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1 Abstract / Abstrakt

This thesis presents a statistical parser of Czech. We analyze step by step its evolution
and the merit of its various parts. The parser is based on the original approach of
dependency bigram modeling. Although there are other parsers that have been originally
developed for English and their adaptations for Czech perform better than ours, we
demonstrate that our parser makes different errors and thus it can help the better
parsers to become even better.

Tato disertaCni prace popisuje statisticky parser (syntakticky analyzator) CesStiny.
Krok za krokem v ni analyzujeme vyvoj parseru a pfinos jednotlivych jeho Casti. Parser je
postaven na metodé primého statistického modelovani zavislosti mezi slovy, ktera je
originalni i pfi srovnani se zahraniénimi pracemi. PfestoZe se nepodatilo timto zplsobem
ziskat nejucinnéjSi mozny nastroj pro syntaktickou analyzu cestiny a existuji cCeské
adaptace plvodné anglickych parsert, které si vedou Iépe, ukazeme, Ze diky odli§nému
pfistupu déla nas parser chyby jiného druhu a Ize tedy jeho kombinaci s lepSimi parsery
dosahnout vysledku, kterého zadny z nich neni sam o sobé schopen.
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4 Introduction

“Parsing is rediscovering the relations between words of a sentence, a procedure that can
be fed with a flat string and outputs a tree representation of that string.” I used these or
similar words when — just a couple of years ago — I described my job to a guy whose
research domain was different from mine. It was not different too much: he was involved
in a speech recognition project. That is why I was quite surprised as the man replied:
“Why do you do that?”

That episode now contributes twice to this Introduction. First, I learned that it is
worth motivating the parsing problem in more detail even when assuming that potential
readers are more or less related to the natural language processing (NLP) community.
And second, by showing how parsing could aid speech recognizers we immediately start
the motivation itself.

Classical speech recognizers were based on two main models: an acoustic model
ranked words by the probability of their matching given input acoustic signal, and a
language model reranked whole sequences of words in case a “strange” sequence arose.
Typically, the language models were n-gram models based on probabilities that a given
n-tuple would occur in text (n = 2 or 3). Such models did not always provide the best
hints. Consider the sentence

(1) He is a resident of the U.S. and of the U.K.

Let us now assume that for some reason the acoustic model prefers the reading

(2) *He is a resident of the U.S. and that the U.K.

A bigram model would support the latter (false) hypothesis. Collins (1999), where
this example comes from (p. 5), reports that according to the Wall Street Journal (WSJ)
data in the Penn Treebank (Marcus et al. (1993)), the bigram [and that] is around 15
times as frequent as [and of]. This leads to approximately 10 times greater probability
assigned to the incorrect string than the probability assigned to the correct one.

In contrast, one might imagine a more sophisticated, syntax-aware model that
would discover the long-distance relation of — and and thus the need for a second of
after the and. In fact, such models have recently been invented by the speech
recognition community, one good example being the Structured Language Model (Chelba
and Jelinek (1998)). An integral part of such model is a syntactic parser. Without
advances in parsing, the model would hardly be imaginable.

Another instance of parsing as a useful (if not necessary) preprocessing step is in
machine translation. Consider the following English sentence and its Czech and Chinese
counterparts:

(3) He lived in this house.

(4) Vtomto domé Zzil. (Lit: In this house he-lived.)

(5) MEZXIZ#T . (T3 zai zhé ge jia zhu le.) (Lit: He/she in this piece-of house

live action-completed.)



lived : > .
\

He in
house > domé
this tomto
He lived in this house . V tomto domé Zil .
£ (zhu) . ()
2 (Ta) 7 (zai) T (le)
R (jia)

X (zhe) 4 (ge)
Ta zai zhé ge jia zhu le .

Figure 1: Surface structures for the sentence “"He lived in this house” in English, Czech, and Chinese.

None of the three languages uses the same word order as the other. In other
languages we would find yet other word orders, and there are languages considering
more than one word order plausible. Moreover, the number of words differs. In pro-drop
languages, there often is missing the word serving as subject; in languages like Czech
there are no articles etc. No matter which language is the source language and which is
the target one, a machine-translation (MT) system obviously cannot translate the input
sentence on a word-by-word basis. It has to apply some word-order variating procedure.
Our claim is that if the input and output of an MT system were structures rather than
plain sentences (i.e. strings), the translation itself would be much easier. Then the “word
order procedure” would be split into two parts, the first part being integrated in parsing



action = lived action = zil

who = he where = in house who = on where = v domé

which = this which = tomto

action = £7 (zhu le)

who = ft (t3) where = X (zai jia)

which = X4 (zhe ge)

Figure 2: Deep structures for the sentence "He lived in this house” in English, Czech, and Chinese.

(building input structure), while the rest would be generating the output sentence with a
plausible word order from the output structure. Such process is illustrated in Figure 1 and
Figure 2. Figure 1 shows sentence structures that may have been created by a parser.?
Figure 2 shows a kind of semantic frames that could be easily constructed from the
parser output and would be immediately translatable one to another. Actually the
possibilities of such structure-based MT are currently being investigated at the Center for
Computational Linguistics (CKL, http://ckl.mff.cuni.cz/) in Prague (Cufin et al. (2002)).?

Parsing can also help word sense disambiguation. For instance, the English verb to
stop would be translated to Czech as zastavit in sentences like “The bus stopped in Times
Square” and as prestat in sentences like “He stopped talking”. Again, the structure
output from a parser would tell us what arguments the verb has. We would then be able
to select one of the verb’s subcategorization frames, and thus one of its meanings and
one of its translations.

Our final example documenting parsing usefulness is a grammar checker. A
grammar checker, in contrast to a spell checker, can point to a word that exists in the
language but its particular usage in a given sentence is not plausible. Probably the most

! There are many different syntactic theories each of which defines its own sentence
structure. We will declare one of the theories as the framework for this thesis later in this
Introduction; so will we precisely define our syntactic structures. For now, the example
structures are provided “as-is” without any formal definition.

2 The example illustrates usefulness of deep syntactic structures in contrast to surface
ones. However, this thesis investigates only surface parsing. Our assumption is that the
road to the deep structures leads over the surface ones. The surface structures represent
an intermediate step, simplifying the whole analysis process. We believe that the
structural shift from the surface to the deep level will be rather easy; the most
challenging part will not be finding the deep structure but tagging the dependencies by

IZ8A\ I/

functional tags (labels “action”, “who”, “where”, “which” in Figure 2).
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remarkable targets of a grammar checker in many languages are agreement violations,
like the number agreement violation in the English sentence (6) and the gender
agreement violation in the Czech sentence (7):

(6) *The coffee are very hot.

(7) *Kotata byly utopeny. “The kittens/Neut. were/Fem. drowned.”

Some parsers are based on a grammar and can directly tell that a sentence has
no valid syntactic structure according to that grammar. Some even augment their
grammars with special error generating rules enabling to build a structure for some
incorrect sentences and to point to the errors in them (cf. Kubon (2001)). Other parsers
use statistical methods and are capable of assigning probability to a structure. When
normalized according to the number of words in the sentence, such probability can serve
as an indicator of possible grammar errors. Sentences whose probability falls below some
predefined threshold can be highlighted as suspicious. As the statistical parsers typically
compute the structure probability from probabilities of its components (phrases, word
dependencies...), they can be queried on the suspicious words as well.

4.1 Theoretical background

This thesis mainly focuses on parsing of one particular language: Czech. The language
itself quite narrows our selection of theories that can serve as the theoretical ground to
our formulation of the parsing problem. Better expressed, we need not narrow the
selection but there is a strong preference for one theory: the dependency syntax as
incorporated in the Functional Generative Description of language (FGP, see Sgall et al.
(1986)). There are three reasons for such preference.

Reason 1 is traditional. Since the first half of the 20" century the Czech linguistics
is known and appreciated as the so-called Praguian School. The view of sentence syntax
as a set of dependencies of one word on another is an idea accompanying the school
from its cradle. The constituent-based syntactic structures, introduced by Bloomfield
(1933), got their popularity later thanks to Chomsky (1957), and their usage never
became so widespread among Czech grammarians as it is the case for English.

Reason 2 is linguistic. Whole books could probably be written about the pros and
contras of the dependency vs. other approaches. The scope of this thesis and the
qualification of mine do not allow to include them here but at least we can very briefly
summarize some points:

1 There is no common consensus about the necessity of having non-terminals in the
syntactic structure. Many major theories use the notion of phrases that have
names - non-terminals in the terminology of Chomskian grammars. The
dependency syntax does not use non-terminals.

2 Even the parsers grounded in constituency-based theories (e.g. Collins (1999))
profit essentially from the knowledge of the head of a phrase, where the head is a
word that in some way or another governs every other member of the phrase,
and vice-versa, all other members of the phrase depend on or modify the head. In
dependency syntax, such relations are expressed directly in the structure.

11



3 There are constructions allowed by the grammar of the language that cannot be
described by syntactic structures of immediate constituents. Later in this thesis
we will mention a class of such constructions, the non-projective constructions.
Although we will show that they form a problem that is marginal and hard-to-
solve, it is fair to choose a theory of enough expressive power to cover them.

Reason 3 is purely practical. As our parser employs statistical methods, we need a
corpus to collect statistics on. Currently the only publicly available syntactically annotated
corpus for Czech is the Prague Dependency Treebank (PDT, see Haji¢ (1998)) and if we
want to use it, it is natural to adopt its theoretical background as well. From the opposite
point of view, the group around PDT may profit from a parser that generates structures
in agreement with the PDT specifications.

4.2 Dependency structures

After having motivated the selected framework we proceed to its formal specification.
Throughout this thesis we usually will (for simplicity) use the word word for what is
sometimes called token: a word is either a real word, or a number, or a punctuation
mark. So not all words in our sense are separated from the others with spaces. More
precise rules might be needed for word segmentation of Czech text, especially for multi-
character punctuation marks or some forms of numbers. However, our definition of word
is sufficient as we define it for the purpose of this thesis, not the parser itself — the
parser requires a word-segmented text on input and thus relies on the rules of the word
segmentation tool.

A sentence is a sequence of words. Each word in a sentence has a unique index
in the sentence that reflects the word order: the starting word has the index 1, the final
word (usually a full stop) has the index n where n is the number of the words in the
sentence.

A dependency d(w;) of the word w; is an integer number from the interval
<0;n>. The case d(w;) = 0 means that w; does not depend on any other word in the
sentence; a non-zero dependency is equal to the index of the word that governs the
word w;. Whenever it will be clear from context we will make no distinction between
numeric value of the dependency and the word it refers to. In other words, we often will
denote the governor of w; by d(w;) rather than wgy;. Dually the word w; will be called
the dependent of d(w;). We also will use the alternative terms parent (for the
governor) and child (for the dependent). A dependency can be represented graphically
as an oriented line connecting two nodes, one for the governor and the other for the
dependent. The line must be oriented to distinguish the governor from the dependent;
we will express the orientation by the Y-coordinates of the nodes in diagrams: the
governor will always be placed higher than the dependent. We will not use arrows to
express the orientation since there is no consensus whether the arrow should point from
the governor to the dependent or vice-versa. The X-coordinate will preserve the word
order: if d(w;) <i, then the governor will be displayed more to the left than the
dependent; otherwise, it will be to the right.

12



The word w; dominates the word w; if either d(w;) = i, or there is a k such that w;
dominates wy and d(w;) = k.

While we are defining mathematically what is a good dependency, we do not put
any linguistic constraints under which one particular word can depend on the other. Such
rules have already been defined by the PDT annotation team and the PDT annotation
should fit the rules. So — unless explicitly stated — we will use the PDT as the only
authoritative source of judgment whether a dependency is linguistically correct or not.

A dependency structure DS for the sentence S = wjy,...,w, is the sequence of
dependencies d(wy),...,d(w,) fulfilling the condition that no word dominates itself (i.e.,
there are no cycles). Note that the condition implies that at least one word in the
sentence must be independent (d(w) = 0). Further note that while the values in the
sequence denote the indices of the governors, the ordering of the sequence denotes the
indices of the dependents so the sequence contains all necessary structural information
for the sentence. A dependency structure can be represented graphically as a rooted tree
with n+1 nodes. The added node is the artificial root of the tree where independent
words “depend” on. In accordance to the above, we will place the root as if it was a word
with index 0.3 For all nodes we will keep the above convention for their X- and Y-
coordinates. We will use the terms dependency structure, dependency tree and tree
interchangeably. Should we occasionally need a different kind of tree (e.g. a phrasal
tree), we will explicitly state that.

Example: “0,1,2,0”, “0,0,0,0”, and “2,0,4,2” are some valid dependency
structures for a four-word sentence (no matter what the words are). There are many
more valid structures, namely 125 total, as there are (n+1)"? valid structures for an n-

vsak
but

maji chybi
have misses
Studenti zdjem  fakulté anglictinafri
Students interest faculty teachers of English
<
in
jazyky
languages

Figure 3: Studenti maji o jazyky zajem, fakulté vsak chybi anglictinari.
Students are interested in languages but the faculty is missing teachers of English.

3 Should we occasionally need a “word” for the root, we will use the symbol “#"” as does
the PDT team. Note however that we don’t count this “word” into the number of the
words in the sentence.
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navstivil

visited
Predseda a
Chair and \
vlady C: Vancouver , C: Toronto ,
government Vancouver Toronto

C: Ottawu 'C: mésto
Ottawa city

i %

hlavni zemé
main country

Figure 4: Predseda vlady navstivil Vancouver, Toronto a Ottawu, hlavni mésto zemé.
The Prime Minister visited Vancouver, Toronto, and Ottawa, the nation’s capital.

word sentence. To give a more linguistic example, consider the sentence (8). It has
eleven words and thus over 60 billions of valid trees. However, only one of these is
linguistically correct according to PDT: “2,8,5,3,2,8,9,0,8,9,0” (see Figure 3).

(8) Studenti maji o jazyky zadjem, fakulté vsak chybi angli¢tinafi. “The students

are interested in languages but the faculty is missing teachers of English.”

The fact that for every word of the sentence there is a corresponding node in the
tree implies that some dependencies are rather technical, without any linguistic
interpretation (cf. the comma in sentence (8)). Besides that, there are dependencies
capturing language phenomena of a non-dependency nature. Most non-technical
dependencies represent the linguistic relation of subordination of one word to another.
However, some relations in the sentence are better described as coordinations than
subordinations. Whole the coordination may govern a word, and the interpretation is the
same as if that word simultaneously depended on each member of the coordination.
Analogically, coordination can depend on a word, and the interpretation is same as if that
word simultaneously governed each member of the coordination. But there is no internal
hierarchy among the members themselves: they all rank equally and no one is
subordinated to another.

In PDT, coordinations are represented in dependency structures as follows. An
auxiliary word (usually a coordinative conjunction or a comma) becomes the governor of
the coordination. All coordination members are attached as its dependents, as are the
words really subordinated to the coordination. We will soon define s-tags, the syntactical
tags. In coordinations, special values of s-tags distinguish between coordination
members and the words subordinated to the coordination. An example follows (for the
structure see Figure 4).
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(9) Predseda vlady navstivil Vancouver, Toronto a Ottawu, hlavni mésto zemé.
“The Prime Minister visited Vancouver, Toronto, and Ottawa, the capital of
the country.”

To avoid any misunderstanding in future, we should now stress the difference
between the terminology some readers may consider usual and the terminology defined
for the purpose of this thesis. First: broader sense of coordination. If the sentence (9)
was in PDT, the second-level “coordination” (“Ottawa, the capital...”) would actually be
tagged as apposition, rather than coordination. Both constructions indeed differ
linguistically in how they combine meanings but topologically they are similar. We will
thus cover both by the term coordination whenever we do not state anything else.
Second: dependency is not subordination. Subordination is a linguistically motivated,
formally unspecified vertical relation between parents and children in the tree, and
contrasts with coordination, a horizontal relation between siblings in the tree. Both are
represented using dependencies in a dependency structure.

4.3 Layered description of language

FGP adopts the view of the language as a system that can be described in levels. The
higher levels are closer to meaning, the lower levels are closer to surface representation
(a text, an utterance). Natural language analyzing procedures traverse the levels from
bottom upwards and use output of a lower level as the input to a higher level. Language
generating procedures traverse the system in the opposite direction, instantiating the
meaning represented on higher levels with the means of the lower levels. The number
and classification of the levels may differ according to the needs of the application; PDT
distinguishes three levels.

The lowest level of PDT is the morphological level (ML). It treats a sentence as
a sequence and concerns mainly with the structure and ambiguity of words. As input it
gets a plain string. The output of ML (or the representation of the sentence on ML)
contains the same string enriched by additional information such as word boundaries,
sentence boundaries, and the output of morphological analysis (MM). The latter
assigns to each word all combinations of lemmas and morphological attributes that may
have generated the given word form, regardless the actual sentence context. The values
of the morphological attributes (as gender, number or case of nouns) are encoded in
morphological tags or m-tags. The m-tags naturally encode the part-of-speech as well
and to some extent they correspond to the POS tags used in English corpora. Note
however that the richness of the Czech morphology causes our tagset to contain
thousands rather than tens of possible tags.

The m-tags shall not be confused with the s-tags that will be defined on the next
level. Throughout this thesis the default interpretation of “tag” is "m-tag”.

The morphological annotation on the output of ML may optionally be accompanied
by the morphological disambiguation (MD). It is typically performed by a tagger
(machine or human) and its goal is to select for each word the correct lemma and tag
with respect to the context. The disambiguated output contains certain percentage of
errors.
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Example: a sentence and its representation on the morphological level.
(10) P¥Fi se, jak chces. “Quarrel as you want to.”

Word Lemma M-tag English
<f>PFi <MMI>pre_"([soudni]_spor) <MMt>NNFS3----- A---- a lawsuit
<MMt>NNFS4-----A----
<MMt>NNFS6-----A----
<MMI>pFi-1 <MMt>RR--6---------- by, during, on...
<MMI>pFit_~"(se)_(o_néco) <MMt>Vi-S---2--A---- to quarrel
<MMt>Vi-S---3--A---4
<f>se <MMI>s-1 <MMt>RV--7---------- with
<MMI>se_~(zvr._zajmeno/¢ <MMt>P7-X4-------=-- oneself
astice)
<d>l <MMI>[ <MMt>Z:---=====meuu- ,
<f>jak <MMI>jak-1_;L_~(zivocich) <MMt>NNMS1----- A---- a yak
<MMI>jak-2 <MMt>],-----==--=--- how
<MMI>jak-3 <MMt>Db-----======-- how
<f>chceS <MMI>chtit <MMt>VB-S---2P-AA--- to want
<d>. <MMI>. <MMt>Z:------======--

The above table (excluding the column with English translations) shows SGML-
style morphological annotation of the sentence (10), as output by the morphological
analysis by Haji¢ (2004). The lemmas contain some word sense disambiguation (the
extensions “-number”), sometimes a semantic or stylistic category (like the “_;L"
attached to jak-1), and sometimes even an explanation comment (the extensions
_~comment). The m-tags are strings each of 15 characters where the first two
characters specify the part-of-speech: in this example there are nouns (tags starting with
N), verbs (V), pronouns (P), prepositions (R), conjunctions (J), adverbs (D), and
punctuation marks (Z).

Note the high degree of morphological ambiguity in the sentence: except of
punctuation and the verb chces, every word allows more than one interpretation (lemma
& tag).* If we apply a tagger, it will select for each word only one lemma and one tag
based on context. The bold entries in our table are the choices made by the on-line
tagger at http://nlp.cs.jhu.edu/~hajic/morph.html; although the page does not refer to
relevant publications, it is probably a recent version of the tagger of Haji¢ and Hladka
(1998). The annotation in PDT provides output of two taggers, identified as “a” and “b”.
The tagger “a” is a maximum-entropy-based tagger; see Haji¢ and Hladka (1998). The
tagger “b” is the HMM-based tagger described in Haji¢ et al. (2001) (but without the
rule-based module described there). The annotation of the first word of sentence (10)

might then look like the following:
<f>Pri<MMl>pre_A([soudni]_spor) <MMt>NNFS3----- A-——-
<MMt>NNFS4----- A---- <MMt>NNFS6----- A---- <MM1>pFi-1 <MMt>RR--6----------

* The average number of tags per word in the training part of PDT 1.0 is 2.76.
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<MMT>prit_A(se)_(o_néco) <MMt>Vi-S---2--A---- <MMt>Vi-S---3--A---4
<MDT src="a">pri-1 <MDt src="a">RR--6---------- <MD1
src="b">prit_A(se)_(o_néco) <MDt src="b">Vi-S---2--A----

The middle level of PDT annotation is called analytical. Two important kinds of
information are added on this level: the dependency structure and the so-called
analytical functions (afuns), or s-tags (syntactic tags). We have introduced the
dependency structures but we omitted the linguistic guidelines for their construction; the
readers interested in the guidelines should refer to Haji¢ et al. (1999). The s-tags encode
types of dependencies (the most important are: subject (Sb), predicate (Pred), object
(Obj), adverbial modifier (Adv), attribute (Atr); coordination and apposition roots are
tagged as Coord or Apos respectively; the members of coordinations or appositions have
_Co/_Ap attached to their s-tags (Sb_Co, e.g.)). Despite the possibility of syntactic
ambiguity the current version of PDT assighs only one dependency and s-tag to each
word.

The highest level of PDT is the tectogrammatical level. It further modifies the
dependency structure but there are significant differences from the dependency
structures in our sense. Auxiliary words are hidden and get no dependency (not even the
0-dependency). Lexical words are retagged by functors or f-tags, corresponding to their
semantic roles. One may think of the structures in Figure 2 as of a simplified example of
what is going on on the tectogrammatical level. We need no more formal definition
because for the rest of the thesis this level will be out of our sight.

We will finish this survey of PDT layers by putting our work into their frame. We
are building a parser that operates on the analytical level. We always will assume that
the input to the parser has already passed through the morphological analysis and
contains the morphological annotation. Usually we also will profit from the existence of
taggers and demand the input to be morphologically disambiguated.

The output of the parser will not be a full analytical annotation. The parser will
generate dependency structures but not the s-tags. Nevertheless, it will sometimes use
the hand-annotated s-tags in PDT for learning.

4.4 The goals and structure of this thesis

The goals of this thesis are twofold. We, of course, want to present a parser that
achieves as high accuracy as possible. That is our main goal.

Besides documenting the parser, the other goal is to document the development
of the parser, including some of the steps that turned out to be less than useful. The
main idea we will follow is unique among the different approaches to Czech parsing, and
I even cannot name a non-Czech parser that would be comparable to ours to a significant
extent. That is why it is important to document the dead ends as well, so they are
prevented from being considered again when the parser is further developed in future.

The structure of the thesis is subordinated to this second goal. In Chapters 7 and
8 we describe two generations and many subversions of the parser. Chapters 9 through
12 discuss some issues more or less related to the main topic of parsing.
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Brief evaluation of each parser modification is presented immediately and
summarized in a table at the end of the actual chapter. The standard evaluation method
is defined in Chapter 5, while Chapter 6 describes the baseline to compare the results to.
Various supplemental evaluations are presented in Chapter 13. Improving the state of
the art is done in Chapter 14 by combining several different Czech parsers. Finally we
survey the related research and compare other approaches to ours (Chapter 15), and
conclude (Chapter 16).
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5 Standard evaluation method

As NLP will never produce 100% correct analyses, it is important to be able to say how
well a particular tool performs. Various evaluation metrics used in various NLP tasks
usually share one common feature: most of them tell us the percentage of success of
solving the task on independent test data.

Sometimes (for instance in machine translation) it is difficult to tell what is a
success. For dependency parsing, there are several possible metrics we may use. We will
discuss them in more detail in Chapter 13 where we also give results of those metrics for
our parser and our test data.

Before the final evaluation, throughout the thesis we will heed a measure to
compare the contribution of two or more modifications to the parser. When not explicitly
stated otherwise, in all these comparisons we use a single metric, called accuracy (or
dependency accuracy, as opposed to sentence accuracy). The (dependency) accuracy is
defined as follows.

Let us have a test sentence S with words w;...w,, and a reference tree for that
sentence RT(S). The reference tree has been built by a human. Let us denote the tree
generated by the parser as GT(S). For each word w;, there is a reference dependency
rd(w;) in RT(S), and a generated dependency gd(w;) in GT(S). Each dependency is
represented by an integer number — the index of the parent node in S. We say that
gd(w;) is correct whenever gd(w;) = rd(w;). The accuracy of the generated tree GT(S) or
simply the accuracy of (analyzing) the sentence S is the number of correct dependencies
divided by the number n of words in S:

n

Z(gd(wi ) = rd(wi ))

A(GT(S)) ==

n

upél upél
groaned groaned
kan édy Priserné kan 6dy
horse odes Terribly horse odes
Zlutouéky  débelské zlutoucky dabelské
yellowish devilish yellowish devilish

PriSerné
Terribly

Figure 5: PFriderné Zlutoucky kiri upél débelské édy.
A terribly yellowish horse groaned devilish odes.
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To give an example, consider the sentence Pfiserné Zlutoucky kdri upél débelské édy. (“A
terribly yellow horse groaned devilish odes.”)® Look at Figure 5. The left tree shows the
reference tree for that sentence while the right one may have been generated by some
parser.

The generated tree differs from the reference tree in one dependency, out of
seven. This gives us the accuracy A = 6/7 = 86%.

Similarly the accuracy of a set of sentences is the number of correct dependencies
in the trees generated for the set, divided by total number of words in the set. Number of
sentences with zero incorrect dependencies does not matter. The accuracy (or
performance) of a parser is the accuracy of trees generated by the parser for a given test
set.

5.1 Prague Dependency Treebank

If not stated otherwise, throughout this thesis we will use various versions of the Prague
Dependency Treebank for training and testing. In an ideal situation every presented
number would be measured on the same set of data. Yet the thesis presents outcomes of
several years of research and unfortunately, the PDT version 1.0 was not available at the
beginning. Some old figures that were measured on smaller data cannot be re-measured
on PDT 1.0 because we cannot recover the exact state of the parser from those days.
However, all the data sets are parts of evolving PDT, they are thus domain-compatible
and the results should be comparable to some extent.

