
Proceedings of the Eighth

ESSLLI Student Session

August 2003, Vienna, Austria

Balder ten Cate (Ed.)

Preface

Ever since its 1996 edition, the annual European Summer School on Logic
Language and Information has been accompanied by a separate student
session. This student session performs an important role, by providing a
forum where students can present their own work and get feedback from
fellow students and experienced researchers. It welcomes submissions related
to the familiar ESSLLI subject areas, from students at any level (graduate
as well as undergraduate).

The popularity of the student session has been growing throughout the
years, and this is reflected by the high number of submissions. This year,
we received a total number of 69 papers, of which 18 were accepted for oral
presentation and 14 as a poster. Of these 32 papers, 29 are included in this
volume.

I’m very grateful to the program committee for all their contributions
to the organization. I’d like to thank the co-chairs in particular for their
efforts in coordinating the reviewing process, and the area experts for their
continuous presence and helpful advice. Also, my gratitude goes to all the
reviewers, whose detailed comments have not only proved invaluable during
the selection procedure, but also provide useful feedback to the authors. As
in previous years, Kluwer Academic Publishers have generously offered to
support the ESSLLI student session with special awards for the Best paper
presentation and Best poster. I’m very grateful for their support. Finally,
there are a number of people who I would like to thank in particular, since
they were always ready to give help and advice: Raffaella Bernardi, Paul
Dekker, Darrin Hindsill, Ivana Kruijff-Korbayová, Malvina Nissim, Marie
Šafářová, Kristina Striegnitz and Willemijn Vermaat.

I’m very much looking forward to this year’s ESSLLI summer school,
which will take place August 18–29, 2003 in Vienna, Austria. Hopefully, its
student session will provide the stimulating and fruitful atmosphere that it
did in the past.

Balder ten Cate Stanford, June 2003
Chair of the ESSLLI 2003 Student Session

i

Program Committee

Logic & Language

Christian Retoré, INRIA Futurs, France
Roberto Bonato, University of Verona, Italy; University of Bordeaux I, France
Paul Égré, University of Paris I, France

Logic & Computation

Sergio Tessaris, University of Bolzano, Italy
Jakob Kellner, Vienna University of Technology, Austria
Favio Miranda-Perea, LMU München, Germany

Language & Computation

Dan Flickinger, Stanford University, USA
Laura Alonso i Alemany, University of Barcelona, Spain
Maria Fuentes Fort, University of Girona, Spain
Gabriel Infante Lopez, University of Amsterdam, The Netherlands

Reviewers

Marco Aiello, Natasha Alechina, Alex Alsina, Thorsten Altenkirch, J.
Gabriel Amores, Carlos Areces, Pablo Ariel Duboue, Victoria Arranz
Corzana, Nicholas Asher, Sergio Balari, Denis Bechet, Claire Beyssade,
Nick Bezhanishvili, Patrick Blackburn, Eerke Boiten, Patrick Brezillon,
Hans J. Briegel, Daniel Buring, Alastair Butler, Miriam Butt, Xavier Car-
reras Pérez, Robyn Carston, Montserrat Civit, Francis Corblin, Alexan-
der Dekhtyar, Paul Dekker, Stéphane Demri, Alexandre Dikovsky, My-
roslava Dzikovska, Jason Eisner, Noemie Elhadad, Martin Everaert, Annie
Foret, Bernd Gärtner, Kim Gerdes, Jonathan Ginzburg, Radu Gramatovici,
Phillippe de Groote, Kenneth Harris, Peter Harvey, James Henderson,
Jan Johannsen, Makoto Kanazawa, Tracy Holloway King, Felix Klaedtke,
Alexander Koller, Angelika Kratzer, Geert-Jan Kruijff, Alexander Kurz,
Martin Lange, Mirella Lapata, Michael L. Littman, Llúıs Màrquez, Car-
los Mart́ın-Vide, Louise McNally, Stephan Merz, Paola Monachesi, Richard
Moot, Karin Müller, David Nicolas, Richard Oehrle Antoni Oliver, Llúıs
Padró, Rohit Parikh, Gerald Penn, Ahti-Veikko Pietarinen, Anna Pilatová,
David Poole, Detlef Prescher, Maurizio Proietti, Alessandro Provetti, Josep
Quer, Owen Rambow, Francesco Ricca, German Rigau, Horacio Rodriguez,
Soyoung Roger-Yun, Robert van Rooy, Joana Rosselló, Jon Rowe, Marie
Šafářová, Gabriel Sandu, Katsumi Sasaki, Ulrike Sattler, Uli Sauerland,
Philippe Schlenker, Renate Schmidt, Chung-chieh Shan, Khalil Sima’an,
Christoph Simon, Viorica Sofronie-Stokkermans, Martin Stokhof, Kristina
Striegnitz, Vitezslav Svejdar, Kriszta Szendrői, Annette ten Teije, Hans-Jörg
Tiede, Leon van der Torre, Angela Weiss, Dag Westerst̊ahl, Stefan Woltran,
Paul Wong, Alden Wright, Hi-Yon Yoo, Patrick Zabalbeascoa, Henk Zeevat

ii

Contents

The Proper Treatment of Your Ass in English . 1
John Beavers and Andrew Koontz-Garboden

Algorithms for Combinatorial Optimization and Games
Adapted from Linear Programming . 13
Henrik Björklund and Sven Sandberg

Building Sub-corpora Suitable for Extraction of Lexico-
Syntactic Information . 25
Ondřej Bojar

Formalizing determination and typicality with LDO 35
Jérôme Cardot

Non-Redundant Scope Disambiguation in Underspecified
Semantics .47
Rui Pedro Chaves

The Beth Property for the Modal Logic of Graded Modalities,
with an Application to the Description Logic ALCQ 59
Willem Conradie

Alternations, monotonicity and the lexicon: an application to
factorising information in a Tree Adjoining Grammar 69
Benoit Crabbé

On a Unified Semantic Treatment of Donkey Sentences in a
Dynamic Framework . 81
Fabio Del Prete

On the Categorization via Rank-Distance . 95
Anca Dinu and Liviu P. Dinu

Resumptive Elements: Pronouns or Traces?. .103
Judit Gervain

iii

Formalized Interpretability in Primitive Recursive
Arithmetic . 117
Joost J. Joosten

A Simple Semantics for Destructive Updates 127
Ján Kľuka

A New Proof of Decidability for the Modal Logic of Subset
Spaces . 137
Gisela Krommes

An application of Sahlqvist Theory to Bisorted Modal Logic . . 149
Wouter Kuijper and Jorge Petrúcio Viana

Contextual Grammars and Go Through Automata 159
Florin Manea

Coreferential Definite and Demonstrative Descriptions in
French: A Corpus Study for Text Generation 169
Hélène Manuélian

Formalizing a Constituency Based Dynamic Grammar 181
Alessandro Mazzei

Exploiting Sequent Structure in Membership Algorithms for
the Lambek Calculus . 191
Ryan T. McDonald

Comparing Evolutionary Computation Techniques 203
Boris Mitavskiy

Properties of Translations for Logic Programs 213
Juan Antonio Navarro Pérez

Worst-case upper bounds for SAT: automated proof 225
Sergey Nikolenko and Alexander Sirotkin

A Logic Approach to Supporting Collaboration in Learning
Environments . 233
M. Magdalena Ortiz de la Fuente

LTL Hierarchies and Model Checking . 245
Radek Pelánek

Model Checking Epistemic Properties of Interpreted Systems 255
Franco Raimondi

iv

A Formal Representation of Korean Temporal Marker
dongan . 265
Hyunjung Son

Scalar Implicatures: Exhaustivity and Gricean Reasoning 277
Benjamin Spector

Formalization of Morphosyntactic Features of flective
language as exemplified by Croatian . 289
Tomislav Stòjanov

In Search of Theme and Rheme Pitch Accents in Estonian 303
Maarika Traat

Formal Representation of Property Grammars315
Tristan VanRullen, Marie-Laure Guénot and Emmanuel

Bellengier

v

The Proper Treatment of Your Ass in

English

John Beavers and Andrew Koontz-Garboden
Stanford University

{jbeavers,andrewkg}@csli.stanford.edu

Abstract. Reflexives (e.g. himself) and pronouns (e.g. him) are usually distin-
guished by categorical conditions on their binding domains. However, there is a
class of English expressions of the form Possessive Pronoun+ass (e.g. your ass)
which we demonstrate to have pronominal properties but which appear to have
unrestricted binding domains. We explore the problems such expressions pose for
different types of binding theories and how an appeal to the unique meaning of
ass-pronouns can resolve potential domain specificity conflicts.

1 Introduction

In many colloquial dialects of English, there exist pronominal expressions
of the form Possessive Pronoun+ass, which we collectively refer to as your
ass. Examples of this pronominal expression are given in (1).1,2

(1) (a) Rundgren’s shit is only fuckin’ good when his ass sings
pop....You and I see shit the fuckin’ same way. I can dig
partying with your ass. [rec.music.progressive, 03-12-98] (=he
sings pop, I can dig partying with you)

(b) The poster claimed that HE paid for gas. In reality, every time
his ass drives his car where he doesn’t need to go, WE pay for
it... [alt.fan.rush-limbaugh, 07-02-1997] (=He drives his car)

1We would like to thank David Beaver, Emily Bender, Lev Blumenfeld, Cleo Con-
doravdi, Iván Garćıa, Andrea Kortenhoven, Jacques Lafleur, John Rickford, Peter Sells,
John Singler, and Arnold Zwicky for their useful comments and suggestions, and we’d
especially like to thank Paul Kiparsky and Tom Wasow for their support and lively dis-
cussions. We’d also like to thank James Isaacs for first pointing out to us that your ass
has binding properties. The ideas and discussion in this paper are as always our own re-
sponsibility. We really, really mean that. Both authors contributed equally to this paper;
the order of authors is entirely alphabetical by last name.

2Although we both have native intuitions about your ass, we use naturally occurring
examples wherever possible. These were collected via searches with Google of newsgroups
and web text, and are listed with their original reference.

Proceedings of the Eighth ESSLLI Student Session
Balder ten Cate (editor)
Chapter 1, Copyright c© 2003, John Beavers and Andrew Koontz-Garboden

1

The Proper Treatment of Your Ass in English

(c) their asses sure know how to fuckin’ jam. kick ass guitar,
whaling keys, and fuckin’ screetching ass voices! dig it. fuckin’
a. after the fuckin’ jam was over my ass handed the old chick
her ten fuckin’ bucks....his ass claimed that his old lady gave
him the fuckin’ bucks to fuckin’ buy an ice cream sandwich....i
told his ass i needed the fuckin’ money in order to fuckin’ buy
some beer. shit. my ass ain’t ready to rip off texaco quite yet.
[alt.music.yes, 04-01-2000] (=They know, I handed, I told him,
I’m not ready)

The expression is not simply a combination of possessive pronoun + ass;
it is semantically non-compositional, since your ass can do things that an
ass cannot do. This can be seen most clearly in examples such as (1c).
It’s not literally their asses that know how to jam, but rather the people
in question. Likewise, the speaker did not literally hand ten dollars to the
woman with his buttocks; the speaker merely means that he handed her the
money, presumably with his hands. The non-compositionality of your ass,
in addition to other data we consider below, leads us to conclude that your
ass is not a simple possessive pronoun+NP expression (PossNP). Rather,
we argue, it is a pronoun, of a somewhat peculiar type, since it appears in
both reflexive and pronominal binding domains, contrary to the predictions
of many binding theories, as shown in (2).

(2) (a) But most people do believe OJi bought his assi/himselfi/*himi

out of jailtime. [soc.culture.china, 01-28-2002]
(b) First Newton, Alexander, and Moore make an ass out of

Pangborni. The more hei whined about it, the more they nailed
his assi/himi/*himselfi. [soc.men, 04-23-99]

(c) his ass/he/*himself claimed that his old lady gave him the
fuckin’ bucks to fuckin’ buy an ice cream sandwich....
[alt.music.yes, 04-01-2000]

In what follows, we first argue that your ass is a pronoun rather than
simply a PossNP. We then consider its binding properties from the perspec-
tive of Kiparsky’s (2002) binding theory, which actually predicts some of its
peculiar properties, though also potentially causing problems for this theory
as well. We examine further data showing both that your ass is not easily
accommodated in alternative theories (particularly Reinhart and Reuland
(1993)), and that it can be accommodated within Kiparsky’s theory, once
semantic factors are taken into account.

2 The Pronominality of Your Ass

In this section we present evidence that your ass is indeed pronominal rather
than a PossNP. Unfortunately, there appears to be no standard non-theory-

2

John Beavers and Andrew Koontz-Garboden

internal definition for a pronoun; rather pronominals tend to be identified
by clusters of distributional properties and then defined in theoretical terms
(e.g. as referential entities that obey certain principles). We shall not at-
tempt to offer any autonomous definition of a pronominal, but instead show
that your ass patterns more like complex reflexives than PossNPs by a va-
riety of syntactic and semantic criteria. We start by differentiating two
readings: the non-literal (referring to a person) from the literal (referring to
someone’s backside). Focusing on the non-literal your ass, the main distinc-
tion between it and PossNPs is compositionality: your ass shares reference
with its possessive determiner, unlike all other PossNPs, e.g. your ear, your
car, your preferred syntactic theory, and your mother refer to ears, cars,
theories, and mothers rather than the hearer. This can be seen in examples
like (3) and (4):

(3) (a) Johni bought [hisi ear/mother/neck]j�=i a car.

