Some Computational Experiments with Czech

Ondřej Bojar obo@cuni.cz

December 7, 2006

Outline

- Background: Computer Science at Charles University in Prague
 - Student software project: Simulated family house
 - My master's: Picking nice examples
- Properties of Czech, analysis of Czech, available data
- Some of my previous experiments
- PhD research (ongoing): Constructing verb valency frames
- Experiments towards MT
 - This year's JHU summer workshop: Moses
- My task here: tree-based machine translation
- Summary of keywords

Background: Computer Science

Master Study at Charles University culminates with two (separate) tasks:

• Software Project

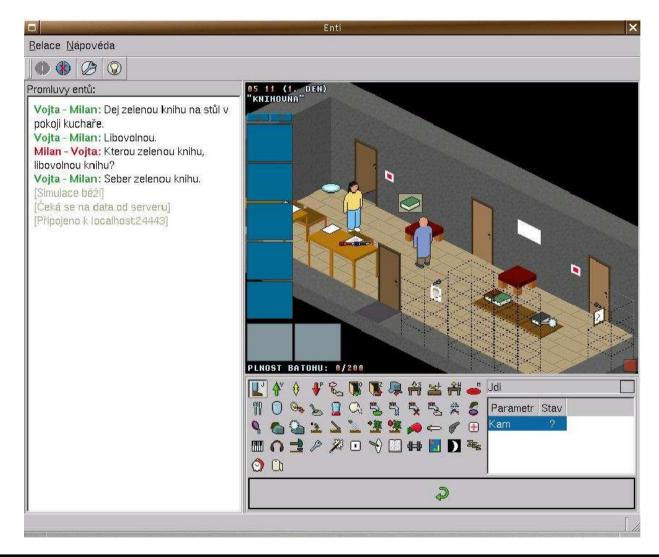
Joint work of 3–6 students.

Should take 1 year, never takes less than 1.5 or 2.

The goal: experience team work on a large scale project, submit a usable piece of software.

• Master Thesis: Picking nice examples of linguistic phenomena

Our Project: The Ents (2000–2002)

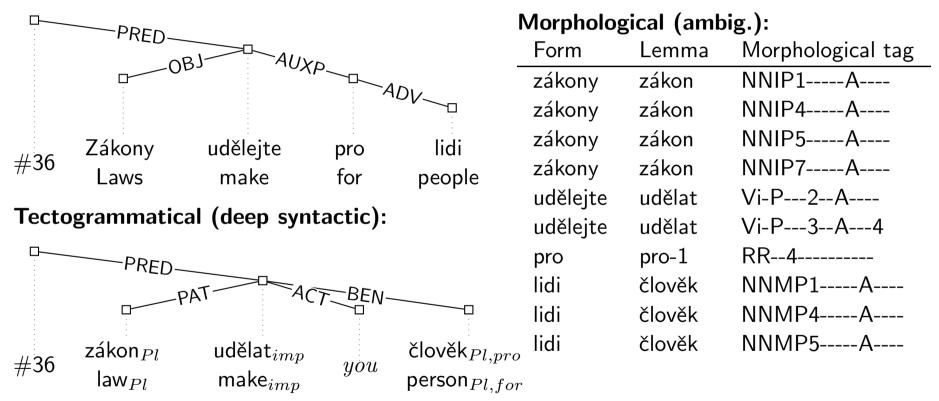

The Goal: A simulation of human-like environment (a family house) with userand computer-controlled inhabitants (ents).

The Result:

- 6 students, 2 years (student style of intensive work)
- a distributed (client-server) unix application
- \bullet > 100,000 lines of code in C, C++, Pascal, Mercury, Perl
- 5000 lines of code in a new scripting language E
- 500 pages of documentation in Czech

My contribution: E scripts + NLP module implemented in Mercury:

- understanding definite descriptions of objects in the environment
- concretization a process of further communication to identify an object uniquely
- \Rightarrow ents respond to commands in Czech


My Master's: Picking Nice Examples (2002/3)

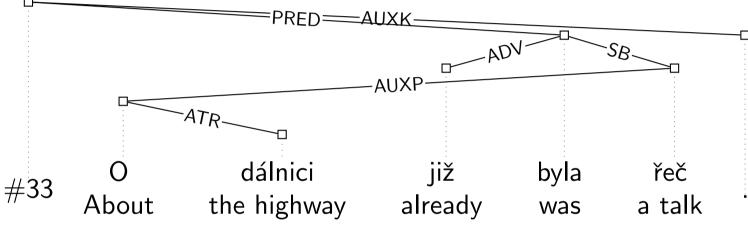
Motivation:

- Accuracy of parsing Czech is limited, especially around the verbs.
- Valency of verbs is (supposedly) crucial for many NLP tasks.
- \Rightarrow Goal: Automatically extract nice examples, i.e. sentences easy to parse. The result:
- a scripting language for partial parsing and filtering sentences Engine in Mercury, regular expressions over untyped feature structures.
- a script of 15 filters and 21 rules for Czech:
 - selects 10–15% of sentences
 - improves parsing accuracy by 5–10% absolute (correct dependencies) or 10-15% absolute (correct verb modifications)

Analysis of Czech

Analytic (surface syntactic):

Properties of Czech language


	Czech	English
Rich morphology	\geq 4,000 tags possible, \geq 2,300 seen	50 used
Word order	free	rigid

- rigid global word order phenomena: clitics
- rigid local word order phenomena: coordination, clitics mutual order

Nonprojective sentences	16,920 23.39	% г	
Nonprojective edges	23,691 1.99	%	D
Known parsing results	Czech	English	19 (h
Edge accuracy	69.2-82.5-86%	91%	/r ar
Sentence correctness	15.0–30.9%	43%	(ł

Data by (Collins et al., 1999), (Holan, 2003), Zeman (http://ckl.mff.cuni.cz/~zeman/ /projekty/neproj/index.html) and (Bojar, 2003). Consult (Kruijff, 2003) for measuring word order freeness.


Nonprojectivity

Non-projectivity:

- does not seem to cause delays in reading experiments (Bojar et al., 2004)
- disappears at the deep syntactic level (Veselá, Havelka, and Hajičová, 2004)
- parsing $(O(n^2))$ solved only recently (McDonald et al., 2005)

Analytic vs. Tectogrammatical

Czech Verb Valency Lexicon VALLEX

Key components: Frames, functors, obligatoriness, morphemic form(s)

____ **odpovídat** (imperfective)

Frame entry
 ►

- Verb entry –

- 1 odpovídat $_1 \sim$ odvětit [answer; respond]
- frame: $ACT_1^{obl} ADDR_3^{obl} PAT_{na+4,4}^{opt} EFF_{4,aby,a\check{t},zda,\check{z}e}^{obl} MANN^{typ}$
- example: *odpovídal mu na jeho dotaz pravdu / že* ... [he responded to his question truthfully / that ...]
- asp.counterpart: odpovědět₁ pf.
- _____class: communication
- 2 odpovídat $_2 \sim$ reagovat [react]
- frame: $ACT_1^{obl} PAT_{na+4}^{obl} MEANS_7^{typ}$
- example: pokožka odpovídala na včelí bodnutí zarudnutím [the skin reacted to a bee sting by turning red]
- asp.counterpart: odpovědět $_2$ pf.

odpovídat se (imperfective)

- 1 odpovídat se $_1 \sim$ být zodpovědný [be responsible]
- frame: $ACT_1^{obl}ADDR_3^{obl}PAT_{z+2}^{obl}$
- example: *odpovídá se ze ztrát* [he answers for the losses]

An abbreviated example for the base lemma "odpovídat".

Available Czech Data (not exhaustive!)

Monolingual Corpora				
Name and version	Sents.	Tokens	Annotation	
Czech National Corpus (SYN2000d)	6.8M	114M	automatic lemmas+tags	
Prague Dep Tbk (PDT 2.0)	50k–115k	0.8M-2.0M	manual tecto-manual morph	
Parallel Czech-English				
Name and version	Sents.	Tokens	Annotation	
Prague Cz-En Dep Tbk (PCEDT 1.0)	22k/49k	0.5M/1.2M	automatic tecto trees	
CzEng 0.5	1.4M/1.2M	19M/21M	automatic sent. ali, tokenized	
Dictionaries				
VALLEX 1.5 verbs: 2.4k entries (1.8k lemmas); covers 6% of types, 65% of tokens				
PDT-VALLEX verbs, nouns, adjs: part of PDT 2.0, only items occurring in PDT 2.0				
BEAST an ugly compilation of web dictionaries (400k pairs, 235k cs, 225k en entries)				

Some of My Recent Experiments (2003–2005)

Constraint-based parsing of Czech didn't work out (Bojar, 2004):

- XDG (Debusmann, 2006), constr.-based dep. parser implemented in Mozart-Oz
- Local constraints on tree structure induced from a treebank were too weak \Rightarrow exponentially many analyses remained possible (though not correct).
- Disregarding probabilities *is* harmful.