The table below gives an overview of the data sets and their sizes. Note that only
PDT 0.5 and PDT 1.0 are official releases of the treebank. The others are technical labels
of data that were available at various moments.

PDT 0.5 used two test sets, d-test and e-test. D-test stands for “"development test
data” and it is the default whenever we do not state otherwise. E-test was used only
once in 1998 for cross-evaluation of the results (see Section 7.9). See also Haji¢ (1998);
Hajic et al. (1998).

All results achieved after 1999 come from PDT 1.0 (Béhmova et al. (2000); visit
http://ufal.ms.mff.cuni.cz/pdt/Corpora/PDT 1.0/Doc/PDT10 data.html for data layout).
Its test set contains 8159 sentences and 126030 word/punctuation tokens. The training
set contains 81614 sentences and 1255590 words.® Of course the respective training and
test sets do not overlap. Note however that the PDT 0.5 test set cannot be used to
evaluate a parser trained on the PDT 1.0 training set since the old development test data
have been recycled as training data in PDT 1.0.

Finally, we defined a partitioning of the PDT 1.0 training data, roughly in the 9:1
ratio, so we got new training and test data, which both contained manual morphological

> This is the Czech sentence for testing font appearance (because it contains all letters of
the alphabet). Its usual English counterpart is the sentence “The quick brown fox jumps
over the lazy dog.”

® Only 7319 of the test sentences and 73088 of the training ones are non-empty, so the
average sentence length is 17 tokens. Maximum number of tokens in one sentence is
100 tokens for the test data, and 194 tokens for the training data.

20



annotation. Such data could be used to evaluate taggers as well
interesting experiments that need the manual data.

as for running some

Version |Training Testing Remarks
Files Sentences |Words |Files Sentences | Words
PDT 0.1 |21 1050 180152 100 1590 | Apr 1997
PDT 0.2 |21 1050 18015 |4 199 3036 | Apr 1998
PDT 0.3 | 300 13481 | 230450 |81 (odd- 3697 | 63718|Jul 1998
PDT 0.5 (437 19126| 327597 |nhumbered Aug 1998
(bc[bde]*, bcc, bmc,
bl[12abcd]*, bmd,
bm[12ab]*, bvl)
PDT 0.5 |bva*) 81 3787 | 65390
e-test (even-
numbered
bcc, bmc,
bmd,
bvl)
PDT 1.0 | 1583 (c*, 816141255590 | 153 8159|126030|2000
1101-1t52, (73088) (Ifuvw]) (7319)
m*, v¥)
PDT 44 (c1%) 2207 30450
1.0c1
PDT 1.0 {1425 658471133509 | 158 72411122081 | Test has
mtrain (1%¥§FY manual
rom
/ mtest 1.0 train) morphology
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6 The Baseline

There has been an attempt to model syntactic dependencies in Czech, described in
Zeman (1997) and Zeman (1998). That model was quite unsuccessful in terms of
accuracy but we can use it as something to compare new accuracies to. We also will
briefly summarize the model architecture because its core remains essentially unchanged
in the improved models.

The baseline dependency model resembles a bigram language model. In a bigram
language model, statistics are collected about pairs of words that occurred adjacently in
a text corpus. Relative frequencies of such pairs provide a maximum-likelihood
estimation of the probability of the next word in a sentence, given the previous words.
Using the probabilities, a language model predicts the next words and helps prune
hypotheses about the sentence.

There is a strong (and false) assumption of statistical independence of the
predicted word on any other word but the immediately preceding one. In fact there often
are longer dependencies, obvious or hidden, but it is not feasible to reflect them all in the
model, and it turns out that even with the assumption of independence a model can work
quite well.

Another problem is that the model needs to know the current word to predict the
following one — but the current word has been predicted as well and it may have been
predicted wrongly. Usual workaround is to maximize the probability of the whole
sequence of words (the sentence), defined as the product of the probabilities of each
word given their predecessors. That way also right-side context can be considered. Some
efficient method, like the Viterbi algorithm (Viterbi (1967); Manning and Schitze (1999:
332)), has to be employed to perform the maximization.

The dependency model is similar to the bigram language model in that it provides
probability estimates for pairs of words. This time, however, the words in a pair are not
necessarily adjacent in the sentence. Instead, dependencies are examined and pairs (w,,
w;) collected where d(w;)=w;.

The sequential nature of a language model is suppressed although one could
define an ordering for the dependencies. Nevertheless we still maximize the probability of
the whole dependency structure rather than the probabilities of single dependencies
alone. Analogously to the language model we assume that a probability of a word
depending on another word depends solely on the two words.

Let D(wg w,) denote the event that somewhere in some sentence there is a
dependency between two words, w, (the governor), and w, (the dependent).
P(D(wq, wg)) is the probability of such event. We will call it the dependency
probability. Note that it does not depend on the sentence in which the dependency
occurred. The symbols wg, wy, respectively, shall be regarded as indices to the lexicon
rather than indices to any particular sentence. That is why we have to distinguish the
events D(wg, wy) and d(w,) = wy — the latter refers to a sentence.

Example: the dependency probability of Ceskd republika, “Czech Republic”,
estimated as the relative frequency in PDT 1.0, is P(D("republika”, “Ceskd”)) = 2.2x10°®,
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which corresponds to 56 occurrences in the corpus. Another example: reprezentanti
republik, “representatives of the republics”, occurred exactly once and
P(D(“reprezentanti”, “republik”)) = 3.9x107.

Let the tree probability of the dependency structure (tree) 7, built upon the
underlying sentence S, be defined as follows:

Plris) = TP(D(a, () ,)

Recall the example sentence (8) (S = "Studenti maji o jazyky zdjem, fakulté vsak
chybi anglictinari.” lit. “Students have in languages interest, faculty but miss teachers-of-
English.”). Its dependency structure was T = "2,8,5,3,2,8,9,0,8,9,0”. Note that it does
not make sense to examine P(T) (without respect to S) since it would be probability of a
bare structure without any lexical cast. We are rather interested in P(T|S), the probability
of the structure given the sentence: P(T|S) = P(D("maji”, “studenti”)) x ... x P(D("#7,
") = 3.9x107 x 7.4x10° x 8.1x10° x 0 x 1.2x107° x 1.9x10™% x 0 x 7.3x10™ x
1.6x10° x 0 x 2.3x10% = 0. Unfortunately, there is a serious problem of data
sparseness: any tree is quite likely to contain a dependency not known from the training
data, which will thus cause P(T|S) to be zero. Zeman (1997) addresses this issue by
smoothing. We will come to it later in this chapter; for now, just to give an idea how
small the tree probabilities are, assume that each dependency in T has been seen at
least once (i.e. replace zero counts by ones, leave everything else). Then the tree
probability P(T|S) would be 8.2x107°.

Of course, the tree probability is closely related to the length of the sentence. If a
sentence were 30 words long — not as unusual indeed — and its tree contained
dependencies with the same mean dependency probability, the order of the tree
probability would be 107%. That does not matter though, because a parser always
constructs a tree for a known sentence and it only needs to compare probabilities of the
trees for that sentence — meaning all trees compared contain the same number of
words.

Another observation is that a tree probability distribution is always deficient: there
are sets of dependencies that are not valid dependency structures (like the cyclic set
“4,1,2,3") but receive a non-zero probability. We can restrict ourselves to valid trees, yet
most of them will be length-incompatible with our sentence. And the probabilities of the
rest will sum up to something far below one because much of the probability mass will go
to sentences with different lexical cast. All the probability leaks mentioned could
theoretically be patched by normalizing the probabilities so they sum up to one.
However, finding the normalizing factor would be expensive if not impossible, and we
claim that it is not necessary if we compare probabilities of trees for one sentence. We
only need to design the tree constructing procedure so that it outputs valid trees
compatible with the given input sentence.

Given the above definition of tree probability, the baseline parser tries to find a
tree with maximal probability given the input sentence:

DS (S) =arg ;nax(P(T|S )) =arg ;nax(f[ P(D(dT (wl. ), w; ))j
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The dependency probabilities P(D(w, wg)) can be estimated by relative

frequencies of the observations of such dependencies in the training data. The remaining
questions are:

1

What word information should be used to match words and dependencies in the
training and test data?

Which smoothing method should be applied to the probability distribution to avoid
zero probabilities of unknown dependencies?

Given the dependency probabilities for any dependency compatible with the input
sentence, how do we find the most probable dependency structure?

Zeman (1997) gives the following answers to the questions:

1

Word matching. The parser is not lexicalized; otherwise the data would prove
much sparser. Two words match if they are assigned the same morphological tag.
Two dependencies match if their governors match and their dependents match. To
give an example, consider the phrases evropské zemé (“European countries”) and
zelené myslenky (“green ideas”), both tagged as AAFP1----1A---- NNFP1----- A----,
An observation of any of these two phrases will be counted as an occurrence of
the same dependency, and the two dependencies will get the same probability,
despite the fact that the former is quite likely to appear in a newswire text while
the latter is semantically problematic and will hardly appear anywhere.

The usage of morphological tags implies yet another question: which
source of morphological information do we use? Human annotation, tagger output,
or ambiguous morphological analysis? Zeman (1997) uses the ambiguous MA —
anyway, there were not sufficient resources for disambiguated data in 1997. He
uses fraction frequencies: if he learns a dependency whose governor allows 3 tags
and the dependent allows 2 tags, he views the combinations of the tags as six
dependencies, each seen 1/6-times. Later as the parser needs to know the
probability of such dependency, it simply sums up the probabilities of the possible
combinations. In the following equations, C(D) denotes the number of occurrences
of the event D in training data, and C is the number of words of training data:
ol 1,11l 1) - 3, S

i=1...3

j=4..5

Smoothing. A small constant is added to each dependency probability. Formally
the probability P(D(w,, wg)) is linearly interpolated between the relative frequency
of the dependency, and the uniform probability of a dependency (1/number of
possible different dependencies in Universe). 1786 is the number of morphological
tags defined for Czech in 1997:

P(D(w, ,w, )= 0.99XM+ 0.01x 17162 - 0.99XM+ 3.1x10

Searching. A greedy algorithm was used. It was fast but it did not guarantee that
the optimal tree was found. In each round, the parser considered the set of
allowed dependencies. A dependency was allowed, if its governor had already
been added to the tree and the dependent had not. The tree was thus constructed
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ale =,
however

spolknou
swallow

cast dané
part taxes

Bohuzel
Unfortunately

SO

jednorazové velkou
whole amount at once large

Figure 6: BohuZel ale jednorazové, takze velkou Cast spolknou dané.
Unfortunately (we got the whole amount) at once so taxes will consume a big part of it.
[bad parse]

ale
however\\

Bohuzel jednorazové takze
Unfortunately whole amount at once so

./

, spolknou
swallow

cast dané
part taxes

velkou
large

Figure 7: BohuZel ale jednorazové, takze velkou cast spolknou dané.
Unfortunately (we got the whole amount) at once so taxes will consume a big part of it.
[correct parse]

from the root to the leaves. Among the allowed dependencies, the parser always
selected the most probable one and added it to the tree. After the n' round the
tree was complete.

According to Zeman (1997), the standard dependency accuracy of the model
described above is 31 % (measured on PDT 0.1). Figure 6 shows an example output of
the model of Zeman (1997). It is a rather unsuccessful (A = 40 %) attempt to analyze
the sentence

(11) Bohuzel ale jednorazové, takze velkou cCast spolknou dané. “Unfortunately

[we got the whole amount] at once so that a big part will be swallowed by
taxes.”

The correct parse of the sentence (11) is shown in Figure 7.
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To give an idea just how bad is the accuracy we finally show the accuracy of some
naive parsers not employing any model. This time the accuracy is counted on PDT 1.0
test set.

The most naive parser assigns a random dependency to each word, except of the
last word in the sentence, which always depends on the root. The dependencies of the
other words only observe the condition that a dependency structure cannot contain
cycles. We conducted five consecutive experiments with the random parser. The accuracy
was 10.55, 10.66, 10.64, 10.60, and 10.67, respectively. The mean accuracy was
10.62 % with a standard deviation of 0.04. We show some examples of random parses in
Figure 8.

Slightly better is a parser that assigns the zero (root) dependency to each word,
building an umbrella-style tree: 11.6 %.

In contrast, the improvement brought by chain-style trees is much more
significant. In a right-branching chain-style tree each word depends on the preceding

called _for . reforms
Arafat called for
reforms Arafat

Figure 8: Arafat called for reforms.
[random parses]

one. 24 % of such dependencies are correct on average. In a left-branching chain-style
tree each word depends on the next one, only the last word (usually punctuation)

Arafat called for reforms

Figure 9: Arafat called for reforms.
[umbrella parse]

depends on the root. The accuracy of left-branching chains is 28.6 %. Figure 10 shows
examples of chain trees.
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Arafat

\

called

N

for

N

reforms

reforms
Arafat
a) Right-branching chain-style tree b) Left-branching chain-style tree

Arafat

N

called

N

for

N

c) Reversed-one-style (R1) tree

reforms

Figure 10: Arafat called for reforms.
[chain parses]

Finally, the best performing naive method is the one producing reversed-one-
style (R1) trees (Figure 10c), i.e. right branching chains with the last word always
depending on the root. The R1 trees are 30 % accurate, which is only one per cent point
below the published accuracy of the parser of Zeman (1997).

The optimistic side of this degrading comparison is that such results can only be
improved. We show in the following chapters how including more linguistics into the
model increases the accuracy while still using the same statistical core.
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7 Model One

The first model proposed by this thesis is an improved version of Zeman (1997). The
statistical core remains the same but some constraints (most notably the projectivity
constraint) have been implemented. Also, the model has been augmented by some new
statistics, like fertility, word adjacency, and dependency direction. These add-ins were
first described in Haji¢ et al. (1998)7; we describe them in the following subsections.

The Model One was trained and tested on the PDT 0.5 data (see Chapter 5) and
its maximal accuracy (i.e. with the optimal setup) is 55 % (Haji¢ et al. (1998))8. Most of
the changes made on the way from the Baseline Model to the Model One are language
independent (we will explicitly point out the exceptions). In these terms the model
remains as much data-driven as possible.

7.1 Enforcing projectivity

Having seen the parse in Figure 6 we realize that there is absolutely no correlation
between the dependencies and the word order. Although Czech is usually classified as a
free word order language, its word order indeed is not that free. It may seem difficult to
pose a constraint on the word order as phrases of arbitrary length can be inserted almost
anywhere in the sentence. Nevertheless, there is a characteristic of a sentence that
combines the structure with the word order: it is the notion of projectivity.

Several mutually equivalent definitions of projectivity have been proposed. For
one of the early ones see Marcus (1965); for more details on projectivity and non-
projective constructions, refer to Chapter 12. One of the definitions follows.

A dependency A-B (where A is the governing node) is projective if and only if all
the words that are placed between A and B are included in the subtree of A. If the tree is
displayed so that the x-coordinates of nodes correspond to the word order (i.e. it is
displayed the way described in Section 4.2), each non-projective dependency will cross
at least one perpendicular from another node (it will not necessarily cross another
dependency.)

Projectivity is an important attribute of the relation between the word order and
the dependency structure. It does not depend on the length of the phrases but it still
allows us to distinguish “normal” sentence structures from the “wild” ones. We
deliberately do not call them “incorrect” because not all non-projective dependencies are
errors in Czech.®

A classical example of a non-projective sentence is the Czech

’ Most of the Model One is outcome of a research conducted before and during the
Workshop 98 organized by the Johns Hopkins University, Baltimore, MD, and funded by
the National Science Foundation.

8 Besides the PDT 0.5 development test data described in Chapter 5, there also were
evaluation test data of a similar size, that were first available to us after the work on
Model One had been finished. The accuracy measured on the evaluation test data was
56 %.

° Note however that non-projective constructions cannot be described by an ordinary
context-free grammar.
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nepodafrilo
was impossible

se ) otevrit
./ it to open

Soubor
File

Figure 11: Soubor se nepodafilo otevrit.
The file could not be opened.

(12) Soubor se nepodarilo otevrit. (Lit. “File it did-not-succeed to-open.”)
The Figure 11 shows that the dependency otevfit soubor “open a file” is non-
projective.

protoze
because

, zavisi
depends

doba vice —na
time more on

» .

pfenosu stavu nez
transmission state than
linky na
line on
telefonni rychlosti
phone speed
pfistroje
device

Figure 12: , protoZe doba prenosu vice zavisi na stavu telefonni linky neZ na rychlosti pfistroje
because the transmission time depends on the state of the carrier rather than on the
speed of the device

Another example is given in Haji¢ et al. (1998) (a sentence fragment):

(13) , protoze doba prenosu vice zavisi na stavu telefonni linky nez na rychlosti
pFistroje (Lit. “because time of-transmission more depends on state of-
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phone line than on speed of-device”) “because the transmission time
depends on the state of the carrier rather than on the speed of the device.”
(see Figure 12)

Nevertheless such dependencies are quite rare: Haji¢ et al. (1998) counted only
1.8 % of dependencies in PDT 0.5 being non-projective,® so it is useful to require that all
the dependencies generated by the parser be projective. This is particularly true until the
overall accuracy of the parser is less than 90 %. In Section 12 we will address the issue
of identifying and solving the cases of correct non-projective constructions.

Projectivity of a dependency structure can be enforced by either connecting at
each step only neighboring components (in certain configurations) in a forest, or simply
by proposing a new dependency and then checking whether it would be non-projective
(the latter is obviously less efficient but it is also less restrictive as to the order in which
the dependencies are constructed).

Note: One may argue that giving precedence to the projective trees is a language
dependent feature since there might be languages with a consistently non-projective
word order. We however claim that there is a significant number of languages with rare
or no non-projectivity at all, which makes this part of our parser reusable.

7.2 Reduction of the tag set

Some of the morphological information encoded in the tags has no influence on syntax.
For instance, all adjectives, verbs and adverbs have affirmative and negative forms
whereas the negative form is constructed completely regularly by simply inserting the
prefix ne- to the word beginning. The negative forms behave syntactically almost the
same way the affirmatives do.'! So negativeness has little or no influence on Czech
syntax.

Now we will show how using the negativeness information can damage the
statistical model. As an example, consider the phrase mél by “would have” or “should”. It
occurs 412 times in PDT, while its negative counterpart, nemé/ by “should not” occurs
only 45 times, i.e. nine times less! Since the Model One is not lexicalized, we should
convert the phrases to morphological tags: VpYS---XR-AA--- VC-X---3-------
corresponds to the affirmative case and VpYS---XR-NA--- VCc-X---3-------
corresponds to the negative case. The dependency between the former two tags occurred
1589 times in PDT, the latter occurred 192 times (eight times less). If we train the Model
One on the original tag set, the negative dependencies will be at a disadvantage when

10 About 79.4 % of all trees have all dependencies projective. The number of trees that
contain one or no crossing (non-projective) dependency is 93.8 % and the number of
trees with at most two such dependencies is 98.3 %. Recently we recounted the non-
projective constructions on the training portion of PDT 1.0. There were 23691 crossing
dependencies, i.e. 1.9 %. 56168 sentences (76.8 %) were all-projective.

1 The exception is phrases like nikdo nepfisel *nobody came” (lit. “nobody not-came”).
Unlike English, Czech requires a negative subject be followed by a negative predicate, so
*nikdo pFisel would be incorrect. However, most subjects are expressed by nouns that
are negativeness-neutral (Martin nepfisel “*Martin did-not-come” is OK) and thus
sentences with double negation are relatively rare. If they appear they can still be
covered by the more general statistics that do not distinguish negativeness.
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compared to the rest. During parsing, negative dependencies will not be built if there is
another option. An intuitive solution is to merge the tags VpYS---XR-AA--- and VpYS---
XR-NA--- into one, say VpYS---XR-XA---.

There are other options of reducing the information contained in the tags. The
following table summarizes all reduction types done in Model One.

Reduction type

Example tags
before

Example tags
after

Example
words before

Example
words after

discard NNMS1----- N NNMS1----- A nehezky “not- hezky “lovely”
negativeness of |AAMS1----1N AAMS1----1A lovely” délam “1-do”
nouns, VB-P---1P-NA VB-P---1P-AA nedélam “1-

adjectives, Dg------- IN Db don't”

verbs, and

adverbs

discard AAMS1----2A AAMS1----1A lepsi “better” dobry “good”
comparison Dg------- 3A Db drive “earlier” pravé “just”
degree of

adjectives and

adverbs

discard stylistic |AAMS1----1A--- |AAMS1----1A zelenej “green- |zeleny “green”
nuances 6 (colloquial)”

convert AUMS1M AAMS1----1A otcdv “father’'s” |zeleny “green”
possessive

adjectives to

normal

adjectives

discard tense of |AMMS1----- A AGMS1----- A dodélavsi délajici “doing”
deverbative “having-

adjectives finished-to-do”

convert special |AOYS AAYS1----- A svij “oneself’s” |zeleny “green”
adjectives to

normal

adjectives

convert short ACYS------ A AAYS1----- A star “old” stary “old”
forms of

adjectives to

normal

adjectives

convert A. AAMSX----1A zel. “gr.” zeleny “green”

abbreviated
adjectives to
normal
adjectives
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Reduction type

Example tags
before

Example tags
after

Example
words before

Example
words after

normalize forms | PHzZS3--3 PPzS3--3 mu “him” jemu “him”
of pronouns P5zS2--3------ P5zs2--3 ného “him” gen. |néj “*him” gen.

1

P7-X3 P6-X3 si “himself” dat. |sobé “himself”

dat.

convert PSIS4-S1 AAIS4----1A mdj “my” cely “whole”
possessive P8Ms4 AAMS4----1A svého jiného “other”
pronouns to “oneself's” acc. |acc.
adjectives
convert PDMS4 AAMS4----1A tohoto “this” jiného “other”
demonstrative acc. acc.
pronouns to
adjectives
convert “type L” |PLMP1 AAMP1----1A vsichni “all” dobri “good”
pronouns to
adjectives
convert relative | PIMS4 NNMS4----- A jehoZ “whose” zakaznika
pronouns to acc. “customer” acc.
nouns PE--1 NNMS1----- A coZ “what” pan “man”
convert relative |P9FS2 P5FS2--3 niz “whom” gen. | ni “her” gen.
pronouns after
prepositions to
personal
pronouns
convert relative |P1IS4FS3 AAIS4----1A jejiz “whose” cely “whole”
possessive acc. acc.
pronouns to
adjectives
convert PKM-1 NNMS1----- A kdo “who” pan “man”
substantive PQ--1 co “what”
pronouns to pPzM-1 nékdo
nouns “somebody”

Pz--1 néco

“something”

PWM-1 nikdo “nobody”

Pw--1 nic “nothing”
convert PZFS1 AAFS1----1A lecktera “all skutecna “real”
attributive sorts of”
pronouns to PWMP1 AAMP1----1A Zadni “no” dobri “good”

adjectives
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Reduction type

Example tags
before

Example tags
after

Example
words before

Example
words after

convert CIXP3--------- Cc1xp3 set “hundred” dvéma “two”
numerals 1 dat. dat.

convert c?--1 Cn-S1 kolik “how padesat “fifty”
interrogative many”

numerals to

cardinals

convert Ca--1 nékolik “a few”

indefinite

numerals to

cardinals

convert ordinals |Crmsl AAMS1----1A treti “third” soukromy

to adjectives “private”
convert CcwIs4 AAIS4----1A nejeden cely “whole”
indefinite “several”

numerals to

adjectives

convert generic |CdIs4 AAIS4----1A dvoji “twofold” |cely “whole”
numerals to

adjectives

convert chmpl AAMP1----1A jedni dobri “good”
numerals to

adjectives

convert Cv Db Ctyrikrat “four snad “perhaps”
multiplicative times”

numerals to

adverbs

convert Cu Db kolikrat “how jiz “already”
interrogative many times”

multiplicative

numerals to

adverbs

convert fractions | CyFS1 NNFS1----- A tretina “one skutecnost
to nouns third” “reality”
convert Roman |C} C= I 15"15"
numbers to

cardinals

convert Vi-S---2--A VB-S---2P-AA | rozuméj dostanes “you

imperatives to
present tense
indicative

“understand”

get"
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Reduction type | Example tags |Example tags |Example Example

before after words before |words after
discard tense of |vmxp------ A vexpP------ A semnuvse vérice
transgressives “having rubbed” |“believing”
discard RV--2 RR--2 ze “from” z “from”

vocalization of

prepositions

On the other hand we considered the information in punctuation tags insufficient,
as it is often necessary to distinguish between the final stop, the comma, and other
punctuation marks (for instance the parentheses). So we combined the punctuation tag
with the “lemma”. The tag “z:”, originally denoting any punctuation, remained
untouched only when denoting a colon. If it belonged to a comma, for instance, it
changed to “z,”; if it modified a period, it changed to “z.”. A final punctuation of the
sentence was further augmented by the letter K: z.K, z?K, Z!K...

Before the reduction (or more properly: the modification) of the tag set there
were 1279 tags present in the training part of PDT, out of 4288 possible. After the
reduction this number decreased to about 452 so the reduction rate was approximately
65 %.

The way of modifying tag set described above is the only language and theory
dependent component of the Model One. Haji¢, Collins, and Ramshaw in Haji¢ et al.
(1998) have tested a language independent alternative. They applied a clustering
algorithm (see e.g. Manning and Schitze (1999), Chapter 14) to the set of morphological
tags. We will further discuss modified tag sets in Section 8.4.

7.3 Lexicalization

Chapter 6 defines word matching on the basis of the m-tags assigned to the words. Such
model is called non-lexicalized. If it used lemmas or word forms to match words, it
would be lexicalized. Obviously there are lexically determined dependencies that could
be caught much easier in a lexicalized model. Some notorious examples would be verb
arguments, some preposition-noun pairs, or idiomatic phrases in general. The
expectations laid on parser lexicalization are further supported by the results reported for
English parsers: once they got lexicalized, their performance improved significantly
(about 10 % points — see also Charniak (1997)).

