c, in a safe order
4. increment βc(t.q) by p(t | t.q) ·

∏

d∈t.V f βd(t.s(d))

The natural-language definition of the inside probability βc(t.q) is the probability of gener-
ating the whole subtree of T rooted at node c with the root state q. Alg. 2 is an example of
the well-known chart-parsing or dynamic-programming approach. It starts with the leaf nodes,
their inside probabilities p(t | t.q) are retrieved from the probabilistic model. Then the algo-
rithm traverses the tree in bottom-up ordering and collects inside probabilities for the nodes
higher up in the tree.

12

Line 3 must iterate the little trees in a safe order. The little trees with frontier root nodes
can be selected only after all other little trees with the internal root node have been evaluated.

The outside probabilities αt.r(q) can be computed by Alg. 3:

Algorithm 3 The inductive algorithm for computing outside probabilities.
1. for each little tree t that fits T.r

2. for each q ∈ Q

3. if q = Start let αt.r(q) = 1
4. else αt.r(q) = 0
5. for each node c of T , in top-down order
6. for each little tree t that fits c

7. for each d ∈ t.V f

8. for each t′ that fits d

9. increment αd(t
′.q) by p(t′ | t.s(d)) · αt.r(t.q) ·

∏

d′∈t.V f−d βd′(t.s(d′.))

The natural definition of the outside probability αd(t.q) is the probability of starting with
the root state T.q, generating all parts of the tree T outside of the subtree rooted at c, and
generating any subtree rooted at c with the root state t.q

The expected count C(q, t) of a little tree t used in the derivation of T can be computed
by Alg. 4:

Algorithm 4 The algorithm for computing expected counts.
1. Initialize C(,) = 0
2. for each node c of T

3. for each little tree t that fits c

4. Increment C(q, t) by p(t | q) · αt.r(q) ·
∏

d∈t.V f βd(t.s(d))

And finally, the re-estimation formula 2.3 for p(t | q):

p(t | q) =
C(q, t)

∑

t′ C(q, t′)
(2.3)

In each iteration, the EM algorithm first computes the inside probabilities, the outside
probabilities, the expected counts, and finally uses the re-estimation formula to obtain the new
values of p(t | q). Iterations are repeated until the p(t | q) converges.

2.3.3 Synchronous Tree Substitution Grammar

We can extend the TSG to model the synchronous generation of a tree pair T = (T1, T2). For
this we will join two TSGs, TSG1 = 〈Q1, L1, τ1〉 and TSG2 = 〈Q2, L2, τ2〉, such that TSG1

generates T1 and TSG2 generates T2, with some restrictions on the operation of substitution.
The synchronous tree substitution grammar (STSG) is a tuple 〈Q,L, τ〉, where

1. Q is a set of synchronous root states, Start being as before a special initial state.8

2. L = L1 × L2.

3. τ = τ1 × τ2 is a set of little tree pairs. The little tree pair t is a tuple 〈t1, t2, q,m, s〉,

where the little trees ti = 〈V i
i , V

f
i , Ei, li〉 have a common synchronous root state q.

The alignment of frontier nodes m is called matching, and is defined as a 1-to-1 corre-
spondence (pairing) between subsets of V

f
1 and V

f
2 , such that unmatched frontier nodes

are mapped to null. For 1-0 or 0-1 mappings, we use the concept of a null tree that
has empty sets of internal and frontier nodes9. The function s : m → Q assigns common
frontier states to pairs of aligned frontier nodes.

8For convenience, we may think of Q = Q1 × Q2, but generally, the Q can be any set of synchronous root
states.

9Note that the concept of the null little tree is compliant with the rest of the definitions, except from the root
of the null tree, and the root state of the little tree pair containing null tree. We leave this up to our intuition.

13

The operation SUBST (t, d, t′) of substituting t at d with t′ for aligned node pairs d =
(d1, d2) is defined such that d ∈ m and t.s(d) = t′.q. The result of this substitution is a little
tree pair

SUBST (t, d, t′) =〈SUBST (t1, d1, t
′

1),

SUBST (t2, d2, t
′

2),

q,

t.m ∪ t′.m − (d1, d2),

t.s ∪ t′.s − (d1, d2, t
′.q)〉.

(2.4)

The process of derivation from the initial state Start in STSG is described by Alg. 5:

Algorithm 5 The derivation process in STSG.
1. Start with any little tree pair t ∈ TSG, such that t.q = Start.
2. while t.m 6= ∅
3. select d ∈ t.m

4. select t′ such that t.s(d) = t′.q

5. t := SUBST (t, d, t′)

The formula 2.2 for computing the probability of the derivation can be used for the syn-
chronous case as well.

2.3.4 Inside-outside Algorithm for STSG

In order to train the probabilities p(t | q) of the STSG, we have to rework Algorithms 2, 3,
and 4 for the inside and outside probabilities, and expected counts, as well as the re-estimation
Formula 2.3.

The definition of fitting has to be updated for the synchronous case: We say that t′ fits

node pair d, if t′i fits di for i = 1, 2.
Alg. 6 computes the inside probability βT.r(Start), in other words, the probability that

the STSG generates a tree pair T from the initial symbol Start.

Algorithm 6 The inductive algorithm for computing inside probabilities for STSG.
1. for each node c1 of T1, in bottom-up order
2. for each node c2 of T2, in bottom-up order
3. for each q ∈ Q, let βc1,c2

(q) = 0
4. for each little tree t1 that fits c1

5. for each little tree t2 that fits c2

6. for each probable matching m of frontier nodes of t1 and t2
7. construct t from q, t1, t2, and m

8. increment βc(q) by p(t | t.q) ·
∏

d∈m βd(t.s(d))

Lines 4 and 5 must iterate little trees fitting a node pair c in a safe order. First, we have to
evaluate the pairs with the null little tree, then the little tree pairs with internal root nodes,
and finally the little tree pairs with a frontier root nodes.