(b) Johni bought [himself/hisi ass]i a car.

In (3a) the recipient is the ear, mother, or neck, and never John, while it
is only John in (3b) on the intended non-literal reading. If your ass were
a PossNP this would be surprising since in no other PossNP does a verb
predicate of the possessor rather than the possessed (i.e. assign a θ-role to
the pronoun in [Spec,DP] rather than the DP itself).

Furthermore, your ass has unique properties when serving as the an-
tecedent of other pronouns:

(4) (a) Johni, his assi upset himselfi/*himi.

(b) Johni, hisi grade/mother/broken back upset himi/*himselfi.

If his ass in (4a) were a PossNP then the purported possessive pronoun
would be licensing the reflexive, something possessors in other PossNPs can-
not do, as shown in (4b). This referential behavior is identical to reflexives,
which are also non-compositional.

Another argument for the pronominality of your ass is that in general,
PossNPs allow for a wide range of modification by adjectives, PPs, and rel-
ative clauses as in (5a), whereas your ass, like pronominals, shows a more
limited modifiability, generally allowing pre-nominals (e.g. (5b) like self re-
flexives) but not relative clauses or PPs (e.g. (5c,d) also like self reflexives).

(5) (a) Your unkempt jacket on the coat rack that you got from your
mother needs mending.

(b) Get your bad/ugly/own self/ass outta here.

(c) The doctor saw his finger with the ring/that he broke yesterday.

(d) *The doctor saw himself/his ass from Houston/that stopped by
three times last week.

3

The Proper Treatment of Your Ass in English

Finally, PossNPs can license N̄ -ellipsis whereas reflexives and your ass
cannot (coindexation is intended to indicate “sense” coreference and not
strict coreference):

(6) (a) Mary had her [car/house/office painted]i, and Jane had hers ei

entirely remodeled.

(b) *Mary had herselfi/her assi committed, and Jane had hers ei

released.

Given the evidence presented here, it is clear that your ass is a pronom-
inal, not a regular PossNP. The superficial similarity between your ass and
a PossNP is not surprising, however, since complex pronominals in a variety
of languages (including English himself) are often grammaticalized PossNPs
formed from a possessive pronoun+some body part (Faltz, 1985, Schladt,
2000). Typically these grammaticalize to reflexives as the PossNP type con-
struction serves as a way of placing the pronominal (as a possessive) in
a non-argument position and thus exempting it from binding constraints.
In this sense it might also be best to view your ass as being on a cline
of pronominal grammaticalization, patterning closer to pronominals than
PossNPs.3

3 Pronoun Typology and the Elsewhere Principle

Kiparsky (2002, p.200ff) proposes a hierarchy of binding domains based
on four increasingly specific criteria. The broadest criterion is referential
dependence, wherein referentially dependent pronouns require the presence
of a discourse antecedent, and referentially independent pronouns do not
(cf. (7a)). Referentially dependent pronominals, in turn, are either non-
reflexive, allowing for a syntactic or discourse-based antecedent, or reflexive,
requiring a syntactic antecedent (cf. (7b)). Reflexive pronouns may be either
finite-bound, requiring an antecedent in the same finite clause, or not finite-
bound, allowing for the possibility of being bound by an antecedent outside
of the finite clause (cf. (7c)). Finally, finite-bound pronominals may be
either locally-bound, requiring an antecedent in the “first accessible subject
domain”, or not (cf. (7d,e)).

(7) (a) We need to talk about himi/*himselfi, himj/*himselfj , and
herk/*herselfk. [pointing] (Referential independence)

(b) Johni is here. I saw himi/*himselfi. (Referentially dependent,
non-reflexive)

3Interestingly, according to Holm (2000, 226) the word for “buttocks” in several creole
languages also shows at least reflexive uses, if not pronominal ones as well (Holm notes
only a reflexive use).

4

John Beavers and Andrew Koontz-Garboden

(c) Johni thought that I would criticize himi/*himselfi. (Reflexive,
non-finite-bound)

(d) Johni asked me to criticize himi/*himselfi. (Finite-bound,
non-local)

(e) Johni criticized himselfi/*himi. (Local) (Kiparsky, 2002, p.201)

Each domain is cross-classified for the property of ‘obviation’:

(8) Obviation
Coarguments have disjoint reference (Kiparsky, 2002, p.2)).

An obviative pronoun is one that must obey obviation, and a proximate pro-
noun is one that does not necessarily obey obviation. In English, the distinc-
tion between obviative and proximate pronominals is simply the distinction
between pronouns and anaphors. However, as (Kiparsky, 2002, p.5ff) shows,
there are languages with obviative/proximate pronominals (Swedish) and
languages with obviative/proximate reflexives (Algonquian), making this
distinction cross-linguistically valid. The increasing specificity of the vari-
ous binding domains along with their interaction with obviation is illustrated
in (9), with example pronominals satisfying most of the types.

(9) Kiparsky’s pronominal typology

+ref. dep. -ref. dep.

+refl -refl

+fin. bd. -fin. bd.

+local -local

[O−] himself Russian sebja Icelandid sig Turkish kendisi —
[O+] — Swedish sig Marathi aapan. Greek o idhios he

The blocking relationship between the pronominals comes from their
increasing specificity, wherein pronouns with more specific binding domains
block the use of pronouns with less specific binding domains. For instance,
himself has a more specific binding domain than he in English, as can be
seen in (9). Likewise, if English had something like the Icelandic sig, himself
would block use of it in finite bound local domains.

Notably absent in (9) are two types of pronominals, obviative locally
bound pronominals (presumably a theoretical impossibility since obviation is
by definition non-local) and a proximate referentially independent pronoun,
i.e. a pronoun that, effectively, is compatible with any domain and is thus
a sort of “universal pronoun” (Kiparsky, 2002, p.27). We believe that your
ass fills the latter gap in the typology.

5

The Proper Treatment of Your Ass in English

4 Your Ass and the Pronominal Typology

Of interest in the present context is the fact that your ass can apparently
be used in all of the binding domains in (7), as shown in (10)-(14).

(10) Referential independence

(a) On the agenda for today is to talk about his assi, his assj , and
her assk. [pointing]

(b) I mean her ass, over there.

(11) Referentially dependent, non-reflexive

(a) Please explain to me is Bobby Vi a good coach or not....Hisi

team has less infield errors than anyone else, give his assi some
credit. [alt.sports.baseball.ny-mets, 08-25-99]

(b) I think if Mike and Buzz had their way, he’di be outta there.
Mike hates his assi and Don knows it. The only think (sic)
worse than listening to Dennisi is listening to Bart and Freida.
[alt.fan.don-n-mike, 06-16-2000]

(12) Reflexive, non-finite-bound

(a) I had one guy tell me the change was for gas, the box, and I
bought his assi a coke while he waited in a long line....
[alt.toys.gi-joe, 05-11-02]

(b) First Newton, Alexander, and Moore make an ass out of
Pangborni. The more hei whined about it, the more they nailed
his assi. [soc.men, 04-23-99]

(13) Finite-bound, non-local

(a) Johni asked me not to criticize his assi.

(b) Maryi told me to buy her assi a diamond ring.

(14) Local

(a) Youi bought your assi a lap-dance? [alt.angst, 08-31-00]

(b) Don’t give up! I am 30 and was ag. for a little over a year until
Ii got my assi some help... [alt.support.agoraphobia, 06-15-99]

The fact that your ass can occur in contexts such as (14) shows that
your ass is a proximate, and the fact that it can occur in contexts such as
(10), with no linguistic antecedent, shows that it is referentially independent.
Prima facie, these data appear to show that your ass is in fact a universal

6

John Beavers and Andrew Koontz-Garboden

pronoun, i.e. a referentially independent proximate. This type of pronomi-
nal, while theoretically possible, is otherwise unattested in Kiparsky’s exten-
sive survey, and proof of the existence of such a pronominal further validates
this typology by filling in the final logically possible gap in the paradigm.
However, your ass poses a serious problem for the theory in general since it
seems to contradict the blocking principle, which incorrectly predicts that
reflexives should block your ass in local binding domains (cf. (14)).

5 Semantics of Your Ass and Blocking

We argue, however, that examination of the meaning of your ass can account
for its anomalous behavior. Specifically, it seems that your ass has two
elements of meaning not found in other pronominals: (a) it can be used
only in the proper social setting (acting as a marker of that setting), and
(b) it carries additional semantics about relationships between participants
and referents in the discourse.

5.1 On the social meaning of your ass

Although it may seem obvious, your ass can be used only in certain social
settings; there are many social settings in which it is simply not appropriate,
e.g. in a nice restaurant, at church, in a reputable conference proceedings,
etc. This same point is made by Spears (1998, p.236) who argues that the
meaning of your ass is “social and abstract” and that it “marks a discourse as
being in U[ncensored] M[ode]”, i.e. in a social context where expressions that
would be inappropriate elsewhere (i.e. censored contexts) are neutral with
respect to appropriateness (Spears, 1998, p.232).4 Thus, your ass marks a
discourse as being in a particular mode/social setting in a way that standard
pronominals do not. This fact alone shows that there are more differences
between your ass and other pronominals than simply domain specificity.

5.2 On The Non-Social Meaning of Your Ass

Although the facts are subtle and we have not conducted a full exploration,
even when one is in the proper social context, your ass and other English
pronominals are not simply interchangeable. All of the examples we have
seen so far would be qualitatively different if a standard English pronominal
were used in place of your ass. The first way in which it is different is that
your ass can mark negative connotations of the ass-marked referent:

(15) (a) I am gonna knock your ass down the hill. [rec.climbing,
08-18-01]

4Spears’ discussion was specifically concerned with use of the ass morpheme in African-
American Vernacular English (AAVE), whereas our discussion concerns uses of just your
ass by a wider set of speakers, including our own non-AAVE judgments.

7

The Proper Treatment of Your Ass in English

(b) I am gonna knock you down the hill.

In (15a), use of your ass conveys the message that the patient is somehow
subordinate to the agent, i.e. the speaker makes it explicit that she believes
the patient to be of no match for her. When a regular pronoun is substituted,
as in (15b), the same effect is not achieved. This negative use of your ass
seems to be the most common, characterizing most of the examples we have
given above. For such uses, the evaluation scale tends to be a relative scale,
wherein the ass-marked referent is typically conveyed to be lower on some
power-based hierarchy relative to another participant in the dialogue.

In addition to negative connotations, however, your ass can also mark
positive connotations for the ass-marked referent:

(16) (a) brittney, you stupid....do you realy (sic) think my man mase is
realy (sic) gonna reply to your stupid shit...mase is a horn dog,
his ass fucks all his girls, ... [rec.music.hip-hop, 01-09-98]

(b) ...mase is a horn dog, he fucks all his girls...

In (16a), the writer uses your ass to convey a more positive message about
his regard for the ass-marked participant, conveying envy or respect for
Mase by referring to him with your ass. The parallel example in (16b) with a
standard English pronoun is neutral regarding the writer’s attitude towards
Mase. These positive uses are rarer in the data we examined, and tend to
involve generic scales: the ass-marked referent is typically conveyed in a
generic positive light rather than relative to another discourse participant,
unlike negative uses of your ass. A better understanding of the semantics of
your ass will require much more examination of naturally occurring data.
However it should be clear that your ass carries meaning that other English
pronominals don’t, at a social and linguistic level.5

5.3 The Interaction of Semantics and Blocking

It is not our goal to present a formal account of how semantics is incorpo-
rated into blocking, but the basic idea is that strict specificity is not enough,
since once semantics are taken into account, no strict specificity relationship
holds between the reflexive and your ass: one has a more specific domain
and the other a more specific meaning. Instead the interaction must involve
preserving semantics even when domain specificity is violated. This could
be implemented in the OT account of Kiparsky by assuming that your ass
overtly encodes additional meaning over other pronominals, and that there is

5Incidentally, these semantic facts also show that your ass cannot be the only pronom-
inal form in the ass-register. Its unique meaning exists in contrast to alternative pronom-
inals, and if these pronominals were not part of the register, then your ass could not
contrast with them. Furthermore, ass-marked and non-ass-marked pronominals occur
side-by-side in many of our naturally occurring examples (cf. (16a)).

8

John Beavers and Andrew Koontz-Garboden

a very highly ranked constraint, a sort of “semantic faithfulness” constraint,
requiring this meaning to be overtly realized in the output if present in the
input. With such a constraint, himself always loses on semantic grounds
regardless of domain specificity since it never carries the more specific se-
mantics. Presumably other approaches might accomplish the same thing,
but the main point is that blocking must be sensitive to more than just
binding domains and in a more complicated way than just specificity.