The lexicalized version of the Model One uses lemmas (automatically assigned by
a lemmatizer) for word matching and backs off to m-tags whenever there is no evidence
of a given word-on-word dependency. The backing off is done using linear interpolation
of the two probabilities, one estimated by the lexicalized model and the other estimated
by the m-tag model.

P =i (1= 2)P, 0,
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We tested both lemmas and word forms'? as the word matching attributes for the
lexicalized model. Lemmas are more ambiguous than word forms. On the other hand,
forms are much sparser than lemmas. In the electronic dictionary used for PDT
annotation (see Haji¢ (2004)) there are about 700K lemmas and about 20M forms, which
yields an average of enormous 28.6 forms per lemma. Such ratio naturally cannot be
rendered in real data but there are still more than twice as many forms as lemmas: the
PDT 0.3 training data contained 21647 lemmas and 58347 word forms, which yields a
ratio of 2.7 forms per lemma. Data sparseness is affected by the fact that most of the
extra words have been observed only once, as seen in the following table.

Occurrences in | Lemmas from |Lemmas from |Lemmas from |Word forms
PDT 0.3 train | dictionary lemmatizer human

>1000 24 25 24 19

>100 217 221 225 145

>50 528 530 528 364

>25 1207 1208 1207 879

>5 5165 5051 5071 5964

>0 23474 21711 21647 58347

The probability distribution of the lexical model (lemmas by a lemmatizer) on
PDT 0.3 training data:

Number of different Maximum possible (uniform) |Entropy |Perplexity
dependencies entropy
118827 16.86 15.22 38083

We tested a bunch of values of A. Unfortunately, we obtained the best accuracy
using A=0, which means the lexicalization did not help. The chart below displays
accuracies for various values of A.

12 Word forms have to be converted to lowercase, otherwise the statistics get split
unnecessarily.
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To figure out how much the problem was caused by data sparseness, we
considered all dependencies seen five times or less unknown (the number five has been
found empirically). To distinguish unknown dependencies from impossible ones, if a
lexical dependency was unknown, the A was set to 0. If the dependency was unseen at
all, the same setting as for dependencies seen six or more times was used: A=0.5. This
modification improved the accuracy to 54 %.
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Figure 13: Varying fertility of some m-tags: a preposition (one child in
96 %), the sentence root (two children in 76 %), a reflexive
pronoun (childless in 98 %) and a verb (no clear preference).

7.4 Modeling word fertility

Some words tend to have many dependents while some others are almost all the times
leaves. And some words usually have an exact number of children, for instance
prepositions have exactly one: a head of a noun phrase. The parser of Zeman (1997) did
not reflect this observation and if there was one preposition and several nouns in a
sentence, it usually hung all the nouns under the single preposition. To avoid this, the
Model One contains a part which knows how often a given tag is a leaf, how often it has
one child, how often two, and how often three or more. In Haji¢ et al. (1998) this feature
is called valency but fertility is probably a better term. The parser multiplies the
estimation of dependency probability by the probability that the governing node has n+1
children where n is the current number of children. Whenever run on tags coming from
the ambiguous morphological analysis, it computes the average fertility over all
ambiguous tags of the governing node.

7.5 Governor-dependent adjacency

Another way of taking the word order into account is to record separately dependencies
of different length. The length is the distance between the governor and the dependent in
the sentence, in words. If the nodes are adjacent, the length of the dependency is 1. The
Model One sorts dependencies into two classes: adjacent and non-adjacent.
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For example the dependency D(NNFS2----- A----, AAFS2----1A----) (a feminine
singular genitive adjective depending on a feminine singular genitive noun, e.g.
madarské mény, “Hungarian currency”) prefers adjacent nodes. In PDT 1.0cl it occurred
153x with adjacent nodes and only 8x with non-adjacent ones. Collecting distance
statistics should prevent the parser from attaching arbitrarily distant adjectives to a
noun.

There are dependencies having the opposite preference as well, although that
could be caused by the fact that their tags appear rarely next to each other in general
(whether or not they depend one on the other). An example is D(NNNP2----- A----, C=---
---------- ) (a cardinal number depending on a neuter plural genitive noun, e.g. 17 let 17
years”). In the same portion of PDT this dependency occurred 27x with distant nodes
and 6x with adjacent ones.

7.6 Dependency direction

Even more important than adjacency is the direction of the dependency. The Model One
records separately dependencies going left-to-right (the governor precedes the
dependent in the sentence), and those going right-to-left (the dependent precedes the
governor).

The typical right-branching dependencies include nouns on prepositions (for
instance v ¢asti “in part”; the corresponding dependency D(RR--6---------- , NNFS6-------
---) led 245 times left to right, zero times right to left). Similar is the case of
subordinating conjunctions (for instance Ze jde “that he goes”; the corresponding

dependency D(J,------------- VB-S---3P-AA---) led 101 times left to right, zero times right
to left). Our last example is the infinitive depending on a modal verb: nemdzZe zvefejnit
“she cannot publish”; the corresponding dependency D(VB-S---3P-AA--- Vf-------- A----)

led 168 times left to right and 11 times right to left.

A typical left-branching dependency is a noun governing an adjective, both
agreeing in gender, number and case: ruské viady “Russian government”. D(NNFS2-----
A---- AAFS2----1A----) went 161x right to left, never left to right.

7.7 Proportional training

This section discusses an issue that we hoped might help the parser in case there is no
tagger available and the morphological tags are not disambiguated.

As we mentioned before, the ambiguous tag combinations over an edge get a
uniform distribution of probabilities. However, some of them are more probable than the
other. The model may reflect this because particular tag combinations may have been
present in various edges. But this is only an indirect binding and we wanted to emphasize
the differences between particular tags, some of them being very frequent while the
others were hardly to see at all.

So we built a small unigram probability distribution for the tags and then, training
the tree structures, instead of increasing the frequency of each tag combination by 1/n
we weighted the frequency by the probability of the tags in the given combination. Of
course, it was normalized so that the values for all combinations in one edge summed
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to 1. However, this feature did not improve the results at all, they were even worse than
before. So we omitted the proportional training in ongoing research.

7.8 Searching for the best tree

Unlike the baseline model, which used a greedy algorithm to approximate the optimal
tree, the Model One employed a Viterbi-inspired beam search. It was a compromise
between the greedy approach that did not guarantee it would find the optimum, and the
“British Museum approach” that would go through the exponential space of all possible
trees and... never end.

The beam searching method records N best partial trees after each round (N is
the width of the beam). In the next round the greedy algorithm would find the most
probable dependency and add it to the tree. The beam search, on the other hand, finds N
or more best dependencies and creates N best new partial trees. It may gradually add all
the new dependencies to the same tree from the previous round and discard the other
trees. Or it may add each dependency to a different tree, or it can do any mixture of the
two extremes. In fact, the algorithm finds N best new dependencies and gradually adds
each of them to each of the trees from the previous round, creating NxN new trees. It
discards duplicates’®, keeps the N best new trees and removes the other. Should there

v

Figure 14: Search with a beam width of 3. The vertices represent states of the
analysis and the corresponding partial trees.

13 Duplicates are frequent. Consider this example: Round i, tree X is simultaneously
extended with dependencies a (the best one in terms of probability) and b (the second
best). Two new trees X, and X, arise and advance to the next round. Round i+1, tree X,
is extended with b — of course, if it was the second best in last round, it becomes the
best after a has been added. A new tree X, arises. Similarly, X, is extended with a to
create Xps. However, X, and X,, denote the same tree, so one of them must be
removed.
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be less than N trees after discarding duplicates, more than N new dependencies can be
considered.
The effect of the beam search on the parsing accuracy is discussed in Section 7.9.

7.9 Evaluation of Model One

7.9.1 Contribution of particular features

Some of the features of Model One immediately and significantly improve the results
while some others work only when combined together. For this reason it is not always
possible to specify the effect of a feature in terms of one figure. We rather present a
table of feature combinations and the achieved accuracy levels. The baseline result
(repeated from Chapter 6) comes from PDT 0.1 test set (100 sentences), the rest from
PDT 0.2 test set (199 sentences).
Legend:
The column labeled N shows the number of correctly assigned dependencies, out
of the 3036 total. The column labeled A shows the accuracy rate in %.
pri Enforced projectivity of all dependencies.
vit The Viterbi 5-best search was used instead of a greedy algorithm (searching for a
tree which has the highest possible product of probabilities of its edges).
red The reduced set of morphological tags was used both for training and parsing.
fer  The fertility model was used.
prt Proportional training was used.
adj Adjacency (distance). A dependency is identified by the m-tags of the nodes and
by the information whether the two words are or are not next to each other in the
sentence.
dir Direction. A dependency is identified by the m-tags of the nodes and by the
information whether governor precedes dependent in the sentence, or vice versa.
Note that not all possible feature combinations are included in the table.

Model N A

baseline N/A |31.00
prj+prt 1226 40.38
prj+fer+prt 1235[40.68
pri 1237/40.74
pri+vit+prt 1241|40.88
prj+red+fer 1241 [40.88
pri+red+prt 1242 (40.91
pri+vit+red+prt 1253 (41.27
prj+red 1256 [41.37
pri+vit+red 1256 [41.37
prj+red+fer+prt 1258 |41.44
pri+vit 1259 41.47
pri+vit+fer 1271]41.86
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pri+vit+fer+prt 1313[43.25
prj+vit+red+fer 1360[44.80
prj+vit+red+fer+prt 136144.83
pri+vit+red+prt+fer+adj 1458 [ 48.02
prj+vit+red+fer+adj 1472148.48
pri+vit+red+prt+fer+dir 1492 (49.14
pri+vit+red+fer+dir 1505[49.57
prj+vit+red+prt+fer+adj+dir| 1599 |52.67
pri+vit+red+fer+adj+dir 1620|53.36

The last row of the table shows the best accuracy of the Model One on PDT 0.2. The
same figure on PDT 0.5 is 51.5 % (d-test), and 54.1 % (e-test). Unfortunately the
above table was filled at the time when only version 0.2 of data was available.

An interesting perspective of the results was achieved by evaluating separately
two parts of the PDT 0.5 test data. The training set and both the test sets contained texts
from three different sources: from daily newspapers (Lidové noviny and Mlada fronta
Dnes), from a business weekly ((feskomoravsky Profit), and from a scientific magazine
(Vesmir). It turned out to be much more difficult to parse the last one (mainly because of
the sentence length) than the former two. In the following table, the evaluation of the
scientific magazine is labeled “scientific”, whereas the data from the two other sources
bear the label “normal”.

D-test E-test
normal scientific all normal scientific all
54 % 48 % 51 % 57 % 51 % 54 %

The Model One parser was implemented in C++ and it employed disk-mapped B-trees to
record the huge dependency statistics. It was being run on a 686 Intel equipped with
Linux. The processing of the 3697 sentences took about 3 !/, hours, i.e. an average
sentence took 3.4 seconds. Training on PDT 0.5 data (19126 sentences) took about 12
minutes (38 ms per sentence).

The accuracy further improves by 1 % if the beam width changes from 5 to 50.
This of course lengthens the run time by a factor of 10 (34 seconds a sentence, 35 hours
whole test data). The 55 % accuracy was the best we were able to achieve with the
Model One.

7.9.2 Different sources of morphology

The baseline parser and all the parsers evaluated in Section 7.9.1 worked with sets of
ambiguous m-tags that have been assigned to each word by the morphological analyzer
(MA). This is not the only option of where to get the necessary morphological
information. The other possibility is to employ a tagger and to use its output. Both
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sources are noisy and can cause parsing errors. MA almost'* always provides the correct
annotation but the correct one is usually accompanied by a number of bad ones without
any clue on which to prefer. A tagger on the other hand provides only one annotation but
it is not always correct. There is a legitimate question, which of the two noises hurts the
syntactic analysis more.

First experiments to answer this question for the Model One were run on PDT 0.3
in summer 1998 (Haji¢ et al. (1998)). Different sources of morphology were used for
training and testing: dictionary, tagger, and human. Human manual annotation could not
be used for testing, as it would not be available in a real use of the parser (and the test
data did not contain human annotation anyway). However, it may have proven useful to
train on human morphology even when parsing with a tagger or dictionary.

Training Testing Accuracy
13481 sentences | 3697 sentences

dictionary dictionary 51.42
human human (51)
human dictionary 52.59
human tagger 53.44
dictionary tagger 53.72
tagger tagger 54.08

Since the test data are not annotated manually, we evaluated the human-human
combination on a small set of 124 sentences cut off the training data (of course, this
portion was not used to train the parsers involved in the experiment). Surprisingly, the
human-human combination was by more than 3 percent points worse than the tagger-
tagger combination. This might have been an effect of overtraining: the parser training
dealt with some rare constructions that caused some errors in the average test data.
Such strange constructions were however hidden by the tagger since it was not able to
recognize them.

The better performance of the tagger-tagger combination over the human-tagger
one can be explained more easily. The parser probably learned how to deal with the
errors the tagger does. The similarity of the training and the test data turned out to be
much more important than the accuracy of its morphological annotation (when the
tagger accuracy is at least 92 %, which is the case here).

The following table shows the differences in probability distributions for the three
morphology sources, measured on PDT 0.3 training data.

Number of different | Maximum possible Entropy Perplexity
dependencies (uniform) entropy
human 16163 13.98 11.30 2523
tagger 17391 14.09 11.42 2734
dictionary 82525 16.33 12.65 6442

14 Of course the coverage of the dictionary is not 100 %.
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8 Model Two

In the beginning of 2002 the parser was reimplemented in Perl. We call this new
implementation “Model Two”. Some features of Model One have been revised in Model
Two and many new features have been added.

Model Two was being developed in the PDT 1.0 era. It was thus trained and tested
mostly on the whole treebank, with just a few exceptions.

The standard dependency accuracy of the Model Two is 74.7 %, compared with
51 % of the Model One. The following sections describe important features of the model,
including their contribution to the accuracy. Section 8.13 gives a more detailed
evaluation; extended evaluation results are given in Chapter 13.

We usually evaluate contribution of parser modifications to accuracy by saying
what would the accuracy be just without the particular feature — as if that modification
was the last one in the row. Be aware that if two or more features are turned off the drop
in accuracy may be more or less than the sum of their contributions. Many features are
not mutually independent and influence each other.

8.1 Frequency or conditional probability

The baseline model and the Model One rated dependencies according to their
unconditioned probability, estimated from their relative frequency. Since the frequency
was relative to the total number of dependencies in training data, all counts were simply
divided by the same constant and most of the comparisons®® could have been done using
just the absolute frequencies.

There is another possible approach to ranking the dependencies. We can condition
the probabilities with the depending node, i.e., the absolute frequency of the dependency
will be divided by the frequency of the dependent. No wonder that such conception gives
different results. If absolute frequencies were used instead of conditional probabilities,
the accuracy would drop from 74.7 to 72.0 %.

8.2 Component-based building

The Model Two uses a new algorithm for the tree building. Recall the algorithm of Model
One and of the baseline model (see Chapter 6). The tree was constructed from the root
to the leaves. In each round the parser selected the most probable dependency from the
set of allowable dependencies; that set constrained the resulting graphs to trees. A
dependency was allowed, if its governor had already been added to the tree and the
dependent had not.

The new algorithm builds the tree in a bottom-up manner by connecting
components. In the beginning, there is a forest of n components, each containing exactly
one word. Two components are connected with a dependency each round, and the

15 If probabilities of two dependencies are to be compared, their (absolute) frequencies
can be compared instead, with the same results. However, when comparing probabilities
of trees, the dependency probabilities get multiplied and the comparison of the products
need not be equivalent to the comparison of products of frequencies.
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studoval

studied
Na ekonomii
At economy

univerzitach
universities

nékolika americkych
a few American

Figure 15: Na nékolika americkych univerzitach studoval ekonomii.
He studied economy at a few American universities.

number of components decreases by one. A dependency is allowed if its dependent is a
root of a component (but not the global root) and its governor is a member of another
component. Consider the sentence
(14) Na nékolika americkych univerzitach studoval ekonomii. “At a few American
universities he studied economy.”

There are 7 words and 49 possible dependencies. !* Suppose the following

dependency frequencies have been observed in the training data.'’

Gl/D-> na nékolika |americkych | univerzitach | studoval |ekonomii |.
# 3 0 0 0 260 31 1526
na X 0 0 157 0 174 0
nékolika 0 X 1 2 0 0 0
americkych |0 0 X 0 0 0 0
univerzitach |18 20 259 X 5 1 0
studoval 57 0 0 8 X 153 0
ekonomii 36 0 1 1 11 X 0

0 0 0 0 0 0 X

When the old top-down algorithm was used the tree would be built in the following

order:

18 Each of the 7 words can depend on any of the 6 remaining words or directly on the

root.

17 The table contains real counts of m-tag dependencies from PDT 1.0c1.
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Figure 16: Allowed dependencies for top-down (left) and component-based (right) building.

Round Governor Dependent Frequency
1. # . 1526

2. # studoval 260

3. studoval ekonomii 153

4. studoval na 57

5. na univerzitach 157

6. univerzitach americkych 259

7. univerzitach nékolika 20

The component-based algorithm changes the order to the following:

Round Governor Dependent Frequency
1. # . 1526

2. # studoval 260

3. univerzitach americkych 259

4, na univerzitach 157

5. studoval ekonomii 153

6. studoval na 57

7. univerzitach nékolika 20

Figure 16 shows the allowed dependencies for both algorithms after the 5™ round.

In our example both algorithms resulted in the same tree. Of course, this will not
always be the case. For instance, using the top-down method, the dependency
D(ekonomii, americkych) became allowed two rounds before D(univerzitach, americkych)
did. If it was seen just 58 times in training data, it would win over its much more
frequent competitor.

Zeman (1997) reports that there is no significant difference between the two
approaches in the terms of accuracy: the top-down approach achieved 31 % while the
component-based approach achieved 32 %. We do not repeat the comparison for Model
Two because of two reasons:

¢ Non-trivial changes of the code would be necessary.
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e The difference (if there is any) would hardly be in favor of the top-down
approach. If projectivity is watched, the top-down approach will only allow a
subset of dependencies allowed by the component-based approach in the
same parsing state.

8.3 Searching for the best tree

The beam search of the Model One has been reimplemented in Model Two. However, the
results were disappointing. The search procedure needs to employ some tree evaluation
scheme, and it turned out that tree probability (product of dependency probabilities)
could not serve that role. Perhaps the assumption of statistical independence of
dependency probabilities was too simplistic here. Anyway, we counted that in most cases
the correct tree had lower probability assigned by our model than the tree output by the
parser.

Number of trees
P(correct tree) > P(parser output) 1988
P(correct tree) = P(parser output) 1284
P(correct tree) < P(parser output) 4047
Total 7319

We would have to invent a better weighing function if we wanted the beam search to
help. The tree probability alone cannot reflect all other features and constraints the
parser applies when building the tree.

The final version of the Model Two does not use the beam search at a global level.
It enables backtracking if the first-proposed tree meets a condition but this capability is
used with moderation (see Sections 8.6.2, 8.7, and 8.12.2). We also thought about a
zero filter that would try to block trees containing a dependency unknown from the
training data (i.e., a dependency with zero probability). However, it would not work for
the same reason the beam search did not. Unknown dependencies are simply not an
important cause of errors. A simple experiment would show that among the 126030 test
dependencies there were only 778 unknown dependencies in the parser output and 530
unknown dependencies in the human annotation.

8.4 Reduction of the tag set

The set of m-tags was further reduced to something very similar to the tag set used by
Collins in Haji¢ et al. (1998) (see Chapter 1, Section Alternative Part-of-Speech Tagsets).
Collins tested several reduced tag sets and reported that “the most successful alternative
of this sort was a two-letter tag whose first letter was always the primary POS, and
whose second letter was the case field if the primary POS was one that displays case,
while otherwise the second letter was the detailed POS. (The detailed POS was used for
the primary POS values D, J, V, and X; the case field was used for the other possible
primary POS values.) This two-letter scheme resulted in 58 tags. Even richer tag sets
that also included the person, gender, and number values were tested without yielding
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any further improvement, presumably because the damage from sparse data problems
outweighed the value of the additional information present.”

So if the adjective nejnepresnéjsi “the least precise” had its tag reduced from
AAFS4----3N---- to AAFS4----1A----, it now shrank to just A4.

The reduction scheme of the Model Two slightly differs from the one applied by
Collins. Namely it continues to encode punctuation directly in its m-tag, and it converts
ordinal numerals to adjectives (so, prvni “first” is annotated Al instead of C1).

If Model-One-style reduction was used the accuracy would drop from 74.7 to
71.0 %. If no reduction scheme were applied the accuracy would further drop to 70.1 %.

8.5 Lexicalization and selective lexicalization

In Section 7.3 we discussed the surprising fact that lexicalization did not help the Model
One. The same trouble has been faced with the Model Two. The following table compares
accuracy for three different levels of lexicalization (A=0 means no lexicalization, A=1
means strictly lexical model without backing off to m-tags).

A accuracy
0 73.9
0.734375|74.7
1 54.9

Empirically we found the optimal value of A to be 0.734375. It is doubtful whether there
is a better back-off scheme that will enable better results.

We attempted to analyze the situation in the following experiment. Each time the
parser decided for a dependency we searched the sentence for another governor
candidate with the same m-tag. Then we had a depending node with two governor
candidates: the selected candidate, and the challenging candidate. Tag-tag frequencies
were the same for both candidates so if the challenging candidate should win it would
have to show higher lexical frequency. The results? We found over 80000 different triples
(dependent - selected candidate - challenging candidate), among which only about one
tenth showed higher lexical frequency for the challenging candidate. Furthermore, only in
some 200 cases this meant accuracy improvement, otherwise the challenging
dependency was wrong. (The high percentage of wrong challenges may have been
caused by the fact that most Model One and Model Two constraints were not reflected in
the compared frequencies; but if the constraints were set in force, the number of
improving challenges would not be any higher.)

Some examples of improving challenges:

Challenge | Dep. Freq. | Selected Dep. F. |GovTag | DepTag | Freq.
mohly by 106 | byvaly by 0|vp vby 5540
“should” <particle> “were” <particle>

hlediska z “from” 96 | sdruzeni z “from” 0|N2 RZ 1108
“aspect” “association”
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Challenge | Dep. Freq. | Selected Dep. GovTag | DepTag | Freq.

mél “had” v iin” 97 | predstavil v 'in” Vp RV 6870
“introduced”

jednani s “with” 71| statd s “with” N2 RS 759

“negotiation” “states”

rozhodnuti | o “about” 51 | Feditele o “about” N2 RO 807

“decision” “director”

ma “has” pravo 47 | vyhyba pravo VB N4 10577

“right” “shuns” “right”

fakt “fact” Ze “that” 47 | vétsina Ze “that” N1 JZe 396

“majority”

Well, if word-on-word frequencies did not help, how about querying word-tag or
tag-word? One might expect those would be less sparse and more helpful. We redid the

previous experiment for both the half-lexicalized models. For the word-tag model
(governing node lexicalized) we found 83120 triples, out of which 22839 preferred the
challenging node, 812 had improvement potential (challenging dependency correct), and
368 both preferred the challenging node and that node was the correct governor.

Some examples of improving challenges:

Challenge |DepTag |Freq. |Selected DepTag GovTag | DepTag | Freq.

ma “has” N4 1067 | vyhyba N4 VB N4 10577
“shuns”

mdZe “can” |vf 790 | nepopiraji  |vf VB vf 6720
“they do not
deny”

musi “must” |N1 325 |stard N1 VB N1 21387
“cares” or
“old”

ma “has” Pl 266 | financuje Pl VB Pl 6114
“finances”

chce “wants” | vf 255 | zvazuje vf VB vf 6720
“thinks
about”

ministerstva |N2 246 | obrany N2 N2 N2 16626

“ministry” “defense”

zakona “law” | A2 192 | dogmatu A2 N2 A2 38473
“dogma”

Beware that the cases where lexical frequencies have the most improving

potential frequently involve verbs. That is because verbs often subcategorize for
particular classes of dependents. In fact, the word-tag dependencies are parts of
subcategorization frames. So even when the present results do not support the idea of
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modeling the word-tag dependencies, there is still a hope that a fancier approach using
subcategorization could help. We will address this issue later in Section 8.6.

The tag-word model (dependent node lexicalized) differs in that both
dependencies (the selected and the challenging one) can be correct; nevertheless,
among the 76637 triples we found, none had such property. 25204 triples preferred the
challenging node, 2232 had improvement potential (challenging dependency correct,
selected dependency wrong), and 839 both preferred the challenging node and that node
was the correct dependent. This model also differed in that some triples occurred more
than once (but this is no real sensation: there were just about two dozens of repeated
triples).

The improving challenges include:

GovTag Challenge |Freq. |Selected Freq. |DepTag |Freq. |Governor
example
Vp se “with” or| 6979 s “with” 1217 |Rs 1514 | odchazela
<reflexive “she left”
particle>
VB to “it” 1361 | vy “you” 14| pP1 6114 | neznate
“don't
know”
Vp vCera 1194 | navzdy 1|Db 10026 | oznacil
“yesterday” “forever” “marked”
Vp ktery 1073 | jeji “her” 0|rP1 4512 | tlumocil
“which” “conveyed”
N1 tato “this” 492 | ktera 6|P1 4586 | spole¢nost
“which” “company”
C= 17 23|54 5|c= 203732

A look at the last table does not promise much about the tag-word model.
However it points out some frequent words whose lexical potential can help. For
instance, the word vcera “yesterday” almost invariantly depends on past-tense verbs (m-
tag vp, in contrast to VB, Vs, or V). For another instance, the wh-pronoun ktery “which”
modifies verbs more frequently than nouns. Other pronouns like jeji “her” can be
indistinguishable from wh-pronouns by their m-tag (both have P1l), yet they hang on
nouns very often.

Fortunately there is an alternative to the full lexicalization. It makes use of the
lexical syntactic preferences of some words while not making the data sparseness
problem much worse. In fact, it is a primitive usage of subcategorization. We call it
selective lexicalization.