Alg. 7 computes the outside probability αt.r(q):

14

Algorithm 7 The inductive algorithm for computing outside probabilities for STSG.
1. for each node c1 of T1, in top-down order
2. for each node c2 of T2, in top-down order
3. for each q ∈ Q

4. if q = Start let αc(q) = 1
5. else αc(q) = 0
6. for each little tree t1 that fits c1

7. for each little tree t2 that fits c2

8. for each probable matching m of frontier nodes t1 and t2
9. construct t from q, t1, t2, and m

10. for each pair of matching frontier nodes f ∈ m

11. increment αf (t.s(f)) by p(t | q) · αt.r(q) ·
∏

d∈m−{f} βd(t.s(d))

The expected counts C(q, t) are computed using Alg. 8:

Algorithm 8 The algorithm for computing expected counts for STSG.
1. Initialize C(,) = 0
2. for each node c1 of T1

3. for each node c2 of T2

4. for each little tree t1 that fits c1

5. for each little tree t2 that fits c2

6. for each probable matching m of frontier nodes t1 and t2
7. construct t from q, t1, t2, and m

8. Increment C(q, t) by p(t | q) · αt.r(q) ·
∏

d∈m βd(t.s(d))

Finally, the probabilities are re-estimated using Formula 2.3, but this time the tree pairs t

and t′ iterate through all possible t1, t2, and m.

2.4 Conclusion

We have presented the details of the probabilistic Synchronous Tree Substitution Grammars, a
new method for learning tree-to-tree transformations between non-isomorphic trees.

15

Chapter 3

STSG in Machine Translation

This chapter describes how STSG can be applied in the process of machine translation. As de-
fined in Section 2.3.3, given a starting synchronous state Start1:2 ∈ Q1×Q2, a synchronous

derivation δ = {t01:2, . . . , t
k
1:2} constructs a pair of dependency trees (T1, T2) by:

• attaching treelet pairs t01:2, . . . , t
k
1:2 at corresponding frontier nodes, and

• ensuring that the root states t01:2.q, . . . , t
k
1:2.q of the attached treelets pairs t01:2, . . . , t

k
1:2

match the frontier states of the corresponding frontier nodes.

Note that in this section we require (1) each treelet to contain at least one internal node
and (2) all frontier nodes in a treelet pair to be mapped, i.e. the left and right treelets must
contain the same number of frontier nodes. These two additional requirements ensure that
the translation procedure (1) will not loop (by generating output treelets while not consuming
anything from the input tree) and (2) will not skip any subtree of the input tree.

For the purposes of further explanation, we define source-side projection 1(δ) and target-side
projection 2(δ) of a derivation δ as the trees T1 and T2 constructed by δ, respectively. Given a
source tree T1, we denote ∆(T1) = {δ | 1(δ) = T1}, the set of derivations δ yielding T1 on the
source side.

Note that given a tree T , not all subtrees t ⊆ T can be considered as part of (one side of)
a valid (synchronous) derivation because STSG derivations have no adjunction operation. We
say that a subtree t of a tree T satisfies STSG property, if for every internal node n ∈ t all
immediate dependents of n in T are included in t as well, either as internal or as frontier nodes.
In other words, we assume no tree adjunction operation was necessary to over any children of
n in T .

3.1 Translation as Probability Maximization

Our goal is to translate a source sequence of words s1 into a target sequence of words ŝ2, where
ŝ2 is the most likely translation out of all possible translations s2:

ŝ2 = argmax
s2

p(s2 | s1) (3.1)

We introduce the source and target dependency trees T1 and T2 as hidden variables to the
maximization, assuming no other dependencies except those along the pipeline indicated in
Figure 1.1:

ŝ2 = argmax
s2,T1,T2

p(T1 | s1) · p(T2 | T1) · p(s2 | T2) (3.2)

Rather than searching the joint space, we break the search into three independent steps:
parsing (3.3), tree transduction (3.4) and generation (3.5):

16

T̂1 = argmax
T1

p(T1 | s1) (3.3)

T̂2 = argmax
T2

p(T2 | T̂1) (3.4)

ŝ2 = argmax
s2

p(s2 | T̂2) (3.5)

We mention the tools used for parsing and generation in Chapter 4 below. STSG is used to
find the most likely target tree T̂2 given T1. Applying the Viterbi approximation we search for
the most likely derivation δ̂ instead and take its target-side projection.1

T̂2 = argmax
T2

p(T2 | T1)
.
= 2(δ̂) = 2

(

argmax
δ∈∆(T1)

p(δ)
)

(3.6)

In other words, we consider all decompositions of T1 into a set of treelets t01, . . . , t
k
1 , expand

each treelet ti1 into a treelet pair ti1:2 using a treelet pair dictionary and consider the probability
of the synchronous derivation δ = {t01:2, . . . , t

k
1:2}. Having found the most likely δ̂, we return the

right-hand-side tree constructed by δ̂.

3.2 Log-linear Model

Following Och and Ney (2002) we further extend 3.6 into a general log-linear framework that
allows us to include various features or models:

δ̂ = argmax
δ∈∆(T1)

exp
(

M
∑

m=1

λmhm(δ)
)

(3.7)

Each of the M models hm(δ) provides a different score aimed at predicting how good the
derivation δ is. The weighting parameters λm,

∑M
1 λm = 1, indicate relative importance of the

various features and are tuned on an independent dataset.
To facilitate efficient decoding (see Section 3.3 below), we require most feature functions

hm(δ) to decompose in lockstep with the derivation, i.e. to take the form:

hm(δ) =

k
∑

i=0

hm(ti1:2) (3.8)

1Here is a step-by-step explanation of the approximation:

T̂2 = argmax
T2

p(T2 | T1) marginalize over derivations δ

= argmax
T2

X

δ

p(T2, δ | T1) apply chain rule

= argmax
T2

X

δ

p(T2 | δ, T1) · p(δ | T1) p(T2 | δ, T1) = 1 because T2 = 2(δ)

= argmax
T2

X

δ

p(δ | T1) apply Fundamental Law

= argmax
T2

X

δ

p(δ, T1)

p(T1)
ignore p(T1), constant in maximization

= argmax
T2

X

δ

p(δ, T1) p(δ, T1) =
˙p(δ) if δ ∈ ∆(T1) because T1 = 1(δ)