6 Non-Blocking Theories of Binding

Although our main focus is on blocking theories of binding, various alterna-
tives may also have difficulties dealing with your ass. In particular, a class
of theories such as those proposed in Chomsky (1981), Reinhart and Reu-
land (1993), Pollard and Sag (1994), which we will refer to as “partition”
theories, have two parts. First, they assume a discrete partitioning of the
space of pronominal types, and second, instead of blocking, they propose
a (small) set of conditions that govern the distribution of different equiv-
alence classes. Your ass potentially causes problems for partition theories
since discrete partitioning is largely incompatible with its wide distribu-
tion. Taking as an example the extensive theory in Reinhart and Reuland
(1993), they propose dividing the space of pronominals into four categories
by two boolean features, R(eferential independence), roughly corresponding
to whether something needs a linguistic antecedent, and Refl(exivizing func-
tion), corresponding to whether a pronominal requires a predicate to have
coreference between coarguments. This yields the following typology:

(17) R+ R-
Refl+ ∅ SELF
Refl- him SE

The three attested types are labeled SELF, for referentially dependent re-
flexives like English himself and Dutch zichzelf, SE (“simplex expression”)
for referentially dependent non-reflexives such as the Spanish se and Dutch
zich, and referentially independent non-reflexives such as English him. The
fourth type is a referentially independent reflexive, not discussed by Rein-
hart and Reuland (it’s not clear whether they consider it a logical possibility
or not). They propose three conditions governing the distribution of these
pronoun types, the exact nature of which is largely irrelevant for present
purposes. The relevant factor is the partitioning, since the data in (10)-(14)
clearly show that your ass occurs in any argument position, and therefore
does not fall into any of the four pronominal classes.

While still maintaining the partition approach, there are two obvious
solutions to this problem. The first would be to maintain the strict parti-
tion but assume additional, presumably semantic, conditions governing the

9

The Proper Treatment of Your Ass in English

distribution of your ass. This would still require, however, stipulatively as-
signing your ass to one class or another of pronouns. Alternatively, one
could assume a polysemy of your ass, with one lexical entry for each possi-
ble pronoun type, an undesirable and unwarranted stipulation. The second
solution is to assume that your ass is an instance of a generic pronominal
underspecified for R and Refl. Allowing underspecification, though, expands
the space of possible pronouns from four to nine:

(18) R+ R- R+/-
Refl+ ∅ SELF ∅
Refl- him SE ??
Refl+/- ∅ ?? your ass

In this case, there are now several gaps in the paradigm. Depending on
whether [R+,Refl+] pronouns are logically possible, there are now at least
two and maybe five currently unattested pronominal types. The question of
their existence is a largely empirical question, but relaxing the restrictions on
partitioning makes strong predictions that may not be empirically validated.

Before concluding it is worth mentioning that there is a wealth of liter-
ature on various approaches to binding theory that we have not dealt with
here. Much semantic work has dealt with anaphora (e.g. Reinhart (1983), in-
ter alia, or Partee and Bach (1981) for a Montague-grammar style approach),
and other strains have attempted to derive some (or all) binding facts from
pragmatics (e.g. Levinson (1987), Huang (2000)). Semantic/Pragmatic ap-
proaches are often based on or quite compatible with other approaches to
binding, and indeed our own account of your ass essentially assumes that
semantics and pragmatics (contextual, social, and non-social meaning) are
indeed relevant factors within a more syntactic account, although we have
not addressed the details of accommodating your ass within these specific
theories, since blocking has been our main concern.

7 Concluding remarks

Focusing primarily on the pronominal typology in Kiparsky (2002), we have
shown first and foremost that your ass has pronominal uses, bringing new
data to bear on binding theory. Secondly, your ass appears to fill in a
hitherto unattested pronominal type, namely the most general category of
“universal pronoun”. However, it poses a problem for any theory of block-
ing of pronominals based on binding domain specificity since your ass can
appear in any binding domain, immune to blocking. We argue that your ass
contributes additional meaning that no other pronominal contributes and,
in some fashion or another, the necessity of expressing this meaning must
be taken into account by the blocking theory. That is, the facts of your ass
suggest that blocking based purely on specificity of binding domains is too
limited, and factors such as meaning must be taken into account as well.

10

John Beavers and Andrew Koontz-Garboden

References

Chomsky, N. (1981). Lectures on Government and Binding. Dordrecht: Foris.

Faltz, L. M. (1985). Reflexivization: A Study in Universal Syntax. New York:
Garland Publishing, Inc.

Holm, J. (2000). An Introduction to Pidgins and Creoles. Cambridge, UK: Cam-
bridge University Press.

Huang, Y. (2000). Anaphora: a cross-linguistic approach. New York: Oxford
University Press.

Kiparsky, P. (2002). Disjoint reference and the typology of pronouns. In I. Kauf-
mann and B. Stiebels (Eds.), More Than Words. Berlin: Acadamie Verlag.

Levinson, S. C. (1987). Pragmatics and the grammar of anaphora: a partial prag-
matic reduction of binding and control phenomena. Journal of Linguistics (23),
379–434.

Partee, B. and E. Bach (1981). Quantification, pronouns, and VP anaphora. In
J. Groenendijk, T. Janssen, and M. Stokhof (Eds.), Formal Methods in the Study
of Language, pp. 445–481. Amsterdam: Mathematisch Centrum.

Pollard, C. and I. A. Sag (1994). Head-Driven Phrase Structure Grammar.
Chicago, IL: The University of Chicago.

Reinhart, T. (1983). Anaphora and Semantic Interpretation. London: Croom
Helm.

Reinhart, T. and E. Reuland (1993). Reflexivity. Linguistic Inquiry 28.

Schladt, M. (2000). The typology and grammaticalization of reflexives. In Z. Fra-
jzyngier and T. S. Curl (Eds.), Reflexives: Forms and Functions. Amsterdam:
John Benjamins.

Spears, A. (1998). African-American language use: ideology and so-called obscen-
ity. In S. Mufwene, J. Rickford, G. Bailey, and J. Baugh (Eds.), African-American
English: Structure, History, and Use. New York: Routledge.

11

12

Algorithms for Combinatorial Optimization and
Games Adapted from Linear Programming

HENRIK BJÖRKLUND

Uppsala University

henrikbj@it.uu.se

SVEN SANDBERG

Uppsala University

svens@it.uu.se

ABSTRACT. The problem of maximizing functionsf : {0, 1}d → R from the boolean
hypercube to real numbers arises naturally in a wide range of applications. This paper studies
an even more general setting, in which the function to maximize is defined on what we call a
hyperstructure. A hyperstructure is a Cartesian product of finite sets with possibly more than two
elements. We also relax the codomain to any partially ordered set. Well-behaved such functions
arise in game theoretic contexts, in particular from parity games (equivalent to the modalµ-
calculus model checking) and simple stochastic games (Bj¨orklund, Sandberg, and Vorobyov
2003b). We show how several subexponential algorithms for linear programming (Kalai 1992;
Matoušek, Sharir, and Welzl 1992) can be adapted to hyperstructures and give a reduction to the
abstract optimization problems introduced in (G¨artner 1995).

1 Introduction

We investigate the problem of optimizing certain well-behaved functions defined
on combinatorial hyperstructures, generalizations of the boolean hypercube{0, 1}d.
Such functions arise naturally in game-theoretic contexts. Their local maxima can
be found with the following general local improvement scheme. Start at a vertex
v of the hyperstructure. Ifv has a value greater or equal to all its neighbors, then
returnv; otherwise restart from one of the better neighbors. Generally, this algo-
rithm can take exponential time (Tovey1997). Since the result is a local maximum,
it is natural to require every local maximum to be global. This condition, called
local-global or LG (Tovey 1986), holds in the game-theoretic setting. Addition-
ally, games satisfy the important property that local maxima are globalon every
substructure. We call such functionsrecursively local-global or RLG for short. As
we will show, the extra structure of RLG-functions allows us to optimize them in
subexponential time, roughly2O(

√
d), whered is the dimension.

Proceedings of the Eighth ESSLLI Student Session
Balder ten Cate (editor)
Chapter 2, Copyrightc© 2003, Henrik Björklund and Sven Sandberg

13

Algorithms for Combinatorial Optimization and Games Adapted from Linear Programming

The main motivation for our study is the application to parity and simple
stochastic games. Parity games are two-player games played by moving a pebble
along edges of a directed graph. The associated computational problem consists in
finding the optimal strategies of both players. It is interesting from a complexity
viewpoint as one of the few natural problems in NP∩ CONP not known to be poly-
nomial, especially after PRIMES was shown to be polynomial (Agrawal, Kayal,
and Saxena 2002). It is practically significant, being polynomial time equivalent
to model-checking for the modalµ-calculus (Emerson, Jutla, and Sistla 1993), one
of the most expressive temporal logics of programs, subsuming logics like LTL,
CTL, CTL*, etc. It is also polynomial time equivalent to Rabin chain tree automata
nonemptiness (Emerson, Jutla, and Sistla 1993).

In a binary parity game, where the players have at most two choices in each
move, a strategy of one player can be viewed as a corner of a hypercube. A strategy
improvement algorithm finds the winner of a parity game by assigning values to
each strategy of one player and then moving to better and better strategies until the
best one is reached. The strategy evaluation has to be carefully chosen so that the
resulting function is LG with any maximum corresponding to an optimal strategy
of the game. This guarantees that the algorithm is correct. This was first done
in (Vöge and Jurdzi´nski 2000) and we later showed how to compress the value
space to allow for a better upper bound on the number of iterations (Bj¨orklund,
Sandberg, and Vorobyov 2003a). These functions are automatically also RLG,
since any subgame is also a game. The same value functions also work for non-
binary games, but the domain now becomes a more generalhyperstructure.

A hyperstructure is a Cartesian product of finite sets with possibly more than
two elements. Although non-binary parity games can be transformed to binary
games, keeping them non-binary allows for better upper bounds because the trans-
formation increases the number of vertices. Simple stochastic games is a related
class of games where iterative improvement algorithms are easier to understand
and have been known for a longer time; see, e.g., (Condon 1993). The values of
strategies are real numbers and the resulting functions are also RLG.

Linear programming (LP) is the problem of finding the maximum of a lin-
ear functional on a convex polyhedron inRd. Although the problem statement
looks very different from that of optimizing an RLG-function on a hyperstructure,
we show how to adapt several LP algorithms to RLG optimization. These algo-
rithms aresubexponential in the dimension of the polyhedron. Translated to our
terms, they are subexponential in the dimension of the hyperstructure (defined as
the number of sets in the Cartesian product), and in terms of parity games they
are subexponential in the number of vertices that the first player owns. The first
algorithm shown to be subexponential was (Kalai 1992), adapted by us to parity
games in (Bj¨orklund, Sandberg, and Vorobyov 2003a). The algorithm in (Sharir
and Welzl 1992) was invented before Kalai’s, but they proved it subexponential
later (Matoušek, Sharir, and Welzl 1992); see also (Matouˇsek, Sharir, and Welzl
1996). It is easier to understand than Kalai’s and the upper bound is similar. For a
survey of these and other related algorithms, see (Goldwasser 1995). Ludwig was

14

Henrik Bj örklund and Sven Sandberg

first to adapt these algorithms to games; he shows how Matouˇsek–Sharir–Welzl’s
algorithm works on binary simple stochastic games (Ludwig 1995).

The success of transforming linear programming algorithms to hyperstructures
and games can be understood through problem reductions. First, the strategy eval-
uation functions for parity games and simple stochastic games are RLG, as already
discussed. Second, RLG-functions can be directly reduced to theLP-type problems
introduced in (Sharir and Welzl 1992). LP-type problems is an abstract framework
capturing the combinatorial structure of linear programming and numerous other
problems in computational geometry (Matouˇsek, Sharir, and Welzl 1996). The
algorithms discussed here and several others work on such problems. The reduc-
tion from RLG-functions to LP-type problems was shown for the more restricted
class of CLG-functions in (Bj¨orklund, Sandberg, and Vorobyov 2003b), but works
without modification on RLG-functions. The games actually have more structure,
captured by CLG-functions, which allows for optimization algorithms that are in-
tuitively ‘more aggressive’ (can take longer steps in the hyperstructure) but the best
known upper bounds remain exponential.

The paper is organized as follows. In Section 2 we define the functions we
optimize and the structures they are defined on. As an introduction to the concepts
underlying later sections, we present a Ludwig-style optimization algorithm for
hypercubes in Section 3. Sections 4 and 5 adapt the linear programming algorithms
from (Matoušek, Sharir, and Welzl 1996) and (Kalai 1992), respectively. Finally,
we show in Section 6 how our problem can be reduced to what (G¨artner 1995) calls
an abstract optimization problem (AOP).

2 Hyperstructures

The set of all positional strategies in a parity game is isomorphic to a product of
finite sets, each representing the choices in a vertex. Functions from strategies to
values in such games motivate our study of functions on thehyperstructures defined
here. They are generalizations of the boolean hypercube{0, 1}d. Optimization of
well-behaved functions on hypercubes has been extensively studied in, e.g., (Ham-
mer, Simeone, Liebling, and De Werra 1988; Wiedemann 1985; Williamson Hoke
1988; Tovey1997; Björklund, Sandberg, and Vorobyov 2002).