Inter-annotator agreement of verb-frame disam. (Lopatková et al., 2005):

- Allowed to check quality of VALLEX.
- Results comparable with others (PropBank etc.), best for Czech so far. Better than e.g. agreement of Czech WordNet annotation.

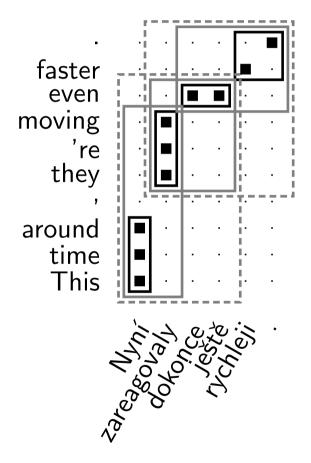
PhD. studies: Constructing Verb Valency Frames

Motivation:

- VALLEX development time-consuming, entries very complex.
- 93% of verb types make only 10% of verb tokens \Rightarrow human labour hardly justifiable.

Necessary steps given a verb lemma:

- Find (nice) examples of verbs usage.
- Classify verb occurrences wrt. to reflexivity.
- Cluster (not classify) verb+refl occs into groups with the same (hidden) frame.
- Derive frame description from the set of grouped examples:
 - Cluster/classify verb modifications into groups with the same (hidden) functor.
 - Decide obligatoriness for all observed functors.


Metric: Verb Entry Similarity (Benešová and Bojar, 2006)

 \sim Edit distance necessary to convert suggested frames to golden frames.

Experiments Towards Machine Translation

- Augmenting machine-readable dicts. with syntactic information (Bojar, 2005)
- (Rather unsuccessful) attempts at reusing an old rule-based MT system (Bojar, Homola, and Kuboň, 2005)
- Preliminary experiments with extracting parallel verb frames (Bojar and Hajič, 2005)
- Experiments with Czech-English word alignment (Bojar and Prokopová, 2006)
 ⇒where GIZA++ fails, humans often (38% of tokens) disagree as well

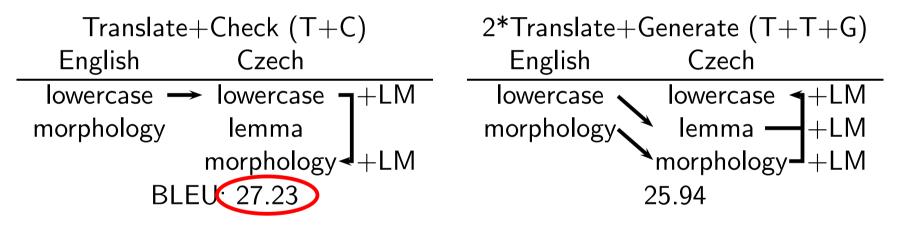
Alignments, Phrases and Phrase-Based MT

This time around	=	Nyní
they 're moving	=	zareagovaly
even	=	dokonce ještě
	=	
This time around, they 're moving	=	Nyní zareagovaly
even faster	=	dokonce ještě rychleji
	=	

Phrase-based MT: choose such segmentation of input string and such phrase "replacements" to make the output sequence "coherent" (3-grams most probable).

My Phrase-Based Cs \rightarrow En MT Impressions

lemmatization for alignment	+2.0*
handling numbers	+0.9*
fixing clear BLEU errors	+0.5
dependency-based corpus expansion	+0.3
more out-of-domain parallel texts, also in LM	+0.4
bigged in-domain LM	+1.7*
more out-of-domain parallel texts, bigger in-domain LM	+5.0*


Given BLEU as "the" MT metric:

- Phrase-based system from Czech better than expected (BLEU up to 37%) (But the setting was easy, the MT was translating *back* to English.)
- With small data (20k s), focus on alignments, corpus specifics and clear errors.
- With more data (20k+80k s), in-domain language model is vital.

The asterisk (*) denotes stat. signif. More details in (Bojar, Matusov, and Ney, 2006).

