
Charles University in Prague
Faculty of Mathematics and Physics

Institute of Formal and Applied Linguistics

Analytical and Tectogrammatical Analysis
of a Natural Language

Václav Klimeš

PhD thesis

Tutor: doc. RNDr. Jan Hajič, Dr.

Prague, 2006

Abstract

The thesis presents tools for analysis at analytical and tectogrammatical layers
that the Prague Dependency Treebank is based on.

The tools for analytical annotation consist of two parsers and a tool for assign-
ing syntactic tags. Although the performance of the parsers is far below that of
the state-of-the-art parsers, they both can be considered a certain contribution
to parsing, since the methods they are based on are novel. The tool for as-
signing syntactic tags makes 15% less errors than a tool used for this purpose
previously.

The tool developed for tectogrammatical annotation is the only one that can
currently perform this task in such a breadth. Although other, specialized
tools may have a better performance of some of its particular subtasks, my
tool makes 29% and 47% less errors for the Czech language than the combina-
tion of existing tools for annotating the tectogrammatical structure and deep
functors, respectively, which are the core of the tectogrammatical layer.

The proposed tools are designed the way they can be used for other languages
as well.

Resumé

Tato práce předkládá nástroje pro analýzu na analytické a tektogramatické
rovině, které jsou základem Pražského závislostnı́ho korpusu.

Nástroje pro analytickou anotaci sestávajı́ ze dvou parserů a nástroje
přiřazujı́cı́ho tzv. analytické funkce. Ačkoli úspěšnost parserů je daleko za
úspěšnostı́ nejlepšı́ch parserů, oba mohou být chápány jako určitý přı́nos
k parsingu, neboť jsou založeny na nových metodách. Nástroj přiřazujı́cı́ ana-
lytické funkce dělá o 15 % chyb méně než nástroj, který se k tomuto účelu
použı́val dosud.

Nástroj vyvinutý pro tektogramatickou anotaci je jediný, který tuto úlohu
nynı́ zvládá v takové šı́ři. Ačkoli jiné, specializované nástroje možná řešı́
některé jejı́ podúlohy lépe, pro češtinu dělá můj nástroj o 29 %, resp. 47 % méně
chyb než kombinace existujı́cı́ch nástrojů určujı́cı́ch tektogramatickou struk-
turu, resp. hloubkové funktory, což je obojı́ jádrem tektogramatické roviny.

Předkládané nástroje jsou navrženy tak, aby je bylo možno použı́t i pro jiné
jazyky.

Acknowledgements

My soul is filling with gratitude and humility when I realize how many people
have contributed one way or another to this thesis.

First of all I thank my wife Šárka for her encouragement, support, care, and
love.

My thanks go to my colleagues from Institute of Formal and Applied Lin-
guistics and dozens of annotators as well, which I largely even do not know
personally, not only for the data and the tools, which this thesis could not
be written without, but also for friendly and supportive work environment
they have created. Above all I want to thank Zdeněk Žabokrtský for his com-
ments to my work and his inspiring ideas; Daniel Zeman who showed me
with his own PhD thesis how such a thesis should look like; and Petr Pajas
who was always prepared to trace both my and his own bugs

:-) appearing
during my usage of his excellent btred tool, in which all the code of this work
is programmed.

I thank my tutor and boss Jan Hajič for his effort in balancing my research
with my other work duties and for his rare but peremptory advice regarding
the direction of my research.

Outside the Institute I wish to thank Radu Florian from Johns Hopkins Uni-
versity, Baltimore, MD, for his fnTBL toolkit, which I used for the computa-
tions described in the thesis. I also thank to Tomáš Machalı́k for performing
corrections of this text.

I thank several institutions which funded my research, namely for the fol-
lowing grants: The grant of the Grant Agency of the Czech Republic No.
405/03/0913, the project of the MŠMT ČR No. LN00A063 (Center for Compu-
tational Linguistics), and the Information Society project of the Czech Academy
of Sciences No. 1ET10147016.

Although I have exploited help of the people mentioned above, the writing
being submitted is my work, which also holds true for its deficiencies and
mistakes.

Contents

List of Figures 9

List of Tables 11

1 Introduction 13

1.1 Motivation . 13

1.2 Theoretical background . 14

1.2.1 Description of the dependency structure 14

1.2.2 Prague Dependency Treebank 16

1.2.3 Morphological layer . 17

1.2.4 Analytical layer . 18

1.2.5 Tectogrammatical layer 18

1.3 Transformation-based learning 21

1.3.1 The basis of the method 21

1.3.2 The fnTBL toolkit . 23

1.4 The claim of language independence 25

1.5 The scope and division of the work 25

2 Analytical analysis 27

2.1 Evaluation . 28

2.2 Previous works . 29

2.3 Method 1: Optimal context length 29

6 CONTENTS

2.3.1 The basis of the method 30

2.3.2 Inference of rules . 31

2.3.3 Inference with exceptions 33

2.3.4 Connecting the dangling nodes 34

2.3.5 Deletion of unreliable rules 35

2.3.6 Possible improvements 35

2.4 Method 2: Transformation-based classification 36

2.4.1 The basis of the method 36

2.4.2 Connecting the dangling nodes and enforcing trees . . . 37

2.4.3 The design of rules . 37

2.4.4 Relocation of nodes hanging on the root 39

2.4.5 Analysis of errors . 40

2.4.6 Possible improvements 41

2.5 The comparison of the parsing methods 44

2.6 Assignment of s-tags . 45

2.6.1 Previous works . 45

2.6.2 Design of rule templates 46

2.6.3 Attempt at an improvement: Two-phase training 46

3 Tectogrammatical analysis 49

3.1 Scope and limits of the work . 50

3.2 Evaluation . 52

3.2.1 Alignment procedure . 54

3.3 Baseline and related work . 56

3.4 Introduction to the method . 59

3.5 Phase 1: Deletion of synsemantic nodes and functor assignment 62

3.5.1 Design of the procedure 62

3.5.2 Design of rule templates 63

CONTENTS 7

3.5.3 Experiments, results and statistics 64

3.6 Phase 2: General transformations 66

3.6.1 Analysis of the problem 66

3.6.2 Design of the procedure 67

3.6.3 Design of rule templates 70

3.6.4 Experiments, results and statistics 71

3.7 Phase 3: Creation of valency members 72

3.7.1 Design of the procedure 72

3.7.2 Design of rule templates 74

3.7.3 Experiments, results and statistics 75

3.8 Phase 4: Assignment of attributes 77

3.8.1 Design of the procedure 77

3.8.2 Design of rule templates 78

3.8.3 Experiments, results and statistics 78

3.9 Analysis of errors . 79

3.10 Assignment of functors only . 85

3.10.1 Effects of template reduction 87

3.10.2 Dependency between the amount of training data and
accuracy . 89

4 Conclusion 91

4.1 Conclusions (analytical analysis) 91

4.2 Conclusions (tectogrammatical analysis) 92

Index 93

Bibliography 95

A Values of some attributes 101

8 CONTENTS

List of Figures

1.1 The a-layer annotation of an example sentence 15

1.2 The t-layer annotation of the example sentence 21

1.3 The flow of data in the learning phase of TBL 22

2.1 Percentage of correct edges with the given length and the dis-
tribution of lengths of edges . 42

2.2 Percentage of non-zero distances between the assigned and the
correct parent of a node . 43

2.3 An illustration of the alternative approach to coordinations,
part I . 44

2.4 An illustration of the alternative approach to coordinations,
part II . 45

3.1 Alignment, problematic situation #1 55

3.2 Alignment, problematic situation #2 55

3.3 An example sentence at the a-layer and after Phase 1 65

3.4 Correct annotation of malé [firmy] a velké firmy 66

3.5 Correct annotation of mzda [zaměstnance] a výkon zaměstnance . . 67

3.6 Correct annotation of kdo je cestovatel a kdo [je] stálice 67

3.7 The example sentence after Phase 2 and after Phase 4 82

3.8 The correct t-layer annotation of the example sentence 83

3.9 Dependency between the number of training samples and ac-
curacy . 89

10 LIST OF FIGURES

List of Tables

2.1 Description and performance of existing parsers 30

2.2 The best rules for Method 2 . 39

2.3 Precision of the assignment of parents 40

2.4 Precision of the assignment of children 41

2.5 The most useful rules for s-tag assignment 47

3.1 The best rules in the first phase 64

3.2 The best transformations in the second phase 68

3.3 The best rules in the third phase 75

3.4 The best rules for t lemma (fourth phase) 79

3.5 The best rules for nodetype (fourth phase) 79

3.6 The best rules for gram/sempos (fourth phase) 80

3.7 The final F-measure of tectogrammatical annotation 81

3.8 The most frequent errors in the assignment of functors 81

3.9 Reliability of the assignment of functors 84

3.10 The most frequent errors in the assignment of val frame.rf . 85

3.11 The most frequent errors in the assignment of t lemma 85

3.12 The most frequent errors in the assignment of nodetype 86

3.13 Reliability of the assignment of nodetype 86

3.14 The most frequent errors in the assignment of sempos 87

3.15 Reliability of the assignment of sempos 87

12 LIST OF TABLES

3.16 The most frequent errors in the assignment of structure 88

3.17 Reliability of the assignment of structure 88

3.18 Effects of template reduction . 88

A.1 List of values of the nodetype attribute 101

A.2 List of some special values of the t lemma attribute 101

A.3 List of functors . 103

A.4 List of parts of values of the gram/sempos attribute 104

A.5 List of some two-letter m-tags . 105

Chapter 1

Introduction

‘Where shall I begin, please, your Majesty?’ he asked.
‘Begin at the beginning,’ the King said gravely,
‘and go on till you come to the end: then stop.’

[Carroll, 2003]

1.1 Motivation

“The goal of the PhD thesis is to create an automatic analyzer creating tecto-
grammatical structure of a natural language. The analyzer would be based on
quantitative methods, so that an annotated language corpus will be the only
thing needed for its training. The analyzer will be independent of the type
of future applications and of the language and domain of the training corpus;
experiments will be performed on the Czech, English, and Arabic language.
Experiments with several versions of language models will be performed as
well. Objective criteria will be used for the evaluation of quality of the ana-
lyzer. The analyzer will be brought to the form of a complete software pac-
kage.”

Despite of the language, which is originally Czech, these are exactly the words
describing the goal of my PhD thesis, as they stand in its submission. They
give the topic of this thesis, however, they do not state why one should solve
such a task.

There are several reasons for developing a tool for performing the annotation
at the tectogrammatical layer, sometimes called “the layer of deep syntax”.
Annotation of a sentence at this layer is closer to the meaning of a sentence
than its surface-syntactic annotation and this is why the information captured

14 CHAPTER 1. INTRODUCTION

at the tectogrammatical layer is crucial for machine understanding of a natural
language. Hence, such a tool can be used for machine translation, information
retrieval and human–computer communication; however, it can help in other
tasks as well. Obviously, the tool can be employed by annotators creating tec-
togrammatical representation (which can be used for training tools perform-
ing the noticed tasks afterwards) to preannotate the data and thus to ease their
work.

1.2 Theoretical background

As stated above, the goal of the thesis is to develop a tool performing tecto-
grammatical analysis, which uses just an annotated language corpus for ob-
taining its language model. Since there is only one corpus having human tec-
togrammatical annotation available, the choice of the “pilot” corpus is clear:
to use the Prague Dependency Treebank, a collection of annotated Czech texts.
Its annotation is based on the theory of language description called Functional
Generative Description, shortly FGD, and the corpus is the proof of its viabi-
lity. This theory develops from long-term tradition of so-called Pragian School
dating back to 1926. FGD has been introduced in 1960s and summarized in
[Sgall et al., 1986]. Two of its features are important for my work. The first one
is the view of a language as of a system of more layers of language description:
forms of units at a lower layer (i.e. the one closer to surface representation of a
sentence, which is a text or utterance) express functions of units at the neigh-
bouring higher layer (i.e. the one closer to the meaning of the sentence). The
second feature is that FGD considers the syntactic relations between units in a
sentence to be a set of dependencies, rather than a structure of constituents.

1.2.1 Description of the dependency structure

Dependency structure of a sentence is a rooted tree. Its nodes represent units
of a certain layer and edges represent relation of dependency between two
nodes. Dependency usually expresses what is called (immediate) subordina-
tion. The node closer to the root of a sentence is called governor, the other is
called dependent. Further on, I will usually use alternative terms parent for
governor and child for dependent, since not all the edges represent linguis-
tic relation of subordination—some of them have rather technical character,
e.g. edges containing nodes representing punctuation marks. By analogy, I
will sometimes refer to node’s grandparent, siblings, ancestors (transitive clo-
sure of the parent relation), offsprings (transitive closure of the child relation),
and so on.

CHAPTER 1. INTRODUCTION 15

Besides, nodes in a dependency tree are linearly ordered according to a certain
criterion. The criterion is specified in description of respective layers. In visu-
alizations, parent–child relation is usually captured by the y-axis: a parent is
higher than its child; and linear order of nodes is expressed by the x-axis: the
left-to-right arrangement corresponds to ascending order.

An example of a sentence annotated using dependencies is shown in Fi-
gure 1.1.

_ _ _

a-cmpr9410-019-p23s1
AuxS

Jste
Pred

schopen
Pnom

třeba
AuxZ

vy
Sb

jako
AuxY

odborník
Atv

najít
Obj

stoprocentně
Adv

úspěšného
Atr

manažera
Obj Co

,
AuxX

zedníka
Obj Co

a
Coord

třeba
AuxZ

i
AuxZ

redaktora
Obj Co

?
AuxK

Figure 1.1: The a-layer annotation of the sentence Jste schopen třeba vy jako
odbornı́k najı́t stoprocentně úspěšného manažera, zednı́ka a třeba i redaktora? (Are for
instance you as a specialist able to find a hundred-percent successful manager, brick-
layer, and even editor?; lit.: Are able for-instance you as a-specialist to-find hundred-
percent successful manager, bricklayer and even also editor?)

In a dependency tree, a language phenomenon of a non-dependency nature
should be captured. Coordination is a relation among several tokens in a sen-
tence where none of them is subordinated to any of the remaining ones—they
rank equally. This “horizontal” relation, as opposed to the “vertical” relation
of subordination, needs special treatment. The reason for this are technical
difficulties which would occur if we captured coordinations by means of de-

16 CHAPTER 1. INTRODUCTION

pendency edges only: a common child of members of a coordination would
then have more than one parent and the structure would not be a tree any
longer.

The treatment of coordinations follows. An auxiliary token, usually a coordi-
nating conjunction or comma, represents all members of a coordination, which
are attached to it as its children. When each member of a coordination should
be a child of a node, the node becomes the parent of the coordination node.
Conversely, when each member of a coordination should be the parent of a
token, the token becomes a child of the coordination node and treeness of
a structure is retained. Members of a coordination are distinguished from
their common children by their special attribute. In Figure 1.1, nodes manažer,
zednı́k, and redaktor are members of a coordination (this is marked with their
suffix Co) and úspěšný is their common child.

I will refer to the nodes which would be the parents of a node if edges in the
dependency structure corresponded to the relation of dependency only, as to
its effective parents, whenever I will need to distinguish them from its direct
parent. For example, in Figure 1.1 the effective parent of the node manažer is
the node najı́t; the node úspěšný has three effective parents: manažer, zednı́k,
and redaktor.

I use the term “coordination” in its broader sense and I also denote the relation
of apposition with it. Linguistically, coordination and apposition differs in
the manner in which they combine meaning, but, from the technical point of
view, their topological structures are the same, so I address both these types
of relations by one term.

There is also one phenomenon, which should be noted. It is a notion of pro-
jectivity. Several (equivalent) definitions of projectivity exist; one of them fol-
lows. An edge in a rooted tree having its nodes linearly ordered is projective
if every node placed (according to the linear order) between the nodes form-
ing the edge is their offspring; otherwise the edge is non-projective.1 When a
tree is depicted in the way described above, non-projective edges are exactly
those being crossed by the perpendicular from at least one node. In Figure 1.1,
only the edge schopen—najı́t is non-projective.

1.2.2 Prague Dependency Treebank

Prague Dependency Treebank, PDT (see [Hajič et al., 2006]), is a human an-
notated corpus of Czech texts obtained from the Czech National Corpus.2

Sources of the text are mainly daily newspapers, the rest of the text comes

1Note that non-projectivities cannot be described by standard context-free grammars.
2http://ucnk.ff.cuni.cz/

CHAPTER 1. INTRODUCTION 17

from other press. The treebank is currently in version 2.0. It is annotated at
three layers (see their description below). Not all the texts are annotated at
all the layers; however, a principle is established that when a certain text is
annotated at a certain layer, it is annotated at all lower layers as well.

The data annotated at a certain layer are always divided in the approximate ra-
tio of 8:1:1 into training data, development test data, and evaluation test data.
The amount of data annotated is given in descriptions of respective layers.

PDT 2.0 is being held in an XML-based format called PML, Prague Markup
Language (see [Pajas and Štěpánek, 2005]). For my work, there are some im-
portant facts about it to be mentioned. Each layer of annotation of a file con-
taining text is stored in a separate file3, and a file corresponding to a layer
contains links to the neighbouring lower layer (and other data resources, if
any). Annotation of a node, when it is not expressed by its position in the
structure of annotation, is captured in its attributes. Their description is given
in the introduction to particular layers, which follows now.

1.2.3 Morphological layer

Plain text is first annotated at the lowest, morphological layer (m-layer). The
text is segmented into sentences and tokens, which can be a word, a number
expressed by digits, or a punctuation mark. To each token (stored in the form
attribute), its lexical entry and values of its morphological categories (part of
speech, person, number, tense, gender, voice, . . .) are assigned. The lexical
entry, called lemma (and stored in the lemma attribute) is, for the sake of read-
ability, usually expressed as a basic form of the token, e.g. in the nominative
of singular for nouns. Values of morphological categories are merged into one
string (stored in the tag attribute) and I will refer to it as to m-tag further on.
Guidelines for annotation at the m-layer are given by [Zeman et al., 2005].

Since there are as many as 13 morphological categories4, the number of unique
m-tags appearing in the treebank is over one thousand (of about 4,000 possi-
ble). I describe elsewhere how I dealt with this sparseness of data. However, I
sometimes compare my results with a certain approach described in [Collins
et al., 1999], or I even use it. The authors, having dealt with the described
problem for the sake of training a parser, proposed a very good compromise
(although in rather ad hoc manner) between the sparseness of m-tags and their
descriptive power. In general, they reduced an m-tag to just two characters:
the first of them being the part of speech, the second one being a case if ap-
plied (with nouns, adjectives, pronouns, numerals expressed by words, and

3This is usually called stand-off annotation.
4Of course, for particular parts of speech only some of them are relevant, e.g. for nouns

values of at most 7 categories are filled.

18 CHAPTER 1. INTRODUCTION

prepositions), or a detailed part of speech otherwise. I refer to this approach
as a two-letter m-tag.

1.2.4 Analytical layer

At the analytical layer (a-layer), a sentence is represented as a dependency
tree described above. Each token is represented by exactly one node and no
node is added except for an extra root node, which has technical character and
which the predicate of a sentence and the final punctuation depends on. Left-
to-right order of tokens in the tree corresponds to their order in the sentence
(and is explicitly given in the ord attribute).

In addition, several attributes are assigned to each node at this layer. The
most important one is its analytical function (stored in the afun attribute),
capturing the type of the dependency relation between the node and its pa-
rent.5 Since this is a label denoting the syntactic function of the token, I refer
to it as to s-tag for short. There are 23 possible s-tags plus 3 special ones for
cases when the sentence is syntactically ambiguous in a special way the details
of which are beyond the scope of this thesis. A node also carries information
whether it is a member of a coordination (stored in the is member attribute).

The total amount of data annotated at the a-layer is 1,504,847 tokens in
87,980 sentences.6

An example of a sentence annotated at the a-layer is in Figure 1.1. Guidelines
for annotation at the a-layer are given by [Hajičová et al., 1999].

1.2.5 Tectogrammatical layer

The highest layer is the tectogrammatical layer (t-layer). Guidelines for an-
notation at this layer are given by [Mikulová et al., 2005]. The t-layer captures
the deep (underlying) structure of a sentence and its purpose is to describe
the linguistic meaning of the sentence. Similarly to the a-layer, the structure is
captured in the form of dependency trees. It has the following characteristics:

• Nodes represent only autosemantic words (and, for technical reasons
described above, heads of coordinations).

5Strictly speaking, it should be the label of the corresponding edge instead of the node.
6It should be noted that all experiments with PDT 2.0 were performed on its prerelease

version. The final version, which originated after the experiments had been done, differs only
slightly, though: it contains 19 files less, which were duplicated (out of 7,129 files).

CHAPTER 1. INTRODUCTION 19

• Synsemantic (auxiliary) words and punctuation marks are not repre-
sented by nodes, they may only affect values of attributes of autoseman-
tic words to which they are related to (e.g. prepositions to nouns).

• If a unit is present in the meaning of a sentence but has not been ex-
pressed in it (on its surface), a node representing this unit is added.
Nodes are inserted mainly in the following two cases: when filling in
an ellipsis of words already presented at another place of the sentence,
and when valency dictates so.

• Edges represent relations between units of meaning.

• The left-to-right order of nodes follows the information structure of the
sentence (Topic-Focus Articulation).

The annotation at the t-layer is very complex—there are as much as 39 at-
tributes at the nodes. I will describe the most important attributes or groups
of attributes briefly. Some of them have rather technical character: but I will
go into certain details even in their description, since they are important for
my work.

• Functor (stored in the functor attribute), similarly to the s-tag at the
a-layer, captures the tectogrammatical relation of a node relative to its
governor.

• Type of nodes is stored in the nodetype attribute. It has rather technical
character, it defines which attributes the node has and how its children
are interpreted.

• Grammatemes is the whole set of semantically oriented attributes more
or less corresponding to several morphological categories. A gram-
mateme is filled in cases when the appropriate morphological category
has its value not for syntactic reason (e.g. to express agreement), but
when its value is relevant for the meaning of the sentence. Number and
degree of comparison are examples of grammatemes having their mor-
phological counterparts; deontic modality and type of indefiniteness are
examples of the other ones.

• The semantic part of speech is stored in the gram/sempos attribute and
its value thus defines which grammatemes are to be filled for the given
node.

• (Deep) order of a node (deepord) determines its left-to-right order in its
tectogrammatical tree.

• The t lemma attribute means “tectogrammatical lemma” and is usually
equal to the lemma (from the m-layer) of the corresponding token; how-
ever, sometimes it differs, mainly due to the fact that some semantic

20 CHAPTER 1. INTRODUCTION

information from lemma can be extracted into grammatemes and tec-
togrammatical lemma thus can have even more basic form. For exam-
ple, pronoun všichni (all) can be annotated as kdo (who) having its gram-
mateme of indefiniteness set to value meaning “total”. When a node
does not originate from the a-layer, the attribute has a special value in-
dicating that it represents a general participant, or that the node is the
subject of coreference, or that it represents an “empty” governing verb
predicate etc.