Definition 2.1 (Hyperstructure) For each j ∈ {1, . . . , d} let Pj = {ej,1, . . . ,

ej,δj
} be a finite nonempty set. Call P =

∏d
j=1Pj a d-dimensional hyperstructure,

or structurefor short. �

A substructure of P is a productP′ =
∏d

j=1P ′
j, where∅ �= P ′

j ⊆ Pj for
all j. A facet of P is a substructure obtained by fixing the choice in exactly one
coordinate. ThusP′ is a facet ofP if there is aj ∈ {1, . . . , d} such that|P′j | = 1
andP′

k = Pk for all k �= j. We will sometimes identify a facet with its defining
elementej,i ∈ Pj, assuming all setsPk to be disjoint. If|P′

j | ≤ 2 for all j, then
P ′ is called asubcube since it is isomorphic to a boolean hypercube. We will

15

Algorithms for Combinatorial Optimization and Games Adapted from Linear Programming

consistently use the letterd for the dimension andn :=
∑d

j=1 |Pj | for the number
of facets. If |Pj | = 1 for somej, this coordinate can be disregarded since it is
constant, and we will consider such structures as having smaller dimension.

An element ofP is called avertex. Two verticesx, y ∈ P areneighbors if they
differ in only one coordinate. The neighbor relation induces a graph with elements
of P as nodes, and allows us to talk about paths and distances inP.

For a setE ⊆ ⋃d
j=1Pj, definestruct(E) to be the substructureP′ =

∏d
j=1(Pj∩

E). Thus, if E does not have elements from eachPj , thenstruct(E) = ∅. For
a setF of facets, we usestruct(F) for struct(E) whereE is the set of defining
elements of the facets inF .

Throughout this paper, letD be some partially ordered set. We are interested
in finding optima of functions that mapP toD, such that any two neighbors have
comparable values. Alocal maximum of a functionf : P → D is a vertexv
such thatf(v) ≥ f(u) for all neighborsu of v. If f(v) ≥ f(u) for all vertices
u ∈ P, thenv is aglobal maximum of f onP. Local and globalminima are defined
symmetrically.

Arbitrary functions onP cannot be efficiently optimized; see, e.g., Corollary
19 of (Tovey1997), but the prospects are better for some nontrivial and very in-
teresting subclasses. The class ofcompletely unimodal (CU) functions on hyper-
cubesH = {0, 1}d has been studied in, e.g, (Hammer, Simeone, Liebling, and
De Werra 1988; Williamson Hoke 1988; Wiedemann 1985; Bj¨orklund, Sandberg,
and Vorobyov 2002), and can be optimized in subexponential time (Bj¨orklund,
Sandberg, and Vorobyov 2002). In (Bj¨orklund, Sandberg, and Vorobyov 2003b)
we defined the class ofcompletely local-global (CLG) functions, a generalization
of CU-functions, defined on hyperstructures and capturing the properties of value-
functions obtained from parity games. To demonstrate the full applicability of the
algorithms in later sections, we here define the even wider class ofrecursively
local-global (RLG) functions. The inclusions CU⊂ CLG⊂ RLG follow from the
definitions. The strictness of these inclusions is easy to establish.

Definition 2.2 (Recursively Local-Global) A function f : P → D for which all
neighbors have comparable values is called recursively local-global(RLG) if for
every substructure P′ of P, all local maxima of the restriction of f to P′ are also
global. �

In the sequel, we discuss algorithms for maximizing RLG-functions. Such al-
gorithms can also be used to maximize CLG-functions and CU-functions. We use
RLG-structure to denote an RLG-function together with its underlying hyperstruc-
ture, and we useRLG-cube if the hyperstructure is a hypercube. An RLG-structure
can be thought of as a hyperstructure with its vertices labeled by function values.
Given an RLG-functionf : P → D, and a substructureP′ of P, let wf (P ′) be the
maximum value off onP′.

16

Henrik Bj örklund and Sven Sandberg

3 Ludwig-Style Algorithm for Hypercubes

The first subexponential randomized algorithm for solving simple stochastic games
was presented in (Ludwig 1995). It uses the ideas of the linear programming algo-
rithms in (Matoušek, Sharir, and Welzl 1992; Matouˇsek, Sharir, and Welzl 1996)
and (Kalai 1992), which we will discuss in later sections. Unfortunately, the al-
gorithm only applies to binary games (with vertex outdegree at most two), and
reduction to such games may increase the number of vertices, undermining the
subexponential analysis. Binary games give rise to RLG-cubes (Bj¨orklund, Sand-
berg, and Vorobyov 2003b).

As an introduction to the ideas underlying the algorithms presented later, and
their adaptations to RLG-functions, the Ludwig-style Algorithm 1 maximizes any
RLG-function f : H → D, whereH = {0, 1}d.

Algorithm 1: Ludwig’s Algorithm for RLG-functions
LUDWIG(RLG-cubeH, initial vertexv0)
(1) if dim(H) = 0
(2) return v0

(3) choose a random facetF of H containingv0
(4) v∗← Ludwig(F , v0)
(5) if the neighboru of v∗ onH \ F is better thanv∗

(6) return Ludwig(H \ F , u)
(7) else
(8) return v∗

The key observation in the analysis of this algorithm is that, depending on the
choice in line 3, the actual dimension of the remaining problem solved on line 6
may decrease with more than one. There ared equally likely choices; call them
F1, F2, . . . , Fd. Assume the set{wf (F1), . . . , wf (Fd)} is linearly ordered so that

wf (F1) ≤ · · · ≤ wf (Fd).

If Fi is chosen for the first recursive call, none of the facetsF1, . . . , Fi will
ever be visited by the algorithm again, since the value of the current vertexv∗ is
the biggest value on any of them. LetT (d) be the expected number of times that
the second recursive call will be made. ThenT (0) = 0 and

T (d) ≤ T (d− 1) + 1 +
1
d

d−1∑
j=0

T (j).

Solving the recurrence givesT (d) = 2O(
√

n) (Ludwig 1995); see also (G¨artner
1995) for an elegant analysis. What if{wf (F1), . . . , wf (Fd)} is not linearly or-
dered? This is no disadvantage to the algorithm, since it only visits vertices with
comparable and strictly bigger values than the current vertex. Therefore, linearly
ordered maximal values on the facets is the worst case.

17

Algorithms for Combinatorial Optimization and Games Adapted from Linear Programming

4 Matoušek–Sharir–Welzl-Style Algorithm

In this section, we show how the LP-algorithm in (Matouˇsek, Sharir, and Welzl
1992; Matoušek, Sharir, and Welzl 1996) can be modified for RLG-functions,
yielding a simple subexponential randomized algorithm for the problem (and thus
also for parity games; see also (Bj¨orklund, Sandberg, and Vorobyov 2003b)). It has

expected running time at most2O(
√

d log(n/
√

d)+log n), wheren =
∑d

j=1 |Pj | is the
number of facets ofP.

Algorithm 2: MSW-Style Optimization Algorithm
MSW(RLG-structureP, initial vertexv0)
(1) if dim(P) = 0
(2) return v0

(3) choose a random facetF of P, not containingv0
(4) v∗← MSW(P \ F, v0)
(5) if the neighboru of v∗ onF is better thanv∗

(6) return MSW(F, u)
(7) else
(8) return v∗

Note that this algorithm generalizes Ludwig’s algorithm, discussed in Sec-
tion 3. If P is a hypercube, the two algorithms are the same.

The algorithm always terminates since the recursive calls on lines (4) and (6)
are made on strictly smaller substructures. It is correct since any vertex without
better neighbors in an RLG-structure is globally optimal.

It remains to show that the bound from (Matouˇsek, Sharir, and Welzl 1996)
holds in this setting. This is done by translating into the concepts of (Matouˇsek,
Sharir, and Welzl 1996), thus showing that the same recurrence for the running
time holds. The following definition will be useful.

Definition 4.1 (Extreme Facet.) A facet of an RLG-structure is extremeif it con-
tains all local maxima on P. �

Since all facets in one coordinate are disjoint, at most one of them can contain all
maxima, so there are at mostd extreme facets. The second recursive call on line (6)
of the algorithm will be performed iff the chosen facetF is extreme onP. If v0
belongs tod− k extreme facets, this happens with probability at mostk

n−d , hence
min(k,n−d)

n−d . We now bound the subproblem solved in each of these cases; thus,
assume thatF is extreme onP.

Definition 4.2 (Hidden Dimension.) Given an RLG-structure P and a vertex v ∈
P, the hidden dimensionof the pair (P, v) is d minus the number of facets of P
containing v and every u ∈ P with f(u) > f(v). �

Equivalently,(P, v) has hidden dimensionk iff the smallest substructure contain-
ing v and all vertices with better values thanv has dimensionk. In particular, if the

18

Henrik Bj örklund and Sven Sandberg

hidden dimension is0, thenv is a maximum onP. Let k be the hidden dimension
andP′ the corresponding substructure. The algorithm will only visit vertices that
belong toP′. There ared − k facets,F1, . . . , Fd−k, that containP′; all these are
extreme. In the worst case there arek more extreme facets,Fd−k+1, . . . , Fd. For
each such facet, consider the best value that does not belong to it. Assume first that
these values are totally ordered. Enumerate the facets so that

wf (P \Fd−k+1) ≤ · · · ≤ wf (P \Fd−k+i) ≤ · · · ≤ wf (P \Fd). (1)

Suppose the algorithm chooses facetFd−k+i. Thenf(v∗) = wf (P \ Fd−k+i) <
f(u). Every vertex with a better value thanv∗ that belongs toFd−k+i must also
belong toFd−k+j for all 1 ≤ j < i; the opposite would contradict (1). Thusu
belongs to(d − k + i) facets that contain all vertices with better values, and the
hidden dimension of the pair(Fd−k+i, u) for the second call is at most(k − i).

If the best values outside the remaining extreme facets are not totally ordered,
this only benefits the algorithm. The values are partially ordered, and if facet
Fd−k+i is chosen,u will belong to all facets that do not have a strictly bigger
value forwf (P \Fj), and they will all contain all vertices with better values. This
is because ifwf (P \ Fd−k+i) andwf (P \ Fj) are incomparable, then any value
better thanwf (P \ Fd−k+i) will be better than or incomparable towf (P \ Fj),
since the order onD is transitive.

This discussion gives the same recurrences for the numbers of tests on line (5)
and jumps tou on line (6) as (Matouˇsek, Sharir, and Welzl 1996) gets for the
numbers of violation tests and basis computations, respectively, in the linear pro-
gramming setting. They are both bounded by the recurrencetk(d) = 0 (where
0 ≤ k ≤ d) and

tk(n) ≤ tk(n− 1) + 1 +
1

n− d

min(k,n−d)∑
i=1

tk−i(n), for n > d.

The recurrence is solved in (Matouˇsek, Sharir, and Welzl 1996), and from the
solution it is easy to infer that the expected running time of the algorithm on RLG-

structures is at most2O(
√

d log(n/
√

d)+log n), as long as function evaluation and com-
parison of function values can be performed in polynomial time. As soon asn
can be assumed to be polynomially bounded byd, this bound is subexponential
in d. The reduction from parity games withd vertices to RLG-functions gives
n = O(d2), so we can solve parity games in expected time2O(

√
d log d).

5 Kalai-Style Algorithm

We now describe another algorithm for optimizing RLG-structures, originally in-
vented for linear programming by Kalai (Kalai 1992; Goldwasser 1995) and later
adapted by us to parity games (Bj¨orklund, Sandberg, and Vorobyov 2003a). It is

19

Algorithms for Combinatorial Optimization and Games Adapted from Linear Programming

also subexponential with complexity similar to the MSW-style algorithm of the
previous section (but it is slightly more complicated).

Let P(d, n) denote the class of RLG-structures with dimensiond and n =∑d
j=1 |Pj |. If v is a vertex inP then a facetF is v-improving if some witness

vertex v′ ∈ F has a better value thanv.

The Algorithm takes an RLG-structureP ∈ P(d, n) and an initial vertexv0 as
inputs and returns the optimal vertex onP. It uses the subroutine COLLECT-
IMPROVING-FACETS, described later, that collects a set of pairs(F, v) of v0-
improving facetsF and corresponding witness verticesv ∈ F .

Algorithm 3: Kalai-Style Optimization Algorithm
KALAI (RLG-structureP, initial vertexv0)
(1) if dim(P) = 0
(2) return v0

(3) M← COLLECT-IMPROVING-FACETS(P, v0)
(4) choose a random pair(F, v1) ∈M
(5) v∗ ← KALAI (F, v1)
(6) if some neighboru of v∗ onP \ F is better thanv∗

(7) return KALAI (P, u)
(8) else
(9) return v∗

How to Find Many Improving Facets. Now we describe the subroutine COLLECT-
IMPROVING-FACETS. The goal is to findr v0-improving facets, wherer is a pa-
rameter (Kalai usesr = max(d, n/2) to get the best complexity analysis). To
this end we construct a sequence(P0,P1, . . . ,Pr−d) of substructures ofP, with
Pi ∈ P(d, d + i) andPi ⊂ Pi+1. All the d + i facets ofPi arev0-improving;
we simultaneously determine the corresponding witness verticesvj optimal inPj .
The subroutine returnsr facets ofP, each one obtained by fixing one of ther
choices inPr−d ∈ P(d, r). All these arev0-improving by construction.