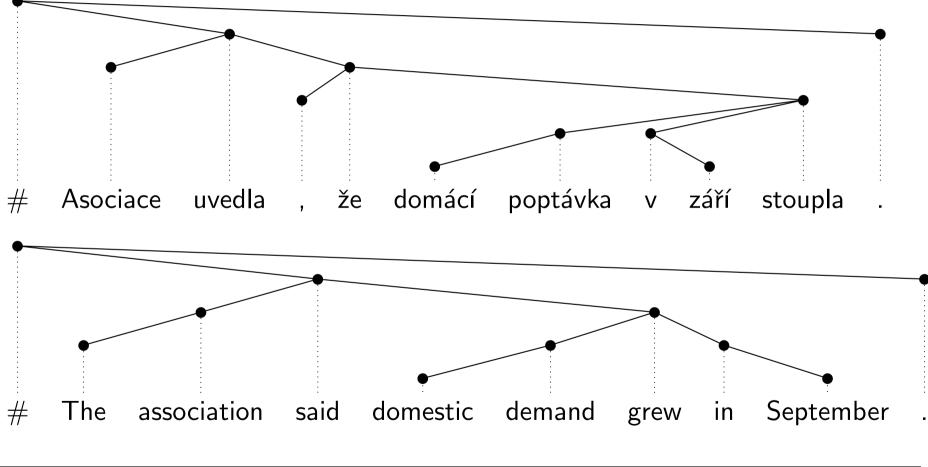
e^s Summer 2006: MT workshop at JHU: En \rightarrow Cs

Motivation: (phrase-based) MT to morphologically rich languages performs worse. Room for improvement: $En \rightarrow Cs$ baseline BLEU 25%, BLEU disregarding word forms 33%. \Rightarrow Keep track of morphology (or other "hidden variables") explicitly.

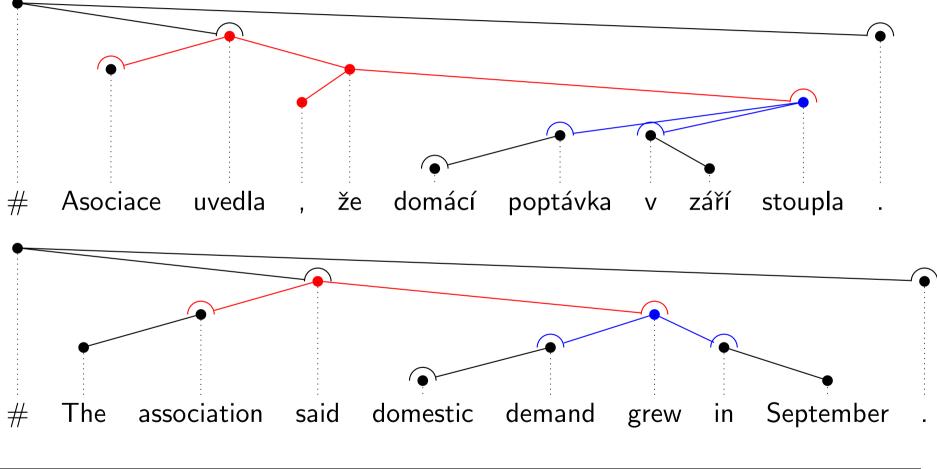
- The simplest factored model (T+C) improves MT to Czech, German, Spanish.
- MT output locally coherent, but sentence as a whole usually garbled. E.g. verbs often missing (21%) or mis-translated (14%).

My Current Main Topic: Tree-based MT

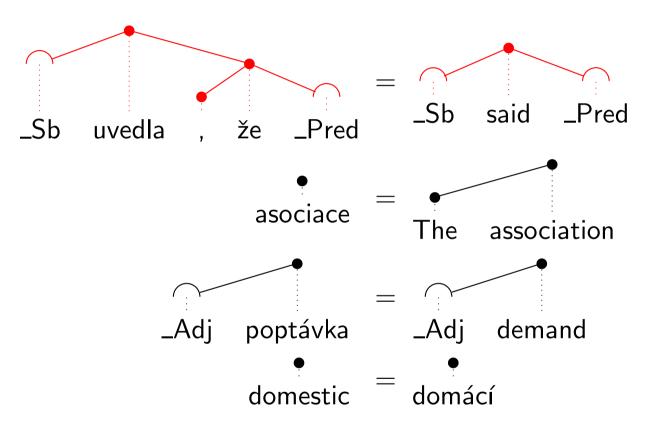
Syntax-based MT becomes fashionable, various approaches possible. See (Čmejrek, 2006) for a partial survey.


Synchronous Tree Substitution Grammar (Čmejrek, 2006):

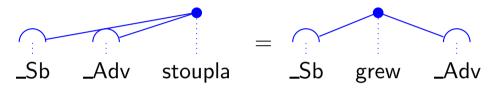
- training (treelet alignment) implemented by Martin Čmejrek.
- decoding (search for translation) given a source tree needed.