0 otherwise

= argmax
T2

X

δ∈∆(T1)

p(δ) approximate sum by only the largest element

.
= argmax

T2

max
δ∈∆(T1)

p(δ) Viterbi approximation to search for δ instead of T2

.
= 2(argmax

δ∈∆(T1)

p(δ))

17

3.2.1 STSG Model

One of the most basic features is based on the STSG probability of the synchronous derivation,
as defined in Eq. 2.2 and reprinted here for the synchronous case:

p(δ) = p(t01:2 | Start1:2) ∗
k

∏

i=1

p(ti1:2 | ti1:2.q) (3.9)

To incorporate this probability into the log-linear model, we take the log of it, defining the
STSG model:

hSTSG(δ) = log(p(δ)) = log(p(t01:2 | Start1:2)) +
k

∑

i=1

log(p(ti1:2 | ti1:2.q)) (3.10)

Note that if hSTSG(·) were the only feature used, the log-linear model reduces to the straight-
forward maximization of p(Start1:2, δ):

δ̂ = argmax
δ∈∆(T1)

exp
(

hSTSG(δ)
)

= argmax
δ∈∆(T1)

p(Start1:2, δ) (3.11)

3.2.2 Reverse and Direct Treelet Models

The STSG model assumes the choice of a treelet pair t1:2 depends only on the synchronous state
q of the two frontiers where t1:2 is attached.

Inspired by the common practice of statistical machine translation, we include the channel
model (“reverse”) and “direct” conditional probabilities:

hdirect(t
i
1:2) = log

(

p(ti2 | ti1)
)

(3.12)

hreverse(t
i
1:2) = log

(

p(ti1 | ti2)
)

(3.13)

The reverse model is justified by Bayes decomposition of p(target|source) while the direct
model empirically proves as a comparably valuable source (see e.g. Och (2002)).

3.2.3 N-gram Language Models

A probabilistic target-language model used to promote coherent hypotheses is a very important
predictor of translation quality (see e.g. Och (2002)).

In the canonical mode, an STSG decoder is expected to produce an output dependency tree
and thus cannot directly employ pervasive n-gram language models. However, if no structure is
needed at the output (e.g. when translating to a-trees and directly reading off node labels), we
can safely destroy all target-side tree structure, representing T2 as a sequence of output words
w1, . . . , wJ . Naturally, until the complete target hypothesis is constructed, we have to keep
track of exact positions of yet-to-expand frontiers within the sequence of output words.

In this special case, the traditional sequence (language) model can be used, with a bit of
careful delayed computation around unexpanded frontiers:

hLMn(δ) = log

J
∏

j=1

p(wj|wj−1 . . . wj−n+1) (3.14)

We assume wj to be set to a special out-of-sentence symbol for j < 1.

18

3.2.4 Binode Tree Language Model

Given the output dependency tree structure, a more natural language model estimates sentence
probability based on edges in the tree. As documented eg. by Charniak (2001), such models
can improve parsing accuracy.

We define binode probability of the target tree T2 as the multiplication of probabilities of all
the edges e ∈ T2. Given the governor g(e) and the child c(e) of e, we can define three different
probabilies, “direct”, “reverse” and “joint”, leading to three separate models:

hbiLM
direct(δ) = log

∏

e∈T2

p(g(e) | c(e)) (3.15)

hbiLM
reverse(δ) = log

∏

e∈T2

p(c(e) | g(e)) (3.16)

hbiLM
joint (δ) = log

∏

e∈T2

p(c(e), g(e)) (3.17)

3.2.5 Additional Features

Following common practice in phrase-based machine translation (e.g. Koehn (2004a) or Zens et
al. (2005)), we include penalties to consider the number of treelets and words used to construct
a derivation:

htreelet penalty(δ) = −|δ| (3.18)

hword penalty(δ) = −
k

∑

i=0

|ti2| (3.19)

where |ti2| denotes the number of words in target treelet ti2.

3.3 Decoding Algorithms for STSG

The search space of all possible decompositions of input tree multiplied by all possible trans-
lations of source treelets is too large to be explored in full, efficient approximation algorithms
have to be designed.

3.3.1 Top-Down Beam Search

The current version of our decoder implements a beam search inspired by the strategy of phrase-
based decoder Moses (Koehn et al., 2007). While Moses constructs partial hypotheses in a
left-to-right fashion (picking source phrases in arbitrary order), our partial hypotheses are con-
structed top-to-bottom along with the source tree T1 being covered from top to bottom. The
algorithm, in essence very similar to the one described recently by Huang et al. (2006) but
dating back to Aho and Johnson (1976), is outlined in Alg. 9. The main difference is that we
tackle the exponetial search space of tree decompositions using a pre-processing phase while
Huang et al. (2006) use memoization.

The first step is the construction of “translation options”. For each input node x ∈ T1, all
possible treelets rooted at the node are examined and if a translation of a treelet is found, it is
stored as one of the translation options for x. Figure 3.1 illustrates sample translation options
for the auxiliary root (“#”), the main verb “said” and the full stop “.”. For conciseness,
the target treelet structure is omitted in the picture as if the target output tree was directly
linearized.

Figure 3.2 illustrates the gradual expansion of a hypothesis using translation options con-
structed in the first step. Once all input nodes are covered (and thus no frontiers are left in

19

Algorithm 9 Top-down beam-search STSG decoding algorithm.
1. For input tree T1 of n nodes, prepare translation options table:
2. For each source node x ∈ T1

3. Construct all possible treelet pairs t1:2 where t1 is rooted at x

and covers a subtree of T1.
4. The subtree has to satisfy the STSG property:
5. If y ∈ T1 is covered with an internal node of t1, all dependents of y

have to be covered by t1 as well.
6. Record only τ best possible treelet pairs rooted at x.
7. Create stacks s0, . . . , sn to hold partial hypotheses, stack si for hypotheses covering

exactly i input nodes.
8. Insert initial hypothesis (a single frontier node) into s0.
9. for i ∈ 0 . . . n − 1
10. foreach hypothesis h ∈ si

11. Expand h by attaching one of possible translation options at a pair of pending frontiers,
12. extending the set of covered words and adding output words.
13. Insert the expanded h′ (j words covered) to sj , pruning sj to contain at most σ hypotheses.
14. Output top-scoring h∗ from sn.