The lexicalized model described above took into account the lexical information for
both ends of a dependency, for the governor as well as for the dependent, and it did so
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for each and every pair of words in the corpus. There is evidence!® that in many cases
only one member of the dependency (usually the governor — verb, possibly also
adjective or noun) is determined lexically, while the morphological class determines the
other. In other cases, the dependent node has to be lexicalized as well (prepositions,
subordinating conjunctions like Ze “that” etc.).

In our experiments we lexicalized all prepositions by replacing the case marker in
their tag by their lemma. Thus, the R3 tag for k “to” (meaning that it is a preposition
requiring a noun in dative) became Rk.!° Similarly we lexicalized tags of subordinating
conjunctions (3, for Ze “that” became JZe)?°, reflexive particles (P4 for se became Pse),
pronouns, and some adverbs.

If selective lexicalization of subordinating conjunctions were turned off the
accuracy would drop from 74.7 to 74.3 %. If selective lexicalization of prepositions were
turned off the accuracy would drop from 74.7 to 74.5 %.

A rather complicated issue is pronouns. On one hand their original m-tags are
quite complex, encode every subtle property of each word form (but not lemma),
resulting in tags for just one or two words. Thus it seems appropriate to apply some tag
reduction scheme. On the other hand, even before reduction the tags do not cover
lemmas, which often seem to bear useful information. The simplest observation is that
there are substantive and attributive pronouns. While the former (personal pronouns,
e.g.) behave more like nouns, even if usually unmodified, the latter (possessive
pronouns, e.g.) resemble rather adjectives. Across those categories there are wh-
pronouns that are used in relative clauses and have different syntactic preferences. We
tried to design new parts-of-speech, substantive pronoun and attributive pronoun,
according to the sub-part-of-speech in their original m-tag. Unfortunately, the accuracy
of parsing with such tags was worse than before. In contrast to that, selective
lexicalization using lemmas helps.?! For instance, the word kterou “which”, tagged as P4
(a pronoun in accusative), would be now tagged P4ktery.

If selective lexicalization of pronouns were turned off the accuracy would drop
from 74.7 to 74.3 %.

Adverbs are similar to pronouns in that they need to be further pruned before
lexicalizing some of them. All adverbs form an open class likely to fall into data
sparseness problems.?? Some adverbs indeed have special syntactic preferences (for
example, we already mentioned vcéera “yesterday” that naturally prefers past verbs over

18 Documented in subcategorization dictionaries.

19 The number of prepositional tags rose from 8 to 77.

20 1n fact the parser uses a more language-dependent variant, it only lexicalizes some
subordinating conjunctions, namely Ze “that”, aby “so that”, and zda “whether”. It would
be nice to avoid such lists and lexicalize any word of the given language that is m-tagged
with J,. But for Czech we found that it damaged accuracy.

21 glightly better results can be obtained if only some selected pronouns are lexicalized
but the improvement is almost invisible and any list of Czech pronouns makes the parser
more language dependent. So we kept lexicalizing all pronouns. It is possible that the
“good” pronouns could be captured using the pronoun class encoded in their tags (e.g.,
demonstrative pronouns) but we have not investigated that.

22 There are 2437 unique adverb forms in PDT 1.0 training data.
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present verbs). In contrast, many adverbs, mostly those derived from adjectives,
describe a way of doing something and are syntactically similar to each other (e.g.
syntakticky “syntactically”). The m-tags distinguish between two types of adverbs, those
able to form degrees of comparison and negation (Dg), and those that do not (Db). The
latter roughly correspond to adverbs not derived from adjectives but unfortunately they
do not include some interesting words with special behavior, like vice “more”. So we
lexicalized just all adverbs that had been seen 100 or more times in the training data.??
To give some examples for Czech: the nine most frequent adverbs are the following (all
tagged Db):

Rank |Czech English Occurrences
1| tak so 2101
2 | jak how 1638
3|uz already 1611
4 | také also 1566
5 |jiz already 1344
6 | jesté still 1314
7 |véera yesterday 1293
8 | tedy thus 990
9 | pak then 952

The five most frequent Dg-adverbs are the following:

Rank |Czech English Occurrences
10 | vice more 946
26 | stejné same 448
36 | zfejmé perhaps 377
41 | casto often 357
46 | méné less 335

The evaluation showed that such selection of adverbs is quite helpful.

If selective lexicalization of adverbs were turned off the accuracy would drop from
74.7 to 74.2 %.

We must be careful when applying the described technique to governing verbs.
The number of different verbs is too big to replace their tags by their lemmas, so we
cannot simply transit from the tag VB for verbs like give to a “lexicalized tag” vgive —
the tag dependency probabilities would lose their ability to smooth the model. Rather we
sum up the lexical (vgive) and non-lexical (vB) probabilities. This is a violation of
probability laws and the resulting weight is indeed not a true probability but the real

23 There are 140 such adverbs.
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effect is positive.?* In fact, verb-driven dependencies are honored as their relative
frequency from the corpus is counted more than once. This is exactly what we would like
to do with subcategorized dependencies. And verb-driven dependencies not learned from
the corpus get a weight equal to their original non-lexical probability.

Selective lexicalization has also been applied to the verb byt “to be”. Its tag is
always augmented with its form (not lemma) from the sentence, possible negative prefix
and gender ending stripped. This allows the model to distinguish constructions like bude
délat (“he will do”, do is governor) from constructions like miZe délat (*he can do”, can
is governor). It is no more necessary to include “subcategorization frames” for to be (and
it is even undesirable because this verb has too many different functions in Czech: as an
auxiliary verb, as a part of a nominal predicate, as a full-meaning verb etc.)

If selective lexicalization of byt were turned off the accuracy would drop from 74.7
to 73.2 %.

If whole selective lexicalization were turned off the accuracy would drop from 74.7
to 72.2 %.

8.6 Subcategorization

8.6.1 Introduction

Some words (especially verbs) tend to attach complements of a certain category. Such
lexical syntactic preference is called subcategorization (or valency). The required
modifiers of the given verb are called arguments, as opposed to additional — and
optional — material, called adjuncts.?®> We call the set of arguments of a word its
subcategorization (valency) frame.

For instance, the verb to give requires two noun phrases as arguments®®, the
thing given and the recipient: to give somebody something. While some other verbs, e.g.
to sunbathe, require no arguments (but subject) at all, they are intransitive. Verbs of
both types can however attach optional adjuncts — such as the specification of time and
place of the action (he sunbathed yesterday in Atlantic City; he gave her the book
yesterday in Atlantic City).

Czech verbs subcategorize for part-of-speech, preposition, and morphological
case of nouns (the latter is not present in English). Typical Czech argument classes
include N4, N3, N2, N7 (nhouns in a particular case — 1 indicates nominative, 2 genitive, 3
dative, 4 accusative, 5 vocative, 6 local, 7 instrumental), Rn(prep) (prepositions, n
indicates case of the subordinated noun phrase, prep is the lemma of the preposition),
JSs(conj) (subordinated clauses headed by the conj conjunction — “that” would be an

24 The effect was significant in the context of the state the parser was in when the
feature was added. For the final version of Model Two, the improvement is still greater
than zero but it is no more significant.

%> The argument/adjunct (or obligatory/optional) distinction is not equal to the distinction
between inner participants and free modifiers, as defined in FGD. See also Section 8.6.5.
%6 In contrast to common linguistic interpretation, we exclude the subject when naming
arguments of a verb. Czech is a pro-drop language, which means that surface
representations of sentences often miss their subjects. Therefore it is very difficult to
capture subjects automatically.
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example), VINF (infinitive), S (relative clause or direct speech), D (adverb). Besides
verbs, some nouns, adjectives, and adverbs have subcategorization frames of their own:
zajem o néco “interest in something” R4(0); chudy na vapnik “poor in calcium” R4(na);

blizko né¢emu “close to something” N3.
Some example frames follow:

Frame Description Example

example

N4 direct object in accusative nese zavazadlo “he carries

luggage”

N4 N3 bitransitive — accusative and dative dal bratrovi knihu “he gave a book
objects to his brother”

seZ’ N2 reflexive particle se and a genitive boji se mé “he is frightened of me”
object

VINF infinitive musi odejit “he has to leave”

R4 (V) PP with the preposition v “in” véri v Boha “he believes in God”
governing an NP in accusative

1s(zZe) clause starting with Ze “that” tvrdil, Ze to vi “he said he knew it”

Intuitively, a parser should profit from the knowledge of subcategorization frames,
to be able to attach the right arguments to verbs. A statistical dependency model records
the preferences from the point of view of the dependent. It knows which sort of governor
a word wants to depend on more than on the others. A subcategorization model, on the
other hand, views the problem from the perspective of the governor. It knows which sort
of dependent this node requires, and possibly which dependent is incompatible with the
others already attached, although the dependent itself wants to attach here. And even if
the statistical dependency model is not lexicalized, the subcategorization is determined
lexically: a subcategorization frame is a property of a lemma.?®

A list of subcategorization frames can be obtained from a machine-readable
subcategorization dictionary. See Chapter 9 for a discussion of how to acquire a list of
subcategorization frames for a given language.

Selective lexicalization of verbs (see Section 8.5) is the first step towards using
subcategorization information. It makes use of the head-lexical information; nevertheless
it does not consider the context of the rest of the frame. There is still just one pair of
words considered, it only differs from the other dependency in word matching: the
governor is matched according to its lemma, the dependent according to its m-tag. As
mentioned in Section 8.5, the best results were obtained summing up the frequency of

27 A linguist would normally consider the reflexive particle se a part of the lemma of the
verb: bat se. As we work on a level where each word has its own node, we assume a
dependency between the verb lemma and the particle. Such dependency has common
properties with subcategorization and is included in our frames.

28 For further discussion why subcategorization information is important for a natural
language parser, see Carroll and Minnen (1998), Carroll and Rooth (1998), and Zeman
(2002).
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the lemma-tag dependency with the tag-tag dependency for verbs. Although the final
evaluation of Model Two revealed that the contribution of the selective lexicalization of
verbs to the overall accuracy is almost invisible, it indeed has some influence on the
dependents of verbs. If we evaluated just the accuracy of attaching nodes whom the
manual annotation assigned one of the s-tags Sb, Obj, AuxT, Pnom, Adv (all these are
typical verb dependents), we would record an improvement from 84.6 to 84.9 %.

The selective lexicalization does not need any subcategorization dictionary. If a
machine-readable list of frames is available, further techniques can be explored to assist
the parsing procedure. The distinction between arguments and adjuncts can be
employed.

We use a dictionary generated by a system similar to the one described by Sarkar
and Zeman (2000). The dictionary is a list of verb-frame pairs (together with frame
frequencies) where one verb may occur in more than one pair. A frame is a list of frame
members such as N4, R3(proti) etc. The order of the frame members is not significant.
They are sorted alphabetically to ensure that two instances encountered with different
word orders are recognized as being the same frame.

The following table shows all classes of verb children that are predominantly (i.e.
more than 50 %) arguments (measured on PDT 1.0 training data, with a
subcategorization dictionary automatically acquired from PDT 0.5 by Sarkar and Zeman
(2000)). The dictionary contains frames for 2919 verbs. There are other 707 verbs in
PDT 1.0 d-test data, not covered by the dictionary. Of the 16329 total verb occurrences
in test data, 15425 (94 %) are covered by the dictionary, and 904 occurrences are not
covered. The most frequent unknown verb is bourat “demolish”, “crash” (7 occurrences).

A node was considered argument if the subcategorization dictionary contained the
verb the node hung on, and there was a frame containing a member of a class matching
the node. Otherwise, if the verb was covered by the dictionary, the node was considered
adjunct. With unknown verbs, neither argument nor adjunct counts were changed. Note
— the dictionary does not cover subjects (usually tagged N1) so the experiment rendered
subjects as adjuncts.)

Class Total As argument | As adjunct Arg. percentage |
VINF 13094 11885 1209 90.77
is(Ze) 5539 4793 746 86.53
R4 (o) 2133 1734 379 82.06
N4 47756 38582 9174 80.79
R6(0) 1987 1461 526 73.53
R3(k) 3370 2131 1239 63.23
N3 8149 5131 3018 62.96
3s(zda) 185 112 73 60.54
se 15966 9355 6611 58.59
R4 (mezi) 171 97 74 56.73
R4 (na) 4801 2406 2395 50.11
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The next table shows the most frequent classes of typical adjuncts (occurred as
arguments in less than 50 %; as mentioned above, N1 is not really an adjunct, its

presence in this table is caused by the method of acquiring the subcategorization
dictionary).

Class Total As argument | As adjunct Arg. percentage |
N1 55202 854 54348 1.55
DB 32384 3327 29057 10.27
z 23794 23794 0.00
S 18519 3392 15127 18.32
R6 (V) 12759 1126 11633 8.83
N7 5747 1321 4426 22.99
N2 4522 1279 3243 28.28
R6(na) 3951 714 3237 18.07
N 2620 2620 0.00
R7(s) 3835 1522 2313 39.69
R2(z) 2932 895 2037 30.53
R2(podle) 1998 22 1976 1.10
R2(do) 3501 1733 1768 49.50
si 2718 1013 1705 37.27
R6 (po) 1762 73 1689 4.14
8.6.2 Using subcategorization dictionary for parsing

Now let us pretend we have a subcategorization dictionary at our disposal. We will try to
use the information contained in the dictionary to improve parsing accuracy. The
following information is additional to what our dependency model already knows:

List of arguments a verb requires. If the dependency model does not select a
dependency between a verb and a node meeting the criteria for that verb’s
arguments, we can backtrack to find a parse where the argument would be
attached to the verb. Nevertheless it may happen that the argument is not
present in the sentence at all (due to deletions).

o An argument cannot be attached to a more distant verb so that the
dependency would skip a closer verb awaiting an argument of the same
class.

Mutual compatibility of arguments of one verb. For instance, in Czech two
arguments of the same category rarely complement one verb. If so, then the
subcategorization dictionary would tell, as in uéi syna/N4 matematiku/N4 “he
teaches the son math”. Yet more generally, a verb may attract two different
arguments but each in a different frame (corresponding to a different sense of
the verb). On the other hand, sometimes there may be two dependents of the
same kind under the same verb, one as an argument and the other as an
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adjunct, as in jed! cely tyden/N4 kasSi/N4 “he was eating gruel the whole
week”.

¢ Probability of a frame among all frames a verb allows. This is not equal to the

overall probability of a dependency.

Probably the easiest way of exploiting some of the subcat information is the
following. The parser identifies all potential “subcategorized dependencies” (i.e. those
that could match a verb-argument relation) and prefers them when selecting
dependencies. Only if there are no allowed subcategorized dependencies, other
dependencies may be selected. Unfortunately it seems that the impact of such
arrangement on parsing accuracy is not significant.

A more sophisticated approach seems to be (at the first glance) to check, after
parsing of a sentence has been finished, whether for each verb there is a frame in which
all slots are filled. If not, look whether there is material to fill in the gaps. If so, we would
try to backtrack so that the material is used.

The idea behind the backtracking device is simple. Let us just describe and
remember the state of the parsing process after a new dependency has been added to
the tree. During selecting new dependency to be added, let's generate all continuation
states by gradually adding all dependencies allowed at the moment. One of the new
states would actually become the current state in the next step while the rest would be
saved for future reference.

The exponential nature of the tree-building problem poses a significant threat for
such a method. Of course, blind backtracking would make the process to effectively run
forever — or, more technically, to crash due to insufficient memory for new states. We
should therefore return directly to a state in which a “promising material” has just been
attached somewhere. (We could be more specific, e.g. we could require the word to
depend directly on a particular verb, but there is no certainty that such dependency is
the only valency-solving usage of the word in the given sentence. It would be quite
complicated to cover all possibilities.) Even so the process does not converge and we
need to limit the maximal number of backtracking returns, and the maximal number of
generated states.

In our experiment we limited the maximal number of returns to 100, and the
maximal number of states to 50000. Such setting is still too generous, as the parser
capitulated to a 100-word sentence and crashed after having consumed enormous 2+
gigabytes of memory. On the other hand, it successfully went over the first 4419
sentences of the test set and revealed the likely achievement of the method. Out of
75145 total dependencies in this fragment, both the old and the new parser correctly
assigned 55956. The subcategorization-aware version improved 56 dependencies while
damaging 78. All that comes for a price of reducing the parsing speed by a factor of
nearly 29 — that really is not an optimistic result.

While the slowing down was expectable, the close-to-zero (at the bad side!)
impact on the accuracy deserves an investigation. It seems that no contribution of the
subcategorization module is really new to the parser — in other words, the parser is
probably more-or-less able to learn how to attach arguments without mastering the
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argument-adjunct distinction. We will devote most of the rest of this chapter to proving
or disproving that hypothesis. In particular, we will focus on the following phenomena:
e Does the parser correctly match frames when it decides whether to backtrack?
(Section 8.6.3)
e How many parsing errors can be attributed to the situation that the parser
attaches two mutually incompatible arguments to one verb? (Section 8.6.4)
¢ How many times a verb missed one of its arguments? (Section 8.6.6)
e How many times a verb got a potential argument of another verb. (Section
8.6.6)

8.6.3 Frame matching

It turns out that sometimes the parser assumes a frame slot has not been filled although
it has. Such situations do not always imply poor quality of the subcategorization
dictionary; they may be caused by tagging errors as well.

Examples:

nasel partnera/N2 “he found a partner” (correct tag would be N4)

informatika/N1 poskytuje udaje/N1 “computer science provides data” (the first N1
is correct, the second tag should be N4)

8.6.4 Mutual compatibility of verb arguments

To check whether mutual compatibility of arguments is a significant cause of errors we
examined the simplest case: how many times an error is or can be caused by attaching
two arguments of the same class to the same verb.

Let us denote the verb modifiers (arguments or adjuncts) that do not like to see a
word of the same category modifying the same verb as jealous. Similarly, the modifiers
that do not mind will be called tolerant. The list of jealous modifiers may or may not
coincide with the list of arguments; on the other hand, one would expect the tolerant
modifiers to more-or-less coincide with adjuncts.

The following table shows the least jealous modifier classes, i.e. the words that
have been repeatedly observed with one or more siblings of the same class. Please note
that even if a modifier is tolerant to siblings, it is not obliged to seek one (unless it
appears with a verb whose frame requires two same arguments — that is not so frequent
in Czech as in English!) As a consequence, the numbers of observations of coinciding
same-class modifiers are pretty small.

Class Total Not alone Alone Not alone %

Z (punctuation) 39668 18374 21294 46.32
N1 (nominative) 81844 18226 63618 22.27
DB (adverb) 39595 8715 30880 22.01
S (clause) 23377 2099 21278 8.98
R6 (V) 16255 1385 14870 8.52
N4 (accusative) 35552 2360 33192 6.64
J (conjunction) 2096 137 1959 6.54
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R4 (V) 1212 48 1164 3.96
N2 (genitive) 5550 176 5374 3.17
Js(aniz) 88 2 86 2.27
N (caseless noun) 4594 104 4490 2.26
N7 (instrumental) 10527 213 10314 2.02
T, NX, R2(z2), R6(na), R4(na), N6, R2(kolem), R2(bez), R7(s), R4(za),| between 1 and
N3, 3S(pokud), R2(od) 2%

The comparatively low jealousy of nominatives (N1) that usually serve the function of
subjects can be explained by two factors:

1. Two N1's often occur with the verb byt “to be”, one serving the role of subject,
and the other being a nominal predicate. A very limited group of other verbs can bind
nominal predicates / nominative objects as well. Out of the 18226 “not alone”
observations of N1, 9788 were with byt, and another 85 with znamenat “to mean” in a
similar configuration.

2. Most of the other 8353 observations are caused by tagging errors. Many N1
word forms are easily confused with N4s (accusatives). Thus if two “subjects” were
modifying a verb, one of them was really an object. (Of course, dual tagging errors
contributed to the tolerance of N4 words, although to a significantly smaller extent.)

The dual table: the most frequent word classes that never appeared with a sibling
of the same class.

Class Example English Occurrences
si si himself 3020
R4 (0) hrat o penize play for money 2333
Js(protoze) neprisel, protoZze nemohl/ |he didn't come because 770
he was busy
R3(proti) bojovat proti nékomu fight against sb. 522
3s(jako) pracovat jako taxikar work as taxi driver 448
R7 (mezi) stat mezi dvéma domy stand between two 445
houses
R4 (pres) prejet pfes most go over a bridge 339
R2(béhem) snist obéd béhem pauzy |eat lunch during a pause 324
R2(kromé) kromé ného besides him 323
R2(za) stat za domem stand behind a house 308

It turns out that jealousy has not so much to do with subcategorization. In the above
table only the first two rows represent arguments to some extent. The rest are typical
adjuncts.

Of course, the above observation still does not prove that avoiding same-class
siblings would not improve the parsing accuracy. We ran two experiments to see whether
it helps.
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In the first experiment we parameterized the dependency probability with the
question whether there already was another dependent of the same class attached to the
same governing node. The accuracy dropped down to 64.3 %.

In the second experiment we prohibited two same-class children under one verb.
Even if we were not distinguishing jealous classes from the tolerant ones, there were as
few as 978 cases (in d-test data) that the parser attempted to attach two same-class
words at one point, and there were only 17 cases when the parser wanted to attach
three same-class words at one point. Moreover, in majority of those cases both/all three
children were attached correctly.

If we excluded from the experiment the typical adjuncts z (punctuation), D
(adverbs), and R6 (locative prepositions), the total numbers would decrease but the
cases where one of the children is attached correctly and the others by mistake would
still be the rarest ones. Even if it was not so, the overall improvement potential would be
so small that it hardly would pay to do anything in this field at all.

8.6.5 Free and inner modifiers

This is a good place to present another related observation of the PDT data. Besides
jealousy there is another possible view of the children of verbs. Free modifiers can be
found with almost any verb while the inner ones can only be found with verbs from a
particular group. The largest group of that kind is the group of verbs allowing an N4 child.

There is no rule that inner modifiers must be arguments (i.e. obligatory) but in
many cases the coincidence is striking. We looked for inner and free modifiers in PDT 1.0
training data.

Although the above definition of inner and free modifiers seems at the first glance
to lead to a simple algorithm, in fact there are complications. If total humber of verbs
with which the modifier has been seen is used, less frequent modifiers will suffer as they
will not get chance to show they have no preferences among the verbs. If the ratio of
modifier-verb occurrences vs. modifier total occurrences is used, very frequent modifiers
will suffer, as there are not enough verbs (and verbs themselves do not occur all equally
likely). Therefore, we used the following heuristic:

1. Let N be the number of verbs a modifier has been seen with;

2. Let W be the total number of occurrences of a modifier;

3. Let V be the total number of different verbs seen;
4

Let R be l if W<V, and E elsewhere.
w |%

We assume that there is a threshold R, and that classes with R < R, are inner

modifiers, the rest are free. We hope that the data is representative enough so that
increasing V will not distort the statistics significantly. The data in the following table will
help us to decide whether our assumption is plausible.

V = 5356

Class N w R

R4(0) 172 2333 0.074
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V = 5356

Class N w R

R6(0) 174 1892 0.092
35(2e) 548 6379 0.102
VINF 553 15263 0.103
R3 (k) 615 3770 0.163
N2 453 2715 0.167
N3 923 6943 0.172
R4 (pies) 209 339 0.617
N4 3326 39375 0.621
Js(zatimco) 187 298 0.628
DB | 3472 | 38834 0.648
R2 (za) | 208 | 308 0.675
R4(po) | 143 198 0.722
N1 | 3953 77233 0.738
R2(misto) | 114| 145‘ 0.786
R3(kvaTi) | 113 143 0.790
35 (tiebade) 10 10 1.000
R2 (mimo) 14 14 1.000

The above table contains a selection of interesting modifiers; of course, full table would
be much larger. Linguistic intuition suggests to place R, =0.625. One must not forget
that the modifiers are sorted according to surface criteria while the inner-free distinction
should be bound to the meaning. For instance, R6(0) often corresponds to the meaning
of the English preposition “about” (mluvit o né¢em “to speak about st.” — if used so, it is
inner participant) but it can also be a time specification (pFijit o paté “to come at five
o’clock” — in this case it is a free modifier).

To summarize, the inner-free distinction can be quantified using a measure
defined as R above. We do not attempt to incorporate it into our parser but it provides a
linguistically interesting observation about PDT and, possibly, Czech.

8.6.6 Parsing errors in subcategorization

This is the most crucial part for determining whether the subcategorization dictionary
could have helped the parser at all. We analyzed the output of the parser on the d-test
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data and counted all errors where a node should have been attached to a verb but was
attached elsewhere (even to another verb if it had a different lemma).

There were 8262 such errors. If we excluded the verb byt “to be” (too many
frames and auxiliary usages) and all the verb-child pairs not covered by the
subcategorization dictionary, only 1415 errors remain (~1.5% of all errors). If we were
able to perfectly eliminate all of them, the parsing accuracy would rise by approximately
1%; however, at the same time the subcategorization procedure would have not to

introduce any new error. Unfortunately, that is not our case.
The following table lists the most frequent subcategorization errors.

Erroneously Verb missing that | English translation | Number of cases
attached node node
S fici tell 40
N4 mit have 29
N2 dosdhnout reach 16
VINF muset must 15
S Fikat say 14
N4 ziskat acquire 13
N2 mit have 13
S védét know 13
VINF mit have to, shall 11
S uvést state 11
se stat-2 become, happen 10
N7 stat-2 become 10

The most frequently misplaced subtree is the direct speech of saying verbs; in those
cases, the “thief” is the tree root #:

Erroneously Verb missing that Word where the Number of cases
attached node node parser attached it
fici “tell” # 30
fikat “say” # 10
uvést “state” # 10

Often (695 cases) the “thieves” are modal or similar verbs and the "“victims” are
infinitives:

Verb missing a node Word where the parser Number of cases
attached it
stat-2 “become” mit “shall” 6
stat-2 “become” moci “can” 5
ucastnit “attend” mit “shall” 4
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mohou

can
firmy kontakt
companies contact information

Ceské
Czech

Figure 17: Prohibited skipping of an infinite verb.

vyjadrit "express” odmitnout “refuse” 4

ulozit “deposit” moci “can” 4

Sometimes it is impossible to correct such situations without making the tree non-
projective (see Sections 7.1 and 12). The rest can be solved by a simple heuristic,
without any subcategorization vehicle (see Section 8.6.7).