Let v0 be a better neighbor ofv0 onP. (If no better neighbor exists thenv0 is
optimal inP and we are done.) SetP0 to the RLG-structure containing onlyv0.
Fixing any of thed coordinates ofP as inv0 defines av0-improving facet ofP
with v0 as a witness.

To constructPi+1 from Pi, let v′ be a better neighbor ofvi. (Note thatvi is
optimal inPi but not necessarily in the full structureP. If it is, we terminate.)
Let Pi+1 be the smallest substructure ofP containingv′ and all vertices inPi.
Recursively apply the algorithm to find the optimalvi+1 in Pi+1. Note that fixing
a coordinate inP to any of thed + i choices inPi defines av0-improving facet.
Therefore, the finalPr−d hasr v0-improving facets.

Analysis. First note that we can pick the random number before line 3, pass it to
COLLECT-IMPROVING-FACETS, and only find that many facets. Now each solved
subproblem starts from a strictly better vertex, so the algorithm clearly terminates.

20

Henrik Bj örklund and Sven Sandberg

It is correct because it can only terminate by returning an optimal vertex.
This algorithm yields a recurrence similar to those in previous sections. Kalai

solves it and gets the subexponential running time2O((log n)
√

d/ log d).
It is interesting to note the similarities of Ludwig’s, Matouˇsek–Sharir–Welzl’s,

and Kalai’s subexponential algorithms. They all take a structureP and a vertexv0
as parameters and recursively find the optimumv∗ on a substructureP′ of P. The
choice ofP′ is random, but it is guaranteed to contain vertices at least as good as
v0, and the recursive call starts from a witness of this fact. If the result is not an
optimum on the entire structure, then we optimize the rest of the structure, starting
from a better neighbor ofv∗. Intuitively, the subexponential upper bound relies on
the substructure being taken randomly from some set. Thus it is expected that the
optima of many structures in the set are no better thanv∗, and those structures will
be ignored in the remainder of the algorithm.

6 Abstract Optimization Problems

The class ofabstract optimization problems (AOPs) was introduced in (G¨artner
1995). He uses this generalization to show how the ideas from (Matouˇsek, Sharir,
and Welzl 1996; Kalai 1992) can be used to obtain a subexponential randomized
algorithm for a wider class of optimization problems. In this section we show
that optimizing an RLG-function with totally ordered codomain can be reduced to
solving an AOP.

Definition 6.1 (AOP (Gärtner 1995)) An AOP is a triple (A,<,Φ), where A is a
finite set, < is a total order on 2A, and Φ : {(C,B)|C ⊆ B ⊆ A} → 2A satisfies

Φ(C,B) =
{

C, iff C = max<{C ′|C ′ ⊆ B};
C ′, for some C′ s.t. C < C ′ ⊆ B, otherwise.

For B ⊆ A, let opt(B) denote max<{C|C ⊆ B}. Solving an AOP means finding
opt(A). �

Intuitively, solving an AOP corresponds to maximizing some function on a boolean
hypercube. The function may be unstructured, but there is an oracle capable of
finding some better vertex than the current one on any subcube containing the ori-
gin. The algorithm in (G¨artner 1995) solves any AOP with|A| = n using expected
e2

√
n+O(4

√
n ln n) calls toΦ. Maximizing an RLG-functionf with n facets can be

reduced to solving an AOP with|A| = n, if its codomain is totally ordered. This
restriction is often satisfied, as for, e.g., parity games (Bj¨orklund, Sandberg, and
Vorobyov 2003b).

Let P be ad-dimensional hyperstructure withn facets, and letf : P → D
be an RLG-function with totally ordered codomain. Define an AOP(F , <,Ψ) as
follows. Let−∞ be an artificial value, smaller than all values of vertices ofP. Let

21

Algorithms for Combinatorial Optimization and Games Adapted from Linear Programming

F be the set of all facets ofp, and defineval : 2F → D ∪ {−∞} by

val(F) =
{

wf (struct(F)), iff struct(F) �= ∅;
−∞, otherwise.

Take≺ to be any total order on2F such thatF ≺ F ′ whenever|F | > |F ′|.
For F,F ′ ∈ F let F < F ′ iff 1) val(F) < val(F ′), or 2)val(F) = val(F ′) and
F ≺ F ′. Now defineΦ(F,G) as follows.

• Supposeval(F) �= −∞ andstruct(F) contains only one vertexv. If v is a
local maximum onstruct(G), thenΦ(F,G) = F . OtherwiseΦ(F,G) is a
set defining a 0-dimensional substructure containing only a better neighbor
of v on struct(G).
• If val(F) �= −∞ but |F | > d then Φ(F,G) = F ′ whereF ′ defines a

substructure containing only one vertex with maximal value onstruct(F).
• If val(F) = −∞ andstruct(G) = ∅ thenΦ(F,G) = ∅.
• If val(F) = −∞ andstruct(G) �= ∅ thenΦ(F,G) = F ′ for someF ′ ∈

struct(G).

Now (F , <,Φ) defines an AOP, and applying G¨artner’s algorithm will yield a solu-
tion from which a maximal vertex of the original RLG-structure can be recovered.

Unfortunately, the bound this gives for maximizing RLG-functions is not very
good. The previously discussed algorithms give bounds subexponential ind as long
asn is polynomial ind, which is not the case here. If, for example,n = Θ(d2),
which is the worst case when reducing games to RLG-functions, we only get a
2O(d) bound on the expected calls toΦ. The reason seems to be that the original
dimension is lost in the reduction, and all facets are treated as independent.

Gärtner’s algorithm, called with the appropriate parameters, will never callΦ
with any set of size bigger thand as the first parameter. For such sets,Φ can be
computed in polynomial time.

7 Conclusions

In (Björklund, Sandberg, and Vorobyov 2003a; Bj¨orklund, Sandberg, and Vorobyov
2003b) we showed how the well-known linear programming algorithms from (Kalai
1992; Matoušek, Sharir, and Welzl 1996) can be adapted to solving parity games.
In this paper we showed that these algorithms work for maximizing recursively
local-global functions on hyperstructures. Together with the reductions from games
to RLG-functions from (Bj¨orklund, Sandberg, and Vorobyov 2003b), this stresses
the combinatorial similarities between linear programming and solving games. It
also provides a simple setting, stripped of cumbersome details, convenient for in-
vestigation of such similarities and for developing new algorithms for parity and
simple stochastic games.

AcknowledgementsWe thank anonymous referees for valuable remarks, improve-
ments and references.

22

Henrik Bj örklund and Sven Sandberg

References

Agrawal, M., N. Kayal, and N. Saxena (2002, August). Primes is in P. Unpublished
manuscript,http://www.cse.iitk.ac.in/news/primality.html.

Björklund, H., S. Sandberg, and S. Vorobyov (2002, May). Optimization on completely
unimodal hypercubes. Technical Report 018, Uppsala University / Information Technol-
ogy. http://www.it.uu.se/research/reports/.

Björklund, H., S. Sandberg, and S. Vorobyov (2003a). A discrete subexponential algo-
rithm for parity games. In H. Alt and M. Habib (Eds.),20th International Symposium on
Theoretical Aspects of Computer Science, STACS’2003, Volume 2607 ofLecture Notes in
Computer Science, Berlin, pp. 663–674. Springer-Verlag. Full preliminary version: TR-
2002-026, Department of Information Technology, Uppsala University, September 2002,
http://www.it.uu.se/research/reports/.

Björklund, H., S. Sandberg, and S. Vorobyov (2003b, January). On
combinatorial structure and algorithms for parity games. Technical Re-
port 2003-002, Department of Information Technology, Uppsala University.
http://www.it.uu.se/research/reports/.

Condon, A. (1993). On algorithms for simple stochastic games.DIMACS Series in
Discrete Mathematics and Theoretical Computer Science 13, 51–71.

Emerson, E. A., C. Jutla, and A. P. Sistla (1993). On model-checking for fragments of
µ-calculus. InComputer Aided Verification, Proc. 5th Int. Conference, Volume 697, pp.
385–396. Lect. Notes Comput. Sci.

Gärtner, B. (1995). A subexponential algorithm for abstract optimization problems.SIAM
Journal on Computing 24, 1018–1035.

Goldwasser (1995). A survey of linear programming in randomized subexponential time.
SIGACTN: SIGACT News (ACM Special Interest Group on Automata and Computability
Theory) 26, 96–104.

Hammer, P. L., B. Simeone, T. M. Liebling, and D. De Werra (1988). From linear separa-
bility to unimodality: a hierarchy of pseudo-boolean functions.SIAM J. Disc. Math. 1(2),
174–184.

Kalai, G. (1992). A subexponential randomized simplex algorithm. In24th ACM STOC,
pp. 475–482.

Ludwig, W. (1995). A subexponential randomized algorithm for the simple stochastic
game problem.Information and Computation 117, 151–155.

Matoušek, J., M. Sharir, and M. Welzl (1992). A subexponential bound for linear pro-
gramming. In8th ACM Symp. on Computational Geometry, pp. 1–8.

Matoušek, J., M. Sharir, and M. Welzl (1996). A subexponential bound for linear pro-
gramming.Algorithmica 16, 498–516.

Sharir, M. and E. Welzl (1992). A combinatorial bound for linear programming and re-
lated problems. In9th Symposium on Theoretical Aspects of Computer Science (STACS),
Volume 577 ofLecture Notes in Computer Science, Berlin, pp. 569–579. Springer-Verlag.

Tovey, C. A.(1986). Low order polynomial bounds on the expected performance of local
improvement algorithms.Mathematical Programming 35, 193–224.

23

Algorithms for Combinatorial Optimization and Games Adapted from Linear Programming

Tovey, C. A.(1997). Local improvement on discrete structures. In E. Aarts and L. J. K.
(Eds.),Local Search in Combinatorial Optimization, pp. 57–89. John Wiley & Sons.

Vöge, J. and M. Jurdzi´nski (2000). A discrete strategy improvement algorithm for solving
parity games. InCAV’00: Computer-Aided Verification, Volume 1855 ofLect. Notes
Comput. Sci., pp. 202–215. Springer-Verlag.

Wiedemann, D. (1985). Unimodal set-functions.Congressus Numerantium 50, 165–169.

Williamson Hoke, K. (1988). Completely unimodal numberings of a simple polytope.
Discrete Applied Mathematics 20, 69–81.

24

Building Sub-corpora Suitable for

Extraction of Lexico-Syntactic

Information

Ondřej Bojar
Institute of Formal and Applied Linguistics, ÚFAL MFF UK, Malostranské náměst́ı 25, CZ-11800

Praha, Czech Republic

obo@cuni.cz

Abstract.

Accuracy of automatic syntactic analysis of natural languages with relatively free
word order (such as Czech) can be hardly improved without building large and
precise lexicons of syntactic behavior of individual words (e.g. lexicons of verb va-
lency frames). The current treebanks available do not cover enough words. Larger
corpora lack the syntactic annotation and many sentences contained in them are
too complex to extract the information easily or even automatically. The system
AX (automatic extraction) was developed to perform selection of morphologically
analyzed sentences by means of custom hand-written rules. The rules can be eas-
ily formulated to perform linguistic-motivated filtration. The system AX allows to
perform partial syntactic analysis in order to check the occurrence of more complex
linguistic phenomena.

1 Motivation

At the current stage of the development, the accuracy of automatic syntac-
tic analyzers of natural languages (in particular Czech) is limited due to the
lack of large and precise lexicons of syntactic behavior of individual words
(verb valency frames are the most important example). Building such lex-
icons by hand is rather a time-consuming task and any kind of automatic
preprocessing would help.

The available data sources include corpora annotated on different levels
of linguistic description. Syntactic information can be easily extracted from
corpora annotated on the syntactic level (such as the Prague Dependency
Treebank, PDT1, Böhmová et al. (2001)) and some attempts to extract
for example verb subcategorization frames from treebanks were already per-
formed2. However the number of occurrences of individual lexical items in

1http://ufal.mff.cuni.cz/pdt/
2Such as (Sarkar and Zeman, 2000).

Proceedings of the Eighth ESSLLI Student Session
Balder ten Cate (editor)
Chapter 3, Copyright c© 2003, Ondřej Bojar

25

Building Sub-corpora Suitable for Extraction of Lexico-Syntactic Information

such corpora is usually not sufficient. Bojar (2002) shows that only a few
hundreds of verbs have enough occurrences in PDT and that more than 60%
of 26,000 verbs found in the Czech National Corpus (CNC3) are not cov-
ered in PDT at all. Therefore, it is necessary to extract the lexico-syntactic
information from larger corpora (such as the CNC) or any texts available.

However, not all sentences containing a given lexeme can serve as a good
example to extract the syntactic information (for instance, if two verbs are
present in one clause, their complements and adjuncts can be arbitrarily
intermixed). And moreover, as the syntactic annotation in these corpora is
missing, the sentences can often be too complex to be analyzed by any of
the available parsers at a reasonable level of accuracy.