The association said demand grew .

Sample translation options at root: ⇒ Linearized target treelet

#
VP t

⇒ # Pred AuxK

#
VP

⇒ # Pred .

Sample translation options at ’said’:

NP VP VP

⇒ Sb uvedla , že Pred

Sample translation options at ’.’:

⇒ .

Figure 3.1: Translation options example.

the partial output), the output hypothesis is returned. In practice, we beam-search the space
of derivations, studying σ best-scoring partial hypothesis of the same number of covered input
nodes at once. Note that each expansions is guaranteed to cover at least one more input node,
so the algorithm cannot loop.

3.3.2 Bottom-up Dynamic-Programming Decoding Algorithm

Čmejrek (2006) presents another possible method of searching for the most probable translation
T2 of a given input tree T1.

The most probable derivation is computed by a dynamic-programming style Alg. 10. For
each node c1 ∈ T1 and each synchronous state q ∈ Q, we find and store the root treelet pair t1:2
of the most probable derivation δ̂c1 that covers the whole subtree of T1 rooted at c1 and has q

as the root synchronous state. The treelets are stored in arrays Ac1(q) and the corresponding
(inside) probabilities of δ̂c1 are stored in βc1(q).

The final derivation δ̂ covering whole T1 is constructed by starting from t01:2 = AT1.r(Start1:2)
and recursively including all treelet pairs ti1:2 = Af i

1
(qi) to cover all frontiers f i

1 (respecting the

synchronous states qi) of previously included treelets t01:2, . . . , t
i−1
1:2 .

20

The association said demand grew .

Sample Derivation: Linearized output:

h0 # ⇒ #

After expanding at root:

h1 #
VP

⇒ # Pred .

After expanding at Pred:

h2
#

NP VP

⇒ # Sb uvedla , že Pred .

After expanding at Pred:

h3
#

NP NP

⇒ # Sb uvedla , že Sb stoupla .

Figure 3.2: Top-down hypothesis expansion using translation options from Figure 3.1.

Algorithm 10 Bottom-up decoding algorithm for STSG.
1. for each node c1 ∈ T1.V in bottom-up order
2. for each q ∈ Q let βc1

(q) = −∞
3. for each little tree t1 that fits c1 in a safe order
4. while t1:2=proposeNewTreeletPair(t1) // we have to try all possible t2, q, m, s

5. let prob = p(t1:2 | t1:2.q) ·
∏

(d1,d2)∈m βd1
(t1:2.s((d1, d2)))

6. if βc1
(q) < prob // found a higher scoring derivation

7. then let βc1
(q) = prob and Ac1

(q) = t1:2

As opposed to computing the inside probabilities (see Alg. 2), we do not have to fit nodes
of T2, and therefore no restrictions are put on the choice of t2. That is also why the inside
probabilities are indexed by c1 only.

3.4 Heuristic Estimation of STSG Model Parameters

Given a sentence-parallel treebank, we can use the expectation-maximization algorithm de-
scribed in Section 2.3.4 to obtain treelet-to-treelet alignments and estimate STSG derivation
probability as defined in Eq. 2.2. Our plan is to soon adopt this method, but for the time being
we restrict our training method to a heuristic based on GIZA++ (Och and Ney, 2000) word
alignments. So instead of treelet-to-treelet alignments, we base our probability estimates on
node-to-node alignments only.

For each tree pair in the training data, we first read off the sequence of node labels and
use GIZA++ tool to extract a possibly N-N node-to-node-alignment.2 In the next step, we
extract all treelet pairs from each node-aligned tree pair such that all the following conditions
are satisfied:

• each treelet may contain at most 5 internal and at most 7 frontier nodes (the limits are
fairly arbitrary),

2GIZA++ produces asymmetric 1-N alignments, we follow standard practices to combine 1-N and N-1 align-
ments from two GIZA++ runs.

21

• each internal node of each treelet, if aligned at all, must be aligned to a node in the other
treelet,

• the mapping of frontier nodes has to be a subset of the node-alignment,

• each treelet must satisfy STSG property.

All extracted treelet pairs contribute to our maximum likelihood probability estimates. In
general, given a left treelet t1, a right treelet t2 and their respective root states q1 and q2, we
estimate three separate models: “stsg”, “direct” and “reverse”:

hstsg(t1:2) = log
count(t1, q1, t2, q2)

count(q1, q2)
(3.20)

hdirect(t1:2) = log
count(t1, q1, t2, q2)

count(t1, q1, q2)
(3.21)

hreverse(t1:2) = log
count(t1, q1, t2, q2)

count(t2, q1, q2)
(3.22)

3.5 Methods of Back-off

As expected, and also pointed out by Čmejrek (2006), the additional structural information
boosts data-sparseness problem. Many source treelets in the test corpus were never seen in our
training data. To make things worse, our heuristic treelet extraction method constrains the
set of extractable treelet pairs by three rigid structures: source tree, target tree and the word
alignment. A single error in the word alignment or parsing prevents our method from learning
a treelet pair. We thus have to face not only natural divergence of sentence structures but also
divergence caused by random errors in any of the automatically obtained annotations.3

To tackle the problem, our decoder utilizes a sequence of back-off models, i.e. a sequence
of several methods of target treelet construction and probability estimation. Each subsequent
model is based on less fine-grained description of the input treelet and constructs the target
treelet on the fly from independent components.

The order and level of detail of the back-off methods is fixed but easily customizable in a
configuration file.

3.5.1 Preserve All

The most straightforward method is to preserve all information in an observed treelet pair. This
includes:

• left and right treelet structure, including all frontiers and internals and preserving the
linear order of the nodes

• full labels of left and right internals

• state labels of left and right frontiers

An example of a complete treelet pair is given in Figure 3.3.

3.5.2 Drop Frontiers

One of significant limitations of STSG is the lack of adjunction operation. In order to handle
input treelets with branching that was not seen in the training data, we collect treelet pairs
while ignoring any frontiers. An example of such treelet pair is given in Figure 3.4.

3For example, ?) attempt to loosen the rigidity of structures by defining quasi-synchronous (monolingual)
grammar for target language that prefers to analyze or generate target-side sentence in alignment with the
source-side tree but is not restricted to do so.