Finally let us note that we do not evaluate the errors from the opposite point of
view — whether there is a node attached to a verb, despite it does not belong to the
verb’s subcategorization frame. We would have to filter out all nodes but “typical
arguments”. As we showed in the subsections above, it is difficult to recognize typical
arguments by any metric proposed, and there is never a sharp delimiting line.

8.6.7 No skipping of potential parent verbs

If the parser selects a wrong longer dependency and the correct governing node lies
between the proposed governor and the dependent, we say that the dependency is
skipping its correct parent in favor of another node. Since many errors of this kind are
related to subcategorization of verbs, we are going to discuss the matter here.

For an instance of skipping dependency, consider the following example:

(15) Ceské firmy mohou vyuZit kontakt... (lu01:49)

“Czech companies can use the contact information...”

We have examined the verb skipping in the output of the parser on the d-test
data. Of course not every skipped verb corresponds to an error. The following table
shows the most frequent erroneous cases. The fourth column shows how many times a
skipping of some type was wrong; the fifth column shows the share of these cases on the
total occurrences of skipping of that type.

Skipped node |In favor of Dependent No of errors Error %

vf (infinitive) VB (present) N4 (accusative) 168 91.3
VT (infinitive) Vp (past) N4 (accusative) 120 90.9
vf (infinitive) Vp (past) Z, (punctuation) 98 89.1
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Skipped node |In favor of Dependent No of errors Error %

VT (infinitive) VB (present) Z, (punctuation) 92 82.9
Vp (past) # (root) JA (coord) 88 40.2
vf (infinitive) VB (present) JA (coord) 87 92.6

Most useful for the parser are the skipping patterns where the skipping dependency is
consistently wrong. If we placed the threshold of “consistently” to 90%, the total number
of occurrences of such patterns would be 4946.

If we did not mind the tag of the dependent node, it would become even more
apparent that infinitives prevailed among the omitted (skipped) nodes. On the other
hand, the persuasiveness (last column) would drop down.

Skipped node In favor of No of errors Error %
VT (infinitive) VB (present) 852 89
VT (infinitive) Vp (past) 667 87

We can make the parser to learn from its errors by supplying it the list of tag triples
(skipped-governor-dependent) that have been observed at least once and at least 90%
of the observations were errors. Unlike in the above investigation, the parser must not
learn that on its output on the test data. We have to train the parser on a subset of the
training data and to learn its tendency to skipping errors on another subset (held-out
data). We used the PDT 1.0 mtrain and mtest data (see Chapter 5) in place of these
subsets. We filtered out everything but triples seen at least 5 times and wrong in 90% of
the cases. The experiments further revealed that only learned skippings of verbs
contributed to better parsing accuracy. Skipping of other nodes could not be successfully
learned from data but see the Sections 8.12.6 and 8.12.7 for some hard constraints of
this sort.

After all filtering was done 199 tag triples survived.

The parser was re-trained on the whole training set before applying it to the d-
test data, using the above blacklist. If the blacklist were not used the accuracy would be
74.5 instead of 74.7 %.

8.7 Fertility

The Model Two proposed so far does not employ any supporting fertility model as
described in Section 7.4. In the present section we first discuss fertility-related errors in
the output of the Model Two parser, then propose some approaches to avoiding the
errors, and evaluate them.
We set up the following constraints to classify a parsing error as fertility-related:
e A node has a number of children different from the number in the correct
parse.
e The correct number of children is equal to the typical humber of children of a
node with the given m-tag, as defined by the fertility model.
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¢ A particular number of children is considered typical for a particular m-tag if
and only if:

The m-tag occurred at least 100x in the training data.
It occurred with the typical number of children in at least 80% cases.

Note that even if the constraints were not defined the total number of fertility
errors would not be equal to the total number of wrong dependencies. A fertility error is
proper to a governing node and can account for several incorrect dependencies.

We found 2111 fertility-related errors in the output of the Model Two parser. Out
of that, 1164 x a typical leaf had one or more children, 342x the node should have (but
had not) exactly one child, and 605x the node should have (but had not) exactly two

children.
constraints.

No m-tag has typical fertility of three or more, according to the above

The following table shows some examples of fertility-related parsing errors. It is
no general overview of fertility preferences. Cases that are not interesting from the point
of view of the parsing error analysis are not included.

Occurrences | Tag Example Proposed Correct Probability of
number of |number of |the number of
children children children (%)

198 | Al etnické 1 0 81.7
“ethnic”
98| A2 identického 1 0 91.8
“identical”
56 |TT ano “yes” 0 84.9
56 | Dg mirné 0 84.2
“moderately”
47 | Pse se “oneself” 1 0 98.9
1164 |Subtotal 0 o =80.0
46 |Rna-1 na “on” 2 1 96.7
38 |Rv-1 v 'in” 2 1 95.4
27 |Ro-1 o “about” 2 1 99.0
19|Rs-1 s “with” 2 1 88.6
15 |Rpro-1 pro “for” 2 1 98.6
342 | Subtotal 1 1 =80.0
173 | # <root> 1 2 86.1
148|3ze Ze “that” 3 2 87.8
83|Jze Ze “that” 4 2 87.8
54|3ze Ze “that” 1 2 87.8
29 | # <root> 3 2 86.1
605 | Subtotal 2 2 =80.0
2111 |TOTAL Oorlor?2 =80.0
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The largest group is that of typical leaves. It includes particles (TT), interjections (II),
many kinds of pronouns (P), adjectives (A), adverbs (D) etc. Expectedly, typical one-child
nodes are prepositions; the errors included both no child and two children, although the
latter were more frequent. The sentence root has typically two children: the main verb
and the final punctuation mark. Most other typical two-children nodes are subordinative
conjunctions such as Ze “that”, aby “so that”, zda “if"... In these cases, one child is the
predicate of the subordinated clause; the other is the comma before the conjunction.

There are two separate problems that cannot be solved the same way: too few
children and too many children.

If a node has reached its quota of children, this will be realized immediately and
attaching new dependents can be stopped or penalized. (Of course we cannot be sure
that the right children have been attached first, or that there is still a better place for
attaching the new candidates.)

If a node lacks children, this will be realized after the analysis has been
completed, and that is quite late. We could backtrack to a back-up state but the process
would suffer from the same drawbacks as the subcategorization backtracking system (cf.
Section 8.6.2). What remains is to give better weights to dependencies satisfying
unsatisfied nodes during the tree-building process.

We have developed and tested three modifications of the fertility model, described
below. Unfortunately none of them has a positive influence on the parsing accuracy. This
result contradicts the one in Section 7.4 for Model One. What happened since then? We
believe that there is a general answer applicable not only to the fertility models but also
to other unsuccessful “improvements”. The model has become rather complex and any
new modification can produce undesirable side effects.

8.7.1 Full fertility model (FFM)

Each m-tag has a fertility distribution (four probabilities: that of 0 children, 1
child, 2 children, and 3 or more children). When considering a new dependency governed
by a node with that tag, we compute the probability that the node will have more
children than it currently has. We then multiply the probability of the dependency by this
probability.

Example 1: a node tagged Jze currently has 1 child. The fertility distribution of
Jze is 87.8 % two children, 6.9 % one child, 5.2 % three or more children, and 0.1 %
zero children. The probability that the node will have more than one child is (87.8 + 5.2)
/ (87.8 + 6.9 + 5.2) = 93.1 %. We omit the count for zero children because at this point
we are sure that this node will not have zero children (unless some backtracking is
applied).

Example 2: a node tagged z, (comma) currently has 1 child. Commas display
strong preference for zero and some preference for two children, but they almost never
end up with one child. So if ever the zero/one border is broken, we must finish the
process and find the other child. The fertility distribution for z, is: 86.330 % no child,
7.794 % two children, 5.871 % three or more, 0.004 % one child. The probability that
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the node will have more children than the one it currently has is (7.794 + 5.871) /
(7.794 + 5.871 + 0.004) = 99.971 %.
Evaluation: FFM depressed the overall accuracy from 74.7 % to 74.5 %.%°

8.7.2 Typical fertility (TFM)

Only nodes with strong preference (=2 80 %) for one particular number of children are
affected. If the node shows preference for its current number of children (or even for a
smaller number), it will get a fertility weight of 0. If on the other hand it needs one or
more additional children, it will get 1. All hodes whose preferences are not strong will get
a weight of 0.5.

Evaluation: TFM depressed the overall accuracy from 74.7 % to 74.0 %.

8.7.3 Checking fertility quota (QFM)

Similar to TFM but only exceeding the child quota is being checked. Nodes that have
reached or exceeded the quota will get zero. All other nodes including those without
strong preference will get one.

Evaluation: QFM depressed the overall accuracy from 74.7 % to 74.0 %.

8.8 Governor-dependent distance

The Model One recorded whether the governor is adjacent to the dependent or not (cf.
Section 7.5). The Model Two adds a third state to this feature: whether or not there was
a comma in between. If this feature is turned off the accuracy will drop to 72.9;
interestingly enough, if we turn off even the adjacency parameter, the accuracy further
drops to 72.4 only, although for Model One this feature used to have much more
importance. We also experimented with recording the number of interfering commas but
it did not bring any further improvement.

Some authors of publicly unreleased parsers (see Chapters 14 and 15) suggest
that dividing weight (probability) of each dependency by the distance between the two
nodes helps. We found it almost useless: it improves the accuracy very little but at least
it does not hurt.

The following table shows statistics of dependency distance in the PDT 1.0 training
data. The longest dependency encountered is equal to the maximum length of a
sentence: it is the dependency between the root and the final punctuation mark. The
longest dependency on a node other than the root is 163 words long.

Distance Occurrences Percentage
1 590884 47.1
236788 18.9
3 112236 8.9

2% A table of the most fertile m-tags would be led by those most often rooting a
coordination: z, (maximum of 85 children encountered in PDT 1.0 training data), and JA.
Record number of children for the sentence root is 28. A verb (vp) with 19 children would
win the contest among full-meaning words.
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Distance Occurrences Percentage

4 69993 5.6
5 45459 3.6
194 1 0.0

A related problem is skipping closer governors in favor of more distant ones — see
also the Sections 8.6.7, 8.12.6, and 8.12.7.

8.9 Coordinations

We introduced coordination in Section 4.2 as a linguistic relation that is described using
(usually) more than one dependency.® Since dependency structures are better suited to
describe subordination, dealing with coordinations requires some extra care in this
environment.

The major and most problematic difference between coordinations and
subordinations can be described simply. Subordination is a vertical relation between a
superior and a subordinated word. Such relation can be perfectly modeled by exactly one
dependency where the parent is the superior and the child is the subordinated word.
Coordination, in contrast, corresponds to two or more dependencies, and really important
is the relation between the children. No parser can succeed in rendering coordinations
without looking at more than one dependency at a time — and the Model Two described
so far does not so.

30 Recall that our coordination corresponds to both coordination and apposition in the
sense of PDT.
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To see the problem, consider the following sentence.

(16) Jednim z mist, kde mohou ziskat komplexni informace z Ceské republiky i ze
zahranici, je Hospodafskd komora CR. “One of the places where they can get
complex information from the Czech Republic as well as from abroad is the
Business Chamber of CR.”

The treebank structure of sentence (16) is shown in Figure 18. A structure
generated by a coordination-unaware parser is shown in Figure 19. There is one
coordination governed by the conjunction i “as well as”. Coordinations are frequent and
most coordinative conjunctions have been seen with coordination members of various

je
is
Jednim komora
One Chamber
\ z Hospodarska CR
of Business CR
mist
places
mohou
can

.

,  kde ziskat
where get

informace
information

komplexni i
complex as well as

z ze
from from

»

republiky zahranici
Republic abroad

Ceské
Czech

Figure 18: Jednim z mist, kde mohou ziskat komplexni informace z Ceské republiky i ze zahranic&i, je Hospodarska
komora CR.
One of the places where they can get complex information from the Czech Republic as well as from abroad is
the Business Chamber of CR.
[correct]
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types. However, all members of a coordination always agree in type!®! That is what the
parser has not learned. It eventually attaches anything it finds to a conjunction, as the
conjunction is known to have governed many different coordinations, with members of
different type. The conjunction i in sentence (16) in Figure 19 is a good example of such
“magnetic” node. It incorrectly attracted a numeral (jednim), a verb (mohou), and a
preposition (ze).

There is yet another problem with the representation of coordinations. Suppose a
coordination of nouns is to fill a slot in a verb’s subcategorization frame. The nouns agree
in case with each other, and their case is the one required by the verb. But all that is
invisible from above! It is always the root of a subtree what represents it in the eyes of
its governor. Here the conjunction is. No trace of the case of the nouns, even no trace
that they are nouns! The verb would be foolish to accept such structure, and if it does, it

risks getting a coordination of unexpected things, say, infinitives.

One possible solution is to transform coordinations into a form more suitable for
parsing. We have explored several transformations. An example: the head of the
coordination is its rightmost member, any other member is attached to its right
neighboring member; the conjunction and the commas are attached to the closest

as well as
ze
\R from
\z , kde ziskat  informace zahranici
of where get information abroad
mist komplexni z je
places complex from is
republiky , komora
Republic Chamber
Ceské Hospodarskd CR
Czech Business CR

Figure 19: Jednim z mist, kde mohou ziskat komplexni informace z Ceské republiky i ze zahranici, je Hospodarské komora
CR.
One of the places where they can get complex information from the Czech Republic as well as from abroad is the
Business Chamber of CR.

[wrong]

31 We do not give any classification of coordination types. Roughly speaking, phrases of
the same type share the part of speech, nouns, adjectives, pronouns and numerals agree
in case. Prepositions need not be identical but they should belong to the same semantic
class (v domé a na silnici “in the house and on the road”); the same holds for adverbs.
Verbs need not agree in tense and other morphological categories.
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member to their right. If a transformation of that sort could have been pre-applied to
both the training and the test data, the parser would improve in coordinations. However,
we would be using different (transformed) test data than other researchers use, and the
results would be incomparable. So we would have to invert the transformation after
parsing finished, but then we would face additional troubles (the main one: how to
decide that a chain of nodes of similar type is a coordination).

We finally used another approach. In the learning phase we use s-tags to
recognize coordinations. Inside a coordination we do not record dependencies. Instead,
we record all pairs of m-tags that appeared as members of the same coordination. This
way the parser learns to recognize words of the same coordinative type. There is even
some level of robustness, crucial for dealing with tagging errors. If the tagger wrongly
assigns case to one noun and correctly to the other, the training module remembers the
pair. Later the parser will know that N2 is most likely to join another N2, but a
coordination of N2 and N4 is not impossible either. If the same tagging error occurred in
test data, a rule-based parser would discard such pair due to non-matching types, but a
statistical machine has still a chance.

We further record a probability that a word is coordinative conjunction (we do not
trust that the m-tag is JA, as there are other words capable of serving the same function,
e.g. the comma).

The parsing module has been modified as well. So far it just compared frequencies
of allowed dependencies. Now it also looks at allowed pairs of coordination members. A
pair is allowed if there is a word in between that could serve as the conjunction and the
dependencies of both members on that word are allowed. The conjunction must not be
involved in any other coordination yet. A pair is also allowed, if its right member is
already a member of a coordination, and its left member would enlarge that coordination.
In that case the conjunction is not between the two members but somewhere right of the
right member; a comma is between the two. The dependency of the new member and
the comma on the conjunction must be allowed.

70



Narodil

lived is
se v od \v obdanem
was in since in citizen
Bratislavé 'r USA tamnim
Bratislava year USA of there
1968
1968

Figure 20: Narodil se v Bratislavé, od r. 1968 Zil v USA a je tamnim obCanem.
He was born in Bratislava, since 1968 he has been living in USA, of which he is citizen.

If a pair is allowed, its probability is multiplied with the probability of the
conjunction to be a conjunction, and compared to the probabilities of other coordination
pairs and normal (subordinative) dependencies. It is not clear to which extent the
probabilities of pairs are comparable to the dependency probabilities. We were not able
to find a solid theoretical grounding to put both measures into one model. Empirically we
found that favoring the coordinations improves parsing accuracy. If the learning module
recorded each coordination three times, the accuracy was better than for the true counts.
Anyway, even without that intervention the new processing of coordinations helped the
parser a lot. If it is excluded from the final version the accuracy will drop from 74.7 to
73.2.

It turns out that verbs do not hesitate to coordinate even if they do not agree in
tense. Thus it is correct to say

(17) Narodil se v Bratislavé, od r. 1968 Zil v USA a je tamnim oblanem. “He was

born in Bratislava, since 1968 he has been living in USA, of which he is
citizen.”

The coordinated verbs include narodil *was born” and Zil “lived” (past tense), and
je “is” (present tense). This led us to slightly change the m-tag reduction scheme.
Coordination events are recorded with only two kinds of verbs, infinitives (vf), and finite
verbs (VB). Normal dependencies (subordinations) keep the default reduction scheme
described in Section 8.4. The change of the scheme improved accuracy.

It remains to describe how the parser learns and creates subordinative relations
between a coordination and its governors or dependents. The parser assumes that a
coordination inherits the morphological properties from its members. Thus the learning
module steps through the members, collects their m-tags and replaces the m-tag of the
root (usually JA — coordinative conjunction) with the set of inherited m-tags. If one or
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more of the members are nested coordinations, the procedure steps down recursively.>?
The set can be dealt with as if the tags came from non-disambiguated MA. A rather
surprising result however is that the accuracy is better if we take just the m-tag of the
first or the last member as the representative.

An analysis of experimental results revealed one more surprising detail. Although
PDT apposition seems to share syntactic properties with PDT coordination, covering both
with the same procedure has not proved as improving accuracy of the parser. Better
results are sometimes obtained when the parser is ordered to deal with dependencies
building an apposition the same way as with any subordinative dependencies. Anyway
the difference is small and statistically insignificant.

8.10 Special treatment of short sentences

Some sentences, especially short ones, have non-standard contents and structure. PDT
consists mostly of newswire text and there are specia
article, usually at its beginning or end. A frequent example is the pattern

(18) Brno (jak) - “Brno (jak) ="

where the first word is a city or location, and the token in parentheses is a
signature of the author of the article. The PDT structure of such sentences is simple and
falls into the umbrella class (see Chapter 6, Figure 21): 0,0,0,0,0. However, the parser
tends to build structures 2,0,2,2,0 it learned from appositions (Figure 22).

The author’'s signature, usually a two-to-three-lowercase-letter string derived
from author’s name, may cause additional trouble as it often coincides with a normal
word. So, jak is also the adverb “how” or a “yak” (Himalayan cattle); tom is the local
case of the pronoun to “the”; top can be classified as imperative of topit “to drown”; do
“into” and ad “ad” (from Latin) are prepositions; and hop can be a particle or an
interjection (*whoops”).

|\\

sentences” in virtually every

Brno ( jak ) -

Figure 21: The correct parse of the sentence (18).

32 Note that further technical complications appear if the members are prepositional
phrases or relative clauses. A coordination member is recognized by its s-tag ending with
_Co or _Ap. But a preposition always has the s-tag AuxP (not AuxP_Co) and first the word
depending on the preposition bears the sign of coordination membership. Similarly a
subordinated clause is headed by a conjunction such as Ze “that”, and the conjunctions
are invariantly s-tagged as AuxC. First their dependents (usually verbs) have some useful
s-tag, e.g. Adv_cCo. A reader knowing all these peculiarities from behind the scene might
expect we collect also m-tags from the deeper level. But it is not so. We want to capture
the coordination type, e.g. the semantic class of the prepositions involved. So we have to
look for children’s s-tags to see whether this is a coordination member but then we take
the parents’ m-tags to represent the member.
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NN
Brno jak )

Figure 22: Parser-suggested structure of the sentence

(18).

The constant length of such sentences, the context of the parentheses and the
dash at the end could help recognizing situations where the structure from Figure 21
should be used. Unfortunately the Model Two as described so far is not able of capturing
such contexts.

See the accuracies of sentences of particular lengths in Figure 23. There is a
remarkable gap for 5 words, mostly caused by sentences of the class just described.

Accuracy by sentence length (no special treatment)

100
90 -
80 M 1 faroc
70 HHHAHHRHE

60
50 A
40

Accuracy in %

30 JHHHHHHHHH A
20 HHHHHHHEHHE
10

0 LI I I I |

— 1n oo M N —=H In oo M N - In oo M N - In A ™M
— =< AN N N M M < < <F O non 0 0V OV N

Number of words in sentence

Figure 23: Accuracy by sentence length.

Less visible but still influential are similar special sentences of other lengths.
As a solution we tried to handle each short sentence (up to eight words) in one
piece. We learned morphological patterns of short sentences from the training data. A
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morphological pattern of a sentence is the sequence of m-tags of the words in the
sentence. For each pattern we learned the most probable dependency structure. If a
sentence with an unknown pattern was to parse or if there were competing structures for
that pattern without a convincing winner®3, we parsed the sentence classically word-by-
word. The accuracy improvement for short sentences is shown in Figure 24.

Accuracy of short sentences

100
80
60
40
20 A

1 2 3 4 5 6 7 8
Sentence length

O Classically mSentence patterns OKnown pattems

Figure 24: Accuracy comparison of short sentences parsed classically or according to their
pattern. The third column gives a separate evaluation of the sentences with known
patterns and thus it makes no use of the classical approach even as back-off.

Actually the requirement of “convincing winners” did not change anything because
every known pattern showed clear preference for one structure. It also did not help to
consider patterns seen only once unknown — accuracy dropped for each of the eight
lengths by approximately 1 %. The accuracy of the pattern approach is very high and
there is not much space for further improvement. The space shown in Figure 24
corresponds almost entirely to unknown patterns, i.e. sentences that had to be parsed
classically despite of their length.

Note the third column for the lengths of 4 and 6 in Figure 24. Here even the
known patterns do not perform as well as usual. It is because of inconsistencies in
PDT 1.0. Unfortunately some sentence patterns were so special that even the human
annotators were not able to assign the same structure for all instances of virtually the
same sentences. It is also possible that the particular annotation guideline changed over
time.

For example, there is the four-token sentence

(19) Viadimir MiSauer, Bratislava (<first-name> <last-name>, <location>)

33 A structure is a convincing winner if its frequency is at least half of the total number of
occurrences of its pattern.
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Misauer , Bratislava Misauer

Vladimir Vladimir Bratislava
a)
b)
Misauer Bratislava Miia.u\er.
Viadimir Vladimir , Bratislava
c) d)

Figure 25: Four different structures of the pattern <first-name> <last-name>, <location>, all found in PDT.

The PDT 1.0 training data give three (!) different annotations for this sentence:
35x the 2,0,0,0 structure (Figure 25a), 12x 2,0,4,2 (Figure 25b), and 8x 2,3,0,3 (Figure
25c). The bad news is that in test data of the same corpus, it is 2,3,0,3 what wins (15
occurrences), plus there are two instances of yet another opinion, 2,0,2,2 (Figure 25d).
No wonder that a statistical model is unsuccessful if training data have been annotated
observing different rules than those for test data!

The same reason probably caused the sub-optimal performance of the six-word
patterns (actually the problematic four-word pattern is a subset of the most frequent six-
word pattern).

Since there is no statistical way to render such sentences correctly, the only help
would be a hard-coded rule bound on the problematic pattern.

The widest-spread inconsistent pattern is 5 words long; however, it does not pose
so serious threat because it has the same preferences in training as in test data. It is the
sentence

(20) Foto Martin PFibyl — LN “Photo by Martin Pfibyl — LN3*”

34 “LN" is abbreviation of Lidové noviny, a newspaper’s name.
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Foto PFibyl - LN Foto -

N

Martin PFibyl LN
a)
Martin
b)
Foto Pribyl Foto Priby
Martin - LN Martin LN
c)
d)

Figure 26: Four different structures of the pattern Photo <first-name> <last-name> -
<agency>, all found in PDT.

We figured out that this sentence has been annotated 23x as in Figure 26a
(0,3,0,0,0), 6% as in Figure 26b (0,3,4,0,4), 2x as in Figure 26¢ (0,3,0,3,3), and 2x as
in Figure 26d (0,3,0,5,3).

If all short sentences are processed classical way the accuracy will drop from 74.7
to 74.5 %. A survey of the final accuracy on short vs. long sentences is presented in
Chapter 13.

8.11 N-tuple patterns

In analogy to the special treatment of short sentences (see the Section 8.10), we have
tried to learn structures for patterns of m-tag n-tuples. If there was an (uninterrupted)
sequence of m-tags, for which it held that:
¢ the sequence (pattern) occurred at least five times in the training data,
e in at least 90 % of the occurrences the training data suggested the same
structure for the pattern, and
e the suggested structure was continuous, i.e. it had one and only one root
node,
we would insert the structure as a subtree of the dependency structure being
built. The n-tuple-pattern model was applied before the core Model Two was, and the
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core could influence only the nodes left untouched by the n-tuple model. N-tuples for
N e [2...10] are modeled.

The accuracy drops to 73.8 % when n-tuple modeling is turned off. One might
expect an even more significant accuracy improvement. Note however that the
requirement that the n-tuple member nodes follow one after the other is quite strong and
that it will mainly cover trivial structures that the parser can learn anyway. We think that
a more promising approach would be to model n-tuples of adjacent exposed
headwords,® i.e. roots of subtrees already constructed. In fact, such approach would be
close to data-oriented parsing (DOP; see Bod et al. (2003)).

8.12 Hard constraints

Finally we included some rules that have nothing to do with probabilistic modeling. The
rules have been designed by a human, with knowledge of the language (Czech) and of
the PDT annotation scheme. They are highly language- and domain-dependent, which
has to be borne in mind should the parser be applied to different data. Because the
statistical model is not allowed to interfere with the rules, we call the rules hard
constraints.

Including the hard constraints is useful to document phenomena that the statistics
cannot capture to a desirable extent. After all we want to build as good a Czech parser as
possible and this is just one of the steps towards that goal.