• For connecting the t-layer with lower layers, links to corresponding
nodes at the a-layer are stored in three attributes: a link to the corres-
ponding autosemantic word, if any (a/lex.rf)—I will refer to it as to
a-link; links to corresponding synsemantic words7, if any (a/aux.rf);
and finally a link to the root of the corresponding tree (atree.rf; de-
fined only for roots).

• In the val frame.rf attribute, the identifier of the corresponding va-
lency frame, which is kept in a separate valency lexicon, is stored.

• The tfa attribute bears information about the so called information
structure of a sentence—it is recorded there whether the node is a part
of the topic, the contrastive topic, or the focus of the sentence.

• The is member attribute determines whether the node is a member of a
coordination.

• The is generated attribute expresses whether the node is new at the
t-layer. When set, it does not necessarily mean that the node has no
counterpart at the a-layer, since it can be a “copy” of another t-layer node
and more nodes can refer to one a-layer node through their a/lex.rf
attribute.

• In the coref gram.rf, coref text.rf and coref special at-
tributes grammatical and textual coreference is captured.

• The id technical attribute carries the unique identification of a t-node.

The total amount of data annotated at the t-layer is 833,357 tokens in
49,442 sentences.

The sentence in Figure 1.1 is now annotated at the t-layer in Figure 1.2.

7For some reason, links to punctuation are not preserved.

CHAPTER 1. INTRODUCTION 21

.

t-cmpr9410-019-p23s1
root

být inter
PRED
v

třeba
RHEM
atom

#PersPron
ACT
n.pron.def.pers

odborník
COMPL
n.denot

schopný
PAT
adj.denot

#Cor
ACT
qcomplex

najít
PAT
v

manažer
PAT
n.denot

a
GRAD
coap

zedník
PAT
n.denot

třeba
CM
atom

i
CM
atom

redaktor
PAT
n.denot

úspěšný
RSTR
adj.denot

stoprocentní
MANN
adj.denot

Figure 1.2: The t-layer annotation of the sentence from Figure 1.1

1.3 Transformation-based learning

1.3.1 The basis of the method

In almost all the tasks in this thesis I use the technique named transformation-
based learning, TBL. It was introduced in [Brill, 1992] as one of the methods
of rule-based machine learning and since then it has been successfully used
for various tasks in the area of natural language processing, e.g. part-of-speech
tagging ([Brill, 1992]), constituency parsing ([Brill, 1993]), dependency parsing
([Ribarov, 2004]), prepositional phrase attachment, spelling corrections, and
phrase chunking. The comprehensive list can be found in [Ngai and Florian,
2001].

The main idea of transformation-based learning is to learn an ordered list of
rules improving the state of annotation of the training data. The rules are

22 CHAPTER 1. INTRODUCTION

being learnt greedily and the learning stops when no further improvement
can be reached.

At the beginning of training, we initialize one copy of the training data with a
simple annotation (e.g. for part-of-speech tagging, it can be the most probable
tag for the given word) and these data become the starting training data. In
each iteration of training, all possible rules from a prespecified set are consi-
dered and the rule which improves the annotation of the current training data
most significantly, compared to their golden annotation, is added to the list of
learned rules. This rule is then applied to the training data, which results in
their annotation being more accurate.

Figure 1.3: The flow of data in the learning phase of TBL

The most improving rule for the annotation is the one maximizing the de-
crease in number of errors, i.e. maximizing the function defined as the num-
ber of errors corrected by the rule (good applications) minus the number of
errors newly made by the rule (bad applications). Unlike in many other al-
gorithms, this directly optimizes the evaluation function (given as a number
of correctly annotated samples) rather than some hopefully correlated metrics
like entropy.

The process of annotation of new unseen data is then simple: the learned rules
are applied to them in the order they were learnt.

The transformation-based learning is claimed (by [Ngai and Florian, 2001]) to
have, e.g. when compared to methods based on probabilistic models, several
advantages:

• it is a very flexible method,

CHAPTER 1. INTRODUCTION 23

• linguistic features are captured in a small and concise set of rules,

• it is stable, and

• it cannot be overtrained easily.

However, a direct implementation of this algorithm results in lengthy learn-
ing time. Some techniques for accelerating the learning have been proposed
(e.g. [Satta and Brill, 1996]) and several of them have been implemented (see
their comprehensive list and comparison in [Ngai and Florian, 2001]). One of
the successful implementations is the fnTBL toolkit—it was used for solving
the tasks in this thesis and it is described below.

1.3.2 The fnTBL toolkit

The fnTBL8 toolkit was introduced in [Ngai and Florian, 2001]—see this source
for details of almost all the information given in this section. It is, to my best
knowledge, the fastest implementation of the TBL concept: on large corpora it
performs about 2 orders of magnitude faster than a standard implementation
and, besides, it does not consume as much memory as some of its competi-
tors.9

The idea of the speedup brought by fnTBL is that counts of good and bad num-
ber of applications of rules are not regenerated in every step; instead, they are
stored and updated when the best rule is applied. The advantage is that only
counts of rules which would apply in neighbourhood of data altered by the
best rule need to be updated. Besides, these rules are obtained by generating
them from the data according to templates instead of seeking through all the
rules.

While TBL is a general concept, fnTBL is aimed at classification tasks only.
This brought certain difficulties, since some of the tasks I had to solve are not
classification tasks nor can be directly transformed into them. How transfor-
mations of my tasks into the form workable by fnTBL look like is stated at the
respective places.

The toolkit can solve tasks where samples are both independent (e.g. PP-
attachment) and interdependent (e.g. POS tagging). Each sample of data con-
sists of several features. The rules which the toolkit tries to learn are specified
by rule templates which have to be designed before the learning. A rule tem-
plate is a subset of the names of possible features together with the name of
a feature which carries the identification of the class the sample belongs to

8http://nlp.cs.jhu.edu/˜rflorian/fntbl/
9We will see later that even so I had to reduce memory requirements somehow.

24 CHAPTER 1. INTRODUCTION

(since it is possible to perform more classification tasks at once, see also [Flo-
rian and Ngai, 2001b]). A rule is an instance of a template: particular values
are assigned to all the features. The rule is interpreted in the following way:
a sample belongs to the given class (for the given classification task) if the
given features have the given values—this expresses the conjunction of pre-
dicates concerning values of features. A rule can refer to values of features of
the current sample or, in the case of interdependent samples, to those of the
neighbouring ones—the neighbours are given as a fixed integer expressing the
distance from the current sample. It is also possible to check for the presence
of a value of a particular feature in a sequence of samples, or to check for a
value in a set of features of a sample—this expresses a limited set of disjunc-
tion of predicates concerning values of features. An example of a rule from
POS-tagging task together with its corresponding template follows.

POS_-1=DT POS_0=VB => POS=NN
POS_-1 POS_0 => POS

The toolkit is capable of determining the probability of the reliability of clas-
sifications (described in [Florian et al., 2000]); however, the authors state that
the implementation is buggy.

The toolkit has many options and settings. Some of them affect generating of
rules; the most important ones of those I experimented with follow.

• threshold: the algorithm stops when the best rule has the given score
(i.e. number of good applications minus the number of bad applica-
tions); default value is 2;

• ORDER BASED ON SIZE: determines which rule is chosen when more
rules with the same score meet: the one consisting of more atomic predi-
cates (default), or the one consisting of less atomic predicates, or the one
whose template is declared first;

• allPositiveRules: if set, outputs all the rules having no bad applica-
tion and the number of good applications greater than the given number
at the end of training.

The toolkit consists not only of the learner and classifier, but other utilities are
provided as well, e.g. those creating initial annotation by creating and apply-
ing a lexicon of the most probable classes for a combination of features.10

More information about (not only) technical matters concerning the toolkit can
be found in its documentation, [Florian and Ngai, 2001a].

10The authors recommend always to do the initial annotation, because it reduces time and
memory requirements. For my tasks the reduction was 50–70% of time and about 40% of com-
puting memory.

CHAPTER 1. INTRODUCTION 25

1.4 The claim of language independence

As stated above, my tool should be language independent. However, the an-
notation manuals describe the annotation of Czech texts and it is not clear
how the annotation principles would differ especially for languages that are
typologically distant from Czech—it is only clear that even the most language-
independent layer, the t-layer, would differ.

Moreover, experiments with another languages could not be performed, since
besides PDT, no corpus human-annotated at the t-layer which would be big
enough to be used for training has existed up to now.11

In this situation I can do only two things: not to hand-code specifics of Czech
and to list which attributes of the processed data the tool relies on, be they
those used during training (i.e. features of training samples), or those assigned
by training, or those assigned by hand-coded procedures.12 These lists become
important if the tool is to be adjusted for another language. For the analytical
analysis, these lists are hopefully clear from the text of the respective chapter
and thus they are not given explicitly; for the tectogrammatical analysis, these
lists are given in Section 3.1.

1.5 The scope and division of the work

According to Section 1.2, we can view the task the tool has to perform as a se-
quence of morphological, analytical, and tectogrammatical analysis (regard-
less of the way the tool will be implemented in: whether such sequence is
performed, or whether the whole analysis is carried out at once).

For the reasons listed below, I decided not to include the morphological ana-
lysis into my tool; thus, its input is a morphologically annotated text instead
of a plain text.

• The m-layer is most language dependent from all three layers and we
can hardly hope to find a universal set of features of word forms captur-
ing their morphological characteristics well, when we consider that even
just in the mentioned languages, there can be expressed by as various

11There is only sample of about 500 English sentences annotated at layer similar to the Czech
t-layer (see [Kučerová and Žabokrtský, 2002]), which is part of the Prague Czech-English De-
pendency Treebank 1.0 (http://ufal.mff.cuni.cz/pcedt/).

12Intuitively, some categories can be considered as more language independent
(e.g. is member) than other ones (e.g. lemma), so I take the liberty to hand-code the assign-
ment of some of the former ones instead of training them.

26 CHAPTER 1. INTRODUCTION

means as word affixes, prefixes, and changes of root vowels, disregard-
ing all possible irregularities.

• At least for highly inflectional and agglutinative languages, there is a
better way to annotate a corpus at the m-layer than to manually fill m-
tags and lemmas of each token in an annotated text. A lexicon is cre-
ated where for each token all possible pairs of lemma and m-tag that
may have generated the token are given, regardless the context of the
token; and then only the correct pair is chosen, where more than one
is proposed.13 In other words: in order to obtain an annotated corpus
for training purposes, it is useful to develop a morphological analyzer
based on hand-written rules—but then, obtaining another morphologi-
cal analyzer (by means of training) is obviously of little use.

I also decided to implement the analytical and tectogrammatical analysis in
separate steps; the reasons for doing so are summarized below.

• The primary goal was to ease my work by splitting it into two smaller
parts. The a-layer seems to be a good intermediary between the m-layer
and the t-layer: it only brings the dependency structure into m-layer; on
the other hand, this structure is already very similar to that of the t-layer.

• The by-product of the splitting is a parser, a tool assigning the structure
at the a-layer14, and the parser itself can be used for several tasks (see
their list at the beginning of Chapter 2).

• The splitting of the work and the independence of its parts brings higher
flexibility as well: its most important consequence is that one can use
e.g. another (analytical) parser together with my tectogrammatical ana-
lyzer.15

The structure of the thesis reflects the independence of the analytical and tec-
togrammatical analysis: Chapter 2 deals with the first one, Chapter 3 with the
latter one, and each of the chapters contains its own description of evaluation,
comparison with previous works etc.—and, of course, overview of its sections.
Chapter 4 concludes results described in both previous chapters.

My tools are downloadable from the following web address: http://ufal.
mff.cuni.cz/˜klimes/phd/

13This is also exactly the way how PDT was annotated at the m-layer. The process of selection
of the correct pair is called morphological disambiguation.

14This statement is not exact; for a difference between parsing and the analytical analysis see
the beginning of Chapter 2.

15This is, due to lower performance of my analytical parsers, highly advisable.

Chapter 2

Analytical analysis

‘Would you tell me, please, which way I ought to go from here?’
‘That depends a good deal on where you want to get to,’ said the Cat.

‘I don’t much care where—’ said Alice.
‘Then it doesn’t matter which way you go,’ said the Cat.

‘—so long as I get somewhere,’ Alice added as an explanation.
‘Oh, you’re sure to do that,’ said the Cat, ‘if you only walk long enough.’

[Carroll, 2003]

Analytical analysis, i.e. analysis which has the annotation at the a-layer (des-
cribed in Section 1.2.4) as its output, can be divided into two main parts. One
of them is syntactic analysis, usually called parsing, which is a procedure of
building a syntactic tree structure out of a string of words and other symbols,
and thus specifying relations among these words. There are several reasons to
parse text. One of the obvious ones is that a parser can be the core of a gram-
mar checker—the tool checking whether the occurrence of a word in a certain
place of a sentence is plausible. A parser is useful within the task of speech
recognition as well, since it can correct some bad decisions of the acoustic
model employed in this task. Last but not least, a parser can be employed
by annotators assigning syntactic structures (which can be then used e.g. for
training tools performing the mentioned tasks) to preannotate the data and
thus to ease their work. A comprehensive description of what a parser is good
for can be found in [Zeman, 2005].

The other part of the analytical analysis is the assignment of an s-tag to each
token, which describes the syntactic function the token has in the sentence.

This chapter describes two parsers I developed and the procedure assigning
the s-tags. Both parsers need an annotated corpus for creating their model,
which they then use for parsing. Although their target language is primarily

28 CHAPTER 2. ANALYTICAL ANALYSIS

Czech, at least the latter is intended to be independent of the language being
processed.

Section 2.1 describes the evaluation method used for reporting the parsing
results. There is a review of parsers of the Czech language in Section 2.2.
Sections 2.3 and 2.4 describe both methods the parsers are based on and Sec-
tion 2.5 compares them. Section 2.6 introduces the procedure for assigning
s-tags.

2.1 Evaluation

All evaluation in this work is done using test data, which are distinct from
training data. One of their copies is annotated manually—we take it as the
measure of correctness and we call it the golden annotation. The other copy
being the subject of a comparison is called the test annotation.

For an evaluation of my task, which is analytical dependency parsing, I use
the most common metrics—(dependency) accuracy. It is defined as the num-
ber of correct dependencies, i.e. those assigning a node to the same parent in
the test annotation as in the golden annotation, divided by total number of
dependencies in one of the annotations.1 Below, we will denote accuracy as A.

For Method 1, when a parser may be unable to assign the parent of a node at
all, we may be interested in other characteristics of its performance as well.
We define coverage, C , as the ratio of the number of assigned dependencies
to all dependencies, and precision, P , as the ratio of the number of correctly
assigned dependencies to all assigned dependencies. Accuracy is defined in
the same way and it is the product of coverage and precision in this case.

Since I was performing experiments with analytical parsing when PDT 2.0
was not available, the results are reported on PDT 1.0 ([Hajič et al., 2001]). Its
data consist of 1,507,333 tokens in 98,263 sentences and they are divided into
training set, development test (d-test) set, and evaluation test (e-test) set with
the approximate ratio of 10:1:1. All tools whose results I report are trained on
all the training data of PDT 1.0 annotated at the a-layer and they are tested on
all its d-test data annotated at the a-layer. The m-layer of the whole data is
disambiguated automatically.

As late as all the experiments with analytical analysis were done, PDT 2.0
has became available and I wanted to test the performance of my tools on
it. The experiments were not redone for PDT 2.0, however; I only ran the

1From the description of the a-layer it follows that all annotations of the same data have
to contain the same nodes and thus the same number of dependencies, which is equal to the
number of nodes.

CHAPTER 2. ANALYTICAL ANALYSIS 29

parsing Method 2 and the process of assigning the s-tags on PDT 2.0 with the
settings which proved to be the best for PDT 1.0. The results are reported at
the respective places together with those obtained using PDT 1.0. As in the
case of PDT 1.0, all mentioned tools are trained on all the training data of
PDT 2.0 annotated at the a-layer and tested, unless stated otherwise, on all its
d-test data annotated at the a-layer; the m-layer data used for these tasks were
disambiguated automatically.

2.2 Previous works

There are several parsers of the Czech language. In order to be able to compare
my results with their ones, I mention only those for which results on d-test
data of PDT 1.0 are available.

These parsers fall into two groups: one of them contains those developed ori-
ginally for English with its constituency-based structures, which are then con-
verted into dependency structures; the other group contains parsers work-
ing with dependencies internally. The existing parsers are described in Ta-
ble 2.1 and their performance on PDT 1.0 (and, for some of them, on PDT 2.0)
is given as well. Some of these results are obtained from web page http:
//ufal.mff.cuni.cz/czech-parsing/

However, the most successful parsers of the Czech language originated as the
combination of some of the described ones: on PDT 1.0, the one described in
[Zeman and Žabokrtský, 2005] achieved the accuracy of 86.3%; the combina-
tion described in [Holan and Žabokrtský, 2006] yields the accuracy of 86.2%
on PDT 2.0.

2.3 Method 1: Optimal context length

This section describes my early experiments with analytical parsing and at-
tempts to develop a method of machine learning based on human-readable
rules. Although the method is usable only in parsing and possibly in some
other areas where linear context of a token can help significantly, and even
in these areas it exhibits some deficiencies, it brings an original approach to
machine learning using rules, which builds its model on sequences of sym-
bols. Besides, some ideas are used in a more successful transformation-based
method described in Section 2.4.

30 CHAPTER 2. ANALYTICAL ANALYSIS

Author Short description and references PDT
1.0

PDT
2.0

Michael
Collins

originally a constituency-based parser;
based on lexicalized probabilistic context-
free grammar ([Collins et al., 1999])

82.6% 82.4%

Eugene
Charniak

originally a constituency-based parser; in-
spired by maximum-entropy ([Charniak,
2000])

84.3%

Kiril
Ribarov

dependency parser; perceptron-based
[Ribarov, 2004]

about
72%

Daniel
Zeman

dependency parser; statistical modeling
dependencies as word bigrams ([Zeman,
2005])

74.7% 75.0%

Tomáš
Holan

dependency parser; based on a push-down
automaton and using genetic algorithm to
learn weights of rules ([Holan, 2005])

73.9% 74.0%

Ryan
McDonald

dependency parser; searching for Maximum
Spanning Tree ([McDonald et al., 2005])

84.4% 84.2%

Keith Hall
and Václav
Novák

improvement of Charniak’s parser by means
of recovering non-projectivities ([Hall and
Novák, 2005])

85.0%

Zdeněk
Žabokrtský

dependency parser; hand-written rules tai-
lored for Czech ([Holan and Žabokrtský,
2006])

75.2% 76.1%

Table 2.1: Description and performance of existing parsers

2.3.1 The basis of the method

The language model of this parsing method has the shape of rules describing
dependencies among tokens in a sentence. The method is based on the idea
that in order to be able to assign the parent of a token, we (usually) do not need
to know the whole sentence but it is sufficient to know only the important
information from the context of the token in question. Thus, the first problems
to be solved are which part of the information is important and what does
“context” mean.

When considering the context of a token, I work with the linear surface struc-
ture of the sentence only, neglecting structure of the rising dependency tree for
simplicity. This approach cannot obviously profit from the knowledge of de-
pendencies of the neighbouring tokens, although, on the other side, it cannot
get confused when the dependencies are not assigned correctly. I define the

CHAPTER 2. ANALYTICAL ANALYSIS 31

context of a token as a continuous sequence of tokens from the linear surface
structure which include the token in question. For linguistic reasons, I con-
sider only the contexts in which the parent of the token is also included: when
the possible parent is out of the context, we have almost no information about
it, which is too little to decide whether this token is the parent. The algorithm
itself determines the optimal length of the context.

Since a context can contain an unlimited number of tokens, little information
about tokens can be processed only so that the computation can fit into me-
mory. For this reason, I use a two-letter m-tag as the only information about a
token.

The issue of identification of the parent of a token contained in a rule has
rather technical character and I encode the parent as its relative distance from
its child token. As a special case, when the parent of a token is the root node of
the sentence, zero is encoded as the distance and interpreted in the described
way.

A rule thus contains the tag of the token in question, the tags of the tokens in
its context in the order they appear in, and the distance of the parent. Techni-
cally, the first and the second entry are delimited with a colon and the second
and third one with the “greater-than” sign. In the notation of the context,
several special symbols are defined as well: ’ˆˆ’ means the beginning of a
sentence, ’$$’ denotes its end, and ’__’ indicates the position of the token
in question. For example, the rule N2: N4 A2 __ > -2 has the following
meaning: when a noun in accusative followed by an adjective in genitive and
by a noun in genitive occurs, the parent of the noun in genitive is the noun in
accusative.

2.3.2 Inference of rules

Having decided about all other substantial aspects of the method, we can de-
cide now how rules will be inferred. My idea was to develop a system where
once a rule is applied to a configuration, no other rule will be applied to the
same configuration, i.e. one rule only assigns the parent to a token. For this
reason, the parsing procedure is simple:

• for every input sentence
• for each of its tokens

• go through the rules in the order they have been learnt in and
apply the first applicable rule

A rule is applicable when the tag of a token in question, together with the tags
of tokens in its context, as recorded in the rule, matches the sample.

32 CHAPTER 2. ANALYTICAL ANALYSIS

From the sentence symbolically written as Db Vp N1 (the sequence of an ad-
verb, a verb in present tense, and a noun in nominative) where the verb is the
parent of both remaining nodes, we can infer the following rules in an obvious
manner.

Db: ˆˆ __ Vp N1 $$ > 1
Vp: ˆˆ Db __ N1 $$ > 0
N1: ˆˆ Db Vp __ $$ > -1

However, these rules are very specific and thus of little use, and there is a
need to find more general ones. For this reason I regard the rules inferred in
this way as my training samples and based on them I find rules which are as
general as possible (i.e. which have the shortest possible context), but which
unambiguously determine distance to the parent when applied to all training
samples. The rules are generated starting from those with shorter context—
with the condition that the context recorded in a rule contains the parent being
assigned by the rule—and when a rule cannot assign a parent unambiguously,
the rule is crumbled into several more specific rules by extending the context.
For simplicity, I consider only rules with continuous contexts.

The training procedure, based on the ideas above, follows.

• infer training samples from the training data
• delete those samples where the distance is ambiguous2

• NEXT TAG: for every child tag
• NEXT LENGTH: for increasing context length starting from 1

• infer the rules whose contexts have the current length
and contain the parent from training samples

• determine how many times each of such rules would apply
correctly and incorrectly in the training samples

• choose and record the best rule, i.e. the one applied correctly
the most times and never incorrectly

• when such a rule does not exist, go to NEXT LENGTH3

• delete samples which the best rule was applied to4

• if no more training samples exist, go to NEXT TAG

There is one matter remaining to be solved yet. The analytical structure is a
tree; however, since the parents of tokens are assigned independently, the out-
put structure may contain cycles. I chose to solve this problem by removing

2For obvious reasons, when there are two training samples differing only in the parents, no
rule assigning the parent correctly can be generated from them.