22

Pred

Sb uvedla , že Pred
uvést , že
verb punct conj
past subord
fem

=

VP

NP said VP
say
verb
past

Figure 3.3: A treelet pair with all information preserved.

Pred

uvedla , že
uvést , že
verb punct conj
past subord
fem

=

VP
said
say
verb
past

Figure 3.4: A treelet pair with no frontiers.

Once the translation using this model is attempted, we remove all frontiers from the source
treelet, map the “skeleton” to the target treelet and attach the required number of frontier
nodes to the target tree. The position and state label of the frontiers can be chosen based on a
separate probabilistic model.

As a further refinement, one might think of dropping only frontiers representing adjuncts
but preserving frontiers for complements. Either a valency lexicon would supply the distinction
between argument and adjuncts, or we could use some heuristic such as suggested by Bojar
(2004).

In the current implementation, we employ this method of back-off only in cases where
the output is directly linearized. Therefore, the governing node for a frontier has not to be
determined when attaching the frontier and we can use a simple model to “zip” the sequence
of target internals and the sequence of target frontiers (we do not allow any reordering of the
frontiers). The target label of a frontier is chosen based on the label of the source frontier.

3.5.3 Translate Word by Word

The technique of dropping frontiers cannot be used when producing output trees, unless we
design a frontier re-attachment model. However, we still need to overcome the no-adjunction
limitation of STSG. A simple solution is possible, if we restrict treelet size to one internal only.

If the source treelet contains exactly one internal node, the structure of the treelet is known:
the internal node is the root of the treelet and its immediate dependents are all frontiers of the
treelet, see eg. Figure 3.5.

Pred

Sb uvedla Conj
uvést
verb
past
fem

=

VP

NP said VP
say
verb
past

Figure 3.5: A treelet pair with one internal node in each treelet.

23

We can easily decompose such treelets and translate independently: 1. the label of the
internal node, 2. each of the frontier labels. Again, we could consider reordering of the nodes
but unless a satisfactory reordering model is designed, we keep the order intact.

A clear disadvantage of this back-off method is that the number of nodes cannot change
in the process of translation. This poses a significant problem for transfer at a-layer, but for
transfer at t-layer, preserving tree structure is a viable approximation (Čmejrek et al., 2003).

3.5.4 Keep Word Non-Translated

In cases where a word was never seen in the training data, the methods described so far would
not provide any translation for the word, so the translation of the whole sentence would fail
producing no output. Much more useful approach is to keep the unknown word not translated
and try to translate the rest of the sentence.

Technically, we achieve this by adding a special rule that preserves treelet structure, copies
internal labels and independently translates each of frontier labels. In practice, we prefer to
restrict this method to treelets containing one internal only.

3.5.5 Factored Input Nodes

As described in Deliverable 3.1 (Mikulová et al., 2007), and also indicated in Figure 3.3, internal
node labels are usually not atomic values. For example, an a-node usually bears the value of
word form, lemma, morphological tag (all inherited from m-layer) and analytical function (afun)
label. For t-nodes, the set of attributes is significantly larger, as attributes explicitly encode
linguistic features such as verbal tense, modality, iterativeness, person, nominal gender, negation
and many others.

Treating node labels as atomic and thus relying on all attributes to exactly match the input
leads to severe sparse data problem. We allow to specify only a subset of input attributes
(“factors”) to be taken into account while searching for a treelet translation. In practice, we
usually use a sequence of models, each depending on fewer and fewer input factors. For example,
a back-off model for “preserve all” as illustrated in Figure 3.3 could be based on source lemmas
only. See Figure 3.6 for a hypothetical rule for Czech-to-English transfer.

Pred

Sb uvést , že Pred

=

VP

NP said VP
say
verb
past

Figure 3.6: A treelet pair with all source lemmas only.

3.5.6 Factored Output Nodes

Ignoring some attributes of input nodes is not sufficient as a back-off method alone. For output
factors, however, we have no option and each node has to eventually provided with all attributes.
We use the idea of “mapping” and “generation” steps from factored phrase-based translation
(Koehn and Hoang, 2007).

Currently, our implementation of factored models is limited to treelets containing exactly
one internal. We will soon extend this to treelets of any size. However, the size and shape
of the treelet (chosen according to a subset of input factors) will probably remain fixed while
additional output factors are constructed.

Figure 3.7 illustrates a sequence of five decoding steps: three mapping steps that convert
source factors to target factors and two generation steps that ensure coherence of output
factors. Many other configurations are possible.

24

uvedla said
uvést say
verb verb
past past
fem

1
2

3

4

5

Figure 3.7: Sample decoding steps in word-for-word factored translation.

In setups with multiple output factors, we apply also the language models described in
Section 3.2.3 and Section 3.2.4 several times using various subsets of output factors to provide
a back-off for probability estimation. For instance, even if a node pair was never seen in the
exact configuration constructed in a sequence of decoding steps, the pair of node lemmas may
be very common so we wish to score it with a non-zero probability.

3.6 Remarks on Implementation

The STSG decoder called treedecode is being implemented in Mercury (Somogyi et al., 1995)4

and currently consists of about 17,000 lines of code.
Supported features, apart from methods described in previous sections, include:

• parallel execution (both training and translation phases) on Sun Grid Engine5,

• efficient storage of translation tables using tinycdb6,

• binding to IrstLM (Federico and Cettolo, 2007) for n-gram language modelling,

• disk caching of various steps of computation to speed up consecutive startups and reuse
partial results upon failure (similar effects can be achieved using the technique of “check-
pointing”),

• basic debugging output in Scalable Vector Graphics (SVG),

• preliminary support for minimum error-rate training using two approaches, (Och, 2003)
and (Smith and Eisner, 2006a).

The source code is currently available upon request, future versions will be freely accessible
on a website. If interested, please contact Ondřej Bojar (bojar@ufal.mff.cuni.cz).