Model generic enough to allow various scenarios:

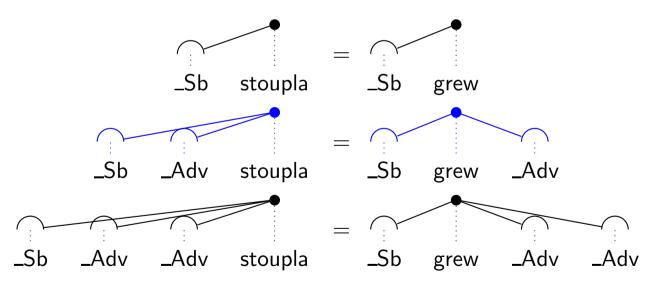
- Czech analytical \rightarrow English analytical
- Czech tecto \rightarrow English tecto (tecto-trees are much more similar!)
- Czech tecto \rightarrow English analytical


Training: Observe a Pair of Dependency Trees

Training: Decompose Trees into Treelets



Training: Collect Dictionary of Treelet Pairs



Training: Collect Dictionary of Treelet Pairs (2)

Treelets can be used to encode reordering (or we may force canonic ordering):

But are prone to sparse data problem (they explicitly encode the number of the sons):

Decoding STSG

Given an input dependency tree:

- decompose it into known treelets,
- replace treelets by their translations,
- join output treelets and produce output final tree (or string).

Decoder design:

- beam-search similar to Moses,
- top-down output generation (not left-to-right),
- built-in support for plain string language model (MT is scored by BLEU).

Current main concern:

• combining various back-off schemes correctly

(Looking for someone experienced to help me.)

Summary of Keywords

Keywords describing my research:

- Czech, Czech-English MT
- syntactic analysis, machine translation
- extraction of (parallel) syntactic information about words; dictionaries

Keywords important for Prague (as far as I know):

- deep syntax, tectogrammatical layer
- valency, information structure (topic-focus articulation, coreference)
- PDT, PCEDT, PADT (Arabic!), TrEd (tree editor)

Important links:

- PDT 2.0 and a tutorial: http://ufal.mff.cuni.cz/pdt.html
- Moses decoder: http://www.statmt.org/moses/

References

Benešová, Václava and Ondřej Bojar. 2006. Czech Verbs of Communication and the Extraction of their Frames. In *Text, Speech and Dialogue: 9th International Conference, TSD 2006*, volume LNAI 3658, pages 29–36. Springer Verlag, September.

Bojar, Ondřej. 2003. Towards Automatic Extraction of Verb Frames. *Prague Bulletin of Mathematical Linguistics*, 79–80:101–120.

Bojar, Ondřej. 2004. Problems of Inducing Large Coverage Constraint-Based Dependency Grammar for Czech. In *Constraint Solving and Language Processing, CSLP 2004*, volume LNAI 3438, pages 90–103, Roskilde University, September. Springer.

Bojar, Ondřej. 2005. Budování česko-anglického slovníku pro strojový překlad. In Peter Vojtáš, editor, *ITAT 2005 Information Technologies – Applications and Theory*, pages 201–211, Košice, Slovakia, September. University of P. J. Šafařík.

Bojar, Ondřej and Jan Hajič. 2005. Extracting Translation Verb Frames. In Walther von Hahn, John Hutchins, and Christina Vertan, editors, *Proceedings of Modern Approaches in Translation Technologies, workshop in conjunction with Recent Advances in Natural Language Processing (RANLP 2005)*, pages 2–6. Bulgarian Academy of Sciencies, September.

Bojar, Ondřej, Petr Homola, and Vladislav Kuboň. 2005. Problems Of Reusing An Existing MT System. In IJCNLP

2005 - Companion Volume to the Proceedings of Conference including Posters/Demos and Tutorial Abstracts, pages 181–186, October.

Bojar, Ondřej, Evgeny Matusov, and Hermann Ney. 2006. Czech-English Phrase-Based Machine Translation. In *FinTAL 2006*, volume LNAI 4139, pages 214–224, Turku, Finland, August. Springer.

Bojar, Ondřej and Magdalena Prokopová. 2006. Czech-English Word Alignment. In *Proceedings of the Fifth International Conference on Language Resources and Evaluation (LREC 2006)*, pages 1236–1239. ELRA.

Bojar, Ondřej, Jiří Semecký, Shravan Vasishth, and Ivana Kruijff-Korbayová. 2004. Processing noncanonical word order in Czech. In *Proceedings of Architectures and Mechanisms for Language Processing, AMLaP 2004*, pages 91–91, Université de Provence, September 16-18.