8.12.1 Attaching of the final punctuation

If the last word in sentence is tagged as punctuation (its original m-tagis z:------—----—-
--), attach it to the root (by assigning d(w,)=0). This is the first step in building the tree.
If the constraint is turned off the accuracy will drop to 72.5 %.

8.12.2 Children of the root

Partition the dependencies of something on the root into two classes, according to the
presence or non-presence of at least one verb in the sentence. Technically the verb flag
replaces the flag for dependency direction (left/right) because every dependency
governed by the root goes to the right.

If the sentence contains a verb, it is more likely that the root will have only two
children — the final punctuation, and a verb or a coordination of verbs. If there is no
verb, it is probably an elliptical sentence where several words can be attached directly to
the root.

The main weakness of this rule appears when the sentence is a heading
containing a relative clause, such as

(21) Muz, ktery se bal hromu “A man who was frightened of thunder”

— the head of such sentence and the only child of the root would be the noun
“man” while the verb “was” would depend on “man”.

If the constraint is turned off the accuracy will drop to 74.6 %.

35 This term was introduced by Chelba and Jelinek (1998) for their structured language
model.

77



8.12.3 Root fertility

Even when the rule 8.12.2 is in effect the root is still too magnetic and in many
sentences it attracts more children than desirable. Then it is possible to apply a rule that
prohibits any root to have more than two children. It is a rather strong and potentially
hurting constraint because there indeed are correct trees with more fertile roots.
Nevertheless the experiments showed that the Model Two achieves better accuracy if
such a rule is in effect than if it is not.

The rule is algorithmically enforced the following way. After completing the tree a
procedure checks the number of the children of the root. If it exceeds 2, the probabilities
of the dependencies are proven. The final punctuation and the most probable other child
survive, all the others are detached and re-attached to another place; the search for the
substitute attachment works similarly as the search for the most probable dependency
during the main phase of parsing. Weakness: this approach does not allow the rest of the
tree to reflect the change. More specifically, it is not possible to replace a single verb with
a coordination of verbs, of which the original verb would be member.

If the constraint is turned off the accuracy will drop from 74.7 to 74.4 %.

8.12.4 Inter-comma segments

This rule originates in the observation that commas delimit autonomous segments of the
sentences. Most often a segment between two commas forms a complete subtree and
there is only one dependency skipping its borders — the one connecting the subtree root
with an external governor.3®

Therefore we introduced a hard constraint that blocks all comma-skipping
dependencies before the whole segment is connected into one tree component. For the
purpose of this rule the sentence borders are equivalent to commas (they also delimit an
inter-comma segment). The artificial sentence root is viewed as forming an extra
segment that is simultaneously the left neighbor of the leftmost segment of the
sentence, and the right neighbor of the rightmost segment of the sentence. It effectively
makes from the sentence a circle. Thus the dependency of the final punctuation on the
root can be added as the first arc in the tree and it still does not violate the inter-comma
segment constraint.

36 Often an inter-comma segment corresponds to a subordinated clause. See Chapter 12
of Kubon (2001) for related research on clausal boundaries.
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Vidél

Saw
a
and
Martina , Lucku Janu
Martin Lucy Jane

Figure 27: Vidél Martina, Lucku a Janu.
He saw Martin, Lucy, and Jane.
[counterexample]

The rule is not 100 % true. A counterexample is the sentence

(22) Vidél Martina, Lucku a Janu. “He saw Martin, Lucy, and Jane.”

Although “Martin” lies in the same segment as “he saw”, it must first enter the
coordination with “Lucy” and “Jane”, and than the whole coordination connects to the
verb. An unexplained surprise is that if we exclude coordinations from the inter-comma
rule the accuracy falls off. Nevertheless the overall contribution of this rule is positive. If
it is turned off the accuracy will drop from 74.7 to 74.2 %.

8.12.5 Nothing may hang on a comma

A comma can govern a dependency only as a technical root of a coordination. After the
parsing of coordinations has been reserved to a separate module of the parser, the
subordinative dependencies should never be governed by a comma. However the parser
does not seem to be so strict. It has probably seen a few remaining cases in the training
data (for whatever reason — most likely a coordination lacked the Coord s-tag) and it
wills to draw such dependency whenever it thinks there is no better option. Our hard
constraint simply ensures that any other option is considered better, no matter how
many times the parser saw it.
If this constraint is turned off the accuracy will drop from 74.7 to 74.5 %.

played

She Q street

the

Figure 28: Example of prohibited skipping of a childless
preposition.
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8.12.6 No skipping of childless prepositions

In a sense this rule supports the fertility module. The fertility model takes care of the
number of children of particular classes of words. For prepositions it almost guarantees
that they will not get more than one child. It cannot however guarantee that each
preposition gets its child. It may happen that another word steals the child from the
preposition before the dependency preposition - child wins a round. To avoid that, it is
prohibited to draw a left-to-right dependency over a childless preposition (i.e., a word
right of a childless preposition depends on a word left of it). This embargo can be only
withdrawn if the preposition gets a child or if there is no other dependency allowed.
If the constraint is turned off the accuracy will drop to 74.6 %.

8.12.7 No skipping of genitive nouns

A frequent construction in Czech is chaining noun phrases in genitive. The genitive case
in this setting has roughly the same function as the English preposition “of”. So the chain
cena opravy predni &sti stfechy vozu prezidenta Spojenych statd americkych would
translate to “the price of the reparation of the front part of the roof of the car of the
president of the United States of America” (common instances are shorter, though).

The Model Two learns that left-to-right dependencies D(N2, N2) are quite common,
whether the words are adjacent or not (non-adjacent pairs occur whenever the
dependent is modified by an adjective, like “the front part” in our example). Knowing
that, the parser would easily connect two distant words labeled N2, jumping over another
one. For instance, it could make “the president” depend on “the roof”, bypassing “the
car”.

That is why we introduced a rule prohibiting such behavior. If an N2 is to be
attached to another N2 to its left, there must not be a third N2 already lying in between
and already attached to the leftmost member of the triple. In that case the rightmost N2
has to be attached to the N2 in the middle.

Recall that this hard constraint is an analogy to what has been “softly” learned
from data for skipped verbs (see Section 8.6.7).

In final version of Model Two this rule is switched off. Otherwise the accuracy
drops from 74.7 % to 74.6 %.

8.12.8 Relative clauses with wh-pronoun ktery “which”

PDT defines the following rules for relative clauses. The root of the clause is its main
verb. The connecting wh-word usually depends on the verb, filling the gap after the noun
that governs the clause. In a typical situation, there are three dependencies involved:
1) the verb hanging on a noun on its left; 2) the wh-pronoun ktery “which” lies between
the noun and the verb, agrees with the noun in gender and number,*” and hangs on the
verb; 3) a comma lies left of the wh-pronoun, and hangs on the verb.
Example:
(23) Uzdvérka pfihldsek zdjemci o Ucast v misi, kterou povede prezident
Hospodarské komory CR, je 10. zari. “10" September is the deadline for

37 1t does not however agree in case. The case of the wh-pronoun is driven by the verb.
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applications of persons interested in participating in the mission that will
be led by the president of the Business Chamber of the Czech Republic.”*8
It turns out that the Model Two is not particularly good in detecting such
configurations. After all, we have mentioned that it considers one dependency at a time,
not two or three. It learns that a verb can depend on a noun but it does not learn that it
happens only if the verb dominates a relative clause or a speech.
A targeted hard rule, on the other hand, can be designed to look whether there is
a form of ktery between the noun and the verb, and if so, it can check the agreement
between the noun and the form of ktery. The rule can even check agreement in gender
and number, although the statistics in Model Two are only able to check case
agreements. If there are more than one agreeing nouns, the rule selects the nearest one.
(In most cases this is the correct option. It will be wrong however if the found noun is
the right member of a coordination.)
If this constraint is turned off the accuracy will drop to 74.6 %. There are 801
occurrences of forms of ktery in the d-test data; the rule applied 483 times, 389 times
correctly.

8.13 Evaluation of the Model Two

8.13.1 Accuracy

The best-achieved accuracy of the Model Two on the PDT 1.0 d-test data is 74.7 %. The
following table summarizes contributions of all the respective features described in this
chapter. The features occur in the same order they were described. The last row, “ALL
SUCCESSFUL FEATURES”, sums all features of the previous rows where the off-column
displays lower accuracy than the on-column.

Feature Accuracy if turned off Accuracy if turned on
conditional probability 72.0 74.7
model-one-style tag

) 70.1 71.0
reduction
model-two-style tag

. 70.1 74.7
reduction
lexicalization A=1 73.9 54.9
lexicalization A=0.734375 73.9 74.7
selective lexicalization 72.2
- the verb byt “to be” 73.2
- selected adverbs 74.2
— pronouns 74.3
- subordinative conjunctions 74.3

38 This sentence is the first example of a relative clause in the PDT 1.0 test data.
Unfortunately there is a mistake in the PDT annotation of this sentence — PDT claims
that the clause “that will be led...” depends on “deadline”, not "mission”.
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Feature Accuracy if turned off Accuracy if turned on
— prepositions 74.5
- verbs 74.6
subcategorization 74.7
jealousy (parameter of
Jc:lependency weight) 4.7 64.3
no skipping of verbs 74.5 74.7
FFM (fertility) 74.5
TFM (fertility) 74.7
QFM (fertility) 740
distance: adjacency 72.4
distance: adjacency and
72.9
commas
distance: weight /= N 74.6
coordination 73.2
short sentences 74.5
n-tuple patterns 73.8 4.7
hard constraints together 72.3
- final punctuation 72.5
— children of the root 74.6
- root fertility 74.4
- inter-comma segments 74.2
- commas are leaves 74.5
- no skipping of prepositions 74.6
- no skipping of genitives 74.7 74.6
- relative clauses 74.6 74.7
ALL SUCCESSFUL
56.5 74.7

FEATURES

The cross-evaluation of the Model Two parser on the PDT 1.0 e-test data yielded
an accuracy of 74.9 %. Such result sufficiently demonstrates that we have not stuck to
the development data set too much. Besides this single run, the Model Two parser (as
well as its author) had never seen the e-test data.

For the sake of comparison, we also ran the parser on the old (and unclean) PDT
0.5 data, both d-test and e-test.

Tested on PDT 0.5 d-test set PDT 0.5 e-test set
Trained on
PDT 0.5 training set 71.1 71.1
PDT 1.0 training set 73.0 72.9

82




As for Model One in Section 7.9.2, we evaluated the Model Two parser using various
sources of morphological annotation. The results are shown in the following table. We
only did not re-run the human-human test because it would cause the need of different
test data (d-test data do not contain human-annotated morphology) and thus lessen
comparability.

Some introduction to the particular morphological sources is given in the Sections
4.3 and 7.9.2. The architecture of the Model Two parser allows for further splitting the
usage of the ambiguous dictionary morphology into two different ways. Either we can use
the approach of Model One, i.e. to count 1/n of an occurrence of each tag X; whenever a
word occurred that could have been tagged by one of n tags X;..X,. Sum of relative
frequencies of tags would be used during parsing. Or we can treat a sequence of possible
m-tags as one string, one long tag.>® The table refers to this approach as to dictionary
concatenated.

Note: "NA” denotes experiments that were not run for the particular model.

Training Parsing Model One Model Two
dictionary dictionary

concatenated concatenated NA 711
dictionary dictionary 51.4 67.8
tagger a dictionary NA 69.2
tagger b dictionary NA 69.2
human dictionary NA 69.2
dictionary tagger a 53.7 72.9
tagger a tagger a 54.1 74.7
tagger b tagger a NA 74.4
human tagger a 53.4 73.9
dictionary tagger b NA 73.0
tagger a tagger b NA 74.5
tagger b tagger b NA 74.5
human tagger b NA 74.0
human human (51) NA

8.13.2 Speed and memory

The parser has been rewritten in Perl and all statistics are now being stored in Perl
hashes. Training the parser on PDT 1.0 takes about 13.5 minutes on an Intel Pentium 4,
1.8 GHz, 1.5 GB RAM, running Linux. Dividing the time by the 73088 non-empty
sentences we get an average of 11 ms per sentence. The parsing of the 7319 test
sentences takes about 30 minutes on the same machine, yielding an average of 246 ms
per sentence (or roughly 4 sentences per second).

3% For both approaches, duplicates are removed and list of tags ordered.
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A rather large physical memory is essential because the parser easily consumes
over 500 MB and swapping would unacceptably raise the time requirements. If enough
physical memory is not available, better than swapping is to divide the training data into
blocks, train statistics on each block separately, annotate each test sentence with all
relevant statistics got from all blocks, and then run a modified version of the parser that
sums up the statistics and builds the tree. Thanks to this trick we do not need to
accommodate all the statistics at one time in memory while still being able to reflect
them all in parsing one sentence. Of course we now need n-times plus constant more
time where n is the number of blocks but it is still far better than using the system
swapping mechanism that would result in an effectively endless process.
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9 Automatic acquisition of subcategorization
frames

In Section 8.6 we investigated several methods of using a machine-readable
subcategorization dictionary to assist the Model Two Parser. We proved empirically that
this parser had already been able to learn much of subcategorization on its own.
However, it does not mean that subcategorization dictionaries are generally not useful for
parsers. Carroll and Minnen (1998) and Carroll and Rooth (1998) give several reasons
why subcategorization information is important for a natural language parser.

An electronic subcategorization dictionary can help in other fields of computational
linguistics as well. It can serve machine translation to distinguish different meanings of
verbs, forms the basis for tree families in tree adjoining grammars etc. Apart from that,
subcategorization is interesting to lexicographers and linguists in general. It can be
useful in discovering linguistic information about verbs (Siegel (1997)). For all those
reasons it would be helpful to be able to enrich the PDT annotation and label dependents
of verbs in PDT as either arguments or adjuncts.

Unfortunately only few languages have subcategorization dictionaries available,
and if so, either these are not machine-readable, or they are not comprehensive enough
to be used with a parser. Until recently, Czech was no exception.*® Therefore a bunch of
techniques for an automatic acquisition of such information from corpora have been
developed.*

In Section 8.6 we used a list of subcategorization frames acquired by the
approach proposed by Sarkar and Zeman (2000). In the present section we are going to
briefly describe the algorithm that acquired the frames from PDT 0.5 training data.

Unlike other work in this area, this method does not assume that the set of
subcategorization frames is fixed and known in advance. The frames are gathered from
syntactically annotated data (PDT) where the subcategorization information is not
given.*

9.1 Task description

In general, the problem of identifying subcategorization frames is to distinguish between
arguments and adjuncts among the constituents modifying a verb. E.g., in “John saw
Mary yesterday at the station” only “John” and “Mary” are required arguments while the
other constituents are optional (adjuncts). There is some controversy as to the correct

% The first publicly available machine-readable Czech valence (subcategorization)
dictionary, called VALLEX, contains only 1000 most frequent Czech verbs (annotated into
depth and in high quality, though). There is also a list of frames found in PDT, called
PDT-VALLEX, containing 5200 verbs. See Zabokrtsky and Lopatkova 2004 for VALLEX,
and Hajic et al. 2003 for PDT-VALLEX.

41 Methods for automatic acquisition of (not only) subcategorization from PDT have
recently been published also in Bojar (2002) and Ondruska (2004).

2 For those readers familiar with the PDT s-tags, it is important to note that the s-tag
Obj does not always correspond to an argument in our sense. Similarly, the functional
tag Adv does not always correspond to an adjunct. Approximately 50 verbs out of 2993
require an adverbial argument.
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subcategorization of a given verb and linguists often disagree as to what is the right set
of subcategorization frames for a given verb. A machine learning approach such as the
one followed here sidesteps this issue altogether, since it is left to the algorithm to learn
what is an appropriate subcategorization frame for a verb.

From now on, we will call the set of dependents (children) of a verb in PDT the
observed frame (OF). Note that which observed frame (or which part of it) is a true
subcategorization frame (SF) is not marked in the training data.

Our task is twofold:

1. In an observed frame, find a subset that contains arguments only

(Section 9.2).
2. Detect “corrupted” observed frames with missing arguments and filter them
out (Section 9.3).

We are interested in surface frames, while the semantic distinctions that cannot
be derived from the surface representation are not our priority. We do not aim to capture
preferences such as that “to feed” prefers living objects, “to pour” needs a liquid etc.
Consequentially, we also would not be able to realize common semantic class of some
prepositions, such as locative (e.g. “in”, “on”, “behind”), neither their relation to some
adverbs (e.g. “there”). Instead of getting to know that a verb (such as “to put”)
subcategorizes for a locative argument, we would get many low-density frames for all the
respective instantiations of the argument.*?

Most existing techniques for extracting SFs exploit the relatively fixed word-order
of English to collect features for their learning algorithms using fixed patterns or rules.
Such a techniques are not easily transported into a new language like Czech. Fully parsed
training data can help here by supplying all dependents of a verb no matter where in the
sentence these occur. The OFs obtained this way have to be normalized with respect to
the word order, e.g. by using an alphabetic ordering.

9.2 Subsets of observed frames

Before we can apply any statistical methods to the training data, there is one aspect of
using a treebank as input that has to be dealt with. A correct frame (verb + its
arguments) is almost always accompanied by one or more adjuncts in a real sentence.
Thus the observed frame will almost always contain noise. The approach offered by Brent
(1991, 1993, 1994) and others counts all observed frames and then decides which of
them do not associate strongly with a given verb. In our situation this approach will fail
for most of the OFs because we rarely see the correct frames isolated in the training
data. For example, from the occurrences of the transitive verb absolvovat “to go through

43 In some SFs, a particular preposition is required by the verb, while in other cases it is
a class of prepositions such as locative prepositions (e.g. “in”, “on”, “behind”...) that are
required by the verb. In contrast, adjuncts can use a wider variety of prepositions.
Prepositions specify the case of their noun phrase complements but a preposition can
take complements with more than one case marking with a different meaning for each
case (e.g. na mosté = “on the bridge”; na most = “onto the bridge”). In general, verbs
select not only for particular prepositions but also indicate the case marking for their
noun phrase complements (see also Section 8.6.1).
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something” that occurred ten times in the corpus, less than 1/3 of occurrences consisted
of the verb-object pair alone:

3x absolvovat N4

2% absolvovat N4 R2(od) R2(do)
1x absolvovat N4 R6(po)

1x absolvovat N4 R6(v)

1x absolvovat N4 R6(v) R6(na)
1x absolvovat N4 DB

1x absolvovat N4 DB DB

In other words, the correct SF constituted 30 % of the observed situations.
Nevertheless, for each observed frame, one of its subsets was the correct frame we
sought for. Therefore, we considered all possible subsets of all observed frames. We used
a technique which steps through the subsets of each observed frame from larger to
smaller ones and records their frequency in data. Large infrequent subsets are suspected
to contain adjuncts, so we replace them by more frequent smaller subsets. Small
infrequent subsets may have elided some arguments and are rejected.

Initially, we consider only the observed frames (OFs) from the treebank. There is
a chance that some are subsets of some others but now we count only the cases when
the OFs were seen themselves. Let's assume the test statistic rejected the frame. Then it
is not a real SF but there probably is a subset of it that is a real SF. So we select one of
the subsets whose length is one member less: this is the successor of the rejected frame
and inherits its frequency. (If the successor itself occurred in the training data as OF, the
inherited frequency would be added to its own frequency.) Of course one frame may be a
successor of several longer frames and if so, it inherits frequencies from all of them. This
is how frequencies accumulate and frames become more likely to survive.

An important point is the selection of the successor (or the dependent to be
removed from a rejected frame). We have to select only one of the n possible successors
of a frame of length n, otherwise we would break the total frequency of the verb. Since
we aim to choose the most frequent subpart, we wait until the counts of the frames on
lower level are definite, i.e. until all the frames of the current length are processed. At
that point we have m rejected frames of length n, each of which can be shortened in n
ways. This yields m x n possible modifications to consider before selection of the
successor. We implemented two methods for choosing a single successor frame:

¢ Choose the one that results in the strongest preference for some frame (that

is, the successor frame results in the lowest entropy across the corpus). This
measure is sensitive to the frequency of this frame in the rest of the corpus.

¢ Random selection of the successor frame from the alternatives.

Random selection resulted in better precision (88 % instead of 86 %). It is not
clear why a method that is sensitive to the frequency of each proposed successor frame
does not perform better than random selection.
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After processing a frame we do the same with next one of the same length. Once
there is no such frame we descend to the level of frames one dependent shorter and so
on, until all frames have been processed.

N4 od (0+2)
N4 od do (2) <E N4 do (0) od (0)

od do (0) do (0)

N4 v (1+1) N4 (2+2+1) empty (0)
N4 v na (1) <E N4 na (0) v (0)

v na (0) na (0)

N4 po (1+0) po (0)
Computing the subsets of observed frames for a verb. The counts for each frame are
given within parentheses. In this example, the frames N4 R2(od) R2(do),
N4 R6(v) R6(na), N4 R6(v), and N4 R6(po) have been observed with the given verb in
the corpus.

9.3 How to reject OFs

The last important point to explain is how we measure whether a frame is to be accepted
or rejected. For each verb and a particular set of its dependents we need to associate a
score to the hypothesis that the dependents are arguments of the verb. In other words,
we need to assign a value to the hypothesis that the OF under consideration is the verb’s
SF. Intuitively, we either want to test for independence of the observed frame and verb
distributions in the data, or we want to test how likely is a frame to be observed with a
particular verb without being a valid SF.

Sarkar and Zeman (2000) tested three statistical approaches to testing the
hypothesis: a likelihood ratio test, t-scores, and standard binomial hypotheses testing.
We are going to present the last one as they proved it to be most successful. The
subcategorization dictionary used in Section 8.6 has also been acquired using this
approach.

Assuming that the data is binomially distributed, we can look for frames that co-
occur with a verb more often than chance. This is the method used by several other
papers on SF extraction starting with (Brent (1991), Brent (1993), Brent (1994)).

Let us consider probability p— which is the probability that a given verb is
observed with a frame but this frame is not a valid SF for this verb. p— is the error
probability on identifying a SF for a verb. Let us consider a verb v which does not have as
one of its valid SFs the frame f. How likely is it that v will be seen m or more times in the

training data with frame f? If v has been seen a total of n times in the data, then
H'(p_,;m,n) gives us this likelihood.

1o iman)=3 ot -, 1)

i=m

If H'(p;m,n) is less than or equal to some small threshold value then it is

extremely unlikely that the hypothesis is true, and hence the frame f must be a SF of the
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verb v. Setting the threshold value to 0.05 gives us a 95 % or better confidence value
that the verb v has been observed often enough with a frame f for it to be a valid SF.

9.4 Evaluation

The method has been evaluated using the PDT 0.5 training data. In this training set,
there were 33,641 verb tokens with 2,993 verb types. There were a total of 28,765
observed frames, which reduced to 13,665 observed frames after preprocessing. There
were 914 verb types seen 5 or more times.

Since there was no electronic subcategorization dictionary for Czech, we evaluated
the filtering technique on a set of 500 test sentences, which were unseen and separate
from the training data. These test sentences were used as a gold standard by
distinguishing the arguments and adjuncts manually. We then compared the accuracy of
our output set of items marked as either arguments or adjuncts against this gold
standard.

The results can be compared to two baseline methods. Baseline method 1:
consider each dependent of a verb an adjunct. Baseline method 2: use just the longest
known observed frame matching the test pattern. If no matching OF is known, find the
longest partial match in the OFs seen in the training data. We exploit the functional and
morphological tags while matching. No statistical filtering is applied in either baseline
method.

The following table compares the baseline methods and the statistical filtering
described above. Some of the values are not integers since for some difficult cases in the
test data the value for each argument/adjunct decision was set to a value between [0,1].
Recall is computed as the number of known verb complements divided by the total

number of complements. Precision is computed as the number of correct suggestions

2X pX
divided by the number of known verb complements. Fﬂ:l:L % unknown

pt+r

represents the percent of test data not considered by a particular method.

Baseline 1 Baseline 2 Hypothesis testing |
Precision 55% 78% 88%
Recall 55% 73% 74%
Fg_1 55% 75% 80%
% unknown 0% 6% 16%
Total verb nodes 1027 1027 1027
Total complements 2144 2144 2144
Nodes with known verbs 1027 981 907
Complements of known verbs 2144 2010 1812
Correct suggestions 1187.5 1573.5 1596.5
True arguments 956.5 910.5 834.5
Suggested arguments 0 1122 674
Incorrect arg. suggestions 0 324 27.5
Incorrect adj. suggestions 956.5 112.5 188
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Our method discovered 137 subcategorization frames from the data. The known upper
bound of frames that the algorithm could have found (the total number of the observed
frame types) was 450.

The technique described here may sometimes find a subset of a correct SF,
discarding one or more of its members. Such frame can still help parsers because they
can at least look for the dependents that have survived.
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prepared
misi na komora
mission for Chamber
Podnikatelskou do dny hospodafska CR
Businessmen’s to days of Commerce Czech Republic
a az
and till
Kolumbie , Peru , Argentiny Paraguaye fijna listopadu
Colombia Peru Argentina Paraguay October November
25 8
th th
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Figure 29: The upper tree is the correct parse of the sentence (24). The lower tree is the output of the parser for the
same sentence when there are tagging errors.

10 Morphology disambiguation: poor output of
taggers and workarounds

Accuracy of a parser that relies on morphological tags essentially depends on the success
rate of the tagger. Any tagging error may violate agreement in gender, number or case,
often the determining factors for syntactic relations. The case tagging errors are the
most crucial.

Haji¢ and Hladka (1998) published the error rate of the maximum entropy tagger
(tagger “a”): 6.2 %, i.e. the accuracy is 93.8 %. They also measured error rate of
separate morphological attributes of each word. For us is important the accuracy of
predicting the attributes used in our reduced tag set: case (95.2 %) and subpart of
speech (99.5 %). We counted the same on our training data.** We got 92.6 %™ overall

4 We could not include our test data in the experiment because it does not contain
manually annotated morphology.
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for tagger “a”, and 92.7 % for tagger “b”. Both figures are better when our tag reducing
scheme (see Sections 7.2 and 8.4, and Haji¢ et al. (1998)) is applied: 94.5 % “a”,
94.4 % “b”. On the other hand, assigning the correct case is one of the more difficult
tasks of tagging. We tested only the words whose correct case was known (i.e. 1-7, not X
nor -): 91.7 % “a”, 91.5 % “b"”. From the point of view of the parser it is also interesting
in how big part of all words we can expect a case tagging error. The correct cases divided
by all words give 95.3 % “a” and 95.2 “b”.