I developed the system AX to simplify the task of selecting feasible
examples of sentences for extracting a specific lexico-syntactic information
(not just the verb valency frames). The sentences can be easily selected
on linguistically based criteria. Partial syntactic analysis of sentences is
possible, in order to be able to answer more complex linguistic questions
about the sentence.

In section 2 I describe the overall architecture of the system AX. Section
3 gives a brief description of the basic data structure, variant feature struc-
ture. Sections 4 and 5 describe the core of the scripting language AX: filters
to reject sentences and rules to perform (partial) syntactic analysis. In the
last section, I illustrate the use of the system to select sentences suitable for
extracting valency frames of Czech verbs and document the improvement of
accuracy of Czech parsers when applied only to the selected sentences.

2 The Architecture of AX

The system AX combines the idea of regular expressions and replacements
(see (Karttunen et al., 1996; Aı̈t-Mokhtar and Chanod, 1997) and others)
with the idea of feature structures (see below) known from unification-based
parsers. This combination leads to a formalism that is both, strong to
describe complex linguistic properties of sentences of natural language and
efficient in the process of parsing.

The user prepares a script of filters and rules to select sentences suitable
for a specific purpose. The system AX loads the script and then expects
sentences augmented with their morphological annotation (in format of the
PDT4) on the standard input. The input sentences may or may be not mor-
phologically disambiguated. For every input sentence, the system runs the
script and checks, if the sentence passed all the filters or has been rejected.
For sentences that pass (referred to with the term “selected sentences”), the
output of the final phase (see below) is printed out. This output is for some

3http://ucnk.ff.cuni.cz/
4See http://shadow.ms.mff.cuni.cz/pdt/Corpora/PDT 1.0/Doc/morph.html

26

Ondřej Bojar

purposes already suitable for collecting the lexico-syntactic information so
that no other parser to process the sentences is needed.

In the following, I describe the overall running scheme of AX. The input
sentence is internally stored as a sequence of feature structures that corre-
spond one to one to input word forms. (See section 3 for details.) The input
sentence is then processed through a pipe of consecutive blocks (phases) of
operation. Each of the blocks is either a filter, or a set of rules.

The input for each block is a set of sequences of feature structures (re-
ferred to with the term the set of “input readings” of the sentence). If the
block is a filter, it checks all the input readings and possibly rejects some
of them. If the block is a set of rules, it updates every input reading with
all applicable rules and returns a larger set of new readings (it “generates”
new readings).

Consecutive blocks are connected, so that the output set of readings from
the former block is used as the input set of readings for the latter block. The
first of the blocks receives as input the input sentence, the output from the
last block is printed out. The order and type of the blocks is up to the
author of the script. All the input sentences that were not rejected by any
of the filters are accepted and the output produced for each of them can also
be used to extract the lexico-syntactic information, if appropriate.

A sample flow of readings is demonstrated in figure 1.

Filter1 Ruleset1 Filter2 Ruleset2

Sentence1
Sentence2

Figure 1: Progress of sentences through an AX script. The first input
sentence was rejected by the first filter. The second sentence passed the
filter and several readings were obtained by the rules in ruleset 1. Some of
the readings were then rejected by filter 2 and some passed. Altogether four
different readings were then produced by the last ruleset.

3 Feature Structures with Variants

Feature structures (also called attribute-value matrices) allow representing
of various linguistic information in a compact and natural way.5. For the
purposes of this work, untyped feature structures with alternatives (variants)
of values are sufficient and serve well to represent very rich and often very

5For a detailed characteristic of typed feature structures see Penn (2000).

27

Building Sub-corpora Suitable for Extraction of Lexico-Syntactic Information

ambiguous morphological information6 as well as arbitrary user flags useful
in the process of filtering and generating new readings by rules.

The basic operation with two variant feature structures is unification.
The output of the unification is a feature structure that holds information
from both the input structures.7 For instance:[

name Kamil

surname
{

Horak, Klement
}] and

[
surname Horak

age int(32)

]
unify and

the result is

[
name Kamil

surname Horak

age int(32)

]

Unification fails, if both the features contain an attribute of the same
name but a non-unifying value.

For every input word in a sentence, the morphological analysis gives
all possible lemmas and morphological attributes of the given word form.
This ambiguous morphological information can be stored in a single feature
structure with variants. See figure 2 on the facing page for an example. The
whole sentence of word forms can therefore be stored as a list of feature
structures of the same length.

4 Filters

Filters in the language AX are expressed in the form of regular expressions
of feature structures. The basic differences between common regular ex-
pressions (used for instance in many Unix tools) and regular expressions of
feature structures used in the language AX are:

• The primitive element of regular expressions is no longer a character,
but rather a feature structure. In scripting language AX, the feature
structure can be expressed either explicitly or by a shortcut name8.

• When searching for a subsequence of feature structures that matches
a given regular expression, the system checks whether the input struc-
ture unifies with the structure in the expression. (Rather than checking
two characters for equality.)

6In Czech, approx. 4,000 different tags are defined, half of which actually occurred in
the Czech National Corpus. For many word forms several dozens of morphological tags
are possible (7 different cases · 4 genders · 2 (sg/pl) = 56 possible tags).

7If more variants of a value are available, the output will carry out the intersection
(more precisely the product of unification of all possible combinations of input variants).

8For example, specific types of pronouns can syntactically serve as nouns or adjectives.
It is useful to define a shortcut of a feature structure that would match a noun or a noun-
like type of pronoun etc. In filters and rules, it is then possible to introduce the whole
structure only by its shortcut name.

28

Ondřej Bojar







cat verb

morfcat verb(presfut)

lemma string(”ḿıt”)

form string(”má”)

agr

[
num sg

pers third

]
tense pres

voice active

neg pos




,




cat pron

morfcat pron(poss)

lemma string(”můj”)

form string(”má”)

agr







case
{

nom, vok
}

gend fem

num sg

pers first







case
{

nom, aku, vok
}

gend neut

num pl

pers first













[
cat - verb, morfcat-verb(presfut), lemma - "mı́t", form - "má",
agr - [num-sg, pers-third], tense - pres, voice - active, neg-pos

|
cat - pron, morfcat - pron(poss), lemma - "můj", form - "má",
agr - [case - nom;vok, gend - fem, num - sg, pers - first

| case - nom; aku; vok, gend - neut, num - pl, pers - first]
]

Figure 2: This feature structure represents all the possible morphological
analyses of the word form má which can be a word form of two different
lemmas (mı́tverb and m̊ujpronoun in different cases, numbers and genders).
Below is the same feature structure expressed in syntax of the scripting
language of AX.

Details of the syntax of the filters are described in Bojar (2002), here I
give just a brief example of two different filters:

filter reject_more_than_two_verbs:
.* verb .* verb .*

end

keep "Keep only sentences with exactly one verb
or those not containing any conjunction":

!verb* verb !verb* | !conj*
end

The keyword filtermeans: reject the sentence if it (as a whole) matches
the given regular expression. The meaning of the keyword keep is: reject
the sentence if it doesn’t match the given expression.

5 Rules

Rules are used to modify the input readings of a sentence and generate new
readings. Rules have always this form:

29

Building Sub-corpora Suitable for Extraction of Lexico-Syntactic Information

rule <rule name> :
<replacement> ---> <input regular expression> ::
<constraints>
end

The rule is applied as follows:

• The input sequence of feature structures is searched in order to find
a subsequence that matches the <input regular expression> and the
<constraints>.

• The obtained subsequence of feature structures is replaced with the
<replacement>.

By default, the input sequence is searched for all possible subsequences
matching the regular expression and constraints, therefore the rule can pro-
duce for one input reading several output readings. In many situations, this
nondeterministic approach leads to more output readings than the user actu-
ally wants. For such cases, the user can write special keywords in the arrow
in the rule to make the rule substitute for instance only the first matching
subsequence of feature structures.

By default, the output of one rule within a ruleset is used as input for
another rule in the same ruleset (possibly reusing the rule itself). All possible
combinations of applying rules are attempted and all the possible outcomes
are collected to build the final output set of possible readings for this block
(phase) of operation. This nondeterministic behavior can be restricted in
several ways: rules can be limited in number of allowed applications9, an
output from one rule can be included in the final set only if no other rule
was able to change it, and others. A detailed description of all the options
is out of the scope of this paper.

In order to “compute” the <replacement> from the subsequence found
in the input, one can use variables. The variables can be used in all parts
of rules: from the <input regular expression> they get their initial value.
The value is then restricted or updated by the <constraints> and their final
value is given to the output in the <replacement>.

All the variables can hold a feature structure. The scope of the variables
is limited for one application of one rule, that is all the variables are local
for the rule and within one application.

The <constraints> are expressed as an unordered list of requirements on
variables values. All the requirements must be fulfilled for the rule to be ap-
plicable. The constraints can only require certain feature (sub)structures to

9In fact, the system AX will not start unless all non-shortening rules, i.e. the rules that
are able to produce output not shorter than the input reading, have this maximum number
of applications explicitly expressed as a function of the number of input structures. This
effectively blocks out the possibility to loop ad infinitum.

30

Ondřej Bojar

unify. By means of these requirements, output variables also get their value.
The following example shows a rule to perform a reduction: it combines an
adjective and a noun together:

rule out_noun ---> adj noun ::
adj.agr = noun.agr,
out_noun = noun

end

The constraint adj.agr = noun.agr guarantees the congruence of the
noun and the adjective in case, gender and number. The constraint out noun
= noun initializes the output variable with the feature structure of the noun
after it was already restricted in case, number and gender due to the con-
gruence requirement. In this way, the input morphological ambiguity is step
by step solved.

The output <replacement> may copy parts of the input subsequence.
This allows an easy formulation of rules that combine distant feature struc-
tures in the input sentence. The regular expression can then be used to
restrict what can stay between the two (or more) feature structures. As a
nice example I show the rule that combines two parts of a Czech verb – the
auxiliary part (býttobe , which can have several forms, such as jsemIam) and
the main verb (such as zaĺıt, which also can have several forms). The rule
also checks the parts for congruence10:

rule complex_past_tense:
complex \gap trace
---->

zalil {gap:!{verb,comma,conj}*} jsem
| jsem {gap:!{verb, comma, conj}*} zalil
::
zalil <- morfcat, voice -> ‘zalil‘,
zalil = [cat-verb],
jsem.cat = ‘jsem‘.cat,
jsem <- morfcat, lemma, neg -> ‘jsem‘,
jsem.agr = [pers-first;second],
zalil <- agr.num, agr.gend -> jsem,
complex = [cat-complexpast],
complex <- lemma, form, neg, morfcat -> zalil,
complex <- agr.pers, agr.num, agr.gend, mood -> jsem
trace = [cat-trace, form-"XtraceX"]

end

10The scripting language AX has a shorter form of expressing several unification re-

quirements on two variables at once. The constraint: “usnul <- cat, agr.num,
agr.gend -> jsem” is equivalent with these three: “usnul.cat = jsem.cat,
usnul.agr.num = jsem.agr.num, usnul.agr.gend = jsem.agr.gend”

31

Building Sub-corpora Suitable for Extraction of Lexico-Syntactic Information

The rules find such a subsequence of feature structures that begins with
the auxiliary verb and ends with the main verb (or vice versa). The gap
between the parts of verb must not contain any other verb, comma or con-
junction (introduced by means of shortcuts, see above). The gap gets a label
“gap”, so that it can be copied to the output replacement. As the output,
the rule produces a single feature structure representing the complex verb
followed a copy of the gap section and an auxiliary trace at the place where
the other part of the verb was found. Naturally, the trace can be omitted if
not needed by any other rules of filters.

6 A Sample AX Usage and Results

The system AX was used to select sentences suitable for extracting typical
complements of verbs, namely verb valency frames. The script for this
purpose contained 15 filters and 21 rules and selected sentences where the
complements of verbs would be easy to observe and excluded sentences that
are too difficult to parse. Approximately 15 to 20% of sentences from the
Czech National Corpus are selected by this script. I call them “very simple
sentences”.11

So far, the task of actually extracting verb valency frames from the se-
lected sentences was not performed, neither manually nor automatically.12

Anyway, the utility of the described sentence preselection can be illus-
trated by measuring the improvement of accuracy of parsers available for
Czech (Collins et al. (1999), Zeman (1997, 2002) and a parser by Zdeněk
Žabokrtský (unpublished)). All the parsers were tested on all the sentences
in the evaluation part of the Prague Dependency Treebank and separately
on the selected “very simple sentences” only.

The results show that the best parser available for Czech, the Collins
parser, is able to correctly observe 55% of verb frames13. When used on
very simple sentences only, this measure increases by 10%. A similar result
can be achieved by using the parser on short sentences only: in sentences
with at most ten words, the Collins parser correctly observes 68% of verb
frames. A combination of both filters, short and “very simple” sentences, is
however still 5% better, exceeding 73% of correctly observed verb frames.

11Optionally, sentences containing “suspicious word order patterns” (WOP) were also
rejected. Straňáková-Lopatková (2001) cautiously analyzes the risks of syntactic ambi-
guity of noun and prepositional phrases in Czech. She defines those WOPs, where there
it is not possible to decide whether a noun phrase depends on another noun phrase or
on the verb itself. These examples would spoil the observation of verb frames, but it is
easy to filter them out using the AX. Full description of the linguistically motivated filters
exceeds the scope of this paper, see (Bojar, 2002) for details.