Čmejrek, Martin. 2006. Using Dependency Tree Structure for Czech-English Machine Translation. Ph.D. thesis, ÚFAL, MFF UK, Prague, Czech Republic.

Collins, Michael. 1996. A New Statistical Parser Based on Bigram Lexical Dependencies. In *Proceedings of the 34th Annual Meeting of the Association for Computational Linguistics*, pages 184–191.

Collins, Michael, Jan Hajič, Eric Brill, Lance Ramshaw, and Christoph Tillmann. 1999. A Statistical Parser of Czech. In *Proceedings of 37th ACL Conference*, pages 505–512, University of Maryland, College Park, USA.

Debusmann, Ralph. 2006. Extensible Dependency Grammar: A Modular Grammar Formalism Based On Multigraph Description. Ph.D. thesis, Saarland University, 4.

Holan, Tomáš. 2003. K syntaktické analýze českých(!) vět. In *MIS 2003*. MATFYZPRESS, January 18–25, 2003.

Kruijff, Geert-Jan M. 2003. 3-Phase Grammar Learning. In *Proceedings of the Workshop on Ideas and Strategies for Multilingual Grammar Development*.

Lopatková, Markéta, Ondřej Bojar, Jiří Semecký, Václava Benešová, and Zdeněk Žabokrtský. 2005. Valency Lexicon of Czech Verbs VALLEX: Recent Experiments with Frame Disambiguation. In Václav Matoušek, Pavel Mautner, and Tomáš Pavelka, editors, Text, Speech and Dialogue: 8th International Conference, TSD 2005, Karlovy Vary, Czech Republic, September 12-15, 2005. Proceedings, volume LNAI 3658, pages 99–106. Springer Verlag, September.

McDonald, Ryan, Fernando Pereira, Kiril Ribarov, and Jan Hajič. 2005. Non-Projective Dependency Parsing using Spanning Tree Algorithms. In Proceedings of HLT/EMNLP 2005, October.

Veselá, Kateřina, Jiří Havelka, and Eva Hajičová. 2004. Condition of Projectivity in the Underlying Dependency Structures. In Proceedings of Coling 2004, pages 289–295, Geneva, Switzerland, August. COLING.

Detailed Numbers on Non-Projectivity

Edge length	1	≤ 2	≤ 5			
English [%]	74.2	86.3	95.6	1		
Czech [%]	51.8	72.1	90.2			
Number of ga	ps	0	1	2 2		
Sentences [%]	70	5.9 22	2.7 C	0.42		
Climbing step	S	1 2	3	4	5	3
Nodes [%]	90.	3 8.0	1.3	0.3	0.1	_

¹Data for English by (Collins, 1996). Data for Czech by (Holan, 2003).
²Data by (Holan, 2003).
³Data by (Holan, 2003).

Data Sparseness

After having seen	20,000	75,000	sentences
a new lemma comes every	1.6	1.8	test sentences
a new full morphological tag comes every	110	290	test sentences
a new simplified tag comes every	280	870	test sentences

Simplified morphological tag = POS, SUBPOS, CASE, NUMBER and GENDER.

Where GIZA Fails, Humans Have Troubles, Too

Percentage of running words where the alignment matches (Ok) or mismatches (With Problems):

- Humans against each other
- GIZA++ againts golden set derived by joining the human annotations

		Baseline		Improved	
Humans	GIZA++	en	CS	en	CS
With Problems	With Problems	14.3	15.5	14.3	15.5
With Problems	OK	0.1	0.1	0.2	0.1
OK	With Problems	38.6	35.7	25.2	25.0
OK	OK	46.9	48.7	60.4	59.4

Sample Cs→En Phrase-Based MT Output

System Output:

We 'll see whether the campaigns work .

Immediately after Friday 's 190 14-point stock market and a consequent uncertainty excretes several big brokerage firms new ads UNKNOWN_vytrubující usual message : Go on in investing , the market is in order .

Their business is persuade clients from escaping from the market , which individual investors masse fact , after plunging in October .

Source:

Uvidíme , zda reklama funguje .

Okamžitě po pátečním 190 bodovém propadu akciového trhu a následné nejistotě vypouští několik velkých brokerských firem nové inzeráty vytrubující obvyklé poselství : Pokračujte v investování , trh je v pořádku .

Jejich úkolem je odradit klienty od útěku z trhu , což jednotliví investoři hromadně činili po propadu v říjnu .