4http://www.cs.mu.oz.au/research/mercury/
5http://gridengine.sunsource.net/
6http://www.corpit.ru/mjt/tinycdb.html

25

Chapter 4

Empirical Evaluation

At the current stage of development, only preliminary results of an end-to-end evaluation can be
presented. Nevertheless, we try to cover a wide range of experimental settings when translating
from English to Czech, as illustrated in Figure 4.1, which is a refinement of Figure 1.1.

eaca
eact etca

etct generate

linearize

Morphological (m-) Layer

Analytical (a-) Layer

Tectogrammatical (t-) Layer

Interlingua

English Czech

Figure 4.1: Experimental settings of syntactic MT.

Our main focus is the translation from English t-layer to Czech t-Layer (etct). The gen-
eral applicability of STSG to any dependency trees allows us to test the same model also for
analytical translation (eaca) or across the layers (etca and eact). For each configuration, we
extract treelet pairs using the heuristics described in Section 3.4, possibly employing some of the
back-off techniques from Section 3.5. The EM training procedure as described in Section 2.3.4,
though implemented, was not yet incorporated into our training process.

4.1 Data and Pipeline Setup

Apart from our STSG decoder, we use several additional tools along the training and translation
pipeline, as summarized in Table 4.1.

Step Tool Used

English morphological analysis (text→m) Minnen et al. (2001)
English tagging (text→m) Ratnaparkhi (1996)
English constituency parsing (text→phrase structure) Collins (1996)
English dependencies (phrase structure→a) hand-written rules

English tectogrammatical parsing (a→t) rules similar to Čmejrek et al. (2003)
Czech morphological analysis (text→m) Hajič (2004)
Czech dependency parsing (m→a) McDonald et al. (2005)
Czech tectogrammatical parsing (a→t) Klimeš (2006)

Czech tectogrammatical generation (t→text) Ptáček and Žabokrtský (2006)

Table 4.1: Tools used in training data preparation and in end-to-end evaluation.

26

We train and test our system on the News Commentary corpus as available for the ACL
2007 workshop on machine translation (WMT), respecting the standard sectioning of the data.1

4.2 Experimental Results

Table 4.2 reports the BLEU (Papineni et al., 2002) scores of several configurations of our system,
higher scores suggesting better MT quality. We report single-reference lowercased BLEU2,3.

The values in column LM Used indicate the type of language model used in the experiment.
An n-gram model can be applied to the output sequence of words. For setups where the final
sequence of words is constructed using the generation component by Ptáček and Žabokrtský
(2006) with no access to a language model, we use at least a binode LM to improve output tree
coherence.

Method of Transfer LM Used BLEU

epcp n-gram 10.9±0.6
eaca n-gram 8.8±0.6
epcp none 8.7±0.6
eaca none 6.6±0.5
etca n-gram 6.3±0.6
etct factored, preserving structure binode 5.6±0.5
etct factored, preserving structure none 5.3±0.5
eact, no output factors binode 3.0±0.3
etct, vanilla STSG (no factors), all node attributes binode 2.6±0.3
etct, vanilla STSG (no factors), all node attributes none 1.6±0.3
etct, vanilla STSG (no factors), just t-lemmas none 0.7±0.2

Phrase-based as reported by Bojar (2007)
Vanilla n-gram 12.9±0.6
Factored to improve target morphology n-gram 14.2±0.7

Table 4.2: Preliminary English-to-Czech BLEU scores for syntax-based MT evaluated on De-
vTest dataset of ACL 2007 WMT shared task.

For the sake of comparison, we report also results achieved by Bojar (2007) using the phrase-
based decoder Moses on the same dataset. To a certain extent, our tree-based decoder can
simulate phrase-based decoding if we replace the dependency structure of an a-tree with a
simple left-to-right chain of words (“linear tree”). The results obtained using this approach
are labelled “epcp”. Our phrase-based approximation epcp is bound to work worse than Moses
because we strictly follow the left-to-right order prohibiting any phrase reordering, and because
we still do not use proper minimum error-rate training algorithms.

4.3 Discussion and Future Research

At the first sight, our preliminary results support common worries that with a more complex
system it is increasingly difficult to obtain good results. However, we are well aware of many
limitations of our current experiments as discussed below.

Withing the scope of our main focus, the tectogrammatical transfer (“etct”), we see dramatic
improvement from BLEU 1.6 to BLEU 5.6. The score 1.6 is achieved using the very baseline

1http://www.statmt.org/wmt07/
2For methods using the direct t→text generation system by Ptáček and Žabokrtský (2006), we tokenize the

hypothesis and the reference using the rules from the official NIST mteval-v11b.pl script. For methods that
directly produce sequence of output tokens, we stick to the original tokenization.

3The reported ± bounds indicate empirical 95% confidence intervals obtained using bootstrapping method by
Koehn (2004b).

27

of STSG translation: nodes including all attributes are treated as atomic units, only the STSG
probability (Section 3.2.1) is used and no language model is applied. Our best “etct” result
scoring 5.6 uses various back-off methods, including factored input and output nodes and two
binode models (one less fine-grained, again as a means of back-off). We do not discuss the many
aspects of the configuration, because we feel the space of possible configurations was not yet
fully explored to draw any final conclusions.

4.3.1 BLEU Favours n-gram LMs

BLEU is known to favour methods employing n-gram based language models. An empirical
evidence supporting claim that can be observed in Table 4.2: an n-gram LM gained 2 BLEU
points for both “eaca” and “epcp”.

In future experiments we plan to attempt two ways to tackle the problem: employing some
LM-based rescoring even after the generation component (Ptáček and Žabokrtský, 2006), as
well as using other automatic metrics of MT quality instead of BLEU to avoid the bias.

4.3.2 Error Cumulation

All components in our setup deliver only the single best candidate. Any errors will therefore
accumulate over the whole pipeline. This primarily hurts the “etct” scenario where all our tools
are employed.

In future, we would like to pass and accept several candidates, allowing each step in the
calculation to do any necessary rescoring.

4.3.3 Conflict of Structures

Our current heuristic method of treelet extraction (Section 3.4) crucially depends on the quality
of both English and Czech trees as well as the node alignment between them. A single error in
any of the rigid sources may prevent to extract a treelet pair, not to mention natural divergence
between the sentence and its translation. Precisely this reason explains the loss of performance
of “eaca” compared to “epcp”.