12In (Bojar, 2002) I propose an algorithm to extract surface verb frames and describe
several open problems of the task of inferring verb valency frames from the surface ones.

13That is to correctly identify all immediate daughters of a verb in the dependency tree
and not mark any extra nodes as daughters of the verb.

32

Ondřej Bojar

Also quite interesting is the improvement of the traditional accuracy
measure, namely the number of correctly assigned dependencies. If used on
very simple sentences, the parsers achieve an accuracy of 5 to 10 percent
better, up to 88% for Collins. On short and “very simple” sentences, 91.4%
for Collins is achieved.

7 Conclusions

In this paper I described a system to perform selection of sentences from
corpora based on linguistically motivated criteria. The system allows an
easy formulation of filters and also rules for partial syntactic analysis of sen-
tences, if needed to check for more complex phenomena. The sentences can
be selected for many purposes: as an automated preprocessing to supply
lexicographers with more relevant examples of sentences as well as a first
step in a fully automatic extraction of lexico-syntactic information. If the
script of filters and rules is cautiously designed, already the output produced
from the system AX can serve as raw input to build a lexicon. The expres-
sive power of filters and rules of AX is better than any corpus searching
tool known to me. The system was used to select sentences suitable to ex-
tract verb valency frames and the utility of this selection was illustrated by
improvement of three parsers’ accuracy.

In future work, I will use the described system in a large scale to extract
valency frames of verbs from the whole Czech National Corpus. I will also
try to design an AX script to select sentences suitable for extraction of
valency frames of nouns.

8 Acknowledgments

The scripting language presented in this article was developed as a part of
my master thesis, Bojar (2002). I would like thank to the supervisor of
the thesis, RNDr. Vladislav Kuboň, Ph.D., as well as to all the researchers
and staff at the Center for Computational Linguistics, Charles University,
Prague. This work was partially supported by the grant GAČR 201/02/1456
and GAUK 300/2002/A INF-MFF.

References

Aı̈t-Mokhtar, Salah and Jean-Pierre Chanod. 1997. Incremental finite-state
parsing. In Proceedings of ANLP’97, pages 72–79, Washington, March
31st to April 3rd.

Böhmová, Alena, Jan Hajič, Eva Hajičová, and Barbora Hladká. 2001.
The Prague Dependency Treebank: Three-Level Annotation Scenario.

33

References

In Anne Abeillé, editor, Treebanks: Building and Using Syntactically
Annotated Corpora. Kluwer Academic Publishers.

Bojar, Ondřej. 2002. Automatická extrakce lexikálně-syntaktických údaj̊u
z korpusu (Automatic extraction of lexico-syntactic information from
corpora). Master’s thesis, ÚFAL, MFF UK, Prague, Czech Republic. In
Czech.

Collins, Michael, Jan Hajič, Eric Brill, Lance Ramshaw, and Christoph Till-
mann. 1999. A Statistical Parser of Czech. In Proceedings of 37th ACL
Conference, pages 505–512, University of Maryland, College Park, USA.

Karttunen, Lauri, Jean-Pierre Chanod, Gregory Grefenstette, and Anne
Schiller. 1996. Regular expressions for language engineering. Natural
Language Engineering, 2(4):305–328.

Penn, Gerald. 2000. The Algebraic Structure of Attributed Type Signatures.
Ph.D. thesis, School of Computer Science, Carnegie Mellon University.

Sarkar, Anoop and Daniel Zeman. 2000. Automatic Extraction of Subcat-
egorization Frames for Czech. In Proceedings of the 18th International
Conference on Computational Linguistics (Coling 2000), Saarbrücken,
Germany. Universität des Saarlandes.

Straňáková-Lopatková, Markéta. 2001. Homonymie předložkových skupin
v češtině a možnost jejich automatického zpracováńı (Ambiguity of
prepositional phrases in Czech and possibilities for automatic treatment).
Technical Report TR-2001-11, ÚFAL/CKL, Prague, Czech Republic. In
Czech.

Zeman, Daniel. 1997. A Statistical Parser of Czech. Master’s thesis, ÚFAL,
MFF UK, Prague, Czech Republic. In Czech.

Zeman, Daniel. 2002. Can Subcategorization Help a Statistical Parser?
In Proceedings of the 19th International Conference on Computational
Linguistics (Coling 2002), Taibei, Tchaj-wan. Zhongyang Yanjiuyuan
(Academia Sinica).

34

Formalizing determination and typicality

with LDO

Jérôme Cardot

Équipe LaLICC: Langages, Logiques, Informatique, Cognition, Communication

UMR 8139 - CNRS - Université Paris IV Sorbonne

http://www.lalic.paris4.sorbonne.fr

Jerome.Cardot@paris4.sorbonne.fr

Abstract. Determination is a fundamental operation in language, by which ob-
jects are built intensionally, more and more specified along the utterance. This
paper presents LDO, a formalism in which objects are built upon concepts. Con-
cepts are involved in incompatibility relations, used by LDO to give a representa-
tion of essence and intension of concepts. LDO allows inference on typicality, and
representation of objects of language.

When we use a common noun to introduce a new object in discourse, this
object is at first time unspecified, indeterminate. Then the utterance gives
determinations to it, through different ways: determiners, quantifiers, mod-
ifiers such as adjectives, noun complements, relatives.

In this article, we present LDO1, a logic to represent how objects are
determinated. We show how the fundamental operation of determination
helps in analyzing quantification and typicality, and in structuring concepts
with intensional relations. We give a formalization and some theorems for
LDO, then we point how this logic can represent objects, joining ability to
structure the lexicon and ability to describe objects along utterances.

1 Overview of LDO

1.1 Sources of LDO

The main choice in LDO is to construct objects by their intension, that is,
by ideas (or concepts) related with terms. This was already pointed out by
(Arnauld and Nicole 1662)2:

1LDO: Logique de la Détermination d’Objets; the basic idea was originally presented
in (Desclés 1986).

2Usually called Logique de Port-Royal.

Proceedings of the Eighth ESSLLI Student Session
Balder ten Cate (editor)
Chapter 4, Copyright c© 2003, Jérôme Cardot

35

Formalizing determination and typicality with LDO

« La détermination est quand ce qu’on ajoûte à un mot général
en restreint la signification, & fait qu’il ne se prend plus pour ce
mot général dans toute son étendue, mais seulement pour une
partie de cette étendue. »3

« Determination is when something is added to a general word,
restricts its meaning, so that it doesn’t stand for the general word
with all its scope, but only for a part of this scope. »

We take concepts, as (Culioli 1999) does (he calls them notions), for
primitive elements, nouns and verbs coming later, built upon these concepts.

More formally, our vision of concepts is inspired by Frege’s one: in (Frege
1879), a concept is an « insaturated expression » (a function), the saturation
of which (by an object) being a content of thought.

Inside the frame of GA&C4, which is built on Curry’s typed combinatory
logic, a concept is an operator building a content of thought (its type being
written H), from an object (of type J). The functional type of this operator
is FJH5.

1.2 Objects and determination in LDO

In LDO objects are built, may be more or less determinate, or still may be
involved in predication, by use of operators τ and δ acting upon concepts:

τ : builds, upon a notion f , τf , typical object f , the typical indeterminate
object associated to notion f .

δ: builds, upon a notion f , δf , a determination, that is, an operator
acting upon an object x and building a more determinate object (δf)x.
So an object may be built by several determinations acting one after
the other, and we’ll write ∆ for a determination chain.

The class of concepts is denoted by F , the class of objects by O, among
which Odet is the class of completely determinate objects, and Oind the class
of not completely determinate objects, so we have O = Oind ∪ Odet

We represent objects determinated from τf (or from any other object
x) with a cone, the vertex of which is τf (or x). In case of τf , all these
objects constitute Étendue f (the scope of f). Among them, some objects
are completely determinate: they constitute Extension f , represented by
the base of the cone. Extension f = Étendue f ∩ Odet

3(Arnauld and Nicole 1662, I, viii, p. 66).
4GA&C: Grammaire Applicative et Cognitive – cf. (Desclés 1990).
5See (Curry and Feys 1958); if A and B are types, FAB denotes the type of an operator

building a B-typed object upon an A-typed object.

36

Jérôme Cardot

τ /be-woman/ = a woman

a brown-haired woman

a young brown-haired woman

an elegant young brown-haired woman

δ /be-brown-haired/

δ /be-young/

δ /be-elegant/

τf

δg1(τf)

δg2(δg1(τf))

δg3(δg2(δg1(τf)))

δg1

δg2

δg3

Figure 1: Determinations of objects.

2 Determination, compatibility and typicality

Some relations occur between concepts: LDO is concerned with relations of
incompatibility, of comprehension, of typical-incompatibility, and of typical
comprehension.

Not all determinations can be applied upon all objects for building other
objects: some determinations are impossible, due to incompatibility between
concepts. This is closely related to type incompatibility. For example, talk-
ing of « a rainy dog » doesn’t make sense. But, as we intend to represent
determinations in human language, there is no relevance in using here a
type theory to forbid such a determination, too many phrases would then
be forbidden, for example metaphors.

Comprehension of concepts shows an intensional relation between them.
For Port-Royal, « f encompasses g » means that we can’t subtract the idea
g from the idea f without destroying the idea f .

This leads to a link between comprehension and incompatibility: f en-
compasses g iff f is incompatible with ∼1 g (where ∼1 g is the negation of
g: ∼1 gx =∼ (gx), so ∼1≡ B ∼)6. In other words, an object falling under
f , falls necessarily under g. This is near to the building of quantifiers in
(Schönfinkel 1924). Like Schönfinkel, we’ll write Ufg for « g is incompatible
with f », and we’ll assume that incompatibility is a symmetrical relation.

As we intend to capture in LDO the notion of typical object of a cat-
egory, or typical representant of a concept, like in (Rosch 1975), we’ll see
the typical-incompatibility like a ‘weak’ incompatibility: if g is typically-
incompatible with f , though it is possible that an object x falling under f
falls under g, typical f -objects don’t, so such an x is an atypical f -object.

6Here B is Curry’s composition operator: BXY Z �−→ X(Y Z); later we’ll use the
other following Curry’s combinators: KXY �−→ Y , SXY Z �−→ XZ(Y Z), IX �−→ X and
C∗XY �−→ Y X.

37

Formalizing determination and typicality with LDO

We’ll write Afg for « g is typically-incompatible with f », Afx for « x is
an atypical f -object », and Tfx for « x is a typical f -object », which means
that x is an f−object, not atypical. Unlike U , A is not a symmetrical rela-
tion; with canonical example, we can’t infer from « among birds, ostriches
are atypical birds », that « among ostriches, birds are atypical ostriches ».

In figure 2 we show the cone of objects determinated from τf : each
∆i is a determination chain, determining ∆iτf , then ∆j ◦ ∆iτf ... In the
cone, we represent a kernel of typical objects. If the determinated object is
atypical because of one of the determinations, we represent this object near
the surface of the cone. Otherwise, the object is in the typical kernel.

�

��

������

�� Æ������

������

�� Æ������

�� Æ�� Æ������

�� Æ������

�� Æ�� Æ������
�� Æ�� Æ������

��

��

��

��

��

��

�� ��

Figure 2: Typical kernel in a determination cone

In the base of the cone (the extension, ie determinate objects), we still see
the typical kernel (in white) and the atypical part (in grey) of the extension.

In terms of TLA7, the typical kernel is the interior of the determination
cone, the atypical part is its internal thick border.

3 Quantification in LDO

Quantification in LDO is intended to give a uniform representation of var-
ious quantifiers in natural languages. The following sentences are usually
represented in classical logic as shown thereafter:

7TLA: Théorie des lieux abstraits (Theory of abstract loci). See for example (Desclés,
Gwiazdecka, and Montes-Rendon 2001).

38

Jérôme Cardot

1. « Jean is mortal » /be-mortal/ (Jean)

2. « A man is mortal » ∃x(/be-man/ (x) ∧ /be-mortal/ (x))

3. « Every man is mortal » ∀x(/be-man/ (x) ⊃ /be-mortal/ (x))

LDO gives for them the following forms:

1. /be-mortal/ (Jean)

2. /be-mortal/ (Σ∗/be-man/)

3. /be-mortal/ (Π∗/be-man/)

Σ∗ and Π∗ are linked to Curry’s illative quantifiers Σ2 and Π2 through:

Σ2 ≡ BC∗Σ∗ and Π2 ≡ BC∗Π∗.

In (1), we could even write ∆(τ/be-man/) for Jean, to show that Jean
is determinated from the typical man through a determination chain ∆.

In each case, the LDO expression shows a determinated subject falling
under a predicate, and meets the traditional medieval analysis, which is
much closer to the language than the analysis of classical logic, or other
formalisms like the so-called intensional logic.

Otherwise, from Curry’s logic, LDO inheritates the ability of expressing
quantification directly as a relation between concepts, without using bound
variables (which don’t appear in natural languages).