Now let us look at an example:

(24) Podnikatelskou misi do Kolumbie, Peru, Argentiny a Paraguaye pfipravila na
dny 25. fijna aZ 8. listopadu hospodarskd komora CR. “The businessmen’s
mission to Colombia, Peru, Argentina, and Paraguay, was prepared for the
days 25" October till 8" November by the Chamber of Commerce of the
Czech Republic.”

The four names of South American countries are coordinated and agree in genitive
case required by the preposition do “to”. The tagger was confused and assigned genitive,
unknown, genitive, and nominative, respectively. No wonder that the parser was
confused even more and constructed a useless tree structure. Figure 29 shows the
correct parse of the sentence (24) (upper tree), and the output of the parser for that
sentence (lower tree).

As shown in Section 8.13.1, simple switching to non-disambiguated morphological
annotation would not help. There is a possible workaround in incorporating a tagging or
partial-tagging procedure into the parser. Whenever the parser selects a dependency the
morphological situation of the words involved gets a bit clearer. For instance, if the
dependency observes agreement in case, and the words allow tag combinations
N1|N4|N5 and N1|N2|N4, the pairs N1-N1 and N4-N4 will contribute with much higher
probability amount than the other combinations. Thus the probability of the words having
one of the tags N1, N4 (as opposed to N2 and N5) will get higher. Such information could
than be used in finding the other dependencies. This might overcome the advantage of
chart parsers that can naturally incorporate tagging into parsing.

*> The tagging accuracy is measured on all words, not only the ambiguous ones but also
words where the tagger had nothing to solve. Such accuracy is important from the point
of view of a parser, which needs to know how good is its input. If we tested only the
ambiguous words, we could say that the tagger was successful at 88.0 %. However, we
still would not be able to distinguish between the words where the tagger had to choose
one of two possibilities and the words where there were two dozens of choices.
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11 Regular expressions and statistics

Zeman (2001a, 2001b) reports on experiments with combining the Model One statistical
parser with a pre- or postprocessor based on regular expressions (RE). The expressions
were handcrafted and they described rules for partial parsing of some Czech syntactic
constructions. The rules were capturing chunks that could theoretically be unlimitedly
complex but in real world they rarely were.*® The application of the rules was not
completely error-free, nevertheless the rules were selected so that their accuracy on PDT
training data would not drop under 90%.

Several rules were applied to one sentence consecutively, and one rule was
applied recursively as long as there was material for it. That effectively made the power
of the whole vehicle context-free.

There were two or three ways how to combine the RE-based partial parser with
the statistical full parser. The first one assumed that the preprocessor would replace each
recognized phrase by a representative word (typically by its head but coordinations —
whose head was a conjunction — should have been represented by one of their
members, converted to plural). The parser then would see the preprocessed phrases
neither during the training phase, nor during parsing. Such phrases became atomic items
for the parser.

There is a possible drawback of this method. If the preprocessor fails to find all
members of a phrase, the error can be corrected by the parser only if the forgotten
member depends on the head of the phrase. If it ought to be nested more deeply in the
phrase, its real governor is now invisible because the phrase is atomic. This leads to the
second approach where the phrase would even for the parser be a structure rather than
a monolith. The parser would get some dependencies for free but would be allowed to
add new dependencies at any place in the structure. The third approach is a special case
of the second one. It applies the finite state tool as a postprocessor to the statistical
parser output, overriding all parser decisions concerning the recognized chunks.

We refer to the three methods as to transparent preprocessing, non-
transparent preprocessing, and postprocessing respectively.

The recall of the rule-based tool was almost 20.0 %, which meant that it would be
able to (correctly) help in one fifth of cases. The precision of the tool was 94.0 %. If the
preprocessor used morphological markup by the tagger “a” instead of hand annotation,
the precision would drop to 92.3 %, recall to 17.3 %. If ambiguous output of
morphological analysis were used, precision would be 89.5 %, recall 20.1 %.

Finally we combined the finite state tool with the parser in all three ways
described above. The resulting systems were tested on PDT 0.5 d-test data. All
experiments used machine-disambiguated morphology.

6 We used regular expressions to model the local syntax of coordinations, simple noun
phrases and other simple small chunks of sentences. The method is closely related to
local grammars that have been applied to a similar task for a similar language (Serbo-
Croatian) by Nenadi¢ and Vitas 1998, and Nenadi¢ 2000.
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Besides speeding up the parsing process (most significantly with transparent
preprocessing), Zeman (2001b) reported increased accuracy. However, those days’
numbers were far from Model Two final performance: the accuracy rose from 53.7 to
57.2 with nontransparent preprocessing. It was not sure whether at least some
improvement could be achieved for a parser whose accuracy would be 70 % or more. For
the Model Two parser, the answer is no, for a simple reason: the phenomena captured by
the RE rules are simple enough so that the parser can learn them now. So if parsing time
is not an issue, there is no reason more for using the preprocessor.
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12 Parsing non-projective constructions

In Section 7.1 we defined projectivity*’ and required that the parser render all trees
projective. At the same time we demonstrated that there are correct non-projective
sentences but they are so rare that enforcing projectivity would not damage the results
too much.

Theoretically, the Model Two parser already can produce limited amount of non-
projective constructions. It comes with the special treatment of some patterns and short
sentences (see Sections 8.10, 8.11) where a non-projective subtree can be learned en
bloc. Practical effect is negligible: only two non-projectivities in two sentences appeared
in the output so far.

The state-of-the-art Czech parsers of Eugene Charniak and Michael Collins
respectively*® so far treat Czech as being completely projective. They are not able to
produce non-projective output (it follows from the fact that they first generate context-
free-grammar-based parse trees and then convert them to dependencies). During
training they simply shift any non-projectively attached node to a nearest projective
position so that it is possible to convert the dependency structure into parse tree.

There are other parsers (Zabokrtsky, Holan) that are able to generate non-
projective constructions. *® Unfortunately, description of these parsers has not been
published. See Chapters 14 and 15 for a little more about them.

Holan et al. (1998), and Kubon et al. (2001) develop grammar formalisms that
allow for handling of non-projectivities. We do not know about any parsing system based
on their formalism that would have been evaluated on PDT d-test data.

Non-projective constructions are not much frequent in terms of word counts but
are relatively frequent in terms of sentence counts. Out of the 73,088 non-empty
sentences in PDT 1.0 training data, 16,920 (23.2 %) contain one or more non-projective
dependency. Out of the 1,255,590 words in the same data set, 23,691 (1.9 %) are
attached non-projectively. Both percentages are quite close to the figures reported in
Chapter 2 of Haji¢ et al. (1998) for PDT 0.5.

We have categorized the main groups of non-projectivities according to their
cause. The statistics taken from PDT indicate that majority of non-projectivities found in
real data is of technical nature. That gives us a chance to teach the parser to recognize
non-projective constructions.

47 Several mutually equivalent definitions of projectivity (Hudson’s (1984) adjacency)
have been formulated; see esp. Marcus (1965).

48 See Haji¢ et al. (1998) and Collins et al. (1999) for Collins’ parser. For Charniak’s
English parser see Charniak (2000); Charniak adapted it for Czech in 2002 and during his
visit to Prague in January 2003; however, to our knowledge the results have not been
published.

‘ig We found 2377 non-projective dependencies in 1485 sentences of the output of
Zabokrtsky’s parser. For Holan’s parsers it is 261 words / 147 sentences (12r parser), 224
/ 153 (r2l parser), and 1518 / 906 (pshrt parser). The hand annotation of PDT 1.0 d-test
data contains 2306 non-projectivities in 1650 sentences.
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12.1 Classification of non-projective constructions in
PDT

Non-projective constructions form a relatively little explored part of (Czech) language. A
classification has been proposed by Uhlifova (1967). However, she did not have a
syntactically annotated corpus at her disposal, which yields two consequences. On one
hand, she does not provide any idea how frequent this or that type of non-projectivity is.
On the other hand, she does not have to bother with technical cases, bound to the
treebank annotation guidelines. Some observations about non-projectivities from a
parser’s point of view are described in Holan (2003), though they bring just statistics
about different POS-tag configurations.

We>® have recently developed a preliminary classification based on PDT data.
According to that classification, three main groups are to be distinguished, in which the
non-projective constructions concern:

(A) combinations of lexical units with function words (especially auxiliaries),
which correspond to no non-projectivities in the tectogrammatical level, since in the
latter such a combination is represented by a single node;

(B) syntagms divided, under the surface word order, into a contextually non-
bound part and a (generally contrastive) contextually bound part, the latter being
transferred to the left;

(C) phrasemes consisting of more than one surface word, which eventually are to
be treated as not containing a dependency relation in the tectogrammatical level (either
each of them is to be specified by a single node of the tectogrammatical level, or by a
specific relation, different from syntactic dependency).

Let us now illustrate the three groups by examples and statistics taken from the
PDT 1.0 training data. The technical non-projectivities (class A) are of the most interest
at the time being, as we expect to be able to incorporate these into the parser with least
effort. We will see that about a half of all PDT non-projectivities falls into the class A.

Before we proceed, it will be useful to define a gap. First recall the condition of
projectivity. In a projective rooted tree the following implication holds (S denotes the
relation of subordination (aSb indicating that a is subordinated to b), an irreflexive
transitive closure of dependency; the set of nodes is ordered by the relation W.):

VX, y,z,v ((sz A YSZAXWY A va) = VSz)

We say that a node z for which vSz in the implication does not hold is in a gap.
For more on gaps and for a discussion of the possibilities of several gaps co-occurring in
a sentence, see Kubon et al. (2001), and Holan et al. (1998).

12.1.1 The conjunction -/i (Ala)

The Czech conjunction -/i “if” occurs in a specific position: after a verb that starts the
clause; if the verb is followed by a dependent, then -/i is in a gap and a non-projectivity
follows, or several of them at once.

0 The presented classification is a result of my research in collaboration with Katefina
Veselad and Petr Sgall. A comprehensive version is going to appear as a technical report in
the near future (see also Veseld et al. 2004, Hajicova et al. 2004).
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Figure 30: Non-projective —li:
Pohlédnem-Ili pak na celou problematiku z tohoto uhlu, ...
If we view the whole problem from this angle...

(25) Pohlédnem-li pak na celou problematiku z tohoto uhlu, ..

whole problem from this angle...”
This part of the Al class forms about 4.6 % of non-projectivities found in PDT.

12.1.2 Auxiliary verb forms (Alb)

Here belong examples such as
(26) Bude to muset udélat hned. “He will have to do it at once.”

. “If we view the

Since on tectogrammatical level the function words (as the auxiliaries bude for
future tense, and muset for the modality) are rendered by indices of their lexical verbs,

rather than by extra nodes.

muset
must
Bude udélat
Will do
to hned
it at once

Figure 36
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& Kk Q dvacet

to twenty
7 v O
necitelnosti haléru
illegibility hellers
az pecelych
up incomplete
Figure 31: Focus-sensitive particle Figure 32: Numeral in the gap

The Al class together forms about 27 % of non-projectivities found in PDT.

12.1.3 A prepositional group with a focus sensitive particle
(A2)

(27) az k necitelnosti “up to illegibility”

The node dependent on the noun is a focus sensitive particle (focalizer,
rhematizer), which has just the noun in its domain, although it precedes the preposition
(the gap).

The following table brings examples of the most frequent focalizers in the PDT 1.0
training data. A total of 6124 occurrences of 182 focus sensitive particles have been
encountered. For the sake of this statistics, the system marked as focalizer every node
crossing a preposition and hanging on the word behind it. Some of such “focalizers” are
more likely to be attached elsewhere in the described configurations; 48 of them (in
5546 occurrences) have prevailingly (more than 50%, more than 1 occurrence) attached
to the second node to the right, crossing the preposition.

Focalizer Translation Examples Counterexamples | Percentage |
i as well 1373 900 60.4
az up to 719 316 69.5
jen only 441 197 69.1
pouze just 278 128 68.5
jiz yet 252 154 62.1
uz already 227 181 55.6
predevsim first of all 222 140 61.3
jesté still 209 139 60.1
zejména in particular 200 128 61.0
ani not a single 166 151 52.4
jenom only 28 7 80.0
skoro almost 9 1 90.0
napfr. e.g. 52 0 100.0
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Figure 33: Bracketed sentence:
| Kontakt: Ekonomicka fakulta v Chebu, Hradebni 22, 350 01 Cheb. |
| Contact: Business School in Cheb, Hradebni 22, 35001 Cheb. |

The A2 class forms about 26 % of non-projectivities found in PDT.

12.1.4 A numerative handled as a noun, rather than an
adjective, and expounded then by a divided noun
group

(28) necelych dvacet haléfd “less than twenty hellers”

Due to the agreement in case between the noun haléfd and the adjective
necelych, the latter is analyzed as depending on the former, which itself depends on the
numeral. On the tectogrammatical level, the numeral is understood as a (syntactic)
adjective, depending on haléfd, so that the condition of projectivity is met.

The A3 class forms about 0.6 % of non-projectivities found in PDT.

12.1.5 Bracketed sentences (A4)

If the whole sentence is in brackets or similar pair symbols (such as quotes or even
vertical bars), the final stop (question mark, exclamation mark) causes a technical non-
projectivity, as it, according to the annotation guidelines, hangs on the root, while the
brackets hang on the main verb.

(29) | Kontakt: Ekonomicka fakulta v Chebu, Hradebni 22, 350 01 Cheb. |

“| Contact: Business School in Cheb, Hradebni 22, 35001 Cheb. |”

Odd it may be, such construction is nevertheless not so rare: we counted 959

occurrences (4 %).

12.1.6 Non-projectively attached punctuation and filler
words (A5)

All other non-projective dependencies whose dependent node’s s-tag is AuxG, AuxX, Auxy,
or AuxZ belong here. The group is rather heterogeneous and does not provide a simple
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Figure 34: Non-projectively attached punctuation: , stejné jako “as well as” in sentence
(30).

clue for the parser to parse it. For example we chose a non-projectively attached comma
(AuxX):
(30) Kniha je urlena pro zaméstnance poradenskych firem, stejné jako pro
studenty ekonomickych Skol. “The book is intended to assist employees of
consulting firms as well as students of business schools.” (c122:42)

12.1.7 Coordination with an adjunct depending on the
group as a whole (B1)

(31) ..., kdy si zahraniéni banky najdou cestu pfimo do regiond, pfipadné kdy si
zacnou zvat zajimavé klienty do své praZzské pobocky. “.. when foreign
banks find their way to the regions, or when they start to invite attractive
clients to their subsidiary in Prague.”

The conjunction pfipadné “or” coordinates the clauses, banky “banks” is the
common subject of the whole coordination and thus hang on pfipadné, the words kdy
“when” and s/ “themselves” are therefore separated from their parent node najdou “find”.

The B1 class forms about 5 % of non-projectivities found in PDT.
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of a phraseme

12.1.8 Phrasemes with a dislocated dependent (B2)

(32) Na to si musime dat pozor. “We have to take care of that.”

The phraseme dat pozor na “to take care of” can be understood to be interrupted
here, since the of group is a part of the topic and its head noun is in the focus.

The B2 class forms about 0.1 % of non-projectivities found in PDT.

12.1.9 Divided nominal groups (B3)

(33) SpoleCnou mame predevsim tuto zodpovédnost. “First of all it is this
responsibility what we have in common.”
The adjective spolecnou is pre-posed as a contrastive adjunct of the contextually
non-bound subject.
The B3 class forms about 10 % of non-projectivities found in PDT.

12.1.10 Numerals with a dislocated dependent (B4)

(34) Bézné je jich k dispozici deset. “Commonly, ten of them are at disposal.”

The group jich deset “ten of them” is divided by the prepositional group
k dispozici, which depends on the verb.

The B4 class forms about 1.1 % of non-projectivities found in PDT.

12.1.11 A comparative group divided from its ‘than’
dependent by its headword (B5)

Recall the example sentence (13) in Section 7.1:

(35) ... protoze doba pfenosu vice zavisi na stavu telefonni linky neZ na rychlosti
pristroje. “... because the transmission time depends more on state of the
phone line than on the speed of the device.”

We do not repeat the corresponding Figure 12 here, please see the Section 7.1

for it.
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Figure 36: Dislocated wh-element

A “comparative group” need not necessarily use morphological means of the
comparative degree. The positive or superlative degrees can be present as well, as in the
following examples:

(36) podobny pes jako sousediv

“a similar dog as the neighbor’s one”
(37) nejrychlejsi béZec na svété
“the fastest runner in the world”
The B5 class forms about 2.6 % of non-projectivities found in PDT.

12.1.12 Relatives or interrogatives (wh-elements) dislocated
to the left (B6)

v v/

(38) nejvyssi rychlost, jaké je pristroj schopen
“the highest speed the device can achieve”

The wh-pronoun depends on a nominal part of the predicate, and the headword
(possibly with other dependents) is in the gap. A similar behavior is proper to wh-words
in interrogative dependent clauses.

The B6 class (including its intersection with B7) forms about 1.9 % of non-
projectivities found in PDT.

12.1.13 Dislocated dependents of infinitives (B7)

Recall the example sentence (12) in Section 7.1:

(39) Soubor se nepodafilo otevrit. “The file could not be opened.”

We do not repeat the corresponding Figure 11 here, please see the Section 7.1
for it.

Quasi-modal predicates are placed here in the “second” (weak) position, after a
possible (sequence of) clitic(s), perhaps in analogy to real modal verbs (cf. the Al class),
which, in the prototypical case, occupy the weak position.

Besides quasi-modal predicates, some other are involved in this class, such as
phase- or quasi-phase predicates. Some examples of frequent gap words governing the
infinitives are /ze “it is possible”, zacit “begin”, hodlat “intend”, poda¥Fit *“manage”, nechat
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“let”, snazit “try hard”, schopny “able”, pfestat “cease”, pokusit “attempt”, potfebovat
“need”, odmitat “refuse”, ochotny “willing”, povinny “required” etc.

The B7 class (excluding its intersection with B6) forms about 8 % of non-
projectivities found in PDT.

12.1.14 Particles referring to preceding co-text, although
occupying the 2nd position (B8)

Czech particles such as vsak “however”, proto “therefore” are understood on the
analytical level as heads (with the verb depending on them); they prefer to occur in a
gap. They generally refer to the preceding co-text. It is like if there was a coordination of
clauses, split into two sentences, with the conjunction (vSak) residing staying with the
second part.

(40) Na tom vsak vinu nemam. “However I'm not guilty for that.”

The B8 class forms about 16 % of non-projectivities found in PDT. The most
frequent gap words are vsak “however”, ale “but”, proto “therefore”, ovsem “admittedly”.

Even our enumeration is not exhaustive; we have focused mainly on the A-class
technical subclasses, and have omitted some low-density classes, such as separated
members of an asymmetrical apposition, nominal vs. verbal attributes (cf. Uhlifova
(1967)), deletions etc.

We have shown that at least a half of the non-projective constructions in real data
is rather technical and thus should be easily solvable by parsers.

12.2 Treating non-projectivities by the parser

Now as we have rough descriptions of the situations, in which non-projectivities typically
emerge, we can modify the parser to recognize at least some such situations and to lift
the ban of non-projectivity with some care.

A purely statistical way would be to look into the training data and learn patterns
that can be solved non-projectively. Unfortunately, the thing gets complicated due to
sparse data: the patterns would be described partially by m-tags, sometimes by lexical
values (lemmas or word forms), and if we want the process to be guided solely by the
data, we cannot direct the parser where to use word forms and where the lemmas or m-
tags.

As a solution, we split treating non-projectivities in two parts. Compact
constructions, well describable by m-tag patterns, are analyzed as blocks, together with
some projective structures — see (8.11). The necessary condition is that the pattern has
been observed at least five times and that there is a dependency structure that applies to
the pattern in at least 90 % of the examples found in the training data.

Non-projectivities that cannot be captured by the above statistical procedures will
be subject to fine-tailored, hand-made rules based on the classification in this section.

12.2.1 Conjunctions in the second position

The -/i conjunction in 0 (including the dash) can always be non-projectively crossed by
any dependency on the left-neighboring verb. Either we can modify the function
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responsible for allowing dependencies for addition, or we can leave the function as is,
reorder the words so that /i precedes the verb, parse the sentence and reorder it back
again.

Similar approach could help with vSak and other conjunctions in second positions
(see 12.1.14). Here it might be more useful to remove the conjunction from the sentence
temporarily, instead of reordering. After parsing we would insert the conjunction on the
edge going from the root to the main verb.

We have implemented the light version, i.e. the projectivity-watch function just
allows crossing -/i and vsak, and the rest is left for the statistical core to decide.

12.2.2 Constructions with infinitives

Infinitive verbs get involved in many non-projectivities (cf. 12.1.2 and 12.1.13). A good
recipe might be to review any parse where an infinitive is present. If an argument is
more strongly lexically bound to the infinitive than to the finite verb above it, but the
projectivity enforcement bans such dependency, allow it! Attention, subjects should be
attached to the governing finite verb.

We have implemented just a simple version, which relies more on the statistical
core. If the parser has already attached an infinitive to its left neighbor, all nodes that
are allowed to attach to the neighbor will now be also allowed to attach to the infinitive.

12.2.3 Prepositions and focalizers

The A2-class non-projectivities (see 12.1.3) are quite compact (usually no more than
three nodes involved) and their patterns could easily be learned. However, the general
pattern-matching tool described in 8.11 cannot apply here as long as it checks m-tags
only. A list of focus-sensitive particles (their lemmas) learned from the training data will
fill the gap.

The parser is now looking for a focalizer from the list, followed by a preposition.
Given the statistics presented in 12.1.3, enforcing the attachment of the focalizer to the
word after the preposition would not help much if at all. So we only allow the non-
projective dependency to compete. The main statistical model selects whether the
dependency wins over the other possibilities of attaching the focalizer-resembling node.

12.2.4 Results

Experiments revealed that the partial processing of non-projectivities we allowed has a
very limited, though positive influence on the accuracy. The output from the parser now
contains 388 non-projective dependencies in 322 sentences. If processing non-
projectivities was turned off, the accuracy would drop from 74.7 to 74.5 %.
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13 Extended evaluation methods

This chapter is a follow-up to Sections 7.9 and 8.13 that evaluate the accuracy of Models
One and Two, respectively. Evaluation in those sections mainly involves comparing the
influence of various parser features on the accuracy. In contrast, in this chapter we
present only tests of the best parser (all successful features turned on) but viewed from
many new perspectives.

13.1 Accuracy on sentences of different lengths

The accuracy on short vs. long sentences has been first discussed in the Section 8.10. In
the following table we summarize the accuracies on sentences of different lengths for the
final version of Model Two.

Length # Sentences # Words Accuracy
1-10 2363 14334 84.8
11 - 20 2727 41819 77.0 75.7
21 - 40 2125 57970 72.4

41+ 255 12360 66.4

13.2 Sentence accuracy

So far the term accuracy referred to dependency accuracy, i.e. the number of correctly
attached words divided by the total number of words in the test data. Sentence
accuracy, on the other hand, is defined as the number of correctly parsed sentences
divided by the total number of non-empty sentences in the test data. A correctly
parsed sentence has all words attached correctly, i.e. its dependency accuracy is
100 %.

Some applications may prefer to get only some parses with guaranteed quality
over getting all parses with average quality. That is why sentence accuracy may be a
useful measure.

It is extremely difficult to correctly parse a long sentence. Of course, it is easier
for short sentences, and sentences of length 1 are correct automatically. The total
number of sentences in the PDT 1.0 d-test data is 7319. The total number of correct
parses delivered by the Model Two parser is 1539. Thus the sentence accuracy is
21.0 %. Distinctions according to the sentence length are demonstrated in the table
below; the longest correctly parsed sentence contains 32 words.

Length Sentences Correct parses Sentence accuracy
1 55 55 100.0
2 199 198 99.5
3 151 122 80.8
4 209 148 70.8
5 274 196 71.5

105




Length Sentences Correct parses Sentence accuracy
6 220 118 53.6

7 276 128 46.4

8 248 93 37.5

9 267 98 36.7

10 313 85 27.2

32 70 1 1.4

Total 7319 1539 21.0

We can modify the word-based accuracy to reflect the sentence accuracy as well. We
would consider a word correct only if it appeared in a perfectly parsed sentence. As
usual, the sum of correct words would be divided by the total number of words. In other
words, this is a sentence accuracy weighed by the sentence length.

The 1539 correct parses together contain 10716 words. As the total number of d-
test words is 126030, the weighed sentence accuracy is 32.1 %o.

13.3 Parser skillfulness

One may tend to underrate “decisions” in cases where in fact there was little or nothing
to decide. For instance, if a tagger has to tag a word that is covered by dictionary and
only allows for one tag, one may claim that the tagger should get no score points to its
accuracy figure for that word because there was nothing to disambiguate. Similarly, one
may claim that “sentences” consisting of one single word should not be counted in parser
accuracy.

There are two problems with such a point of view. First: for an application using
the output being evaluated, it does not matter how difficult the job of the tagger (parser,
or another tool) was. The only thing that matters is the quality of the whole data the
application gets — including the easy points. And second: there is a difficulty spectrum
rather than a two-state classification (easy vs. difficult). If we penalize (or leave out)
cases where a tool has nothing to solve, how will we distinguish the cases where it has to
choose one of two values (tags, dependencies...) from cases where one of 20 values is to
be selected?

We attempt to address the issue in this section. We develop a measure that is
based in parsing accuracy but applies weights according to the difficulty of each parsing
decision. To distinguish the measure from parsing accuracy, we call it parser
skillfulness. We do not develop it very deeply though; this is just an illustration of one
possible way.