We hope that using the EM procedure (Section 2.3.4) will gain some recall. The current
heuristic method can be also modified to accept a certain level of structure divergence, such as
a certain portion of node-alignments leading out of the treelet pair. Another option is to try
other tree-alignment methods such as proposed by (Smith and Eisner, 2006b).

4.3.4 Sentence Generation Tuned for Manual Trees

The rule-based generation system (Ptáček and Žabokrtský, 2006) was designed to generate
Czech sentences from full-featured manual Czech tectogrammatical trees from the (monolingual)
PDT.

Our target-side training trees are the result of an automatic analytical and tectogrammatical
parsing procedure as implemented by McDonald et al. (2005) and Klimeš (2006), resp. Further
noise is added during the tree transfer, so our final input to the generation component contains
random errors in tree structure as well as missing or bad attribute values.

As the manual annotation of PCEDT proceeds, we may be able to train the transfer system
on manual Czech trees. Simultaneously, we are improving the generation component to be more
robust towards malformed input.

4.3.5 Errors in Source-Side Analysis

For the purposes of source-side English analysis, we still rely on very simple rules similar to
those used by Čmejrek et al. (2003) to convert Collins (1996) parse trees to analytical and
tectogrammatical dependency trees.

28

We hope to improve the English-side pipeline soon using recent taggers and parsers. Fur-
thermore, the tectogrammatical analysis of English will be improved as manual English t-trees
become available during PCEDT annotation, in progress.

In the meantime, we will perform a thorough analysis of our automatic trees to judge how
much information relevant for translation is accidentally lost due to omissions in our rules.
Alternatively, we might include some attributes based directly on a-trees in the source t-trees.
This would serve as a back-off in case the a→t rules fail to provide all necessary information.

4.4 Conclusion

We have described a mathematical model of tree transformations and methods to automatically
estimate model parameters from a parallel treebank. Two decoding algorithms to search for
the most probable translation of an input tree were outlined and a preliminary version of the
decoder was implemented. Several methods of back-off have been proposed and included in our
implementation of the decoder.

Despite the empirical results of our approach so far being well below the state-of-the-art
baseline, the pipeline of our process is complete and allows for an end-to-end evaluation. We
have indicated several reasons for the poor performance and in the following research we will
attempt to resolve the issues.

29

Chapter 5

Appendices

5.1 Acknowledgment

The work on this project was supported by the grant FP6-IST-5-034291-STP (EuroMatrix).
We would like to thank Zdeněk Žabokrtský for his rules performing automatic annotation of
English t-layer.

5.2 References

A. V. Aho and S. C. Johnson. 1976. Optimal code generation for expression trees. J. ACM,
23(3):488–501.

Ondřej Bojar. 2004. Problems of Inducing Large Coverage Constraint-Based Dependency
Grammar for Czech. In Constraint Solving and Language Processing, CSLP 2004, volume
LNAI 3438, pages 90–103, Roskilde University, September. Springer.

Ondřej Bojar. 2007. English-to-Czech factored machine translation. In Proceedings of the Sec-
ond Workshop on Statistical Machine Translation, pages 232–239, Prague, Czech Republic,
June. Association for Computational Linguistics.

Eugene Charniak. 2001. Immediate-head parsing for language models. In Meeting of the Asso-
ciation for Computational Linguistics, pages 116–123.

Martin Čmejrek, Jan Cuř́ın, and Jǐŕı Havelka. 2003. Czech-English Dependency-based Machine
Translation. In EACL 2003 Proceedings of the Conference, pages 83–90. Association for
Computational Linguistics, April.

Martin Čmejrek, Jan Cuř́ın, Jǐŕı Havelka, Jan Hajič, and Vladislav Kuboň. 2004. Prague Czech-
English Dependecy Treebank: Syntactically Annotated Resources for Machine Translation.
In Proceedings of LREC 2004, Lisbon, May 26–28.

Martin Čmejrek. 2006. Using Dependency Tree Structure for Czech-English Machine Transla-
tion. Ph.D. thesis, ÚFAL, MFF UK, Prague, Czech Republic.

Michael Collins. 1996. A New Statistical Parser Based on Bigram Lexical Dependencies. In
Proceedings of the 34th Annual Meeting of the Association for Computational Linguistics,
pages 184–191.

Jason Eisner. 2003. Learning non-isomorphic tree mappings for machine translation. In Pro-
ceedings of the 41st Annual Meeting of the Association for Computational Linguistics (ACL),
Companion Volume, pages 205–208, Sapporo, July.

Marcello Federico and Mauro Cettolo. 2007. Efficient handling of n-gram language models
for statistical machine translation. In Proceedings of the Second Workshop on Statistical
Machine Translation, pages 88–95, Prague, Czech Republic, June. Association for Compu-
tational Linguistics.

Jan Hajič. 2004. Disambiguation of Rich Inflection (Computational Morphology of Czech).
Nakladatelstv́ı Karolinum, Prague.

Jan Hajič, Martin Čmejrek, Bonnie Dorr, Yuan Ding, Jason Eisner, Daniel Gildea, Terry Koo,

30

Kristen Parton, Gerald Penn, Dragomir Radev, and Owen Rambow. 2002. Natural Lan-
guage Generation in the Context of Machine Translation. Technical report. NLP WS’02
Final Report.

Jan Hajič, Jarmila Panevová, Eva Hajičová, Petr Sgall, Petr Pajas, Jan Štěpánek, Jǐŕı Havelka,
Marie Mikulová, Zdeněk Žabokrtský, and Magda Ševč́ıková Raźımová. 2006. Prague De-
pendency Treebank 2.0. LDC2006T01, ISBN: 1-58563-370-4.

Liang Huang, Kevin Knight, and Aravind Joshi. 2006. Statistical Syntax-Directed Translation
with Extended Domain of Locality. In Proc. of 7th Biennial Conference of the Association
for Machine Translation in the Americas (AMTA), Boston, MA.

Frederick Jelinek. 1985. Markov Source Modeling of Text Generation. In J. K. Skwirzinski,
editor, Impact of Processing Techniques on Communications, pages 569–598, Dordrecht:
Nijhoff. NATO Advanced Study Institute.