3This is how the rule is crumbled.
4As during parsing, a sample is not considered any more once the parent has been assigned.

CHAPTER 2. ANALYTICAL ANALYSIS 33

one edge between a child and its parent in every cycle. The best criterion for
the edge to be removed seems to choose the one corresponding to the rule
which was applied the least times (to the training data) and which can be thus
considered to be the least reliable. For this reason, there is a need for storing
the number of applications of a rule together with the rule.

With the method described I achieved C = 80.2%, P = 77.4% and A = 62.1%,
having 600,981 rules (there are 1,224,076 dependencies in the training data).

2.3.3 Inference with exceptions

However, the system of rule inference is not optimal, since because of excep-
tions (and errors in the annotation), a rule crumbles into a number of less
general rules. This can lead to a lower coverage (and even precision, since
the rules are less linguistically motivated). The phenomenon can be illus-
trated on the following example: because of the A1: A1 Jˆ __ N1 > -1
rule (A1 means an adjective in nominative, N1 is a noun in nominative, Jˆ is a
coordinating conjunction), the A1: __ N1 > 1 rule is crumbled into rules
A1: Vc __ N1 > 1, A1: P6 __ N1 > 1 etc., while many other quality
rules, e.g. A1: P3 __ N1 > 1, are not inferred at all, because the corres-
ponding configurations were not seen in the training data. To solve this prob-
lem, it is sufficient to modify the training algorithm so that it finds exceptions
to the rule and writes them before the given rule—in our example the correct
order should be A1: A1 Jˆ __ N1 > -1 and A1: __ N1 > 1. The pars-
ing algorithm already has the desired property to stop when the first rule is
applied, and thus it can remain unchanged.

For our algorithm, we have to formalize what an exception is. An exception
to a rule is a rule which applies correctly or does not apply at all when the
original rule would apply incorrectly, and which does not apply when the
original rule would apply correctly.

The training algorithm given below considers the formalization; it also allows
for exceptions to an exception etc.

There is one more issue to be solved: to decide when to consider a rule to
be correct, although with exceptions, and when to consider it to be incorrect.
I defined this criterion as a certain ratio of correct applications of a rule to
incorrect applications—when the actual ratio is greater than or equal to this
threshold, exceptions to the rule are generated, otherwise the rule possibly
crumbles as described above. Experiments show that the best ratio is 2:1.

The new training procedure is described below.

• infer training samples from the training data

34 CHAPTER 2. ANALYTICAL ANALYSIS

• delete samples where the distance is ambiguous
• NEXT TAG: for every child tag

• NEXT LENGTH: for increasing length starting from 1
• infer the rules whose contexts have the current length

and contain the parent from training samples
• delete rules not meeting the above requirements (this step

is not applied for the first time)
• determine how many times each of such rules would apply

correctly and incorrectly in the training samples
• choose the best rule, i.e. the one applied correctly the most times

and with the correct-to-incorrect ratio above the threshold
• when such a rule does not exist, go to NEXT LENGTH
• if the best rule was applied incorrectly at least once

• mark training samples where the best rule was applied
correctly and where it was applied incorrectly

• call this functionality (except for the inference of training
samples) recursively, but on the marked samples only5

• record the best rule
• delete samples which the best rule was applied to
• if no more training samples exist, go to NEXT TAG

For the algorithm with exceptions implemented, I achieved C = 87.7%, P =
79.5% and A = 69.7% (∆A = 7.6%), having 355,608 rules.

We can also state one more confinement to exceptions: an exception does not
apply when the original rule does not apply; however, this stricter require-
ment leads to greater number of rules and thus, for the reasons described
above, to slightly worse results.

2.3.4 Connecting the dangling nodes

When striving for the best accuracy, we can try to find parents which our al-
gorithm was not able to assign. For this reason, I developed a simple back-off
procedure which operates in the following manner. I separated a small part of
the training data, which now serves as held-out data; and parsing is trained
on the remaining training data only. The held-out data are parsed with the
rules obtained and statistics are gathered from the tokens having no parent
assigned: the probability of such situations are computed for these tokens in
which the token has another token as its parent when this possible parent oc-
curs in the sentence. Child and parent tokens are characterized by their two-
letter m-tags; parent tokens are characterized by the information whether they
occur to the left or to the right of the child token as well.

5This serves for inference of exceptions to the best rule.

CHAPTER 2. ANALYTICAL ANALYSIS 35

After the parsing, the analysis of tokens with non-assigned parents runs as
follows: from possible parents occurring in the sentence the one is chosen
which has the highest probability recorded. From all the tokens with the same
characteristics, only the one that is the closest one to its possible child can be
chosen. In practice, it also turns out that adding a penalty for a big distance be-
tween a child and its parent improves the results—for each position between
them the recorded probability is reduced by 1/15.

Results produced by this procedure are less reliable than those of the pars-
ing procedure (see drop of precision below); therefore, when breaking cycles,
lower weights are artificially assigned to edges established by this procedure.

After adding this simple procedure I achieved C = 97.9%, P = 74.9% and
A = 73.3% (∆A = 3.6%).6

2.3.5 Deletion of unreliable rules

It turns out that the rules which were applied to the training data only once
are too unreliable: the procedure described above can assign parents better
than these rules. When these rules are deleted from the rule file and only
the remaining rules are applied, the results are slightly better: C = 98.4%,
P = 74.7%, A = 73.6% (∆A = 0.3%). These are the final numbers of this
method. Besides, the number of rules significantly decreases to 65,659.

2.3.6 Possible improvements

If somebody wants to improve the accuracy, the possible way may be to in-
crease the generalization of rules somehow and thus, hopefully, to raise the
accuracy of the method. There are at least two approaches possible. One of
them is not to define context as a sequence of tags but rather as an expres-
sion operating on such a sequence; for example, regular expressions seem to
be very suitable for this task ([Zeman, 2001]). The other approach makes the
rules express an agreement between a child and its parent (and, possibly, other
tokens in the context).

6The coverage is lower than 100% since the back-off procedure can assign a parent to a token
only when the token occured in the held-out data, it had no parrent assigned, and one of the
tokens occuring in the current sentence should have been its parent.

6For the sake of completeness: when in this situation the back-off procedure is left out, the
accuracy drops greatly: C = 82.9%, P = 82.5%, and A = 68.4% (∆A = −5.2%).

36 CHAPTER 2. ANALYTICAL ANALYSIS

2.4 Method 2: Transformation-based classification

This parsing method is based on similar ideas as Method 1; however, I did not
implement my own algorithm inferring rules that describe dependencies, but
I left this task to fnTBL, one of the toolkits performing transformation-based
learning (see Section 1.3.2). The result of this is a high chance of affecting the
choice of information important for parsing, lowering amount of program-
ming work and improving accuracy of the parser.

2.4.1 The basis of the method

Similarly to Method 1, the basic idea of parsing is to assign the parent to each
token independently of other dependency edges and to use only the informa-
tion from the context of the token for doing so. Unlike Method 1, we can easily
design shapes of contexts (although it is not possible to have contexts of un-
limited length any more) and choose what information from a context will be
used.

Since fnTBL is capable of solving classification tasks only, there is a question
how to transform the task of determination of the parent to a classification
task. The answer can be that we can classify a token into a class identifying its
parent. The identification should be unique, i.e. it should choose (at most) one
token as a parent, but it should, because of reliability, also describe a possible
parent by means of taking some of its properties into account—the more lin-
guistically motivated the description is, the higher reliability of resulting rules
can be expected. However, the description of a possible parent cannot be too
specific, since otherwise it could be impossible for a rule to ever find a token
with the given properties. A trade-off solution is needed.

It proved good to use two-letter m-tags for the task of description. To make
the description unique, I append to its beginning the distance of the parent
from its child, considering only tokens having the same tag as the parent has.
E.g. -1N4 means “the previous noun in accusative” and +2VB means “the
second verb in present or future tense to the right”, with value 0 meaning
the (technical) root of a sentence.7 This way of identification also solves the
problem that, unlike Method 1, we cannot force the context in a rule to contain
the parent, and thus we know almost nothing about it when it is beyond the
context.

7Only in about 3% of cases, the parent is the second or even more distant token with the
given tag.

CHAPTER 2. ANALYTICAL ANALYSIS 37

2.4.2 Connecting the dangling nodes and enforcing trees

The fact that the parent assigned by a rule may be absent from the context of
the rule also implies that a rule can assign a non-existing parent. For example,
a rule can assign -1VB as the parent of the current token; however, there is no
verb to the left of it. For this reason I developed a procedure which reads the
parsed file and the rule file and places the dangling nodes: the effects of rules
assigning a non-existing parent to a token are undone, so that the node gets
the parent assigned by the latest rule from those assigning existing parents.8

As with the previous method, the resulting structure not necessarily is a tree.
This problem is solved by removing one of the edges forming a cycle as well:
the edge established by the latest rule is chosen and the effect of this rule is
undone (i.e. the child node of this edge will have the parent appointed by the
last but one rule which applied to this child). It also helps to consider edges
containing children which were originally dangling to be less reliable, and
thus prefer these edges for removing when they occur in a cycle.9

The described criterion for choosing an edge to be removed turns out to be
the best. I also trained the probabilities of dependencies between tokens (si-
milarly to the method described in Section 2.3.4) on held-out data and used
them when deciding which edge to remove, but there has been no signifi-
cant difference in the results; I got similar results when I removed the longest
edge (measured by the linear distance of the two nodes forming it). Other
approaches, like choosing the edge selected by the oldest rule instead of the
latest one or choosing edges randomly, were found hurting the results a bit
(the difference between the best and the worst from all the given approaches
is ∆A = 0.3%).

2.4.3 The design of rules

There are many ways of creating the initial analytical structure—I experi-
mented with so called “umbrella shape” (each node hangs on the root of its
sentence) and “left string” (each node hangs on the previous node and the first
node hangs on the root); these and several others can be found in [Zeman,
2005]. However, when using fnTBL, the best way is to initialize its input data
in such a way that the initial assignment of classes is as correct as possible:
one cannot expect higher accuracy, but the training is faster and it uses less
memory. This is why I set the initial class of every token (deciding according

8Tests show that about 4% of nodes were dangling and more than one tenth of them has
been placed correctly by the procedure.

9Probably the best solution of this problem would be searching for the Maximum Spanning
Tree, as described e.g. in [McDonald et al., 2005].

38 CHAPTER 2. ANALYTICAL ANALYSIS

to its two-letter m-tag) to the which it occurs most frequently in the training
data in. This way I reduced the memory requirements and thus it was possible
to add other templates into the template file.10 This improved the accuracy of
the parser as compared to the simple umbrella-shape initialization.

When designing the rule templates, I did not succeed in incorporating a
lemma, which is the other type of information obtained from the m-layer, into
templates containing m-tags. Rules containing lemmas of two tokens did not
fit into memory, and sets of rules with a lemma of one token turned out to be
less accurate than those containing only m-tags: after removing lemmas, me-
mory requirements have decreased, so I could enlarge the context—and this
larger context turned out to improve accuracy more than incorporating the
lemmas did.

Surprisingly, it helped to consider not only continuous contexts, but also con-
texts with “holes”, i.e. such that properties of a token are assigned by a rule,
but the properties of a token between that token and the token whose parent
is looked for are not assigned. However, it did not help to consider contexts
where the position of a token with given properties was not fixed, e.g. when a
rule stated that a token with tag N4 had to occur somewhere between the first
and the fifth position to the right from the token whose parent was looked
for. A possible explanation of this phenomenon is that there are situations in
which we do not need to know about all nodes in a context in case we know
about those which can affect the dependency edge in question. For exam-
ple, the rule tag 0=Z: tag 1=P1 tag 3=Vp => par=+1Vpwas generated
saying that a punctuation mark which is followed by a relative pronoun in
nominative, by any token, and by a verb in past tense should have this verb as
its parent. The situation corresponds to the beginning of a relative clause and,
according to the training data, the undetermined token can be an adverb, a
verb in the conditional form, a noun or a pronoun—none of these possibilities
can alter the dependency between the punctuation mark and the verb.

After numerous experiments with various rule templates I achieved the best
results with the templates which use only the morphological tags and which
are designed this way: the rule templates cover all the rules with a continuous
context of length up to seven containing the current position and, moreover,
they cover all the rules containing the current position and up to two positions
in the maximum distance of five. The accuracy is 74.5%.

The list of twelve of the most useful rules is shown in Table 2.2.11

10Memory requirements of the training phase were the limiting factor during almost all my
computations.

11These rules are generated, indeed, with initialization of training data to the umbrella shape,
to have the whole information contained in the rules.

CHAPTER 2. ANALYTICAL ANALYSIS 39

tag_0=N6 => par=-1R6
tag_0=A2 => par=+1N2
tag_0=A1 => par=+1N1
tag_0=A4 => par=+1N4
tag_0=N2 => par=-1R2
tag_0=N4 => par=-1R4
tag_0=Z: tag_1=J, => par=+1J,
tag_0=A6 => par=+1N6
tag_0=N2 tag_-1=N1 => par=-1N1
tag_0=Vf => par=-1VB
tag_0=Db => par=+1VB
tag_0=P4 => par=+1VB

Table 2.2: The best rules for Method 2

I made several experiments with settings of some options of fnTBL and found
out that it was better to set ORDER BASED ON SIZE=1. The threshold op-
tion should have its default value.

2.4.4 Relocation of nodes hanging on the root

When rules assign a non-root parent to a node, but the node was dangling
or it was detached of its parent because of cycles in the structure (see Sec-
tion 2.4.2) and there are no other rules proposing a suitable parent, the node
gets, as the last resort, the root of the sentence as its parent. We know almost
for sure that the node is misplaced, but obviously we know little or nothing
about its parent. There is, however, a special situation when we do know
something: when such a node causes non-projectivity of an edge. Although
non-projectivities are allowed in Czech, they are not frequent (according to
[Zeman, 2005], there is about 1.9% of non-projective edges in PDT 1.0) and
therefore, almost for sure, the node should be relocated to a position where it
does not break projectivity. Even so, there are many possible parents, but it
helps most to relocate the node so that it becomes a child of the parent node
of the non-projective edge.

After the application of this procedure, the accuracy increased to 74.7% (∆A =
0.2%), and this is the final accuracy of Method 2 on PDT 1.0.

When trained and tested on PDT 2.0 data, the final accuracy on d-test data is
74.8%. This and the previous figure can be compared to those in Table 2.1. For
sake of completeness, the accuracy is 74.6% on the e-test data of PDT 2.0; and
when the m-layer data with manual annotation were used, the accuracy rose

40 CHAPTER 2. ANALYTICAL ANALYSIS

to 76.7% and 76.4% in the case of d-test and e-test data. The e-test data were
used only for the purpose of this evaluation, which was performed only once.

2.4.5 Analysis of errors

All the statistics in this section are gathered on the d-test data of PDT 2.0 with
their m-layer annotated manually.

In Table 2.3, statistics are presented in how many percent of cases the parser
has assigned the correct parent to a node with the given two-letter m-tag.
Moreover, in parentheses there is stated how many percent of child nodes
have the given m-tag. For every part of speech exhibiting morphemic cases,
records for all its cases are summarized into one number for the sake of lu-
cidity and only one letter identifying this part of speech is then mentioned
instead.

V 100.0 (0.0) AX 78.0 (0.3) J, 64.5 (1.9)
Vc 97.7 (0.4) Dg 75.0 (1.7) VB 63.2 (5.6)
RF 97.1 (0.0) Vf 73.7 (1.9) J* 57.9 (0.0)
PX 96.2 (0.4) C= 73.3 (1.7) RX 57.1 (0.0)
A 94.0 (11.4) Z: 73.1 (14.5) Vi 56.8 (0.1)
P 87.1 (6.4) NX 72.3 (1.7) Jˆ 53.0 (3.8)
N 82.8 (28.3) TT 69.9 (0.5) Vs 47.3 (0.7)
AC 82.7 (0.1) R 67.5 (9.7) CX 37.5 (0.0)
C 82.7 (1.2) Cv 66.2 (0.1) Ve 36.4 (0.0)
C} 80.4 (0.0) Vp 66.1 (3.8) II 10.0 (0.0)
Co 78.6 (0.0) Db 65.6 (3.7) Vt 0.0 (0.0)

Table 2.3: Precision of the assignment of parents

Similarly, Table 2.4 shows statistics of how many percent of cases the parser
assigned a child correctly to a node with the given two-letter m-tag in. Strictly
speaking: each figure (in percents) expresses the ratio of correctly proposed
dependencies whose parent nodes have the given m-tag to all proposed de-
pendencies of the same type; i.e. the precision of assignment is presented.

Figure 2.1 displays statistics of how many percent of cases an edge of a given
length is correct in and how many percent of edges have a given length.

Figure 2.2 presents the distribution of distances between the assigned and the
correct parent of a node, if the two differ. Misplacements concerning the root
are treated as special cases which are not represented in the figure: 29.3% of
misplaced nodes hang on the root; on the other hand, 3.9% of misplaced nodes
should hang there.

CHAPTER 2. ANALYTICAL ANALYSIS 41

CX 100.0 (0.0) Vf 78.4 (2.3) Ve 58.8 (0.0)
PX 100.0 (0.0) Vi 76.1 (0.1) J* 57.9 (0.0)
R 92.0 (10.0) C= 75.8 (1.2) Z: 52.1 (2.0)
C} 91.7 (0.0) Jˆ 75.2 (6.9) Db 51.4 (0.3)
AX 89.0 (0.1) Co 75.0 (0.0) NX 69.6 (1.0)
C 87.6 (0.4) TT 74.1 (0.2) Cv 65.8 (0.0)
N 84.4 (26.6) VB 72.1 (15.0) Dg 64.8 (0.4)
J, 82.9 (2.9) A 72.0 (1.4) root 60.8 (17.4)
Vp 82.3 (10.0) Vs 71.7 (1.4) RX 0.0 (0.0)
P 78.5 (0.3) AC 70.1 (0.0)

Table 2.4: Precision of the assignment of children

These statistics reveal no surprise: for the parser, the most difficult task is to
place verbs (except for the conditional form of the verb být (to be), where the
criteria are simple), adverbs, “prepositional phrases”, coordinations (repre-
sented by coordinating conjunctions Jˆ) and dependent clauses (represented
by subordinating conjunctions J,). On the other hand, what could be called
“noun phrases” in broader sense is usually correct: in most cases adjectives,
pronouns and numerals expressed in words have the correct parent; and
prepositions, nouns and numerals expressed in words have correctly assigned
children. This conclusion corresponds to the statistics of accuracy of edges per
their length: shorter edges, which probably correspond to “noun phrases”, are
more accurate.

2.4.6 Possible improvements

A possible way of improving accuracy can be to divide the training proce-
dure into more phases. We train rules on one part of the training data and
then we detect edges that are assigned in the most reliable way on the other
part, based e.g. on m-tags of nodes constituting them or on their lengths (see
Tables 2.3 and 2.4 and Figure 2.1). Then we create new data for training the
unreliable edges only, since the reliable ones are retained from the first phase
of training. The advantage is that in the second phase the training data can be
extended with some features describing the partly created structure, e.g. in-
forming about the number of children a node has after the first phase, and
rules derived in this phase can profit from this additional and relatively reli-
able information.

It also may be worth to try to handle coordinations in a different way than
until now, since coordinations, unlike the rest of edges, do not express de-
pendency relations (see Section 1.2.2) and parsers are usually confused by this

42 CHAPTER 2. ANALYTICAL ANALYSIS

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35 40

%

length of an edge (0 means an edge leading to the root)

percentage of correct edges
distribution of lengths

Figure 2.1: Percentage of correct edges with the given length and the distribu-
tion of lengths of edges

fact (only about a half of coordinating conjunctions were placed correctly, see
Table 2.3). The idea is described below. The training data are altered in the
following way: each node hangs on its effective parent instead of the direct
one (the closer effective parent is used where there are more possibilities).
Moreover, there is no need to generate rules assigning parents of coordination
nodes: they hang on the root of the sentence. When the input data are parsed
using rules obtained on these training data (see left side of Figure 2.3 for the
example sentence), coordinations have to be taken into account again. First of
all, the correct position of each coordination node has to be found: the “old-
est” node such that the coordination node causes no non-projectivity when
it becomes its child is chosen (see right side of Figure 2.3). Next, members
of each coordination are assigned: they are the closest left and right siblings
of the coordination node; they become children of the coordination node and
their is member attribute is set. After this step, if there is a comma (or other
punctuation that can serve as the delimiter of members of the coordination)
as the closest left sibling of the coordination node, it and its left sibling be-
come children of the coordination node as well and the is member attribute
of the left sibling is set (not occurring in the example sentence); this step is
repeated as many times as possible. The step of search for members of a coor-
dination is repeated until there is a coordination node with no children (three
times in the example sentence: for nodes a, –, and a taken from right to left;
see left side of Figure 2.4). Using this approach, there are two possible sources
of errors (beside those caused by mistakes in parsing): when there are nested

CHAPTER 2. ANALYTICAL ANALYSIS 43

 0

 1

 2

 3

 4

 5

 6

 7

-40 -30 -20 -10 0 10 20 30 40

oc
cu

re
nc

es
 o

f t
he

 d
is

ta
nc

es
 (%

)

distance of the parents

Figure 2.2: Percentage of non-zero distances between the assigned and the
correct parent of a node

coordinations, it is impossible to determine which coordination node is the
parent of the other one (in the example sentence, the error would originate if
the coordination nodes were processed left-to-right); and, secondly, common
modifications of members of a coordination are assigned as modifications of
only one of them (see this problem when comparing to the correctly parsed
sentence on the right side of Figure 2.4).

However, the problem of determination whether a modification is common
for all members of a coordination, or whether it belongs to one of them only,
seems to be relatively frequent source of errors of any parser. An alternative
approach could help even in this case: this binary decision could be obtained
by means of training using features of the modification, of its parent, of an-
other member of the coordination, and possibly of the coordination node. This
problem seems to be similar to the task of attachment of prepositional phrases
in English.