Let’'s assume we have a measure of difficulty of attaching word, denoted O, and
being a function of a word w. Then the parser skillfulness S on test data DTEST would be
defined as

S = ng , where C,, = >0, ,and C= > 0,

we DTEST we DTEST
4 manuat w)=d parser (w)
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Skillfulness is thus an analogy to accuracy; just each occurrence of a word is
weighed by the difficulty of finding its dependency relation.

Now how should the difficulty O, be defined? We assume that the number of
attachments the parser has to choose from increases with the increasing length of the
sentence. The proportion is not linear because words prefer to attach to their neighbors
and the parser knows that. We want the difficulty be expressed by a 0..1 number,
whereas 0 would apply to nothing-to-do cases, and 1 would correspond to an infinite
number of possibilities. One of the functions satisfying all mentioned conditions is the
following:

1
o =1—N—, N, being the number of words in the sentence the word w occurs

w
w

Of course, fancier functions could be designed. It is not clear, how quickly the
difficulty should increase with respect to the sentence length. The above definition gives
a weight of %/5 to sentences as short as 3 words; it effectively penalizes only very short
sentences.

The parser skillfulness on PDT 1.0 d-test data given the above definition of
decision difficulty is 74.4 %.

13.4 Precision and recall

If the parser proposes one and only one dependency for each word the precision and
recall in their usual senses will be the same (and equal to what we call accuracy).

We might however want to exploit the parser’s ability to assign weights to
dependencies and dependency structures. Than we could arrive at structures where a
node could have no parent, or several alternative parents. For the purpose of evaluating
such structures we define three measures:

Precision P is the number of correctly proposed dependencies divided by the
number of proposed dependencies.

Recall R is the number of correctly proposed dependencies divided by the number
of words in the training data.

F-measure is a usual way of getting one number from P and R. It is close to the
mean of P and R if the two are close to each other. If there is a substantial gap between
P and R, F tends to stick with the lower one. F-measure is defined as follows:

Fe 2XPXR

P+R

Basically there are two ways of breaking the one-dep-per-word rule:

1. We might require that the parser relax from proposing a dependency

whenever the best solution is not good enough.”*

2. Or we might request providing two or more solutions (with weights) whenever

the best solution is not sufficiently better than the next one in the row.>?

1 An empirical threshold would define what enough means.
2 An empirical threshold would define what sufficiently means.
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Both approaches lead to parses that do not fulfill our constraints on dependency
structures (see the Section 4.2). In (1.) the only change is that some nodes have no
parents. In (2.) however, any node is now allowed to have zero to N parents where N is
the number of words in the sentence. This is a much more complicated case. It is not
clear for instance, how to ensure that a finally selected subset of dependencies does not
contain cycles.

The Model Two parser is not prepared to produce alternative dependencies either.
It would not know how to check projectivity, nor would it be able to check treeness. Just
to get some outline of the usefulness of the weights we ran the following experiment:

Setting 1: No dependency that has been seen less than ten times in the training
data can be proposed. Technically we will add it to the tree for the time of parsing but we
will remove it after the parser will have finished.

Setting 2: If a dependency wins a round with weight w;, and there is a
dependency of the same dependent node on another governing node, weighed w,, and
w, 20.9 w,, we add the first dependency to the tree and remember the latter as an
alternative dependency. All projectivity and other checks will be done against the first
dependency only. Furthermore, if there is another dependency, weighed ws, and
w;, 20.9 w,, we remember it as well, and so on recursively. We do not take the weights
into consideration when computing precision and recall.

The following table summarizes P, R, and F for experiments 1 and 2. Even though
there is a large space of other possibilities that could be explored, we believe that this is
a useful (and the first one published for Czech) evaluation of providing alternative
dependency structures.

Setting Precision Recall F-measure
Model Two 74.7 74.7 74.7
Setting 1 78.3 66.6 72.0
Setting 2 71.6 75.9 73.7

13.5 Seriousness of errors

If we look at the errors made by the parser we realize that some errors are less serious
than others. For instance, sometimes the parser does not succeed to reproduce the
structure of nested coordination, although most coordination relations are preserved.

To take a more general view, to what extent is it important to render all commas
correctly? Intuitively, all errors in attaching nodes likely to disappear on the
tectogrammatical layer are less significant. Most commas belong to that class.

The manually annotated s-tags present in the test data provide some hint as to
the syntactic importance of nodes. Most of the not-so-important nodes bear an s-tag
beginning with Aux. However, we must be careful. AuxP nodes are very important: this s-
tag denotes a preposition, thus hanging AuxP corresponds to the preposition attachment
problem. Similar are AuxC nodes (subordinative conjunctions), and AuxT (reflexive
particles) are also important.
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The following table presents separate accuracy figures for attachments of words
with different s-tags (as found in manual annotation of test data):

S-tag(s) Accuracy
Pred, Pred_Pa 77.9
Sb 81.9
Obj, ObjAtr, Obj_Pa 83.1
Pnom 83.7
Adv, AdvAtr, Adv_Pa 88.1
81.8
AUXP 67.2
AuxC 60.1
Atr, AtrAdv, AtrAdv_Pa,
. 87.1
AtrAtr, Atrobj
Atv, AtvV, AtvV_Pa 40.0
*_Ap 30.0
*_Co 47.5
42.7
Apos, Apos_Pa 30.4
Coord, Coord_Pa 35.6
AUXR, AUXT, AuUXV 87.4
AuxG, AuxO, AuxX, AuXxY, 57.4
AUXY_Pa, AuxZ, AuxZ_Pa ' 74.2
AuxK, AuxK_Pa 96.8
ExD, EXD_Pa 68.7
There are also some features of the PDT annotation scheme that - if not even

inconsistent - are unfriendly to statistical parsers. Parsing errors in nodes that are
subject to such features would also be hot candidates for the label “less significant”. For
details, see Zeman (2002b).

Finally we checked how the accuracy will change when we eliminate sentences
containing some “dangerous” s-tags from both the training and test data. Coordinations
and appositions form one such group of s-tags. ExD tags indicate sentences, in which
some words lack their parents due to deletions, and may be attached to unusual
substitute parents instead.

S-tags banning sentence processing Accuracy Sentence accuracy
none 74.7 21.0
EXD 76.1 16.4
Coord, Apos 82.8 27.9
ExD, Coord, Apos 83.0 36.2
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13.6 Accuracy vs. amount of training data

The following table demonstrates how accuracy grows with the increasing size of training
data. In the experiments we simply took the first n sentences of the standard PDT 1.0
training data. No attempt was made to balance the data in any way.

Training Training words Events File size Accuracy
sentences recorded
1,000 14,080 83,475 1.7 MB 66.8
10,000 151,205 581,834 13 MB 71.5
25,000 411,706 1,417,306 31 MB 73.4
50,000 848,922 2,506,040 55 MB 74.3
73,088 1,255,590 3,448,365 76 MB 74.7

One may also ask what would be the accuracy if we went through whole the training data
set but threw away everything seen only once. Or, maybe, not once but n-times. We
would not spare the necessity of possessing a large enough treebank but once trained,
the parser would require less memory and the parsing could proceed faster. The
following table compares the changes in statistics file size and in the accuracy with
increasing n.

Must have been Events recorded File size Accuracy
seen

> 0x 3,448,365 76 MB 74.7

> 1x 944,195 20 MB 74.4

> 2X 538,557 11 MB 74.3

> 5x 238,984 5 MB 73.9

> 10x 123,386 2 MB 73.5

13.7 Accuracy vs. type of data

Haji¢ et al. (1998) observed that it was substantially easier to parse newswire texts of
Lidové noviny, Mladé fronta Dnes, and Ceskomoravsky Profit, than the scientific texts in
Vesmir.>® One apparent reason was the higher average sentence length in Vesmir (cf.
Section 13.1). Most likely it was not the only reason, though. The scientific texts tend to
use unusual vocabulary, more complicated or bookish structures etc.

Haji¢ et al. used the PDT 0.5 test data that contained texts from all the sources.
PDT 1.0 d-test data, however, consist solely of Lidové noviny texts. That is why we
cannot provide separate accuracy for scientific texts. Nevertheless the training data
contain all sources; so there is a legitimate question: Will the accuracy rise if we only
train on data from the same source? Or at least, will it be better than if trained on the
same amount but mixed composition of data? The following table shows that for

53 See also the Section 7.9.1.
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comparable training data sizes it is better to use same-source texts but the difference is

minimal.

Training data Accuracy
Source Files Sentences Words
Lidové noviny 865 39,978 698,671 74.2
Proportionally all 864 39,687 679,665 74.1

So far we have assessed the source and variability of training data. To look at the
variability of the test data, we split the data into 100-sentences blocks and evaluated the
accuracy of each block separately.

The following observations may shed some light on the problem of selecting test
data of appropriate size.>*

The accuracy of the worst block is 67.7 %.

The accuracy of the best block is 82.2 %.

The 12 best blocks (1200 sentences) together have an accuracy of 80.1 %.
Similarly, the 12 worst blocks together have 69.8 %.

The parser steps through the data in the alphabetical order of the file names.
After the first 1500 sentences the current accuracy was over 77 %. It lasted
between 76 and 77 % until the sentence No. 3000, and until No. 4200 the
accuracy was still over 75 %. (The total number of test sentences is 7319.)

>4 Do not get confused — of course, for most of this thesis the test data are fixed for the
sake of comparability.
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14 Improving the state-of-the-art parser:
a superparser

Although we have gone a long way in terms of improving parsing accuracy over Zeman
(1997), the final Model Two parser still performs almost 10 % below the best-known
parsers for Czech. The Collins’ parser has been reported (Haji¢ et al. (1998), Collins et al.
(1999)) to achieve 80.0 % on PDT 0.5; we have found that on PDT 1.0, its accuracy rises
to 82.5 %. Moreover, Eugene Charniak has adapted his English parser (Charniak (2000))
to Czech in 2002-2003. His accuracy is the best known for Czech at the moment,
84.3 %.”°

Interestingly enough, the Model Two parser does not make some errors the two
parsers just mentioned do (and vice versa, naturally). This fact creates space for
combining all three parsers, hoping that the resulting accuracy would be better than any
of the parsers can achieve alone.

In this chapter, we first discuss some previous work, especially the possibilities of
generating several different parser outputs for a text using just one parser (Section
14.1). Then we summarize the existing parsers (Section 14.2). Finally we describe the
combining algorithm and evaluate the results separately for three parsers (Section 14.3),
and for all seven parsers (Section 14.4).

14.1 Generating classifiers

A parser can be viewed as a classifier similar to taggers. While a tagger assigns a POS
tag to each input word, a parser assigns a dependency (index of another word). There
has been an increasing interest in combining classifiers during the past decade. As it is
not common to have several different classifiers at disposal, the research concentrated
on two issues: 1. How to generate a number of classifiers given a single one we have;
2. How to combine them?

Basically there are two main approaches to the former issue: bagging (Breiman
(1994)) and boosting (Freund and Schapire (1996)). Both methods could also be used
together in a hybrid system, which could further be combined with using several
different-architecture classifiers (parsers).

With boosting, a parser is applied to its own training data and weights are
assigned to each sentence: the more errors, the higher weight. Then the parser is re-
trained, and asked to pay more attention to points with high weights. The process has to
be repeated many times; after each training iteration we get a new (newly trained)
parser. Finally all parsers are combined by simple voting. A drawback is that hundreds of
iterations are typically needed. Given the parsing times of our parser, it would take days
to boost it.

Another way of multiplying classifiers is bagging. Different parsers can be
simulated by training the same parser on different data. It is undesirable to lessen the
training data size just because we need several data sets instead of one. Fortunately,

%5 To our knowledge, this result has not been published.
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there is a workaround: we can randomly select 75 % of the available data and fill in the
remaining 25 % by repeating random sentences from the 75%-part. This technique
produces as many bags of data as required while keeping the size of all bags close to the
size of the original data.

The third possibility is having several classifiers for the same classifying problem
that are different enough so they do not make all the same errors. We are fortunate
enough to have at least three parsers at disposal, so this is the only direction we are
going to investigate later in this chapter.

14.2 Summary of the parsers

Besides Charniak’s and Collins’ parsers, there are couple of other parsers that have not
been published but are applicable to PDT. In the following table we summarize 7 parsers
we are able to deploy in our experiments. We will test two sets: all seven parsers, and
the subset of dz+ec+mc.

Parser | Author Brief description Accuracy

dz Daniel Zeman The Model Two parser described in this thesis. 74.7

A maximum-entropy inspired parser, home in
) constituency-based structures. English version
ec Eugene Charniak . ] . . 84.3

described in Charniak (2000), Czech adaptation

2002-2003, unpublished.

Uses a probabilistic context-free grammar,
home in constituency-based structures.

mc Michael Collins . . Y . 82.5
Described in Hajic et al. (1998) and Collins et
al. (1999).
Purely rule-based parser, rules are designed

zz Zdenék Zabokrtsky |manually, just a few lexical lists are collected 75.2
from the training data. 2002, unpublished.>®

th- Three parsers. Two of them use a sort of push- 62.8

pshrt down automata and differ from each other only

th-12r | Tomas Holan in the way they process the sentence (left-to- 69.9
right or right-to-left). Descriptions to appear in

th-r2l Holan (2004).%’ 71.7

14.3 Combining three parsers (ec, mc, dz)

If we compare the errors the various parsers make we will realize that 65.9 % of
dependencies are correctly assigned by all 3 parsers. That is the lower bound on
accuracy of the parser combination. Theoretical accuracy maximum (at least one parser
knows the correct answer) is 92.4 % — but the assumption is we have an oracle able to

%6 zdenék Zabokrtsky can be reached at CKL MFF UK, visit http://ckl.mff.cuni.cz/.
7 Tomé&$ Holan can be reached at KSVI MFF UK, visit http://ksvi.mff.cuni.cz/.
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always tell which parser is correct. Our requirement is not to sink under 84.3 %, which is
the accuracy of the best parser alone.

The following table shows number of times a parser proposed correct dependency
while all the others were wrong. Absolute numbers are accompanied by the percentage
of test data they correspond to.

Who is correct How many times
) ec 5411 4.3 %

a single parser

mc 3458 2.7 %
(all other wrong)

dz 2722 2.2 %
all parsers 83080 65.9 %
majority 104815 83.2 %
at least one parser 116406 92.4 %

The table reveals that even the worst parser produces considerable number of correct
dependencies the other two parsers are not able to find. This fact supports our hope that
the parsers are sufficiently independent to grant them right to vote about the final result.
If two parsers produced too similar results, there would be the danger that they push all
their errors through, blocking any meaningful opinion of the third parser.

On the other hand, there is little chance that any parser will be able to push
through the things it specializes in. It is very difficult to realize that a parser is right if
both the others reject its proposal. Later in this chapter we will describe some
experiments with using morphological context to detect particular parsers’ strong and
weak points. However, the real power is in majority of votes.

14.3.1 Balanced and unbalanced context-free voting

The ec parser is known to produce the most-accurate results. Thus it is reasonable to
prefer ec’s output whenever the three parsers disagree. Only if mc+dz agree on a
different solution ec is outvoted.

These parsers agree in 53.2 % on a correct result and in 46.8 % on an error. Thus
the accuracy improvement is not dramatic; it is interesting, though: 85.5 % in contrast
to the 84.3 % of the ec parser alone.

Haji¢ et al. (1998, Chapter 5)°® applied bagging to PDT 0.5 and Collins parser.
They distinguish balanced and unbalanced combining of parsers. Balanced
combinations propose exactly one dependency for each word. Unbalanced combinations
retain all dependencies proposed by at least half of the parsers. Precision and recall has
to be computed instead of accuracy (see Section 13.4). We have tested both balanced
and unbalanced combining.

Note that even balanced voting does not guarantee that the resulting set of
dependencies conforms to our definition of a dependency tree structure. That may or
may not matter depending on the application that wants to use the parsing results. We
believe that given the definition of accuracy (computed on words, not sentences), it is OK

%8 See also Hladka (2000), Chapter 5.
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to consider each word separately. If “treeness” is required, further checks would have to
be performed and the accuracy improvement would naturally be less impressive. Note
however that (to our knowledge) the previous work on parser combination in Haji¢ et al.
(1998) does not care whether the result is a tree, and neither do some of the individual
parsers. Henderson and Brill (1999) prove that their combination of constituency-based
parsers could not produce crossing brackets; unfortunately, there is no analogy in the
dependency framework (treeness of the resulting structure cannot be taken for granted).

14.3.2 Using context

If we have only three parsers we could use context to detect two kinds of situations:

1. If each parser has its own proposal and a parser other than ec shall win.

2. If two parsers agree on a common proposal but even so the third one should

win. Most likely the only reasonable instance is that ec wins over mc+dz.

“Context” can be represented by a number of features, starting at morphological
tags and ending up at complex queries on structural descriptions. We use the core
features the individual parsers themselves train on: the m-tags, in a couple of flavors.
Either we look at the m-tag reduced the way described in Section 8.4, or we only look at
the part-of-speech and case, or at POS only. We consider the m-tag of the dependent
node, and the m-tags of the governors proposed by the individual parsers.

We have to learn the strengths of a parser on some held-out data that have not
been used to train any of the parser. Of course, the held-out data must not overlap with
the test data either. So we reduce testing on the first 76 test files only (last file included
is Iv28) while putting the rest aside as the held-out data.®® Here are the accuracies of the
individual parsers on the new test data subset:

Parser Accuracy
ec 85.0
mc 83.3
z7 76.2
dz 75.5

th-r2l 72.3

th-12r 70.3

th-pshrt 63.5

% We spare by that a lot of effort with re-training all the parsers on a subset of the
training data and re-running them on the held-out data. In fact, for the purpose of this
research we do not need to run the foreign parsers at all. We only work with their
outputs on PDT 1.0 d-test data, kindly provided by the respective parsers’ authors. Of
course, an end-user-ready superparser would only run after we have brought all the
individual parsers to life.
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The next table presents recomputed comparison of ec, mc and dz on the new test data
subset:

Who is correct How many times
all parsers 42090 67.2 %
at least one parser 58126 92.7 %

Henderson and Brill (1999) experimented with combining constituency-based parsers for
English. They were able to improve the F-score on the Penn TreeBank (91.3%, as
compared to 87.7% of their best parser).

They report that context did not help them to outperform simple voting. The
results of our experiments, summarized in the following table, seem to support their
hypothesis. Although we observed some positive influence of the context, the
improvement was very small.

Combination method Accuracy

PDT 1.0 d-test subset
ec only (baseline) 84.3 85.0
balanced: absolute majority, or ec 85.5 86.2

context: m-tag of dep. node and ec-
proposed gov. node; in specific contexts
wins over mc+dz; otherwise majority, or
again ec if there is no majority

NA 86.3

Finally we compare the balanced and unbalanced methods. The unbalanced combination
of the three parsers achieves the best parsing result of this thesis, and the best
result published for Czech/PDT so far.

Method Precision Recall F-measure
ec only (baseline) 85.0 85.0 85.0
balanced context-sensitive combination 86.3 86.3 86.3
unbalanced context-free combination 89.5 84.0 86.7

Some of the contexts in which ec outperformed the common opinion of mc+dz follow.

Tag of Tag of governor No. of times Context Percent cases
dependent proposed by ec ec was right occurrences ec was right
JA # 44 67 65.7
Vp JA 28 53 52.8
VB JA 26 46 56.5
N1 z, 21 38 55.3
Rv-1 Vp 13 25 52.0
Z, z, 8 15 53.3

116




Al N1 8 15 53.3
Vie IA 9 14 64.3
N4 i 9 12 75.0

14.4 Combining all parsers

First of all let us again present the brief comparison of the parsers’ errors, weak and
strong points. The hypothetical upper bound of accuracy achievable by voting has risen
to almost 96 %. However, the results of experiments bring less improvement than the

combination of three parsers discussed above.

Who is correct

How many times

ec 1976 1.6 %
zz 1388 1.1 %
) mc 1081 0.9 %
a single parser
thr2l 500 0.4 %
(all other wrong)
thpshrt 499 0.4 %
dz 466 0.4 %
thi2r 395 0.3 %
all parsers 54732 43.4 %
at least half of the parsers 97913 77.7 %
majority or ec 106768 84.7 %
at least half of the parsers, or
) , L 107213 85.1 %
ec while there is no absolute majority
absolute majority, or ec+2, or mc+2, or ec 107460 85.3 %
at least one parser 120917 95.9 %
Balanced vs. unbalanced combination:
Method Precision Recall F-measure
ec only (baseline) 85.0 85.0 85.0
balanced context-free voting 85.8 85.8 85.8
unbalanced context-free combination 90.7 78.6 84.2
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15 Related work

Seven current parsers for Czech have been introduced in Chapter 14. Please refer to that
chapter for comparison of their performance. Here we only compile some additional
works that have not been mentioned yet.

The research on Czech parsing can be traced back to the RUSLAN system (Oliva
(1989)) that was once part of a Czech-Russian machine translation system. It was
implemented in Systemes Q. No evaluation on PDT data is available but it would probably
be quite bad, as RUSLAN’s coverage was tailored to a limited domain.

Holan, Kubon, Oliva and Platek (see Holan et al. (1998), Kubon et al. (2001),
Holan (2001), Kubori (2001)) have published a line of papers on problems of Czech
robust parsing, grammar checking, theoretical issues of non-projectivity, computational
complexity of parsing free-word-order languages etc. To my knowledge, no evaluation of
their proposals on PDT is available, as they focus mainly on the problematic phenomena
in language. Note that the Holan’s parsers discussed in Chapter 14 are not directly
related to this work.

Smrz and Horak (1999, 2000) present a grammar-based chart-parser for Czech.
However, their system cannot be compared to ours in terms of accuracy, as they do not
publish any accuracy (or precision/recall) evaluation; they focus just on the speed of the
parser. In Hordk and Smrz (2001, 2002) they report a precision of 79.3 %. Unfortunately
that result is not comparable to ours either. The papers do not specify on which data and
how the precision was measured but we asked the authors directly. There are substantial
differences in their and our methodology, namely:

e They test whether whole trees match, not just dependencies.

e Their “precision” is defined as relative frequency of cases when the correct

parse is present among all parses in the output.

e They "“estimate” the precision on 100 sentences, manually annotated with
constituency-based (as opposed to dependency-based) syntactic structures.
Evaluation on PDT 1.0 test data may give different results.

Ribarov (2004) has recently published results and qualitative analyses of several
other Czech parsers, mainly based in transformational rules. His “naive” parsers achieved
around 70% accuracy on PDT d-test data. The accuracy of his best parser (perceptron-
based) is close to 72%.

The group of not-yet-published results (see zz and th* parsers in Chapter 14)
would not be complete without mentioning Honetschldger’s®® work. His principal idea is to
take a window of d words in the text. Based on the contents of the window he proposes a
dependency between two words in the window — that is one rule. He repeatedly scans
the training data for rules that never (or almost never) make an error; out of such, the
most frequently applicable rules take preference. There are also rules describing
exceptions for regular rules, and a simple statistical model for attaching words not
covered by any rule. The accuracy of Honetschldger’s model is reportedly 73.6 %.

€0 vaclav Honetschlager can be reached at CKL, visit http://ckl.mff.cuni.cz/.
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Schwartz, Chelba and Jelinek (see Chelba and Jelinek (1998), Hajic et al. (1998))
tried to adapt the parser in Chelba+Jelinek’s structured language model for Czech. They
achieved an accuracy of 68.2 % on PDT 0.5 d-test data.

Jones and Kuo (see Haji¢ et al. (1998)) proposed a “parsing by translation”
approach. Their idea was that we have good parsers for English and there are Czech and
English treebanks. If the Czech sentence could be translated into English and parsed
there, the tree structure could then be transferred back to Czech, using analogy. The
theoretical discussion has never proceeded to coding. Today, the opposite way is taken
when parsing helps machine translation and transferring parsed structures give better
results than transferring plain texts (see Curin et al. (2002), Cmejrek et al. (2003)).

Last but not least there are some considerable contributions to partial parsing of
Czech. Let us name two of them. Lopatkova (2001) investigates homonymy of
prepositional phrases in Czech. Zackova (2002) proposes a partial parsing system
implemented in Prolog, able to find simple noun phrases, prepositional phrases, and -
most interestingly — some discontinuous verbal groups.
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16 Conclusion

We have presented a method for finding surface shape of the sentence shallow structure
- a process we call dependency parsing. We have documented a humber of features that
may be modeled statistically, by which some of them help to improve the accuracy of the
parsing. As a side effect, we made and described many quantitative observations about
the Prague Dependency Treebank.

A significant improvement over the early experiments of Zeman (1997) has been
demonstrated. Although our parser has not achieved the state-of-the-art accuracy, we
believe that the present work brings more than just a “well documented failure”, for the
following reasons:

1. We have shown that the presented parser can cooperate with the better

parsers so that the resulting super-parser improves over all of them.

2. There is still space for future work (see below). Unfortunately a complete

investigation of that space is a long-term goal and thus could not be
encompassed in the present work.

16.1 Future work

It seems that we have reached the limits of the Model Two. Every new promile of
accuracy has to be strenuously fought out and, more seriously, paid for by a manual
interference in the statistical core. That of course decreases portability to new domains
and languages, which is the usually proclaimed merit of statistical methods.

However, we think that a new Model Three can be built that will overcome the
apparent advantage of constituency-based parsers: the knowledge of sister nodes, in
addition to parent-child relations. More generally, such a model could take into account
all important tree fragments in a similar way to what Data-Oriented Parsers (DOPs)®! do.

If that is possible, we believe that the state-of-the-art accuracy can be beaten.
Moreover, the model would come out from the current work and would be housed in the
dependency framework. It would thus be more straightforward than the current state-of-
the-art parsers, as they require translating the data into an immediate-constituency
framework.

Integrating syntactic parsing with morphological tagging provides another chance.
On several occasions we complained that erroneous tags misled the parser. It is well
known that some tagging errors can be avoided when at least a rough syntactic analysis
is available — so if the parser can do the tagging and parsing in parallel it shall gain
better trees.

®1 See Bod et al. (2003).
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