Paul Kingsbury and Martha Palmer. 2002. From Treebank to PropBank. In Proceedings of the
3rd International Conference on Language Resources and Evaluation, Las Palmas, Spain.

Václav Klimeš. 2006. Analytical and Tectogrammatical Analysis of a Natural Language. Ph.D.
thesis, ÚFAL, MFF UK, Prague, Czech Republic.

Philipp Koehn and Hieu Hoang. 2007. Factored Translation Models. In Proc. of EMNLP.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris Callison-Burch, Marcello Federico, Nicola
Bertoldi, Brooke Cowan, Wade Shen, Christine Moran, Richard Zens, Chris Dyer, Ondřej
Bojar, Alexandra Constantin, and Evan Herbst. 2007. Moses: Open source toolkit for
statistical machine translation. In Proceedings of the 45th Annual Meeting of the Associa-
tion for Computational Linguistics Companion Volume Proceedings of the Demo and Poster
Sessions, pages 177–180, Prague, Czech Republic, June. Association for Computational Lin-
guistics.

Philipp Koehn. 2004a. Pharaoh: A beam search decoder for phrase-based statistical machine
translation models. In Robert E. Frederking and Kathryn Taylor, editors, AMTA, volume
3265 of Lecture Notes in Computer Science, pages 115–124. Springer.

Philipp Koehn. 2004b. Statistical Significance Tests for Machine Translation Evaluation. In
Proceedings of EMNLP 2004, Barcelona, Spain.

Ryan McDonald, Fernando Pereira, Kiril Ribarov, and Jan Hajič. 2005. Non-Projective De-
pendency Parsing using Spanning Tree Algorithms. In Proceedings of HLT/EMNLP 2005,
October.

Igor A. Mel’čuk. 1988. Dependency Syntax - Theory and Practice. Albany: State University of
New York Press.

A. Meyers, R. Reeves, C. Macleod, R. Szekely, V. Zielinska, B. Young, and R. Grishman.
2004. The nombank project: An interim report. In A. Meyers, editor, HLT-NAACL 2004
Workshop: Frontiers in Corpus Annotation, pages 24–31, Boston, Massachusetts, USA, May
2 - May 7. Association for Computational Linguistics.

Marie Mikulová, Allevtina Bémová, Jan Hajič, Eva Hajičová, Jǐŕı Havelka, Veronika Kolářová,
Lucie Kučová, Markéta Lopatková, Petr Pajas, Jarmila Panevová, Magda Ševč́ıková, Petr
Sgall, Jan Štěpánek, Zdeňka Urešová, Kateřina Veselá, and Zdeněk Žabokrtský. 2007. An-
notation on the tectogrammatical level in the Prague Dependency Treebank. Project Euro-
matrix - Deliverable 3.1, ÚFAL, Charles University.

Eleni Miltsakaki, Rashmi Prasad, Aravind Joshi, and Bonnie Webber. 2004. The Penn Dis-
course TreeBank. In Proceedings of Fourth International Conference on Language Resources
and Evaluation, LREC 2004.

Guido Minnen, John Carroll, and Darren Pearce. 2001. Applied morphological processing of
English. Natural Language Engineering, 7(3):207–223.

Franz Josef Och and Hermann Ney. 2000. A comparison of alignment models for statistical
machine translation. In Proceedings of the 17th conference on Computational linguistics,
pages 1086–1090. Association for Computational Linguistics.

Franz Josef Och and Hermann Ney. 2002. Discriminative training and maximum entropy models
for statistical machine translation. In ACL, pages 295–302.

31

Franz Joseph Och. 2002. Statistical Machine Translation: From Single-Word Models to Align-
ment Templates. Ph.D. thesis, RWTH Aachen University.

Franz Josef Och. 2003. Minimum error rate training in statistical machine translation. In Proc.
of the Association for Computational Linguistics, Sapporo, Japan, July 6-7.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. BLEU: a Method for
Automatic Evaluation of Machine Translation. In ACL 2002, Proceedings of the 40th An-
nual Meeting of the Association for Computational Linguistics, pages 311–318, Philadelphia,
Pennsylvania.

Jan Ptáček and Zdeněk Žabokrtský. 2006. Synthesis of Czech Sentences from Tectogrammatical
Trees. In Proc. of TSD, pages 221–228.

Adwait Ratnaparkhi. 1996. A Maximum Entropy Part-Of-Speech Tagger. In Proceedings of the
Empirical Methods in Natural Language Processing Conference, University of Pennsylvania,
May.

Stephen D. Richardson, William B. Dolan, Arul Menezes, and Monica Corston-Oliver. 2001.
Overcoming the customization bottleneck using example-based mt. In Proceedings of the
workshop on Data-driven methods in machine translation, pages 1–8, Morristown, NJ, USA.
Association for Computational Linguistics.

Petr Sgall, Eva Hajičová, and Jarmila Panevová. 1986. The Meaning of the Sentence and Its
Semantic and Pragmatic Aspects. Academia/Reidel Publishing Company, Prague, Czech
Republic/Dordrecht, Netherlands.

David A. Smith and Jason Eisner. 2006a. Minimum-risk annealing for training log-linear mod-
els. In Proceedings of the International Conference on Computational Linguistics and the
Association for Computational Linguistics (COLING-ACL), Companion Volume, pages 787–
794, Sydney, July.

David A. Smith and Jason Eisner. 2006b. Quasi-synchronous grammars: Alignment by soft
projection of syntactic dependencies. In Proceedings of the HLT-NAACL Workshop on Sta-
tistical Machine Translation, pages 23–30, New York, June.

Zoltan Somogyi, Fergus Henderson, and Thomas Conway. 1995. Mercury: an efficient purely
declarative logic programming language. In Proceedings of the Australian Computer Science
Conference, pages 499–512, Glenelg, Australia, February.

R. Zens, O. Bender, S. Hasan, S. Khadivi, E. Matusov, J. Xu, Y. Zhang, and H. Ney. 2005. The
RWTH Phrase-based Statistical Machine Translation System. In Proceedings of the Inter-
national Workshop on Spoken Language Translation (IWSLT), pages 155–162, Pittsburgh,
PA, October.

32