The low number of non-projectivities in Czech can also be employed as a con-
straint helping improve the accuracy, when applied to parsed data. I described
my first successful attempt in Section 2.4.4, but, obviously, much more can be
done in this area. [Zeman, 2005] classified non-projectivities of Czech from the
linguistic point of view, but his classification is preliminary, constraints based
on it are hand-coded in his code and are specific for Czech, and he employed
just a small part of the whole potential. It may be worth trying to infer the con-
straints by a method of machine learning and to use them automatically for

44 CHAPTER 2. ANALYTICAL ANALYSIS

a-cmpr9410-019-p3s1
AuxS

Nejvíce
Adv

kritizují
Pred

a
Coord

rozčilují
Pred

se
AuxT

neschopní
Sb

-
Apos

leví
Atr

podnikatelé
Sb

a
Coord

jejich
Atr

zaměstnanci
Sb

a-cmpr9410-019-p3s1
AuxS

Nejvíce
Adv

kritizují
Pred

a
Coord

rozčilují
Pred

se
AuxT

neschopní
Sb

-
Apos

leví
Atr

podnikatelé
Sb

a
Coord

jejich
Atr

zaměstnanci
Sb

Figure 2.3: The sentence Nejvı́ce kritizujı́ a rozčilujı́ se neschopnı́: levı́ podnikatelé
a jejich zaměstnanci. (The most criticism and agitation comes from those incapable:
incompetent entrepreneurs and their employees.; lit.: Most criticize and get-upset Refl
those-incapable: incompetent entrepreneurs and their employees.) parsed correctly
according to the altered training data (left) and when its coordination nodes
were adjusted (right). The s-tags are not important.

identifying and repairing non-projectivities, where the correct structures are
projective. Note, however, that this task is almost reverse to that described in
[Hall and Novák, 2005]—there the authors aimed to recover non-projectivities
in places where they should be.12 Their features seem to be reasonable even
for the task described, but for this task I suggest their extending with the in-
formation whether the root of the subtree causing the non-projectivity of an
edge depends on the root of the sentence and on the fact whether this root
is an ancestor of the nodes forming the edge, or whether it is an offspring of
their ancestor.

2.5 The comparison of the parsing methods

The accuracy of Method 2 is a bit higher than that of Method 1 (74.7% ver-
sus 73.6%); however, this difference is partly caused by different memory re-
quirements of the methods. While Method 1 uses almost 2 GB of memory,
Method 2 uses all the available memory, which is about 2.7 GB, and attempts
to design rule templates which use approximately the same amount of me-
mory as Method 1 result in the accuracy being several tenths of percent lower.
Therefore, we can say that the performance of both methods is almost the
same, although the methods are similar only to a certain extent. One possi-
ble explanation of this phenomenon is that only the features common for both
methods are crucial for the results; those in which the methods differ are not
substantial. If this is true, the accuracy is affected by the choice of features of

12Although not mentioned explicitly, their method is able to correct all local misplacements,
not only those caused by improper handling of non-projective edges.

CHAPTER 2. ANALYTICAL ANALYSIS 45

_ _

_

_

_

_

a-cmpr9410-019-p3s1
AuxS

Nejvíce
Adv

kritizují
Pred Co

a
Coord

rozčilují
Pred Co

se
AuxT

neschopní
Sb Ap

-
Apos

leví
Atr

podnikatelé
Sb Co

a
Coord Ap

jejich
Atr

zaměstnanci
Sb Co

_ _

_

_

_

_

a-cmpr9410-019-p3s1
AuxS

Nejvíce
Adv

kritizují
Pred Co

a
Coord

rozčilují
Pred Co

se
AuxT

neschopní
Sb Ap

-
Apos

leví
Atr

podnikatelé
Sb Co

a
Coord Ap

jejich
Atr

zaměstnanci
Sb Co

Figure 2.4: The sentence from Figure 2.3 after the whole procedure was per-
formed (left) and correct annotation of the sentence (right).

tokens used in rules and by the choice to assign parents independently; it is
not affected by the exact method of inference of rules and of parsing. From this
it would follow that in order to achieve better accuracy, the former properties
of the algorithm have to be improved.

2.6 Assignment of s-tags

To have a complete analytical structure as it exists in PDT, there is a need to
assign an s-tag to each node yet. This task is much simpler than parsing, since
it is a mere classification task, perfectly suitable for the fnTBL toolkit which I
used for parsing.

2.6.1 Previous works

To my knowledge, there is the only tool assigning s-tags: it was created by
Zdeněk Žabokrtský and was never published, although it was often used
by annotators. He solves the same problem using the C4.5 tool, which per-
forms classification by means of construction of decision trees. He uses the
lemma (distinguishing only the 100 most frequent ones; the rest is replaced by
the universal value meaning “other”), the part of speech, the detailed part of

46 CHAPTER 2. ANALYTICAL ANALYSIS

speech, the case, and the voice of a node whose s-tag is being assigned, those
of its parent, and, if its parent was not an autosemantic word, also those of its
“youngest” ancestors being autosemantic words as the input features. He also
uses a number of children of the node in question, distinguishing only values
0, 1, 2 and more. He reports the accuracy of his tool to be about 92.7%, when
trained and tested on the appropriate data from PDT 1.0.

2.6.2 Design of rule templates

I extend his work and use fnTBL for the same task. I use the two-letter m-
tag and the lemma of the node in question, its parent, its grandparent and its
left and right tree siblings as the input features of the toolkit; I also use the
number of children of the node in question with values 0, 1 and more. These
11 features are combined in the following way: a rule can contain up to four
features and up to two of them can be lemmas, but when there are exactly
four features, only one of them can be a lemma. Moreover, at least one of the
features has to refer to the node in question.13 The initial assignment of classes
is done in such a way that the s-tag occurring most frequently in the training
data is assigned to a node based on the combination of its two-letter m-tag
and that of its parent.14 Several of the most useful rules, only correcting the
initial assignment, are given in Table 2.5.

I achieved the accuracy of 93.8% using the same data as Zdeněk Žabokrtský.
I achieved 95.1% on the d-test data and 95.0% on the e-test data of PDT 2.0.15

On the same data of PDT 2.0 annotated automatically at the m-layer and
parsed by the parser described in [McDonald et al., 2005], I achieved the
accuracy of 93.6% and 93.4%. The results reported were obtained for
ORDER BASED ON SIZE=0 and threshold=2.

2.6.3 Attempt at an improvement: Two-phase training

Although the templates described above allow to use not only the features
of the node in question but also those of its tree neighbours as far as we make
them features of the node in question, it is impossible to use those features that

13These intricate templates resulted, as usual, as a trade-off between accuracy and memory
requirements.

14Even this baseline assignment gives an accuracy of 81.7%.
15It should be said that in PDT 1.0, s-tags consist of two parts: the first part expresses what

function the appropriate token has in a sentence; the second part expresses whether the token
is a part of coordination and thus it supplies the attribute is member missing in PDT 1.0.
All the experiments of Zdeněk Žabokrtský and of mine are performed with this second part
cut off, therefore, they are comparable. Up to now, we have no procedure for assignment of
is member at the a-layer, and thus the generated annotation is not complete.

CHAPTER 2. ANALYTICAL ANALYSIS 47

tag=Z: child=2 => afun=Coord
lemma=" => afun=AuxG
tag=Jˆ child=0 => afun=AuxZ
lemma=, child=0 => afun=AuxX
lemma=) => afun=AuxG
tag=N6 ptag=R6 gtag=N1 => afun=Atr
lemma=(child=0 => afun=AuxG
tag=P4 lemma=on => afun=Obj
tag=N4 ptag=R4 gtag=N1 => afun=Atr
tag=N7 gtag=Vp => afun=Adv
tag=Vf plemma=být => afun=Sb
tag=N4 ptag=R4 gtag=N2 => afun=Atr
tag=N7 gtag=VB => afun=Adv
lemma=(child=2 => afun=Apos
tag=N1 ptag=Z: gtag=VB => afun=Sb
tag=Vp plemma=že => afun=Obj

Table 2.5: The most useful rules for s-tag assignment

are currently being assigned—only the features known before the training can
be used. For our task this means that when assigning the s-tag of a node, we
cannot use s-tags of its tree neighbours.

For this reason, I tried to split the training into two phases. In the first phase,
rules were trained as written above, but only on a part of the data. Using
these rules, s-tags were assigned to the rest of the training data. Now features
of nodes in these data were extended with s-tags of its tree neighbours and
based on these data, rules were trained to correct the assigned s-tags.

Several template sets were tested in the second phase, starting from those re-
ferring to s-tags only and ending with those using the whole set of informa-
tion as the templates in the first phase plus s-tags. There were also two ratios
which were the training data split according to. Although early experiments
with this approach (using much simpler template sets in the first phase, and
thus having a better chance to correct s-tags) improved the accuracy of about
0.3%, with the final template set, there was no improvement in the best cases.

48 CHAPTER 2. ANALYTICAL ANALYSIS

Chapter 3

Tectogrammatical analysis

‘It seems very pretty,’ she said when she had finished it,
‘but it’s rather hard to understand!’ (You see she didn’t

like to confess, ever to herself, that she couldn’t make it out at all.)
‘Somehow it seems to fill my head with ideas—only I don’t

exactly know what they are! However, somebody killed something:
that’s clear, at any rate— ’

[Carroll, 2003]

Development of a tool which is able to perform the tectogrammatical analysis,
i.e. analysis which has annotation at the t-layer (described in Section 1.2.5) as
its output, is a challenging work. Nevertheless, such a tool has a wide usage,
as sketched in Section 1.1.

This chapter gives a description of the tool I developed for the mentioned task
as well as an analysis of this task and a discussion of issues concerning the
design of the tool. The tool needs an annotated corpus (see Section 1.2.2) in
order to create its model (see Section 1.3) and tries to be independent on Czech
(see Section 1.4).

In Section 3.1, the conditions in which my tool can be used are analyzed and
also its limitations are given. Section 3.2 describes the evaluation method used
for reporting results of both my tool and tools of other authors. Section 3.3 in-
troduces existing works related to tectogrammatical analysis and it also gives
baseline for my work. In Section 3.4 I describe tectogrammatical analysis from
the technical point of view and introduce main ideas my tool is based on.
Sections 3.5 to 3.8 describe particular phases of the operation of my tool. In
Section 3.9, errors made by my tool are analyzed. Section 3.10 describes expe-
riments with assignment of functors and with a template reduction mechanism.

50 CHAPTER 3. TECTOGRAMMATICAL ANALYSIS

Unless stated otherwise, the analyzer (and the tools described in the first part
of Section 3.3) was trained on all the training data of PDT 2.0 annotated at the
t-layer1; similarly, it was tested on all the d-test data of PDT 2.0 (prerelease
version) annotated at the t-layer.

3.1 Scope and limits of the work

Annotation at the t-layer is a very complex task, this is why I had to find a
compromise and focus only on several aspects of the annotation. Some at-
tributes of the t-layer were omitted since they would probably not remain the
same in the t-layer of languages other than Czech (this especially holds true for
grammatemes); some were omitted because of extensive theory laying in their
background: I would have to consider an enormous number of factors which
affect values of these attributes, and it could complicate the development of
my tool significantly. The latter is especially the case of the information struc-
ture.

On the other hand, there are several (partially overlapping) reasons why to
implement the assignment of a certain attribute:

• it is necessary for the resulting data files to be technically tractable
(e.g. id);

• it makes the core of the analysis (especially the structure);

• it is useful for easier assignment of other attributes (e.g. functor);

• not filling it would cause hardly recoverable loss of information (espe-
cially links to the a-layer);

• it is important for orientation during further work of annotators with
preannotated data (e.g. deepord); or

• it is determined much more by the annotation scheme than by the lan-
guage of a corpus (e.g. is generated).

There are, however, two reasons for implementing the assignment of some
attributes by a hand-coded procedure instead of machine learning. The first
one is indicated in the last item of the list above: when an attribute is hopefully
independent on the language of a corpus, rules for setting its value are always
the same and it makes no sense to obtain them by training.

The second reason is that machine learning could be too strong and cumber-
some a method for such a task. Instead of designing feature templates for the

1We should recall here that all the data of PDT 2.0 are human-annotated.

CHAPTER 3. TECTOGRAMMATICAL ANALYSIS 51

assignment of an attribute, modification of all (three) programs manipulating
with data, re-creation of training data, retraining the rules and so on, a skillful
programmer, having guidelines for annotation handy, could create a simple
script implementing the respective rules for a certain language in a few hours
with hypothetical 100% precision.

Thus, as already mentioned in Section 1.4, the attributes set by my tool are di-
vided into two groups. In the first group there are those with values assigned
based on training. Structure, functor, t lemma, nodetype, gram/sempos,
and val frame.rf belong to this group. The tool thus relies on these at-
tributes: this means that it supposes they exist and they have the same seman-
tics as in PDT. It obviously does not rely on their particular values; the only
exceptions are complex and root values of the nodetype attribute (the first
one should exist and the second one, identifying the technical root of a sen-
tence, should be set correctly for a data file to be valid) and CONJ and APPS
values of the functor (they identify coordinations). This chapter describes the
way of assigning the attributes from this group.

The attributes from the other group are being set by hand-coded procedures
of the tool and their list and the way they are set by the tool follows.

• a/aux.rf and a/lex.rf: The procedure setting them is shown in Sec-
tion 3.4.

• atree.rf: Set correctly, since no tree can originate nor can be deleted.
• deepord: Nodes originating from the a-layer are ordered according to

their ord attribute, i.e. the same way they were ordered at the a-layer.
For new nodes, it is set such that hopefully no non-projectivity arises,
although this is not guaranteed.2

• id: It is set correctly, i.e. it has unique values. The shape of its values are
similar to those in PDT.

• is generated: Set correctly if it was correct to create the node.
• is member: Its values adopted from the a-layer can be used in the first

phase of processing only; then since the tree structure can change signifi-
cantly, I developed a robust procedure setting this attribute based on tree
structure and functors not considering previous values of the attribute.

As a consequence, the tool relies on these attributes as well as on their values.

Regarding the attributes from the m-layer, the tool relies on tag, including
its particular positions, and on lemma, including special characters introduc-
ing its technical suffixes (not mentioned elsewhere in this text, see [Zeman

2The assignment of the attribute by a hand-coded procedure is a compromise: its assign-
ment by training, which would be the best option, would be too labourious; on the other hand,
the attribute really should be assigned in some way for the appearance of trees to be good.

52 CHAPTER 3. TECTOGRAMMATICAL ANALYSIS

et al., 2005]). As for the a-layer, the tool relies on afun and its values Apos
and Coord (identifying appositions and coordinations) and AuxK, AuxX,
and AuxG (denoting the final punctuation, a comma, and other graphical
symbols—ids of these nodes are not written into a/aux.rf of a node if they
are deleted, unlike in case of e.g. AuxP denoting prepositions). It relies on
ord and is member from this layer as well.

Thus, besides grammatemes and information structure, my tool does not deal
with coreference, the rest of binary attributes capturing some properties of
nodes (e.g. is name of person), the compl.rf attribute capturing com-
plement, the quot attribute expressing quotation, the sentmod attribute ex-
pressing sentence modality, and the subfunctor attribute capturing seman-
tic variations of functors.

3.2 Evaluation

Comparison of t-trees is not as easy as that of a-trees, since it may happen by
mistake that different tectogrammatical annotations of one sentence consist of
different sets of nodes (see Section 1.2.5). Therefore, when we want to compare
two t-trees in an attribute, so called alignment of nodes in t-trees has to be done
at first, and then we can compare attributes of pairs of aligned nodes.

Formally, for N1 and N2 being the set of nodes of the first and second tree
in comparison, respectively, we can define alignment as any simple3 function
a : N1 7→ N2. We call nodes n1 ∈ N1, n2 ∈ N2 counterparts of one another if
a(n1) = n2. From this it follows that each node has at most one counterpart.
If a node has a counterpart, we call this node aligned (and these two nodes
mutually aligned), otherwise we call it unaligned.

Attributes of nodes can be thought of as a bunch of unary functions—one for
each set of nodes; and each set is the domain of the respective function. For
an attribute attr and sets N1 and N2, I will denote the respective function
attr1 and attr2. To be able to represent a structure, we consider the parent of
a node to be captured in virtual attribute parent.

We usually consider one of the sets of trees in comparison correct; let us call
it the golden annotation; let us call the other set of trees the test annotation.
This is also the reason why I write “this attribute of this node (in the test an-
notation) is correct” instead of more general “this node and its counterpart
match in this attribute” etc. We denote the number of nodes in golden anno-
tation as Cgold and that in the test annotation as Ctest. We denote the number
of pairs of mutually aligned nodes matching in the attr attribute as C attr.

3I.e. ∀n, n′ ∈ N1; a(n) 6= a(n′).

CHAPTER 3. TECTOGRAMMATICAL ANALYSIS 53

When the attribute in question is not a reference to another node in the same
set of nodes, the comparison is direct and we can define C attr = |〈n1, n2〉 ∈
N1 × N2; a(n1) = n2 ∧ attr1(n1) = attr2(n2)|.4 Technical roots of sentences
do not occur in any of these numbers.

However, in case of such a reference, Cattr needs to be redefined because
of different ranges of attr1 and attr2: the definition has to be changed to
Cattr = |〈n1, n2〉 ∈ N1 × N2; a(n1) = n2 ∧ attr2(a(n1)) = a(attr1(n1)). In the
case of a parent, which is the only attribute of this sort we are interested in,5

the definition then states that in order to be correct, the node and its parent
should have their counterparts, and the counterpart of the parent of the node
in question is the parent of the counterpart of the node in question.6

In both cases, I define precision Pattr and recall Rattr as

Pattr =
Cattr

Ctest

, Rattr =
Cattr

Cgold

To make one number of these two I define F-measure Fattr in the usual way,
i.e. as equally weighted harmonic mean of precision and recall:

Fattr =
2PattrRattr

Pattr + Rattr

=
2Cattr

Ctest + Cgold

There are, however, several attributes that require special treatment due to
their nature. a/aux.rf is a set attribute—it holds unordered links to several
nodes of the a-layer. In order not to complicate the evaluation, I decided to
evaluate it en bloc and to consider this attribute to be correct only if the whole
set of links matches with its counterpart from the golden annotation.

The value of the deepord attribute is a number expressing the left-to-right
order of a node. Although it can be evaluated like another attributes, the eval-
uation would make little sense because of situations like the following one:
when a sentence is (from the deepord point of view) correct except for the
last node which is placed to the first position, deepords of all the remaining
nodes are shifted by one and all the nodes in the sentence are considered in-
correct. For this reason I evaluate deepord as the agreement in relative order
of counterparts of nodes neighbouring in the golden annotation. To be exact:
Cdeepord = |〈m,n〉 ∈ N1 ×N1;m,n belong to the same sentence∧deepord(n)−
deepord(m) = 1 ∧ ∃a(m), a(n) ∧ a(m) < a(n)|. Note that the number of such
pairs of nodes can be at most less by one than number of its nodes in one
sentence; that is why other counts have to be used while computing precision
and recall, namely C

deepord

gold = Cgold − number of sentences and analogically
with C

deepord
test .

4Note that a node cannot be counted as correct in any of its attributes when it is unaligned.
5We do not deal with e.g. coreferences, which have the same nature.
6More informally, the “same” node in both trees has to depend on the “same” parent.

54 CHAPTER 3. TECTOGRAMMATICAL ANALYSIS

3.2.1 Alignment procedure

My procedure of tree alignment tries to mutually align the maximum number
of nodes with the same a-link, and it endeavours to find such counterparts of
the remaining nodes which match them in their positions or functors unless
match in both of them is possible. The procedure is based on a comparison of
structure, functors and a-links only and it is split into several steps.

1. From the trees in question, the nodes which have the same a-link
(i.e. they originate from the a-layer) and which are the only nodes having
this a-link are aligned. Typically, this step aligns the majority of nodes
existing at the a-layer. This is the most obvious and most frequent case.

2. Only the nodes having an a-link are considered in this step, again, and
such cases are solved when there is more than one node with the same a-
link in one tree and there is at least one node with this a-link in the other
tree. Therefore, this step typically tries to align the nodes which appear
as copies of nodes existing at the a-layer, e.g. malé a střednı́ podniky (small
and middle-sized companies) at the a-layer is annotated as malé podniky a
střednı́ podniky (small companies and middle-sized companies) at the t-layer.
The procedure of this step could be called alignment by children. The
main idea is to mutually align two nodes having the same a-link and
having the maximum number of their children mutually aligned. For-
mally, for each a-id aid and nodes n1 ∈ N1;n1 6∈ Def(a)∧alink(n1) = aid

and n2 ∈ N2;n2 6∈ Rng(a) ∧ alink(n2) = aid I construct the following
matrix:

An1n2
= |n ∈ N1; parent1

(n) = n1 ∧ parent
2
(a(n)) = n2|

Then I find nodes n1 and n2 for which An1n2
is maximum, I mutually

align them and delete the row and column corresponding to them from
the matrix. I repeat this process until an unaligned node with the given
a-link exists maximally in one of the trees—i.e. until the matrix is empty.
This implies that nodes with the same a-link can be mutually aligned
even if none of their children are mutually aligned.

3. For all yet unaligned nodes (even those with no a-link) an attempt is
made to align them by children as in the previous step; the only differ-
ences are that their possible a-link is ignored and that at least one pair of
the children of the nodes in question has to be aligned in order to align
the nodes. In other words, we stop aligning when the matrix contains
just zeros. Typically, inner nodes added at the t-layer are aligned in this
step, e.g. nodes in ellipses.

CHAPTER 3. TECTOGRAMMATICAL ANALYSIS 55

4. Again, all yet unaligned nodes are being processed and an attempt is
made to align them by parents and functors: those nodes which have the
same functors and whose parents are mutually aligned are being mutu-
ally aligned in this step. Typically, (correctly assigned) valency members
are aligned.

5. In this last step, all remaining unaligned nodes are being processed and
an attempt is made to align them by parents or by functors—the nodes
being mutually aligned should match in one of these attributes. Unfor-
tunately, it is not optimal (in terms of aligning the maximum possible
number of nodes) to align by parents at first and by functors afterwards,
or vice versa. For example, for the situation in Figure 3.1, the alignment
by functors at first and then by parents is optimal (nodes B and D and
then A and C would be mutually aligned), but for the situation in Fi-
gure 3.2, this could result in the only, non-optimal alignment of nodes E
and H. On the other hand, alignment by parents at first does not have to
be optimal in the first situation (the only alignment of B and C), but it is
optimal in the second one (E and G and then F and H). (The dotted line
in the pictures indicates nodes mutually aligned.)

Figure 3.1: Alignment, problematic situation #1

Figure 3.2: Alignment, problematic situation #2

For this reason I developed a procedure aligning by functors at first,
which, however, takes the parents of nodes into account. For each
aligned node, the number of its unaligned children which can be aligned

56 CHAPTER 3. TECTOGRAMMATICAL ANALYSIS

by functors is noted: it is equal to the number of its unaligned children
minus the number of unaligned children of its counterpart if the node
has more unaligned children than its counterpart; zero otherwise. (The
numbers are stated in the figures by the respective nodes for the men-
tioned situations.) After that, nodes are being aligned by functors, but
for a node at most the number of its children is aligned which is recorded
along with the node. After that, nodes are being aligned by parents; from
the above it is guaranteed that each node is aligned by parents if it could
be aligned before.

In the mentioned situations, this alignment procedure is optimal.

3.3 Baseline and related work

Since the structures of the annotation of a sentence at the a-layer and the t-
layer are similar to a certain extent, I take the t-layer annotation having the
same nodes at the same places as in an a-layer annotation as the baseline of
the structure annotation. For the purpose of the determining baseline for func-
tor assignment, I take RSTR (restriction), the most frequent functor, to be the
functor of all nodes. The result is then Pparent = 50.3%, Rparent = 62.1%,
Fparent = 55.6% and Pfunctor = 16.9%, Rfunctor = 20.8%, Ffunctor = 18.6%.

There are three tools performing partial annotation of (mainly) tectogramma-
tical structure and functors available. They all were developed to reduce ma-
nual work needed to annotate PDT. The first tool used in the annotation pro-
cess, preannotating at the t-layer based on manual a-layer annotation, was
AR2TR ([Böhmová, 2001]). Its algorithm is hand-written and performs the
following tasks:

• assigns the value of functors in clear-cut cases,

• assigns the values of several attributes (e.g. verbal and sentence modali-
ties and aspect),

• deletes most nodes of synsemantic words and fills the corresponding
attributes of their parents accordingly, and

• relocates nodes in certain cases and thus adjusts the tree structure.

The output of AR2TR was taken as the input of decision-tree-based tool for
assignment of functors called AFAS ([Sgall et al., 2002]). It was intended to be
used once the tectogrammatical structure is correctly assigned; annotators re-
ported that it made their work easier even in this phase, though. AFAS makes
decisions based on five types of information about nodes: lexical (lemmas),

CHAPTER 3. TECTOGRAMMATICAL ANALYSIS 57

morphological (several positions of m-tags), analytical (s-tags), topological
(numbers of children), and ontological (positions of lemmas in the EuroWord-
Net Top Ontology). When applied to tectogrammatical structures assigned
manually, excluding the nodes that do not originate from the a-layer, the au-
thors report the accuracy of functors 82.3%, having the data consisting of mere
27,463 nodes for training and testing purposes.

After applying those two tools on the baseline of the test data, the result is
Pparent = 87.0%, Rparent = 78.8%, Fparent = 82.7% and Pfunctor = 72.7%,
Rfunctor = 65.8%, Ffunctor = 69.1%.7

The third tool called AddVal ([Hajič and Honetschläger, 2003], [Honetschläger,
2003]), which uses a valency lexicon for adding nodes and correcting functors,
was developed by me near the end of the main annotation process of PDT 2.0
and thus was not used broadly by annotators; however, it was used in a project
of machine translation ([Hajič et al., 2003]). When applied to the output of
the previous tools, the result improved to Pparent = 86.4%, Rparent = 82.9%,
Fparent = 84.6% and Pfunctor = 74.1%, Rfunctor = 71.1%, Ffunctor = 72.6%.

A question can be asked whether I can use the output of these tools as the
starting point of my analyzer. The answer may not be obvious, although it
is definite: I cannot. The tools were developed for Czech, while my ana-
lyzer is intended to work regardless of the used language—while AFAS can
be retrained and AddVal can use the appropriate valency lexicon, AR2TR pro-
fits from properties of Czech heavily and cannot be used for other language.
However, even for Czech, these tools cannot be used for preprocessing any
more: they (mainly AR2TR, again) can process only data in an older format
than PML is in—the one used in previous versions of PDT. Unfortunately, the
conversion from this format into PML cannot be fully automated: because of
some deficiencies and ambiguities of the older format, the conversion always
requires manual work. This is why the input of my analyzer is always the data
annotated at the a-layer.

Besides the mentioned ones, there are other interesting works available re-
garding subtasks of annotation at the t-layer, as the PDT has it, or at a con-
ceptually similar layer coming from another theories of language description.
The following overview can serve as an illustration of what tasks are manage-
able by a computer; for me, it also served as an inspiration whenever I needed
to solve the respective tasks. I did not compare results of these works to those
of mine.

In [Bojar, 2003], the author aims at extraction of so called subcategorization
frames based on frames of verbs observed in a corpus. Moreover, he discusses

7Needless to say that if AFAS was retrained using the whole data (which did not exist when
it was under development), we could expect better performance.

58 CHAPTER 3. TECTOGRAMMATICAL ANALYSIS

issues of assigning the valency frames based on subcategorization frames and
states that the assignment of functors, which considers the basic step of the
procedure, should be based on the morphemic realization of a modifier and
on lemmas of both the modifier and its governing verb. He documents this
statement by statistics and examples from the corpus.

Authors of [Lopatková et al., 2005] perform word sense disambiguation,
which is in fact valency frame disambiguation, since each frame in the va-
lency lexicon they use corresponds to one meaning of a word. For this task
they use the C5 toolkit implementing the decision-tree learning. They report
that the best set of features that the decisions are based on is the one consisting
mainly of binary values expressing the presence of a dependent having certain
morphological and/or syntactical characteristics concerning e.g. its case or its
preposition; in short, they check for certain morphological realizations of de-
pendents.

Authors of [Razı́mová and Žabokrtský, 2005] did an admirable job regarding
grammatemes. For PDT 2.0, they designed a system of grammatemes which
arises from a hierarchical typology of tectogrammatical nodes which they in-
troduced as well. Then, they hand-wrote rules assigning values to all gram-
matemes as well as to hierarchical attributes of nodes; they used lexical lists
extracted from PDT for some subtasks. The annotation made by their proce-
dure became part of the tectogrammatical preannotation of data of PDT 2.0.

In [Kučová and Žabokrtský, 2005], the scheme of annotation of coreferences
in PDT is introduced and an algorithm for annotating textual coreferences of
personal pronouns (i.e. for the task of anaphora resolution) is proposed. The
authors are able to achieve accuracy 60.4% in this task by means of hand-
written rules, which is comparable to results of automatic anaphora resolution
in English.

Although work of [Postolache, 2005] suffers from certain drawbacks in pre-
sentation and interpretation of results, the author definitely shows that the
assignment of information structure is, to a large extent, a task manageable by
means of machine learning. When she confined herself to the topic/focus dis-
tinction of nouns and pronouns in PDT 2.0, she reached F-measure of 82.0%,
which is far above the performance of her baseline assignment.

The tectogrammatical relation of a pair of nodes, which is captured in func-
tors in PDT, is usually called “semantic role” in other theories and there are
many articles focusing on the issue of automatic assignment of this informa-
tion. However, the articles are mostly aimed at English with its traditional
constituency description8 and since features used there relate to constituency

8The methods used are often traditional as well, i.e. tagging a token as being in-
side/outside/at the beginning of a phrase corresponding to a certain semantic role.

CHAPTER 3. TECTOGRAMMATICAL ANALYSIS 59

structures mainly, the leading ideas of the articles can be hardly used in a
dependency approach. One of the exceptions is the article [Hacioglu, 2004],
where the author converts parsed English texts into dependency trees before
the assignment. The features the author uses are lexical values of the depen-
dent and the governor nodes, their mutual position, their morphological tags
and some other features concerning the structure of the sentence. He used
support vector machines for the classification.

The author of [Semecký, 2006] deals with the automatic disambiguation of
verb valency frames.9 He performs this task by means of a decision tree toolkit
using a corpus automatically annotated at the morphological and syntactical
layer. The features of the verb and its context that he used can be grouped to
five bunches: morphological ones, those based on syntax (morphological and
lexical characteristics of words dependent on the verb), those testing occur-
rences of idiomatic expressions, animacy of dependent words, and informa-
tion from WordNet top-ontology classes. The author reports about 41% error
reduction on the baseline consisting of assigning the most probable frame to
each verb.

3.4 Introduction to the method

From the point of view of structure, which is the basis of tectogrammatical an-
notation, changes between the a-layer and t-layer can be technically described
as:

• deletion of nodes (synsemantic words or majority of punctuation)

• relocation of nodes (rhematizers; phrases having different structure at
the a-layer and the t-layer etc.)

• copying of nodes (filling the ellipses like Zákaznı́ci budou platit o 10 % vı́c,
někteřı́ [zákaznı́ci budou platit] ještě vı́c (Consumers will pay 10% more, some
[consumers will pay] even more.))

• creation of nodes (filling the valency slots in the vast majority of cases;
and filling ellipses like [] Tabulka 1 ([] Table 1))

The fnTBL toolkit, which I use for the tectogrammatical annotation, is not ca-
pable of processing tree structures. Therefore, when we want to pass features
of the parent, children etc. of a node to the toolkit, we have to pass them as

9Because of the way the used valency lexicon is constructed, this actually is word sense
disambiguation.

60 CHAPTER 3. TECTOGRAMMATICAL ANALYSIS

if they were the features of the node. The biggest disadvantage of this proce-
dure is that the toolkit cannot employ the tree structure in its current state—it
remains the same during the whole training or classification process and can
be modified as late as the process is finished. For example, the toolkit modi-
fied the functor of the parent of a node during training; however, this change
cannot be reflected in rules generated consecutively, because this functor is
written as a feature of the mentioned node.

In order to evade the mentioned disadvantage, I split the training (and thus,
inevitably, the classification as well) process into several phases. After each
phase of training, a set of trees being processed is modified according to rules
created in this phase; and these are the modified trees which enter the next
phase. The ideas (some of which I got after exploring of data) leading to the
division follow.

• When we want to fill valency slots, it is necessary to know which valency
modifications are already present. We need to have functors already
assigned and all existing nodes at their places in order to do this.

• When a node having children is being deleted, its children have to be
relocated. In the vast majority of cases, one of the children takes place of
the deleted node and becomes the new parent of its siblings. We will call
such child a successor of its parent. Moreover, the a/aux.rf attribute
of the successor is populated with links to the a-layer counterparts of
its deleted parent. Therefore, if I assigned the successor and performed
the operations mentioned above, it would not be necessary to generate
many complex (and thus unreliable) rules performing the relocation of
children. From this it follows that the deletion should be done before the
relocation.

• When assigning functors, it is better not to have deleted nodes that cor-
respond to synsemantic words, since they influence the functors a lot.

• Obviously, when assigning the attributes of a node, the node has to exist.

Having considered these requirements I split the process into four phases:

1. deletion of nodes and assignment of functors;

2. relocating and copying the nodes together with creation of inner nodes
(i.e. of those added because of ellipses); functors of new (i.e. copied or
newly created) nodes are also assigned here;

CHAPTER 3. TECTOGRAMMATICAL ANALYSIS 61

3. creation of leaf nodes (i.e. of those corresponding to valency modi-
fications) and assignment of their functors as well as assigning the
val frame.rf attribute10;

4. assignment of the rest of the attributes.

This sequence has another advantages as well: since functors are assigned at
the very beginning, they might significantly help in the second, most compli-
cated phase. Moreover, synsemantic words, coming handy almost only for
the assignment of functors, are deleted at the beginning11; and valency mod-
ifications, useless in the parsing process, are created as late as the rest of the
structure is assigned—both facts contribute to the clarity of the “battle field”.

For each of these phases, three programs have to be created: one comparing
input data and desired output data, both in PML format, and creating training
data for fnTBL; another one converting data from the PML format into the
format required by fnTBL classification; and one modifying the data in the
PML format according to the output of fnTBL classification. The second of
them is simple enough; how the other two work is stated in the description of
respective phases.

From the short description of the phases given above we can guess that rule
templates optimal for each of them will be completely different. If we had a
toolkit capable of processing tree structures, it would probably be possible to
give it the union of all four rule templates and perform the training in one
phase; however, huge memory requirements (limiting even in the four-phase
training) would probably force us to split the training into several phases,
which would consume less memory. From this point of view, the incapability
of the fnTBL toolkit to process trees is not such a disadvantage, as it might
seem at the first glance. A disadvantage that remains is that in case of four-
phase training by a toolkit capable of processing trees, programs converting
the data would be less complicated than in case of fnTBL; on the other hand,
their number would be the same.

There are even more disadvantages (depending on the described one) of the
usage of the fnTBL toolkit for tectogrammatical parsing. One of them is mul-
tiplication of information: e.g. rules may assign X as the functor of the parent
of node A and Y as the functor of the parent of node B—but what to do if A
and B are siblings? Furthermore, we need to handle the variable number of
children of a node and consequently the variable number of their features. If
the toolkit is able to process tree structures, it would probably cope with this.

10Nodes created in this phase have no valency frame, so there is no need to wait for the
last phase, and features used for deciding about valency modifications are, naturally, good for
making decisions of the valency frames as well.

11Whenever needed, they can be reached through the a/aux.rf attribute.

62 CHAPTER 3. TECTOGRAMMATICAL ANALYSIS

How these disadvantages are evaded in particular phases of the parsing (if
they occur there), is stated in the description of the phases.

On the other hand, it should be noted that most of general tools for machine
learning can process only classification tasks and use of one of them on ma-
nipulation with trees would probably bring very similar difficulties.

3.5 Phase 1: Deletion of synsemantic nodes and functor
assignment

The aim of this phase of tectogrammatical parsing is to delete nodes that do
not occur at the t-layer any more and to assign functors to the remaining ones.

3.5.1 Design of the procedure

Assigning functors to nodes is an elementary classification task. We can sim-
ply perform the deletion of nodes along with it: when a node should be
deleted, a special value of the functor meaning “deleted” could be assigned
to it.12 However, not only a node should be deleted, but also its successor
should be appointed from among its children if the node has any (see Sec-
tion 3.4). Here, one disadvantage of using fnTBL for this task turns up: we
would like to employ some features of the node in question and of its child
or children; however, manipulation with the variable number of children will
be inconvenient at least. I evaded this by extending the rule templates with
another type of rule templates, deleting the parent of a node together with ap-
pointing this node as the successor of its parent. We can see that both types
of rule templates have to exist, since the second type is not able to delete leaf
nodes.

A node is being deleted if a single rule of any type states so. If the node has
children and its successor is not appointed, it is deleted only if it has just one
child (which is not planned to be deleted as well)—and this child becomes its
successor. The node is retained otherwise.13

12One could object that this task should have been divided into two—the first for making
a decision of whether a node should be deleted and the second for assigning the functors of
nodes not deleted—since the decision of deletion is more important than the assignment of
functors and the classification into mere two classes would be more accurate. However, from
the confusion matrix corresponding to the classification I performed it follows that the classifi-
cation into the “deleted” class is the most reliable one.

13In the test data, a node was retained by this mechanism in 0.4% of cases when it should
have been deleted.

CHAPTER 3. TECTOGRAMMATICAL ANALYSIS 63

3.5.2 Design of rule templates

For both types of rules, I used only features of the node in question and its
parent.14 Namely I worked with their lemmas (lemma), s-tags (afun) and sep-
arate positions of their m-tags except for both possessive subtags, the subtag
of variant, and both reserved positions, which were obviously useless. This
makes up 24 features, too much to fit into memory even for rules containing a
low number of features: if rule templates can contain maximum of three fea-
tures with the condition that when there are exactly three features, they have
to belong to different nodes, the number of templates is as high as 3,768. I did
not want to prune the templates manually, since I supposed that it would hurt
the accuracy.15

In order to solve this problem, I developed an automated adaptive procedure
reducing the number of templates. It operates in the following way: all tem-
plates are used for training the rules on a small part of data, which can still
fit into memory. From the resulting rule file, the most useful templates are
extracted into a new template file. Strictly speaking, each template with the
number of instances (i.e. rules inferred from it) is higher than a certain thres-
hold is retained. The rule file is then completely discarded and the new set
of templates is used for training using the whole data. I call this technique
template reduction. In Section 3.10.1, several of its properties are shown.

In this case, I used the template reduction with the threshold of two rules per
template, and mere 106 templates remained.

Handling situations when a coordination should be a successor of a node
needs special care, since we need to satisfy two requirements of the annota-
tion scheme: it is a coordination node what adopts other children of its deleted
father (however rare this situation may be); on the other hand, they are mem-
bers of the coordination whose a/aux.rf attributes are populated with a link
to the deleted node. Moreover, we need to be as consistent as possible in order
not to confuse the rules. For these reasons, the training data looks as follows:

• For nodes being members of a coordination, features of their effective
parent are considered, rather than those of their direct parent. (This
holds true for the testing data as well.)

• Members of a coordination are marked as successors.

• A coordination node is marked as a successor as well if all members of
the coordination contain link to that parent in their a/aux.rf attributes.

14Memory was the limiting factor during all computations.
15As stated below, this assumption proved true.

64 CHAPTER 3. TECTOGRAMMATICAL ANALYSIS

afun=Atr => func=RSTR
spos=: => func=deleted (punctuation)
afun=AuxP => func=deleted (prepositions)
pos=N par_afun=AuxP => par_del=yes (a noun with a preposition)
afun=Sb => func=ACT
afun=Pred case=- => func=PRED
afun=Obj => func=PAT
afun=Coord case=- => func=CONJ
afun=Adv => func=TWHEN
spos=, => func=deleted (subordinating conjunctions)
lemma=se spos=7 => func=deleted (reflexive pronoun se)
afun=AuxV case=- => func=deleted (auxiliary verb být (to be))

Table 3.1: The best rules in the first phase

3.5.3 Experiments, results and statistics

The described set of rule templates proved to be the best, giving the precision,
recall and F-measure of the structure assignment Pparent = 87.1%, Rparent =
76.2%, Fparent = 81.3% and those of the functor assignment Pfunctor = 85.9%,
Rfunctor = 75.2%, Ffunctor = 80.2%. Both “output” features of a node were
initialized based on s-tags of the node and of its parent.

Twelve of the most useful rules16 are shown in Table 3.1.17

In Figure 3.3, there is an example sentence correctly annotated at the a-layer
and tectogrammatically annotated after Phase 1. The annotation is correct
except for nodes psychologický (its correct functor is REG) and hodně (correctly
LOC).

When I tried to prefer the features which I regarded as more important
(lemma, s-tag, and part of speech) in templates, striving to reduce the number
of templates to bundle them into memory, results were at the best the same as
described above. Template reduction proved to be the best option.

I tried to incorporate the functor of a node in question (being assigned at the
moment) into features. Since this is not a new information, I expected the
results not to change, but the number of rules to decrease. However, not only
results, but also number of rules were almost the same.

16pos denotes part of speech, spos denotes detailed part of speech, par prefix denotes a feature
of the parent.

17These are, indeed, forORDER BASED ON SIZE=1 so that the rules do not contain redundant
atomic predicates and thus are more readable for a human; and without initialization of the
training data, so that the whole information is contained in the rules.

CHAPTER 3. TECTOGRAMMATICAL ANALYSIS 65

a-cmpr9410-019-p30s2
AuxS

Tyto
Atr

obavy
Obj

cítím
Pred

i
AuxZ

při
AuxP

projednávání
Adv

psychologických
Atr

vyšetření
Atr

,
AuxX

která
Obj

jsme
AuxV

uplatnili
Atr

u
AuxP

více
Adv

než
AuxC

dvaceti
Adv

firem
Atr

.
AuxK

T-cmpr9410-019-p30s2
root

tento
RSTR

obava
PAT

cítit
PRED

i
RHEM

projednávání
TWHEN

psychologický
RSTR

vyšetření
PAT

který
PAT

uplatnit
RSTR

hodně
EXT

dvacet
RSTR

firma
PAT

Figure 3.3: The sentence Tyto obavy cı́tı́m i při projednávánı́ psychologických
vyšetřenı́, která jsme uplatnili u vı́ce než dvaceti firem. (I feel these concerns also
in discussions of psychological examinations that we applied with more than twenty
companies.; lit.: These concerns I-feel also in discussions of-psychological examina-
tions that we-are applied by more than twenty companies.) at the a-layer (left) and
its tectogrammatical annotation after Phase 1 (right)

I also experimented with reducing the number of templates by reducing the
number of features using a mechanism similar to template reduction. I gene-
rated all templates with at most three of all 24 features and trained them on
the largest data which were able to fit into memory—thus on very small data.
Then I chose 12 features which took part in the assignment of properties of
the highest number of nodes and generated all templates with at most four
features out of those twelve. As late as at this moment I performed the tem-
plate reduction for them etc. Although the set of chosen features looked very
reasonably, the result was worse (∆Fparent = −0.7%,∆Ffunctor = −0.6%).

I also tested the performance of two-letter m-tags (described in 1.2.3). I took
the lemma, afun, and two-letter m-tag of a node in question and of its parent,
having mere six features. I generated all possible templates of them and per-

66 CHAPTER 3. TECTOGRAMMATICAL ANALYSIS

formed training with this full set of templates without a need of performing
template reduction. Even with this one-step training I obtained the result just
a little worse than the best one (∆Fparent = −0.3%,∆Ffunctor = −0.3%).

I experimented with several parameters of the fnTBL toolkit, namely
ORDER BASED ON SIZE and threshold and I found that their various set-
tings had only insignificant impact on the result in this phase. The results
reported were obtained for ORDER BASED ON SIZE=0 and threshold=1.

3.6 Phase 2: General transformations

The aim of this phase of parsing is relocation and copying of nodes and cre-
ation of inner nodes. Functors of new nodes should also be assigned.

3.6.1 Analysis of the problem

The transformations this phase should perform are considerably complex.
Several examples of fragments of sentences from the data—where a node
should be copied within coordinations only—document it. In Figure 3.4, the
situation is depicted where the word having its modifications coordinated
should be copied. On the contrary, Figure 3.5 shows a common modification
of the coordinated words. In Figure 3.6, yet another word should be copied
because of an ellipsis in the coordination.

Figure 3.4: Correct annotation of malé [firmy] a velké firmy (small [companies]
and middle-sized companies) at the a-layer and t-layer; newly added nodes are
rendered as squares

If I describe such transformation as a composition of simple actions, e.g. of
copying a node and relocation of a node18, and perform the training in this

18Then, the transformation in Figure 3.4 cannot be described as composition of less than five
actions.

CHAPTER 3. TECTOGRAMMATICAL ANALYSIS 67

Figure 3.5: Correct annotation of mzda [zaměstnance] a výkon zaměstnance (wages
[of an employee] and performance of an employee; lit.: wages [of-an-employee] and
performance of-an-employee) at the a-layer and t-layer

Figure 3.6: Correct annotation of kdo je cestovatel a kdo [je] stálice (who is a tra-
veller and who [is] a fixed star; lit.: who is a-traveller and who [is] a-fixed-star) at the
a-layer and t-layer

manner, then during parsing, only some of these actions may be performed,
since I do not have any means available to ensure that either all actions, or
none of them are performed.19 For this reason and because of the fact that
“reasonable” transformations should occur in the training data quite often20,
I decided to describe each transformation with a single formula.

3.6.2 Design of the procedure

I describe a transformation as a subtree-to-subtree transformation in the fol-
lowing manner. The root of the subtree being transformed is denoted A and

19In addition, this is complicated by the usage of fnTBL, because the processed tree remains
effectively unchanged during processing, and thus actions have to be described as if they have
to be performed on the initial state of a tree, not on the state which is step by step coming closer
to the desired state.

20The transformations from Figures 3.4, 3.5, and 3.6, occur in their pure forms (i.e. not being
a part of an even more complex transformation) 178 times, 14 times, and 81 times, respectively,
in the training data. Even the smallest of these counts is sufficient for a TBL method.

68 CHAPTER 3. TECTOGRAMMATICAL ANALYSIS

A(B(C))->A(B,C)
A(B)->B(A)
A(B,C)->A(B(C))
A(B)->A(*(B))
A(B)->*(A,B)
A(B,C)->A(C(B))
A(B,C)->A(*(B,C))
A(B)->B
A(B)->A
A(B(C,D))->B(A(D),a(C))
A(B,C)->C(A,B)
A(B,C)->*(A,B,C)

Table 3.2: The best transformations in the second phase

other nodes occurring in the transformation are denoted by the following let-
ters in the depth-first order. The children of a node are stated behind it in
parentheses according to the left-to-right order they have in the tree and they
are separated with commas. In the resulting tree, each node is denoted by the
same letter as it was assigned in the original tree (if it still exists: because it
took no extra effort, I implemented deletion of nodes as well—at least, nodes
being retained by mistake in the previous phase can be deleted in this phase).
New nodes are marked with * and a copy of a node is marked with the low-
ercase variant of the respective letter. In the description of the resulting tree,
siblings are sorted in alphabetical order.21 The transformation is the small-
est possible, i.e. besides nodes being created, deleted, copied, or moved, only
nodes required in order for the original and resulting structures to be trees are
involved. Moreover, nodes which do not exist in the original tree and which
are leaves in the resulting tree are not involved—this is the task of the next
phase.

With this knowledge, transformations from Figures 3.4 to 3.6 can be des-
cribed as A(B(C,D))->B(a(C),A(D)), A(B,C,D)->A(B(d),C(D)), and
A(B,C,D)->A(B,b(C,D)).22

Twelve transformations occurring most frequently in the training data are
shown in Table 3.2.

Several problems remain to be solved. One of them is to determine which
node a transformation (involving several nodes) should be stated along. Every
transformation involves at least two nodes: the root of a subtree modified by

21As this will also be their actual left-to-right order in the tree, it may be incorrect.
22For the reason stated in the previous paragraph, nodes kdo (who) (the first one) and cestovatel

(traveller) are not involved in the last of the transformations.

CHAPTER 3. TECTOGRAMMATICAL ANALYSIS 69

the transformation and one of its children. Of these two, I chose the latter one
(if more children of the root were involved, I chose the leftmost one), mainly
for the reason that its parent could be referenced easily.

There is also a need to identify the nodes involved in a transformation. The
above implies that the node by which a transformation is stated always occurs
as B in the transformation and the parent of the node is A, but for other possible
nodes, we know only their mutual positions. This is usually insufficient for
their identification. Therefore I decided to attach certain characteristics of C
and the following nodes to the transcription of a transformation in training
data. For this task, s-tags proved to be the best option (see 3.6.4). Thus, when
a transformation should be performed, not only that relations among nodes
stated on the left side of the formula have to be fulfilled, but also all nodes
have to have the given characteristics—otherwise, the transformation is not
realized.

When a node is created or copied in this phase, its functor should be assigned.
Since the creation or copying of a node is a part of a transformation, it seems
natural for the functor assignment to be part of it as well. I solve it again
by attaching the functors of new and copied nodes to the transcription of a
transformation. The functor of a copied node can also have a special value
meaning “the same as the original node has”.23

When a node is being deleted,24 its successor should be appointed somehow,
if the node has children. As before, I attach certain characteristics of the suc-
cessor to the transcription of a transformation, namely the character belonging
to the successor. The character can have two special values, one meaning “no
successor” and another one meaning “successor outside the transcription of
the transformation”.25

During the preparation of training data for fnTBL, I had to solve some other
problems: what to do with transformations which should create a node with
its a-link pointing into another sentence; or where a node which was deleted
by mistake in the previous phase should occur. Since transformations, as I pro-
posed them, are restricted to one sentence only, the first problem can be solved
just partially: a node can be created, but its a-link cannot be set correctly. As
for the other problem, I have no reasonable proposal how to re-establish a
deleted node. Having considered the fact that these problems are relatively

23This is the most frequent case.
24In a transformation, this is given implicitly: it occurs on the left side of the transformation,

but not on its right side.
25In the latter case, the (first) child of the root of the sentence is considered to be the successor.

It would be probably better to design the transcription of a transformation to always contain
successors.

70 CHAPTER 3. TECTOGRAMMATICAL ANALYSIS

rare, I decided not to solve them at all and to generate no transformation in
these cases.26

The way of creating a transcription is illustrated in an example of a
(real) complex transformation. The transformation A(B(C(D),E(F,G)))->
A(B(D(C),a(F,G,b)))+Adv+Atr+AuxC+ExD+ExD;CPR+@|A can be ap-
plied only if the s-tag of node C is Adv, the one of node D is Atr etc. (given af-
ter the last parenthesis). The transformation sets the functor of node a, which
originated as the copy of node A, to CPR, and it sets the functor of node b to
the value the node B has (given after the semicolon). Similarly, if a new node
occurred in the transformation (it would have been denoted with an asterisk),
its functor would be attached (given after a colon). The deleted node E has
the node A as its successor (given after the | symbol)—if E has some other
children than F and G, those children become children of A.

3.6.3 Design of rule templates

The idea that fnTBL making decisions about the performance of a transfor-
mation should have access to features of all the nodes involved in the trans-
formation sounds natural. There is, however, the following matter to take
into account: the number of such nodes is variable and can be very high. Al-
though each of the twelve most frequent transformations given above involves
four nodes at maximum, there are transformations involving over 25 nodes,
which is the limit I set for the transformation be plausible. This problem can
be solved in several ways:

• Guaranteeing that even the largest transformation found in the training
data has access to features of all nodes involved in it. This leads to the si-
tuation that together with every node there features of typically all nodes
in its subtree (and of its parent) have to be recorded. The problem is not
the sparseness of such data, but the number of features which cannot fit
into memory.

• Creating individual training data for every transformation. Then, clas-
sification is a binary decision whether the transformation in question
should be performed at a certain place or not. It is guaranteed that the
decision is based on features of exactly the nodes involved in the trans-
formation; and features used in smaller transformations probably fit into
memory. The problem is that we would have to have such amount of
data, that the training would take enormous time.

26The consequence of this decision is that I effectively lost about 6% of training data—which
is not much.

CHAPTER 3. TECTOGRAMMATICAL ANALYSIS 71

• Abandoning this idea and trying to develop a small universal set of
features which are relevant for making decisions about performance
of every transformation—or, at least, of the most common ones. This
seemed to be the only passable way for me.

When we look at the top twelve transformations, we can see that besides the
node B, which a transformation is recorded along with, only its parent, some
of its siblings on the right, and its children are involved in a transformation.
Based on this observation, I decided to use five groups of nodes: the node in
question, its parent, its children, its siblings on the left (they cannot occur in a
transformation but they can bear valuable information) and its siblings on the
right. After previous experiences, I did not attempt to select the set of features
of these nodes nor their admissible combinations carefully; instead I used fea-
tures from all layers, namely lemma, m-tag, s-tag, and functor of all these
nodes, and left the choice of features on the template reduction. Beforehand I
had to find out how to ensure the fixed number of features when I wanted to
use features of a variable number of nodes. I decided to combine one feature
of all nodes of any group into one. For example, if a node has two siblings
on the right with functors PAT and TWHEN, functor representing group of
its siblings on the right is PAT+TWHEN. This value is atomic for fnTBL. This
way, I got 20 features.

With respect to this higher number I also wanted to use rule templates with
relatively high number of features, so that the positive effect of combination of
features could be indicated. I chose templates containing five features at maxi-
mum; however, the computation did not fit into memory even for a part of the
training data under these conditions. I was forced to omit several features—
I chose the lemma of children and siblings on the left and right, mainly for
their sparseness. I also had to reduce the number of templates by eliminating
those containing more that two features of a group. Templates created from
the noted set of features according to the described constraints27 were reduced
with the only modification of the previous usage of this mechanism: since the
number of resulting templates was low, all the templates whose instance oc-
curred in the rule file were selected.

3.6.4 Experiments, results and statistics

Under the described conditions, the result of the structure assignment was
Pparent = 91.4%, Rparent = 80.3%, Fparent = 85.5% and the result of the functor

27The way of obtaining these templates was not as short and direct as described—it took
quite a long time to fit the computation into memory while constraining the templates as lit-
tle as possible. It also showed me that the less constrained templates, the better results were
obtained.

72 CHAPTER 3. TECTOGRAMMATICAL ANALYSIS

assignment Pfunctor = 85.9%, Rfunctor = 75.5%, Ffunctor = 80.4%. The result
in functor assignment is almost the same as after the previous phase, because
functors were assigned just to new nodes in this phase.

On the left-hand side of Figure 3.7, there is the tectogrammatical annotation
of the example sentence after this phase. Both the needed transformations
consisting of movements of nodes i and dvacet are performed correctly.

I experimented with using two-letter m-tag, s-tag, and functor as the characte-
ristics of nodes (see 3.6.2). The best ones are s-tags; however, the worst result
was only slightly worse (∆Fparent = −0.3%).

The final rule file was created using the setting ORDER BASED ON SIZE=1
and threshold=1; however, these settings have only insignificant impact
on the result as compared to the default values. I found that using the
allPositiveRules parameter proved to be damaging with all tested va-
lues.

In the training data, there are 2,658 unique transformations. Out of this num-
ber, only 141 got into the rule file and only 70 of them were then identified in
the development-test data.

3.7 Phase 3: Creation of valency members

The aim of this phase is to create leaf nodes missing in the surface form of a
sentence. These nodes typically correspond to obligatory valency slots. More-
over, the val frame.rf attribute is assigned.

3.7.1 Design of the procedure

Although the val frame.rf attribute contains the link to a description of the
valency frame of a word and I could use values of this attribute for assignment
of valency modifications, I decided not to do it. The reasons for this approach
follow:

• Although the valency lexicon contains the valency frame appropriate to
a word in its occurrence, this information is not complete. The missing
part are rules transforming valency frames depending on certain proper-
ties of the word in question (e.g. passivization needs to be done when a
verb is in passive voice) or of its valency members (e.g. when a member

CHAPTER 3. TECTOGRAMMATICAL ANALYSIS 73

is expressed with a numeral expression).28 An implementation of the
rules does exist, but it was created for the older data format and is not
applicable any more; and even its conversion would be very elaborate.
Moreover, the rules are tailored for the Czech language, which contra-
dicts the claim of language independence of my analyzer.

• In other corpora, which my tool may process, it is not necessary to fill
the attribute and a procedure based on its values then would not be of
any use.

• Since an assignment of a valency frame is an assignment of an atomic
value, the highest number of correctly assigned frames (this is what TBL
mechanism would try to reach) does not necessarily mean the highest
number of correctly assigned nodes (this is what the evaluation proce-
dure judges). This might lower the accuracy of the tool.

Thus, instead of making a decision about valency members en bloc through
the val frame.rf attribute, I make decisions about each valency member
separately.29 The idea is simple: each valency slot corresponds to one feature
which states whether (or, in case of free modifications, how many times) a
member with the respective functor should occur along with an occurrence of
a word. There is a question whether the feature should express the number of
the respective members to be added, or their total number. The argument in
favour of the latter approach is that rules are more independent of the mem-
bers already expressed in the sentence, therefore consisting of less predicates
and being more general. For this reason I chose the latter approach.

Since there is a lot of functors (67 of unique ones in the treebank) and only
some of them can be assigned to obligatory valency members, I considered
only those occurring at least twice in the training data along with nodes which
I deemed to be valency members. For this task, I regarded every generated
node with no children as a valency member. Mere 27 functors fulfill these
criteria.

When the numbers of valency members are assigned, those missing in the
trees are created and their functors are set. When there is an extra node in the
tree, it is not deleted, though: this is not the task of this phase and, as implied
by the analysis of errors, the node usually should exist—it is just misplaced.

However, things may be complicated by errors in the assignments of functors
done in the first phase. If a wrong functor is assigned to a valency member, an

28The reason why this information is not expressed in the valency lexicon is that it is the
same for all valency frames.

29Note that although I do not use the valency lexicon in its explicit representation, I do use it:
it is implicitly present in the data used for training. For this reason I believe that the accuracy
in both mentioned approaches would be approximately the same.

74 CHAPTER 3. TECTOGRAMMATICAL ANALYSIS

extra error can occur by creating a superfluous node with the correct functor
in this phase. To avoid it, there is a need to design rule templates that are able
to correct functors as well. This is a feasible place to do it, indeed: there are no
intervening nodes between a word and its valency members here.

Of course, when merging PML-files with the output of the classifier, functors
have to be corrected first, and, after that, nodes can be created.

As the last step of the procedure, common children are handled: when each
member of a coordination has a generated node with a certain functor as its
child, all these children are deleted and a node with that functor is created as
a child of the coordination node.

3.7.2 Design of rule templates

Although valency is a property of a word, and thus lemma (lemma) should be
definitely involved in the set of features, several of its characteristics can be
inferred even from whole parts of speech, e.g. a verb usually has its actor. In
order to be able to capture such relations, part of speech from the m-tag (pos)
is another feature. Every rule template contains one of these two features.

Yet another property of a word affects its valency frame: voice by verbs (voi).
Besides, negation of a verb is expressed at the t-layer by an extra node, rhema-
tizer, which is child of the verb; this is why the information about a negation
is also considered (neg). Thus, one or zero of these features, taken from the
m-tag, are a part of rule templates. The described approach resulted in mere
162 rule templates.

Unlike in the case of adding the valency members, it seems more convenient
to look at the corrections of functors from a different perspective: a correction
will be recorded along with the node being altered, not along with its parent.
The latter approach would lead to complicated scanning of features of child-
ren, whose number is variable and unlimited.

In order not to reinvent a wheel, I adopted same pieces of information used in
the description of valency frames as features: the lemma of the word whose
valency frame we are interested in (plemma) and the functor (func) and the
morphemic realization of a valency member. Besides them, I used the voice of
the parent (for the reason stated above) and the lemma of a valency member,
hopefully useful for the identification of (not only) phrases. The features are
combined in the following way: every rule template contains the lemma and
either the functor, or the morphemic realization of a valency member. It can
also contain its lemma and/or the voice of the parent. This gives another
8 templates and, because of their total number being low, there was no need
to reduce templates.

CHAPTER 3. TECTOGRAMMATICAL ANALYSIS 75

For the assignment of val frame.rf, the same set of templates was used
with two extra templates: both contain the lemma of the word whose attribute
is being assigned; one of them does not contain any other feature, the other
contains the lemma of the valency member. I added these simple templates,
since there was a need to assign the attribute, not only to correct it.

How a morphemic realization looks like remains to be explained. I
have designed it to contain roughly the same information as that used in
[Honetschläger, 2003]. In particular, it contains lemmas of all nouns, prepo-
sitions and conjunctions being auxiliary words, as well as part of speech and
case (if the word exhibits it) of the autosemantic word.30

3.7.3 Experiments, results and statistics

After this phase, the result of the structure assignment was Pparent = 90.2%,
Rparent = 87.9%, Fparent = 89.0% and the result of functor assignment was
Pfunctor = 86.5%, Rfunctor = 84.3%, Ffunctor = 85.4%. The result of the assign-
ment of val frame.rf is given in Section 3.8. The annotation of the example
sentence after this phase is not stated; however, it differs only in the t lemma
attribute from the one after Phase 4, which is shown on the right-hand side of
Figure 3.7 (speaking about attributes visualised in the figure).

Twelve of the most useful rules (without rules for val frame.rf—they
would be of no use for a reader) are shown in Table 3.3.

pos=V => ACT=1
pos=V neg=N => RHEM=1
pos=V voi=P => PAT=1
pos=V => RSTR=0
lemma=řı́ci => ADDR=1
lemma=lze => BEN=1
plemma=jı́t func=PAT => func=ACT
lemma=řı́ci => EFF=1
lemma=řı́kat => ADDR=1
lemma=jı́t => PAT=0
plemma=<root> func=RSTR lemma=mı́t => func=PRED
lemma=jednánı́ => ACT=1

Table 3.3: The best rules in the third phase

30From this section it follows that I consider every word (except for coordination nodes) to
be a valency member of its parent. One can truly object that this is not correct. Unfortunately,
since I am not able to recognize whether a node exists because of valency or for another reason,
I cannot choose but consider all words to be valency members and use the term “valency” in
this broader sense.

76 CHAPTER 3. TECTOGRAMMATICAL ANALYSIS

As usual, I made several experiments. Their description follows.

I had the idea that presence or absence of a morphemic realization among
found valency members could help distinguish which valency frame of a
word is concerned. Thus, the addition of missing nodes and the assignment
of functors of existing nodes could be more precise. For example, verb jednat
(transact/treat/proceed) has three valency frames, one for each of its meanings:31

• ACT (1) ADDR (s (with)+7) PAT (o (about)+6) for the meaning of vy-
jednávat (transact),

• ACT (1) PAT (s (with)+7) MANN () for the meaning of zacházet (treat), and

• ACT (1) MANN [] for the meaning of konat (proceed).

When a node with the morphemic realization of o+6 is seen, the first frame is
concerned and a node with morphemic realization of s+7 has to have ADDR
as its functor, or, unless such a node exists, a node with functor ADDR has
to be added. Unfortunately, since a node newly added to the t-layer has no
morphemic realization, training data would differ in cases when a node with
s+7 is present and when it is absent. This would cause the original rule “if o+6
is found, ADDR is s+7”, interpreted in the way stated above, to crumble into
two more specific and more complicated rules “if o+6 is found and there is no
s+7, create an ADDR” and “if o+6 and s+7 exist, ADDR is s+7”. Moreover,
two other factors, which would presumably lead to low usability of suggested
rule templates, deterred me from implementing them: after the examination
of the data and the valency dictionary I find that there are probably too few
morphemic realizations which can distinguish valency frames, and that nodes
which can be identified by them often exist already. The latter factor can be
illustrated using the verb připravit (prepare/dispel), which has two frames:

• ACT (1) PAT (4) for the meaning of přichystat (prepare), and

• ACT (1) ADDR (4) PAT (o (of)+4) for the meaning of ukrást (dispel).

The morphemic realization o+4 suggests that ADDR exists; however, it always
exists at the a-layer already.

Inspired by the idea above, I tried to add rule templates conditioning the oc-
currence of a functor with another functor, not with a morphemic realization.
I did not expect much of it, but the addition brought no extra work to me. It
was not a surprise that these templates were unavailing.

31The morphemic realization of a valency member is written after its functor in parentheses
if the member is obligatory, or in brackets if it is optional. A morphemic realization is expressed
with a number denoting the case. In front of it, there is possibly a preposition delimited with
a plus-sign. An empty realization means that the realization should be typical for the given
functor.

CHAPTER 3. TECTOGRAMMATICAL ANALYSIS 77

When rules state that a node should have the same number of children as it
has, but the functor of exactly one child differs, there are basically two pos-
sibilities: the child is misplaced and should be relocated and another node
should be created instead of it; or, the child is just mistagged and its func-
tor should be corrected. When I tried to correct the functor instead of creat-
ing a node in this situation, the result got slightly worse (∆Fparent = −0.1%,
∆Ffunctor = −0.2%). Other experiments based on similar ideas led to even
worse results.

The final rule file was created using the ORDER BASED ON SIZE=1 and
threshold=1 settings, although these settings have only an insignifi-
cant impact on the result as compared to the default values. The
allPositiveRulesparameter proved to be damaging with all its tested va-
lues.

3.8 Phase 4: Assignment of attributes

The aim of this phase is to perform the assignment of attributes t lemma,
nodetype and gram/sempos.

3.8.1 Design of the procedure

Assignment of the appointed attributes is a pure classification task, perfectly
suitable for fnTBL.

There is a complication with the assignment of t lemma, though: different
pieces of information are important for this task depending on whether a node
originates from the a-layer or not. In order to be able to design separate sets
of templates for both cases, I had to divide the task into two classifications
(lem1 when a node originates from the a-layer, lem0 otherwise). Of course,
only one of the classifications is performed for each node, the other is set aside
by initialization of the respective class to the “correct”, dummy value. Then,
the information about the origin of the node (alay) has to be a part of each
template, so that the dummy value of the other class is not overwritten by
useless rules. This fact is not stressed below any more.

Values of the gram/sempos attribute are compound; however, because of
their relatively low number (19), I consider them atomic.

78 CHAPTER 3. TECTOGRAMMATICAL ANALYSIS

3.8.2 Design of rule templates

For nodes originating from the a-layer, there are two templates for assigning
its t lemma: the first considers only the previous value of this attribute (taken
from lemma); the other considers lemmas of synsemantic words belonging to
the node in question as well. The latter one is useful especially in case of verbs
with reflexive pronouns.

For the assignment of t lemma of nodes not originating from the a-layer, other
pieces of information are important. The functor of the node in question (func)
is included in each template. The templates also contain zero, one or both fea-
tures of the parent of the node: its detailed part of speech (pspos) and informa-
tion whether it is a finite verb, considering compound verb forms (finv).32 The
attribute is initialized based on functors.

For the assignment of nodetype, information about the origin of the node, its
functor, its t lemma, and the detailed part of speech of its parent are used and
each template contains one or two of these features. The attribute is initialized
based on the functor and the origin.

When assigning gram/sempos, the same features as in case of nodetype
together with the detailed part of speech of the node (spos) proved useful.
A template contains up to three of these features. The attribute is initialized
based on the detailed part of speech of the node.

3.8.3 Experiments, results and statistics

Twelve of the most useful rules for each attribute being assigned are shown in
Tables 3.4 to 3.6.

Table 3.7 contains the final results of my tool for tectogrammatical analysis
running on PDT 2.0. The results are shown for all the attributes assigned, be
they assigned both by means of training or by hand-coded procedures. Tests
on d-test data as well as on e-test data were performed.33

The table also contains results obtained by the tool when it was trained and
run on the same sets of data, which were automatically annotated at the m-
layer and a-layer. The parser used for the annotation at the a-layer was the
MST parser described in [McDonald et al., 2005] and it achieved accuracy of
84.2% on automatically annotated d-test data of PDT 2.0.34 Errors my tool
makes are analysed in Section 3.9.

32I do not analyze why features mentioned in this section as important are important—it
usually results from the annotation manual.

33Needless to say that evaluation data were tested as late as the tool was in its final version.
34Note that in PDT 2.0, the sets of data at the a-layer are supersets of the data at the t-layer.

CHAPTER 3. TECTOGRAMMATICAL ANALYSIS 79

alay=0 func=ACT => lem0=#PersPron
alay=0 func=ACT finv=0 => lem0=#Gen
alay=1 lem1=, => lem1=#Comma
alay=0 func=RHEM => lem0=#Neg
alay=0 func=ADDR => lem0=#Gen
alay=0 func=ACT finv=0 pspos=f => lem0=#Cor
alay=0 func=PAT => lem0=#Gen
alay=1 lem1=on => lem1=#PersPron
alay=1 lem1=jeho => lem1=#PersPron
alay=0 func=ACT pspos=s => lem0=#Gen
alay=1 lem1=svůj => lem1=#PersPron
alay=1 lem1=: => lem1=#Colon

Table 3.4: The best rules for t lemma (fourth phase)

alay=1 => nodetype=complex
alay=0 => nodetype=qcomplex
func=CONJ => nodetype=coap
func=RHEM => nodetype=atom
func=ACT pspos=p => nodetype=complex
func=ACT pspos=B => nodetype=complex
func=PREC => nodetype=atom
func=APPS => nodetype=coap
func=FPHR => nodetype=fphr
func=CM => nodetype=atom
lem1=ale => nodetype=coap
func=ATT => nodetype=atom

Table 3.5: The best rules for nodetype (fourth phase)

On the right side of Figure 3.7, there is the final tectogrammatical annotation
of the example sentence. The nodes are added correctly except for the extra
node with PAT functor belonging to obava. The functors of the two nodes
mistagged in the Phase 1 remained unrepaired. The correct tectogrammatical
annotation is shown in Figure 3.8.

3.9 Analysis of errors

In Table 3.7 we can see that when the input data are annotated automatically
instead of manually at lower layers, the falls of the F-measures corresponding
to particular attributes differ in a great deal. The explanation is that it is the

80 CHAPTER 3. TECTOGRAMMATICAL ANALYSIS

spos=N => sempos=n.denot
spos=A => sempos=adj.denot
alay=1 func=PRED => sempos=v
spos=B => sempos=v
spos== => sempos=adj.quant.def
spos=p => sempos=v
spos=f => sempos=v
spos=4 => sempos=n.pron.indef
spos=g => sempos=adj.denot
spos=D => sempos=adj.pron.def.demon
alay=0 func=ACT pspos=p => sempos=n.pron.def.pers
spos=S => sempos=n.pron.def.pers

Table 3.6: The best rules for gram/sempos (fourth phase)

analytical structure what is assigned most incorrectly in the input data—and
the fall of performance of assignment of an attribute roughly corresponds to
dependency of values of the attribute on the analytical structure. The biggest
fall is seen in case of the tectogrammatical structure, which originates from
the analytical one. Similarly with functors: they express relation between
nodes and thus they need to have dependencies assigned correctly to be able
to describe the relations correctly. Values of is member are dependent on the
structure to a certain extent as well, and the fall of the respective performance
is also remarkable.

The statistics proposed in this section are gathered on the d-test data ma-
nually annotated at m-layer and t-layer—the golden annotation contains
71,306 nodes, my test annotation contains 69,445 nodes and 68,162 of them
are mutually aligned.

Unless stated otherwise, for each attribute being assigned by my tool by
means of training, two tables describing errors in its assignment are presented.
The first one gives a sorted list of the most frequent errors: the assigned incor-
rect value is followed with an arrow and the correct value; number of errors
of this kind is given as well. A special value “none” means that no value of
the attribute is assigned to a node—it also can mean that the node does not
exist. For example, the first record in Table 3.8 states that 920 nodes with no
value of the functor should have their functors set to value ACT—and since
my tool sets functor of each node, it means that 920 nodes should have been
created (or should not have been deleted) and their functors should have been
set to ACT. Similarly, the fifth record states that 352 nodes having ACT as their
functor should have been deleted (or should not have been created).

CHAPTER 3. TECTOGRAMMATICAL ANALYSIS 81

manual automatic
attribute d-test e-test d-test e-test
structure 89.0% 89.3% 77.1% 76.4%
functor 85.4% 85.5% 77.8% 77.4%
val frame.rf 92.3% 92.3% 91.0% 90.9%
t lemma 93.5% 93.5% 91.0% 90.9%
nodetype 94.4% 94.5% 92.7% 92.6%
gram/sempos 93.5% 93.8% 91.6% 91.5%
a/lex.rf 96.5% 96.5% 95.3% 95.1%
a/aux.rf 94.2% 94.3% 90.4% 90.3%
is member 94.1% 94.3% 89.8% 89.5%
is generated 96.5% 96.6% 95.3% 95.2%
deepord 67.6% 68.0% 66.5% 66.7%

Table 3.7: The final F-measure of tectogrammatical annotation

auto → correct # auto → correct
920 none → ACT 204 APP → ACT
520 none → PAT 200 APP → PAT
373 ACT → PAT 166 DENOM → ACT
358 none → PRED 149 none → ADDR
352 ACT → none 134 PAT → APP
340 PAT → none 130 RSTR → PAT
330 PAT → ACT 129 PAT → EFF
265 none → RHEM 116 RHEM → CM

Table 3.8: The most frequent errors in the assignment of functors and their
counts

The second type of tables expresses the probability that a value of the respec-
tive attribute of a node in the test annotation is correct. For example, in Ta-
ble 3.9 we can see that 89.4% of nodes in the test annotation having their func-
tors set to ACT, have their functors set correctly—thus, 10.6% of such nodes
should have their functors other than ACT or they should not exist at all.

As stated above, Tables 3.8 and 3.9 capture errors in assignment of functors.
From Table 3.8 we can see that most of mistakes is caused by superfluous
or missing nodes. As for mistagging, mismatch between ACT and PAT is
the most frequent, although these values are relatively reliable (see Table 3.9).
This is caused by high frequency of their occurrence. Mismatches of one of
these values and APP is also frequent. The most frequent errors captured in
Table 3.8 cover 37% of occurences of errors.

82 CHAPTER 3. TECTOGRAMMATICAL ANALYSIS

T-cmpr9410-019-p30s2
root

tento
RSTR

obava
PAT

cítit
PRED

i
RHEM

projednávání
TWHEN

psychologický
RSTR

vyšetření
PAT

který
PAT

uplatnit
RSTR

hodně
EXT

dvacet
RSTR

firma
PAT

T-cmpr9410-019-p30s2
root

#Gen
PAT

#PersPron
ACT

tento
RSTR

obava
PAT

cítit
PRED

#Gen
ACT

i
RHEM

projednávání
TWHEN

#Gen
PAT

#Gen
ACT

psychologický
RSTR

vyšetření
PAT

#PersPron
ACT

který
PAT

uplatnit
RSTR

hodně
EXT

dvacet
RSTR

firma
PAT

Figure 3.7: The sentence from Figure 3.3 after Phase 2 (left) and after Phase 4
(right)

Table 3.10 captures errors in assignment of valency frames. w243 in an iden-
tifier means, that the frame belongs to the word být (to be), w1855 denotes mı́t
(to have), w7646 denotes vlastnı́ (own), w5886 denotes řı́zenı́ (trial/proceeding),
w327 denotes činit (make), w9501 denotes zı́skat (get), and finally w7548 de-
notes vědět (know). The table captures mere 12% of errors—over 1,600 of errors
occur only once. The second type of table for this attribute is not presented
because of its enormous size.

In Table 3.11 we can see errors in assignment of the t lemma attribute. When
we leave errors caused by existence or nonexistence of nodes aside, the most
important source of errors is mismatch between #PersPron (personal pro-
noun) and #Gen (general participant). The errors listed in the table cover 54%
of errors. For the same reason as in case of valency frames, the second type of
table is not presented for the t lemma attribute.

Tables 3.12 and 3.13 summarize errors made during assignment of the at-
tribute nodetype. Besides errors caused by errors in structure, the most im-
portant mismatch is complex versus qcomplex. Table 3.12 captures 89% of
errors in this attribute.

In Tables 3.14 and 3.15 we can see that assignment of the attribute sempos
suffers, besides usual problems with the structure, mainly from mismatch be-

CHAPTER 3. TECTOGRAMMATICAL ANALYSIS 83

t-cmpr9410-019-p40s1
root

#Gen
PAT

chybět
PRED

knížka
ACT

pracovní
RSTR

který
ACT

#Gen
ADDR

ukázat
RSTR

cestovatel
PAT

být
PAT

kdo
ACT

a
CONJ

stálice
PAT

#Comma
CONJ

pracant
PAT

věrný
RSTR

být
PAT

kdo
ACT

Figure 3.8: The correct t-layer annotation of the sentence from Figures 3.3
and 3.7

tween semantic nouns (n) and adjectives (adj); other characteristics (e.g. defi-
niteness) are usually assigned well. Table 3.14 covers 83% of errors. Note that
the value of this attribute need not to be filled for all nodes—this is also why
probability of the case that the corresponding value “none” is assigned well is
greater than zero.

Tables 3.16 and 3.17 describing errors in assignment of structure are con-
structed the same way as all those above; however, due to the nature of this
information, the description of nodes and of errors in assignment needs a dif-
ferent approach. I decided to describe a node as a combination of its topo-
logical characteristic and information about its origin. From the point of view
of topology, I distinguish only two possibilities: whether a node is an inner
node (inner), or whether it is a leaf (leaf). As for its origin, it is expressed in

84 CHAPTER 3. TECTOGRAMMATICAL ANALYSIS

VOCAT 100.0 CPHR 86.4 ATT 78.2 ID 67.9
REAS 100.0 DPHR 85.6 EFF 77.6 DENOM 67.1
CSQ 100.0 LOC 84.3 TSIN 76.8 CONTRD 66.7
CONFR 100.0 DIR1 84.1 CNCS 76.3 SUBS 65.4
RESTR 98.4 COMPL 84.0 DIR3 75.5 DIR2 63.6
PRED 97.6 APPS 83.6 PAR 74.9 TFHL 63.3
CRIT 95.9 PAT 83.5 ACMP 74.6 ADVS 61.3
RSTR 93.1 DISJ 82.8 PARTL 72.7 RESL 61.1
INTF 90.9 CAUS 82.4 INTT 72.7 AIM 60.3
MAT 90.3 TWHEN 82.0 BEN 72.6 AUTH 58.5
TTILL 89.7 PREC 81.5 MANN 72.5 DIFF 58.1
ACT 89.4 ADDR 81.4 CPR 72.5 ORIG 57.8
RHEM 89.0 EXT 80.3 COND 71.6 TFRWH 53.3
THO 88.4 CONTRA 80.0 THL 71.3 TOWH 52.6
MOD 88.4 CM 79.1 REG 71.1 GRAD 45.5
CONJ 88.1 FPHR 78.6 OPER 69.7
TPAR 86.7 APP 78.6 MEANS 68.8

Table 3.9: Reliability (in %) of the assignment of functors

attributes is generated and a/lex.rf and three their following combina-
tions are possible.

• is generated is 0 (and a/lex.rf is then always filled)—this means
that the node originates from the a-layer (denoted as orig),

• is generated is set to 1 and a/lex.rf is not filled—the node is brand
new at t-layer (denoted as new), or

• is generated is set to 1 and a/lex.rf is filled—the node is new, but
it is linked with the a-layer; shortly, it is a copy of a node at the t-layer
(denoted as copy).

In Table 3.16, I decided not to capture errors in assignment as a comparison
of characteristics of a node when it is placed incorrectly on one hand and cor-
rectly on the other hand (like in the previous tables of this type), but as the
length of the path from the incorrect to the correct position of the node in
question. The reason for this is that, unlike in the cases above, the characteris-
tics of a node do not identify its position, and, moreover, I consider the latter
approach useful enough: an annotator correcting an annotation made by my
tool probably likes to know whether he or she has to search for the correct pa-
rent of a node in its neighbourhood, or whether the move of the node will be
possibly longer. For a deeper insight into errors I split the path from incorrect

CHAPTER 3. TECTOGRAMMATICAL ANALYSIS 85

auto → correct # auto → correct
126 v-w243f1 → v-w243f2 19 none → v-w243f2
86 none → v-w243f1 19 none → v-w327f1
36 v-w243f1 → v-w243f3 16 v-w1855f1 → v-w1855f3
29 v-w1855f1 → v-w1855f2 14 v-w9501f1 → v-w9501f2
29 none → v-w7646f1 13 v-w7548f1 → v-w7548f2
28 v-w243f2 → v-w243f1 12 v-w5886f1 → v-w5886f3

Table 3.10: The most frequent errors in the assignment of the val frame.rf
attribute and their counts

auto → correct # auto → correct
715 none → #Gen 131 #Gen → #PersPron
527 #Gen → none 119 none → #Forn
297 none → #PersPron 100 #Forn → none
268 none → #Neg 87 none → být
266 #PersPron → none 72 #Cor → #Gen
262 #PersPron → #Gen 68 none → #Comma
233 none → #EmpVerb 67 #Oblfm → none
218 none → #QCor 65 #Gen → #Rcp
131 none → #Oblfm 57 none → #Cor

Table 3.11: The most frequent errors in the assignment of the t lemma at-
tribute and their counts

to correct position into three parts: how far a node should be moved up to the
root; how far it should be then moved down; and how far it should be moved
down the nodes non-existing in the (test) tree. The triplet of these numbers
in the stated order is given on the right-hand side of arrows. For example,
the triplet 3,1,1 means that to correct the position of the respective node, it
should be moved three times up and then twice down, but on the way down
one more node should have existed. From Table 3.16 we can see that the most
frequent errors in structure are very local. The table covers 88% of errors.

3.10 Assignment of functors only

Inspired by [Sgall et al., 2002], I also tried to assign functors once the tecto-
grammatical structure is correct. Since I can profit from the existing structure
now, the choice of features differs from that in 3.5. The first substantial dif-
ference is that the parent considered is the effective one. As before, I used the
lemma and s-tag of the node in question and of its parent, but only several po-

86 CHAPTER 3. TECTOGRAMMATICAL ANALYSIS

auto → correct # auto → correct
1490 none → qcomplex 276 none → atom
1077 none → complex 226 complex → fphr
694 qcomplex → none 184 complex → atom
422 qcomplex → complex 167 atom → complex
381 complex → none 163 none → list
293 complex → qcomplex 118 none → coap

Table 3.12: The most frequent errors in the assignment of the nodetype at-
tribute and their counts

complex 98.0 fphr 78.9
coap 93.9 qcomplex 73.3
atom 93.4 list 28.7
dphr 86.5

Table 3.13: Reliability (in %) of the assignment of the nodetype attribute

sitions of their m-tags: the part of speech, the detailed part of speech, the case,
and the voice (in order to reduce the possible number of templates). More-
over, I added number of children of both nodes (distinguishing only values 0,
1 and more for the child and 1, 2 and more for the parent) and the morphemic
realization of the child—without its case, since this is a separate feature al-
ready. As I initialized the functors (to the most probable value corresponding
to the pair of s-tags of both nodes, which gives baseline accuracy of 61.8%), I
wanted the rules to make a decision based even on their values. This is why
the functor of a node in question was incorporated into the features as well.
Unlike the authors of the cited article, I did not use ontological attributes, since
I did not consider them to be worth the effort because of their rather modest
contribution to the accuracy.

The rule templates are designed in such a way that at most three of these
features can occur in a rule and at least one of them has to refer to the node
whose functor is being assigned. Since the number of templates obtained this
way is high, template reduction is used, retaining the templates which have at
least two instances in the rules obtained using smaller data.

Similarly to the authors of [Sgall et al., 2002], I excluded nodes having no a-
layer counterpart. My resulting accuracy is 90.0%, which means 43% error
reduction as compared to their one. In order to allow the comparison of my
results to their ones, I tried to perform training on 24,734 nodes randomly
chosen, which was 9/10 of the amount that the authors had at their disposal

CHAPTER 3. TECTOGRAMMATICAL ANALYSIS 87

auto → correct # auto → correct
645 none → n.pron.def.pers 173 adj.quant.def → n.quant.def
560 n.pron.def.pers → none 117 n.quant.def → adj.quant.def
373 none → n.denot 105 none → adv.denot.ngrad.nneg
357 none → v 94 none → n.pron.def.demon
301 n.denot → n.denot.neg 94 adj.denot → none
267 n.denot → none 62 adj.denot → n.denot

Table 3.14: The most frequent errors in the assignment of the sempos attribute
and their counts

adv.denot.grad.nneg 100.0 adv.denot.ngrad.neg 95.5
n.denot.neg 99.8 adj.pron.indef 93.9
adv.pron.indef 99.7 adv.denot.ngrad.nneg 93.8
v 99.3 adv.denot.grad.neg 91.4
adj.quant.indef 98.7 adj.quant.def 91.1
adj.quant.grad 98.5 none 88.5
adj.denot 98.4 n.pron.def.demon 84.5
n.denot 97.5 n.pron.def.pers 83.2
n.pron.indef 97.2 n.quant.def 82.0
adj.pron.def.demon 96.2 adv.pron.def 81.6

Table 3.15: Reliability (in %) of the assignment of the sempos attribute

for training and testing purposes. In that case, the accuracy was 82.7% as
compared to their 82.3%.

The final rules were generated using ORDER BASED ON SIZE=1 and
threshold 1 settings.

When the templates were extended so that they could contain up to four fea-
tures, the accuracy remained the same. This suggests that the method, as it is
designed, may reached its limit.

3.10.1 Effects of template reduction

In Section 3.5 I introduced the template reduction, a technique lowering me-
mory requirements when training, and used it, beside others, for the assign-
ment of functors, as described above. In this case, it is not necessary to use
it, since the training with the full template set can fit into memory. I would
like to employ this fact and compare several aspects of training using the full
template set and the reduced one.

88 CHAPTER 3. TECTOGRAMMATICAL ANALYSIS

auto → correct # auto → correct
1751 none → leaf, new 451 none → inner, new
1036 leaf, new → none 413 leaf, orig → 0,0,1
869 leaf, orig → 0,1,0 292 leaf, orig → 1,1,0
754 inner, orig → 0,0,1 264 none → inner, orig
727 inner, orig → 1,0,0 187 inner, orig → 1,1,0
664 inner, orig → 0,1,0 139 inner, orig → 0,0,2
486 none → inner, copy 136 none → leaf, orig
463 leaf, orig → 1,0,0 122 inner, orig → none

Table 3.16: The most frequent errors in the assignment of structure and their
counts

leaf, copy 93.3 inner, new 84.1
leaf, orig 91.9 leaf, new 79.9
inner, orig 91.0 inner, copy 69.4

Table 3.17: Reliability (in %) of the assignment of structure

The comparison is shown in Table 3.18. In the case of template reduction,
information about both needed computations is given where it makes sense.
The reduced template set was obtained with one eighth of the training data;
all the computations were performed with the settings described above. Both
resulting rule files were used for labelling the whole d-test data.

Template set full reduced
number of templates 633 122
used memory (MB) 2452 488 and 869
time of training (minutes) 1065 352 (53+299)
number of rules 9691 9328
number of used templates 325 121
resulting accuracy 89.8% 90.0%

Table 3.18: Effects of template reduction

In this table, we can see that not only memory requirements, but, not sur-
prisingly, also the time needed for training decreased to just about one third.
Unlike the training using the reduced set, the training using the full set of
templates did not make instances of all templates by far which it had to its
disposal. Even so, for the obvious reason, the number of templates with
at least one instance was much higher in the case of the full set. This is
also the explanation of the number of generated rules in the former case be-

CHAPTER 3. TECTOGRAMMATICAL ANALYSIS 89

ing slightly higher—and this is also the explanation of the fact, which may
be surprising at the first glance, that with the reduced set, the accuracy is
higher.35 More elaborately: lower number of templates can cause both lower
and higher accuracy—the latter one because of preventing the overtraining,
which is probably what happened in our case. We rejected using very in-
frequent templates—and they were rare because they were not able to learn
linguistically motivated information, only noise.

3.10.2 Dependency between the amount of training data and accu-
racy

The task of functor assignment is also suitable for detecting the relation of the
amount of the training data and resulting accuracy—it has only one phase,
there is no need to use the template reduction nor there is, as opposed to
e.g. analytical parsing, any important post-processing phase.

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

 1000 10000 100000

ac
cu

ra
cy

 o
f c

la
ss

ifi
ca

tio
n

(%
)

number of training samples

Figure 3.9: Dependency between the number of training samples and accu-
racy

Figure 3.9 shows this relation. The results are obtained without the template
reduction and with the setting given above. Beside the whole training data,
the computation is performed on their half, quarter, eighth etc. Since I sup-

35I would like to stress that even in other tasks, whenever the results using a full template
set on one hand and a reduced template set on the other hand were comparable, the reduced
set performed, with reasonable settings, at worst as well as the full one.

90 CHAPTER 3. TECTOGRAMMATICAL ANALYSIS

posed an approximately logarithmic dependency, the x-axis has the logarith-
mic scale.

In this figure, we can see that even for small data the accuracy does not fall
below 60%. On the other hand, if we double the size of our current training
data, we can expect at most 1% improvement.

Chapter 4

Conclusion

‘There’s glory for you!’ ‘I don’t know what you mean by “glory”,’ Alice said.
Humpty Dumpty smiled contemptuously. ‘Of course you don’t—till I tell you.

I meant “there’s a nice knock-down argument for you!” ’
‘But “glory” doesn’t mean “a nice knock-down argument”,’ Alice objected.

‘When I use a word,’ Humpty Dumpty said, in rather a scornful tone,
‘it means just what I choose it to mean—neither more nor less.’

‘The question is,’ said Alice, ‘whether you can make words mean so many different things.’
‘The question is,’ said Humpty Dumpty, ‘which is to be master—that’s all.’

[Carroll, 2003]

4.1 Conclusions (analytical analysis)

In this thesis, two parsers and a tool for assigning syntactic tags are proposed.

The parsing Method 1 has serious drawbacks, since rules produced by it can
hardly be extended to operate with another type of information than they do.
Moreover, the method is hardly configurable—e.g. one cannot make a trade-
off between accuracy on one hand and speed or memory requirements on the
other hand. Despite its drawbacks, many ideas the method is based on are
used in a more successful and very flexible Method 2.

The performance of both parsers is about 10% below the state-of-the-art
parsers, but both methods the parsers are based on are novel—the first one
is completely new; the second approach, rule-based classification, has never
been used for dependency parsing to my knowledge. Improvements of the
more promising of the parsers are suggested as well; some of them could be
used in other parsing methods as well.

92 CHAPTER 4. CONCLUSION

The parser based on Method 2 is designed to be as independent of the pro-
cessed language as possible: when one wants to adapt the parser for process-
ing other language than Czech, only the following adjustments apply in gene-
ral: the choice of relevant positions of m-tags needs to be redone (supposing
that the m-tag is positional), the choice of rule templates may be altered, and,
for languages allowing more non-projectivities than Czech does, the usage
of the respective post-processing procedure should be reconsidered—and, of
course, the parser has to be retrained.1

However small the improvement of the assignment of syntactic tags over the
previous tool seems to be, for those very high accuracies it corresponds to an
considerable 15% error reduction.

4.2 Conclusions (tectogrammatical analysis)

The tool I have developed is currently the only one that can perform tecto-
grammatical annotation in such a breadth—it can assign the tectogrammatical
structure and many of the most important attributes describing the tectogram-
matical layer. Although other (specialized) tools probably perform some par-
ticular subtasks better than my tool does, for Czech it outperforms the com-
bination of existing tools annotating the tectogrammatical structure and deep
functors (both of which can be considered the core of the tectogrammatical
layer) by 29% and 47%, respectively, measured as a relative error reduction of
F-measure.

Moreover, the tool is designed to be as much independent of Czech as possi-
ble. The issues of its language independence are mentioned and spots where
the tool should be adjusted for processing another language are identified.
However, due to the lack of needed annotated corpora of other languages, the
tool could not be engaged on a new language and neither its language inde-
pendence nor its performance on another language could be tested.

I also developed a technique for decreasing the time and memory require-
ments of the training phase of the tool, when they are caused by a high count
of potentially useless rule templates.

A utility for evaluation the tectogrammatical annotation is proposed and im-
plemented as well.

The tool is presently used at our Institute for preannotation of data whenever
needed for their subsequent manual annotation.

1This is exactly the way how I developed the first version of a fully functional analytical
parser of a PDT-like annotated Latin corpus in no more than 10 minutes.

Index

a-layer, see layer, analytical
a-link, 20
accuracy, 28
alignment, 52

by children, 54
analysis

analytical, 27, 49
syntactic, 27

annotation
golden, 28, 52
test, 28, 52

child, 14
coordination, 15, 16
counterparts, 52
coverage, 28

dependency, 14
dependent, 14

edge
non-projective, 16
projective, 16

F-measure, 53
fnTBL, 23
function

analytical, see s-tag
functor, 19

governor, 14
grammateme, 19

layer
analytical, 18
morphological, 17

tectogrammatical, 18
lemma, 17

m-layer, see layer, morphological
m-tag, 17

two-letter, 18

node
aligned, 52

mutually, 52
unaligned, 52

parent, 14
effective, 16

parsing, 27
Prague Dependency Treebank, 14, 16
precision, 28, 53
projectivity, 16

recall, 53
rule templates, 23

s-tag, 18
subordination, 14
successor, 60

t-layer, see layer, tectogrammatical
TBL, see transformation-based learn-

ing
template reduction, 63, 87
token, 17
transformation-based learning, 21

94 INDEX

Bibliography

Ondřej Bojar. Towards Automatic Extraction of Verb Frames. Prague Bulletin of
Mathematical Linguistics, 79–80:101–120, 2003. ISSN 0032-6585. URL http:
//ufal.mff.cuni.cz/pbml/79-80/bojar.pdf.

Eric Brill. A Simple Rule-Based Part-of-Speech Tagger. In Proceedings of
ANLP-92, 3rd Conference on Applied Natural Language Processing, pages 152–
155, Trento, Italy, 1992. URL http://www.cs.mu.oz.au/acl/A/A92/
A92-1021.pdf.

Eric Brill. Transformation-Based Error-Driven Parsing. In Proceedings Third
International Workshop on Parsing Technologies, Tilburg/Durbuy, 1993. URL
http://www.cs.jhu.edu/˜brill/Parsing_Tech_93.ps.

Alena Böhmová. Automatic Procedures in Tectogrammatical Tagging.
Prague Bulletin of Mathematical Linguistics, 76:23–34, 2001. ISSN 0032-
6585. URL http://ufal.mff.cuni.cz/pdt2.0/publications/
BohmovaPBML2001.pdf.

Lewis Carroll. Alice’s Adventures in Wonderland and Through the Looking-Glass.
Penguin Classics, 2003. ISBN 9780141439761.

Eugene Charniak. A Maximum-Entropy-Inspired Parser. In Proceedings of
NAACL, Seattle, Washington, 2000. URL http://www.cs.brown.edu/
˜ec/papers/shortMeP.ps.gz.

Michael Collins, Jan Hajič, Lance Ramshaw, and Christoph Tillmann. A Sta-
tistical Parser for Czech. In Proceedings of the 37th Annual Meeting of the ACL,
College Park, Maryland, 1999. URL http://people.csail.mit.edu/
mcollins/papers/acl99.ps.

Radu Florian, John C. Henderson, and Grace Ngai. Coaxing Confidences from
an Old Friend: Probabilistic Classifications from Transformation Rule Lists.
In Proceedings of EMNLP 2000, pages 26–34, Hong Kong, 2000. URL http:
//nlp.cs.jhu.edu/˜rflorian/papers/emnlp00.ps.

96 BIBLIOGRAPHY

Radu Florian and Grace Ngai. Fast Transformation-Based Learning Toolkit. Balti-
more, MD, 2001a. URL http://nlp.cs.jhu.edu/˜rflorian/fntbl/
tbl-toolkit/tbl-toolkit.html.

Radu Florian and Grace Ngai. Multidimensional transformation-based learn-
ing. In Proceedings of CoNLL 2001, pages 1–8, Toulouse, France, 2001b. URL
http://nlp.cs.jhu.edu/˜rflorian/papers/conll01.ps.

Kadri Hacioglu. Semantic Role Labeling Using Dependency Trees. In Pro-
ceedings of Coling 2004, pages 1273–1276, Geneva, Switzerland, Aug 23–
Aug 27 2004. URL http://sds.colorado.edu/SERF-II/papers/
hacioglu_coling2004.pdf.

Jan Hajič, Yuan Ding, Jason Eisner, Martin Čmejrek, Terry Koo, Kristen Parton,
Gerald Penn, Drago Radev, and Owen Rambow. Natural Language Gene-
ration in the Context of Machine Translation, Workshop ’02 Final Report.
Technical report, CLSP Technical Reports, Baltimore, MD, 2003. URL http:
//www.clsp.jhu.edu/ws2002/groups/mt/genmt-final.ppt.

Jan Hajič, Eva Hajičová, Jaroslava Hlaváčová, Václav Klimeš, Jiřı́ Mı́rovský,
Petr Pajas, Jan Štěpánek, Barbora Vidová Hladká, and Zdeněk Žabokrtský.
Prague Dependency Treebank 2.0. CDROM, 2006. URL http://ufal.
mff.cuni.cz/pdt2.0/. In press.

Jan Hajič, Eva Hajičová, Petr Pajas, Jarmila Panevová, Petr Sgall, and
Barbora Vidová Hladká. Prague Dependency Treebank 1.0. CDROM, 2001.
URL http://ufal.mff.cuni.cz/pdt/. CAT: LDC2001T10.

Jan Hajič and Václav Honetschläger. Annotation Lexicons: Us-
ing the Valency Lexicon for Tectogrammatical Annotation. Prague
Bulletin of Mathematical Linguistics, 79–80:61–86, 2003. ISSN 0032-
6585. URL http://ufal.mff.cuni.cz/pdt2.0/publications/
HajicHonetschlagerPBML2003.pdf.

Eva Hajičová, Zdeněk Kirschner, and Petr Sgall. A Manual for Analytic
Layer Annotation of the Prague Dependency Treebank (English trans-
lation). Technical report, ÚFAL, MFF UK, Prague, Czech Republic,
1999. URL http://ufal.mff.cuni.cz/pdt2.0/doc/manuals/en/
a-layer/pdf/a-man-en.pdf.

Keith Hall and Václav Novák. Corrective Modeling for Non-Projective
Dependency Parsing. In Proceedings of the International Workshop on
Parsing Technologies (IWPT), Vancouver, British Columbia, 2005. Associa-
tion for Computational Linguistics. URL http://ufal.mff.cuni.cz/
publications/year2005/IWPT05-Hall.ps.

BIBLIOGRAPHY 97

Tomáš Holan. Genetické učenı́ závislostnı́ch analyzátorů [Genetic-based
Learning of Dependency Parsers]. In Peter Vojtáš, editor, Sbornı́k semináře
[Proceedings of] ITAT 2005, pages 47–54, Košice, Slovakia, 2005. UPJŠ. In
Czech.

Tomáš Holan and Zdeněk Žabokrtský. Combining Czech Dependency
Parsers. In Petr Sojka, Ivan Kopeček, and Karel Pala, editors, Proceedings
of the 9th International Conference on Text, Speech and Dialogue, Berlin Heidel-
berg New York, 2006. Springer-Verlag. Accepted.

Václav Honetschläger. Using a Czech Valency Lexicon for Annotation
Support. In V. Matoušek and P. Mautner, editors, Proceedings of the
6th International Conference on Text, Speech and Dialogue, pages 120–125,
Berlin Heidelberg New York, 2003. Springer-Verlag. ISBN 3-540-20024-
X. URL http://ufal.mff.cuni.cz/publications/year2003/
honet_tsd03final.ps.

Ivona Kučerová and Zdeněk Žabokrtský. Transforming Penn Treebank Phrase
Trees into (Praguian) Tectogrammatical Dependency Trees. Prague Bulletin
of Mathematical Linguistics, 78:77–94, 2002. ISSN 0032-6585. URL http:
//ufal.mff.cuni.cz/pbml/78/zabok-kucer.pdf.

Lucie Kučová and Zdeněk Žabokrtský. Anaphora in Czech: Large Data
and Experiments with Automatic Anaphora. In Václav Matoušek, Pavel
Mautner, and Tomáš Pavelka, editors, LNCS/Lecture Notes in Artificial
Intelligence/Proceedings of Text, Speech and Dialogue, volume 3658, pages
93–98, Karlovy Vary, Czech Rep., Sept. 12-16, 2005. Springer Verlag
Heidelberg. ISBN 3-540-28789-2. URL http://ufal.mff.cuni.cz/
publications/year2005/tsd2005-coref.pdf.

Markéta Lopatková, Ondřej Bojar, Jiřı́ Semecký, Václava Benešová, and
Zdeněk Žabokrtský. Valency Lexicon of Czech Verbs VALLEX: Recent
Experiments with Frame Disambiguation. In Václav Matoušek, Pavel
Mautner, and Tomáš Pavelka, editors, LNCS/Lecture Notes in Artificial
Intelligence/Proceedings of Text, Speech and Dialogue, volume 3658, pages
99–106, Karlovy Vary, Czech Rep., Sept. 12-16, 2005. Springer Verlag
Heidelberg. ISBN 3-540-28789-2. URL http://ufal.mff.cuni.cz/
publications/year2005/05-vallex-tsd.pdf.

Ryan McDonald, Fernando Pereira, Kiril Ribarov, and Jan Hajič. Non-
Projective Dependency Parsing using Spanning Tree Algorithms.
In Proceedings of the Human Language Technology / Empirical Methods
in Natural Language Processing conference (HLT-EMNLP), Vancouver,
British Columbia, 2005. Association for Computational Linguis-
tics. URL http://www.seas.upenn.edu/˜ryantm/papers/
nonprojectiveHLT-EMNLP2005.pdf.

98 BIBLIOGRAPHY

Marie Mikulová, Alevtina Bémová, Jan Hajič, Eva Hajičová, Jiřı́ Havelka,
Veronika Kolářová-Řeznı́čková, Lucie Kučová, Markéta Lopatková, Petr Pa-
jas, Jarmila Panevová, Magda Razı́mová, Petr Sgall, Jan Štěpánek, Zdeňka
Urešová, Kateřina Veselá, and Zdeněk Žabokrtský. Anotace Pražského
závislostnı́ho korpusu na tektogramatické rovině: pokyny pro anotátory
[A Manual for Tectogrammatical Layer Annotation of the Prague Depen-
dency Treebank]. Technical report, ÚFAL, MFF UK, Prague, Czech Repub-
lic, 2005. URL http://ufal.mff.cuni.cz/pdt2.0/doc/manuals/
cz/t-layer/pdf/t-man-cz.pdf. In Czech.

Grace Ngai and Radu Florian. Transformation-Based Learning in the Fast
Lane. In Proceedings of NAACL 2001, pages 40–47, Pittsburgh, PA, 2001. URL
http://nlp.cs.jhu.edu/˜rflorian/papers/naacl01.ps.

Petr Pajas and Jan Štěpánek. A Generic XML-Based Format for Structured
Linguistic Annotation and Its Application to Prague Dependency Tree-
bank 2.0. Technical Report 29, ÚFAL MFF UK, Prague, Czech Repub-
lic, 2005. URL http://ufal.mff.cuni.cz/pdt2.0/publications/
PajasStepanekTR2005.pdf.

Oana Postolache. Learning Information Structure in The Prague Treebank.
In Proceedings of the ACL 2005 Student Session, pages 115–120, Ann Ar-
bor, USA, 2005. URL http://www.coli.uni-saarland.de/˜oana/
publications/postolache-05.pdf.

Magda Razı́mová and Zdeněk Žabokrtský. Morphological Meanings in
the Prague Dependency Treebank 2.0. In Václav Matoušek, Pavel Maut-
ner, and Tomáš Pavelka, editors, LNCS/Lecture Notes in Artificial Intelli-
gence/Proceedings of Text, Speech and Dialogue, volume 3658, pages 148–
155, Karlovy Vary, Czech Rep., Sept. 12-16, 2005. Springer Verlag. ISBN
3-540-28789-2. URL http://ufal.mff.cuni.cz/publications/
year2005/tsd2005-grammatemes.pdf.

Kiril Ribarov. Automatic Building of a Dependency Tree—The Rule-Based Approach
and Beyond. PhD thesis, ÚFAL MFF UK, Prague, Czech Republic, 2004.

Giorgio Satta and Eric Brill. Efficient transformation-based parsing. In Arivind
Joshi and Martha Palmer, editors, Proceedings of the Thirty-Fourth Annual
Meeting of the Association for Computational Linguistics, pages 255–262, San
Francisco, 1996. Morgan Kaufmann Publishers. URL http://research.
microsoft.com/˜brill/Pubs/Eff_Pars.ps.

Jiřı́ Semecký. On Automatic Assignment of Verb Valency Frames in Czech. In
Proceedings of LREC 2006, 2006. In print.

BIBLIOGRAPHY 99

Petr Sgall, Eva Hajičová, and Jarmila Panevová. The Meaning of the Sen-
tence in Its Semantic and Pragmatic Aspects. Reidel Publishing Company and
Academia, Dordrecht and Prague, 1986.

Petr Sgall, Zdeněk Žabokrtský, and Sašo Džeroski. A Machine Learning
Approach to Automatic Functor Assignment in the Prague Dependency
Treebank. In C. Paz Suárez Araujo R. M. Rodrı́guez, editor, Proceed-
ings of the 3rd International Conference on Language Resources and Evaluation,
volume 5, pages 1513–1520. European Language Resources Association,
2002. URL http://ufal.mff.cuni.cz/pdt2.0/publications/
ZabokrtskySgallDzeroski2002.pdf.

Dan Zeman, Jiřı́ Hana, Hana Hanová, Jan Hajič, Barbora Hladká, and
Emil Jeřábek. A Manual for Morphological Annotation, 2nd edi-
tion. Technical Report 27, ÚFAL MFF UK, Prague, Czech Republic,
2005. URL http://ufal.mff.cuni.cz/pdt2.0/doc/manuals/en/
m-layer/pdf/m-man-en.pdf.

Daniel Zeman. How Much Will a RE-based Preprocessor Help a Statistical
Parser? In Proceedings of the 7th International Workshop on Parsing Technologies,
Beijing Daxue, Beijing, China, 2001. Tsinghua University Press. ISBN 7-
302-04925-4. URL http://ufal.mff.cuni.cz/˜zeman/publikace/
2001-01/pbml2001.ps.

Daniel Zeman. Parsing with a Statistical Dependency Model. PhD thesis, ÚFAL
MFF UK, Prague, Czech Republic, 2005. URL http://ufal.mff.cuni.
cz/˜zeman/publikace/disertace/index.htm.

Daniel Zeman and Zdeněk Žabokrtský. Improving Parsing Accuracy by
Combining Diverse Dependency Parsers. In Proceedings of the International
Workshop on Parsing Technologies (IWPT 2005), Vancouver, British Columbia,
2005. Association for Computational Linguistics. URL http://ufal.
mff.cuni.cz/˜zeman/publikace/2005-02/iwpt2005.pdf.

100 BIBLIOGRAPHY

Appendix A

Values of some attributes

Value Meaning
root root of the sentence
atom atomic node
coap root node of a paratactic structure
list root node of a list structure
fphr node representing a foreign-language expression
dphr node representing the dependent part of an idiomatic expression
complex complex node
qcomplex quasi-complex node

Table A.1: List of values of the nodetype attribute

Value Meaning
#Cor the controllee in control constructions absent at the a-layer
#EmpVerb a verbal predicate absent at the a-layer
#Forn the governing node of a foreign-language expression
#Gen a general participant absent at the a-layer
#Neg a syntactic negation
#Oblfm an obligatory adjunct absent at the a-layer
#PersPron personal or possessive pronouns (including the reflexives)
#QCor a valency member in quasi-control constructions absent at the a-layer
#Rcp a participant that were left out as a result of reciprocity

Table A.2: List of some special values of the t lemma attribute

102 CHAPTER A. VALUES OF SOME ATTRIBUTES

Value Meaning Czech example
Functors for the effective roots of independent clauses
PRED verbal clause Pavel dal kytku Martině.
DENOM nominal clause Základnı́ škola.
VOCAT vocative clause Hanko, podej mi to.
PARTL interjectional clause Hurá, vyhráli jsme!
PAR parenthetic clause Přijedu 13. prosince (pátek).
Argument functors
ACT actor Otec pracuje.
PAT patiens Vařı́ oběd.
EFF effect Jmenovali ho předsedou.
ADDR addressee Poslal dárek přı́teli.
ORIG origo Vyrábı́ nábytek ze dřeva.
Temporal functors
TWHEN temporal: when Přijdu zı́tra.
TFHL temporal: for how long Přijel na měsı́c.
TFRWH temporal: from when Přeložil jednánı́ ze soboty na dnešek.
THL temporal: how long Stihnul to za týden.
THO temporal: how often Pracuju na tom každý den.
TOWH temporal: to when Přeložil jednánı́ ze soboty na dnešek.
TPAR temporal: parallel Během zářı́ ani jednou nepršelo.
TSIN temporal: since when Budu pracovat od zı́tra.
TTILL temporal: till Udělám to do pátku.
Locative and directional functors
DIR1 direction: where from Přijel z Prahy.
DIR2 direction: which way Jdou lesem.
DIR3 direction: where to Přišel domů.
LOC locative Pracuje v Praze.
Functors for implicational (causal) relations
AIM aim Cvičı́, aby zhubla.
CAUS cause Z důvodu nemoci zavřeno.
COND condition Když spı́, nezlobı́.
CNCS concession Navzdory svému věku je zdravá.
INTT intent Šel nakoupit.
Functors for expressing manner
ACMP accompaniment tatı́nek s maminkou
CPR comparison vı́c než tisı́c korun
CRIT criterion/standard Seřaď slova podle abecedy.
DIFF difference Je vyššı́ o dva centimetry.
EXT extent V nádobě je přesně litr vody.
MANN manner Mluvı́ hlasitě.
MEANS means Pı́še perem.

CHAPTER A. VALUES OF SOME ATTRIBUTES 103

Value Meaning Czech example
REG regard Vzhledem k počası́ nelze nic plánovat.
RESL result Mluvı́ tak potichu, že mu nerozumı́me.
RESTR exception Kromě tebe tam byli všichni.
Functors for rhematizers, sentence, linking and modal adverbial expressions
ATT attitude Je to samozřejmě pravda.
INTF false (expletive) subject Ono pršı́.
MOD modality Pracuje asi na půl úvazku.
PREC refer. to preceding text A pak odešel.
RHEM rhematizer Jen Karel odešel.
Functors for multi-word lexical units and foreign-language expressions
CPHR nomin. part of a predicate mı́t plán
DPHR depend. part of phraseme křı́žem krážem
FPHR foreign phrase cash flow
Specific adnominal functors
APP appurtenance můj hrad
AUTH author Nezvalovy verše
ID identity hrad Karlštejn
MAT content of a container sklenice vody
RSTR restriction velký dům
Functors expressing the relations between the members of paratactic structures
ADVS adversative relation Viděl, ale neslyšel.
CONFR confrontation Pavel se zlepšuje, kdežto Jan má čtyřky.
CONJ coordination/conjunction Pavel a Jan
CONTRA conflict otec versus syn
CSQ consequence Pracoval špatně, a proto dostal výpověď.
DISJ disjunctive relation Pojedu já, nebo ty.
GRAD gradation Běžel, ba utı́kal.
REAS casual relation Dostal výpověď, neboť pracoval špatně.
APPS appositional structure substantivum, neboli podstatné jméno
OPER math. operation pět až deset hodin
CM conjunction modifier otec a také syn
Other functors
BEN benefactive Pracuje pro firmu.
COMPL complement Vrátila se unavená.
CONTRD confrontation Zatı́mco mzdy klesajı́, ceny se zvyšujı́.
HER inheritance šátek po matce
SUBS substitution Za otce jednal strýc.

Table A.3: List of functors

104 CHAPTER A. VALUES OF SOME ATTRIBUTES

Value Meaning
adj adjective
adv adverb
n noun
v verb
def/indef definite/indefinite
demon demonstrative
denot denominating
grad/ngrad gradable/non-gradable
neg/nneg possible/impossible to negate
pers personal pronoun
pron pronomial
quant quantificational

Table A.4: List of parts of values of the gram/sempos attribute

CHAPTER A. VALUES OF SOME ATTRIBUTES 105

Value1 Meaning
A adjective
AC adjective, nominal form
C numeral
C= numeral, written using digits
C} numeral, written using Roman numerals
Co numeral, multiplicative indefinite
Cv numeral, multiplicative definite
Db adverb, not forming negation and degrees of comparison
Dg adverb, forming negation and degrees of comparison
II interjection
J, conjunction, subordinate
Jˆ conjunction, connecting main clauses
N noun
P pronoun
R preposition
RF preposition, part of
TT particle
V verb
VB verb, present or future tense
Vc verb, conditional
Ve verb, transgressive present
Vf verb, infinitive
Vi verb, imperative form
Vp verb, past participle, active
Vs verb, past participle, passive
Vt verb, present or future tense, with enclitics
Z: punctuation

Table A.5: List of some two-letter m-tags

1Numbers 1–7 denoting cases are left out from the second position, similarly with X denot-
ing a tag missing from the dictionary.