Here is to be noticed that quantification has the same effect than deter-
mination: it restricts the scope of a term. So quantification is to be analyzed
like a particular determination, whereas other formalisms paraphrase deter-
mination with help of quantification.

4 Essence, intension

The class of concepts encompassed by f is called « essence of f », denoted
by Ess f and characterized by: g ∈ Ess f iff U(∼1 g)f , or Uf(∼1 g) (due
to symmetry). We’ll write f → g for « f encompasses g ». → is a partial
order on F .

But essence is not enough to capture all the meaning of a concept, es-
pecially when we consider typicality: though some birds don’t fly, /be-
able-to-fly/ is an important part of the concept /be-bird/ ; we’ll say
« /be-able-to-fly/ is in the intension of /be-bird/ ».

As essence is related to quantification by g ∈ Ess f ⊃ Πfg (or g(Π∗f)),
we define « intension of f », denoted by Intension f , based on the weakened
comprehension relation (typical comprehension):

39

Formalizing determination and typicality with LDO

f
T→ g iff. Π(Tf)g iff. g(Π∗(Tf)).

So: Intension f = {g ∈ F ; f T→ g} and Ess f = {g ∈ F ; f → g}.
f → g ⊃ f

T→ g. Hence: Ess f ⊂ Intension f .
Like → w.r.t. U , T→ can be expressed with A, so:
Intension f = {g ∈ F ;Af(∼1 g)}
f−objects share all properties of Ess f , typical f−objects share all prop-

erties of Intension f ; atypical f−objects are atypical because they lack of (at
least) one property of the intension, but they still may have other properties
of the intension.

This allows inference with inconsistent inheritance networks, like Nixon’s
diamond, as will be detailed in section 6.1.

One trouble is that, unlike →, T→ is not a partial order on F . If we read
f

T→ g as « typical f−objects fall under g », obviously f
T→ g doesn’t imply

that typical f−objects are typical g−objects. For example, /be-bird/ is
in the intension (and even in the essence) of /be-ostrich/ , but an ostrich,
even a typical one, is not a typical bird.

Of course we could have given Ess f and Intension f as primitives, rather
than relations between concepts, but structure among concepts and coher-
ence of the system wouldn’t have appeared so clearly. Here essence and
intension of different concepts are coherent because they are inferred from
U and A.

5 Formalization

In this section we give axioms for τ and δ operators, inference rules for LDO,
and some theorems. As the formalism is based on functional calculus, we
develop an applicative point of view and show results as fixed-point of some
operator, when possible.

5.1 Axioms

Aτδ1: For each concept f , there are an object τf and an operator δf .

Axiom Aτδ1 shows clearly that in LDO an object exists as object in
thought. It doesn’t matter here whether a real object can be com-
pletely determinated from τf or not. The point is that τf exists in
the logical system.

Aτδ2: (∀f ∈ F)[(δf(τf)) = (τf)]

τf is a fixed-point of δf ; written in terms of Curry’s combinators:
Sδτf = τf so Sδτ = τ ; τ is a fixed-point of Sδ.

Aτδ3: (∀f, g ∈ F)(∀x ∈ O)[[(fx) =
 ∧ g ∈ Ess f] ⇒ ((δg)x) = x]

40

Jérôme Cardot

An object falling under f is a fixed-point of δg, for all g in the essence
of f .

Aτδ4: (∀f ∈ F)[δf ◦ δf = δf]

Determination by a concept is idempotent. With applicational point
of view, WB(δf) = δf , which leads to recognize δ as a fixed-point of
BBWB.

Aτδ5: (∀f ∈ F)(f(τf)) =

With applicational point of view: f(τf) = SIτf , and the axiom con-
sists in identifying SIτ to K
, the constant-true function.

With this last axiom, τ is connected to the ε−function of Hilbert8; but
Hilbert thought about extensional existence, whereas we think about inten-
sional existence; former works on LDO had made here other choices, for
example (Pascu 2001) identifies f(τf) with Extension τf �= ∅ which means:
∃x, x determinate and f−typical, such that (fx) =
 (with extensional
sense to existence).

5.2 Rules

LDO includes rules of Curry’s combinatory logic and rules of inference for
connectors of classical logic (as presented in (Gentzen 1955)). Here are
specific rules for LDO:

Atypicality and inheritance

x = δg y y = ∆(τf) Afg

Afx

x = δg y Afy

Afx

These rules show the two ways for building an atypical f−object: by
applying an f−typically-incompatible determination upon an f−object, or
by determining an atypical f−object. Atypicality is inherited, and can’t be
lost through determination.

Typicality

Tf(τf)
fx ∼ (Afx)

Tfx

τf is called « typical f−object », so at least we have to recognize it as
typical! Besides, if we know that an f−object is not atypical, then it is
typical.

8Cf. (Bernays 1935).

41

Formalizing determination and typicality with LDO

5.3 Some theorems

Axioms, rules (including rules of natural logic) and previous definitions allow
to prove the following theorems; the next section will give a proof of theorems
(3) and (4).

1.
h ∈ Ess f (f x)

(h x)
An object falling under f falls under the con-
cepts in the essence of f .

2. A ≡ BUT
Both of these operators characterize the
typical-incompatibility.

3.
fx ∼ (Tfx)

Afx

If we know that an f−object is not typical,
then it is atypical; this is a lemma to prove
the next theorem.

4.
g(Π�(Tf)) ∼1 gx f x

Afx

If typical f−objects fall under g, and x is an f−object which doesn’t
fall under g, then x is atypical (as an f−object).

5. Étendue f is the smallest class including τf and stable through all
f−compatible determinations. This stability means, it is a fixed-point
for X �−→

⋃

x∈X,g∈F
{δg x}

5.4 Consistency

The main result about consistency in LDO, is that no contradiction may
occur through deduction rules about typicality.

Such a contradiction would appear as: Tfx ∧ Afx. But none of the
two rules introducing Tfx may lead to this: one supposes that ∼ Afx, the
other one supposes that x = τf , so that no determination has made x be
an atypical f−object.

Another point to be stressed is that incoherent data about U would not
lead to contradictions but would prevent the existence of some objects.

6 Applications

LDO is intended to study determinations in a logical point of view and in
natural languages. We show in this section some inferences, with the proof
of two theorems listed above, and with inference on typicality. Then we
explain how LDO is helpful for representing language.

42

Jérôme Cardot

6.1 Inferences

Proof of theorems 3 and 4.

Here are proof-trees of theorems 3 (at left) and 4 (at right) from the previous
section.

fx ∼ (Tfx)

fx ∼ (Afx)

Tfx ∼ (Tfx)

⊥
fx;∼ (Tfx);∼ (Afx) � ⊥

Afx

g(Π�(Tf))

Π2(Tf)g

(Tfx) ⊃ (gx)

∼1 gx

∼ (gx)

∼ (Tfx) f x

Afx

Inferring on typicality

The canonical example of atypicality: « typical birds fly, ostriches are birds
but an ostrich doesn’t fly » is solved by theorem 4, with f = /be-bird/ ,
g = /be-able-to-fly/ , and x = τ/be-ostrich/ . So the theorem tells:
A/be-bird/ (τ/be-ostrich/), which is to be read « An ostrich is an atyp-
ical bird ».

Let’s go on with a transparent adaptation of Nixon’s diamond: « (a)
Bush is methodist – (b) methodists are pacifist – (c) Bush is republican –
(d) republicans are not pacifist. » From (a) and (b), Bush is pacifist, from
(c) and (d) he isn’t. To solve the inconsistence, we have to formalize at least
one of (b) or (d) with T→ rather than with →.

For example, /be-methodist/ T→/be-pacifist/ , which could also have
been written /be-pacifist/ (Π∗(T/be-methodist/)): typical methodists
are pacifist; so, if Bush is not pacifist (doesn’t matter here whether all or
only typical republicans are not pacifist), he is an atypical methodist. And
if Bush were pacifist, we would conclude that he is an atypical republican.

6.2 LDO and language

Lexicon can be structured with use of determination: for example a defi-
nition such as « a manor is a big luxurious house » could be represented
by:

τ/be-manor/ := δ/be-big/ (δ/be-luxurious/ (τ/be-house/))
U and A relations (or their complement) allow to represent compatibility

and typicality between concepts. A structured lexicon using LDO should
give these relations.

Words refer to objects, and by saying « a car », we’re speaking about
an object, even if we don’t know which one, but we’re not speaking about
the class of cars. Natural language deals with more or less determinated
objects, and determinates them along the discourse. LDO gives a way to
represent that part of semantics.

43

Formalizing determination and typicality with LDO

In (Cardot 2003), we showed how determination is involved in semantic
representation of verbs, mainly for state clauses and event clauses. Our
aim in forthcoming development is to represent how new determinations are
given to an object along a text.

Moreover, LDO allows to represent identification of an object to another.
For example, in « John is (like) a lion », the speaker selects in Intension /be-
lion/ the part he thinks relevant, and asserts this part about John.

Conclusion

Determination is a fundamental operation in language, by which objects are
built intensionally, more and more specified along the utterance.

LDO, built with an intensional point of view, deals with this operation,
by which objects, rather than classes, are specified. Formalization, based on
U and A relations of (typical-)incompatibility, allows inference on typicality
and representation of objects along the discourse. These incompatibility
relations give access to essence and intension of concepts.

LDO contributes to the study of categorization, and can be included in
a general formalism for representing language, such as GA&C.

References

Arnauld, A. and P. Nicole (1662). La logique ou l’art de penser (1993 ed.). Paris:
Vrin.

Bernays, P. (1935). Hilberts Untersuchungen über die Grundlagen der Arithmetik,
pp. 196–216. dans (Hilbert 1935).

Cardot, J. (2003). Logique de la détermination d’objets: un formalisme pour la
représentation des objets du discours. In Actas del VIIIvo symposio internacional
de comunicación social, Santiago de Cuba, pp. 115–120.

Culioli, A. (1999). Pour une linguistique de l’énonciation – Tome 3: Domaine
notionnel. Paris: Ophrys.

Curry, H. B. and R. Feys (1958). Combinatory Logic, Volume I. North Holland.

Desclés, J.-P. (1986). Implication entre concepts: la notion de typicalité. Travaux
de linguistique et de littérature (XXIV).

Desclés, J.-P. (1990). Langages applicatifs, Langues naturelles et Cognition. Paris:
Hermès.

Desclés, J.-P., E. Gwiazdecka, and A. Montes-Rendon (2001). Towards invari-
ant meanings of spatial preposition and preverbs. In Workshop on Spatial and
Temporal Information Processing, ACL-2001, Toulouse.

Frege, G. (1879). Begriffsschrift, eine der arithmetischen nachgebildete Formel-
sprache des reinen Denkens. Halle. Version française par Corine Besson,
l’Idéographie, Vrin, Paris, 1999.

44

Jérôme Cardot

Gentzen, G. (1955). Recherches sur la déduction logique - Untersuchungen über
das logische Schließen. Paris: Presses Universitaires de France.

Hilbert, D. (1935). Gesammelte Abhandlungen – tome 3 (1970 ed.). Berlin:
Springer Verlag.

Pascu, A. (2001). Logique de Détermination d’Objets: concepts de base et
mathématisation en vue d’une modélisation objet. Ph. D. thesis, Université Paris
IV.

Rosch, E. (1975). Cognitive representations of semantic categories. Journal of
Exprimental Psychology (104), 192–233.

Schönfinkel, M. (1924). Über die Bausteine der mathematischen Logik. Mathe-
matische Analen 92, 305–315.

45

46

Non-Redundant Scope Disambiguation in

Underspecified Semantics

Rui Pedro Chaves

Centro de Lingúıstica da Universidade de Lisboa (CLUL), Av. Gama Pinto, n◦2, Lisboa, Portugal

rui.chaves@clul.ul.pt

Abstract. This paper presents a strategy that aims to efficiently avoid the
generation of logically equivalent formulas that arise in scope processing applica-
tions. Constraint based semantic underspecification formalisms may be extended
to include an additional scoping restriction that constrains the set of possible dis-
ambiguations, straightforwardly avoiding the generation of redundant quantifier
scopings. Such a restriction, in principle valid to any logic, is formalized within
Hole Semantics (Bos 1996), a general semantic underspecification framework.

1 Introduction

Semantic Underspecification frameworks (such as QLF (Alshawi and Crouch
1992), UDRSs (Reyle 1993), UMRS (Egg and Lebeth 1995), Hole Seman-
tics (Bos 1996) and CLLS (Egg et al. 1998)) are able to cope efficiently
with the combinatorial explosion of highly ambiguous Natural Language
phenomena such as scope ambiguity.

Classic approaches to scope processing (such as Cooper (1983), Hobbs
and Shieber (1987) and Keller (1988)) are inefficient in the sense that an
exponential number of formulas is always generated (worse case entails
generating n! formulas, for n quantifiers). In underspecified semantics,
the set of possible readings is described via a unique, compact partial rep-
resentation which may be reduced in a straightforward fashion, simply by
the incremental specification of additional constraints (e.g. from prosody,
discourse context or world knowledge). Furthermore, underspecification is
able to deal with other scope bearing constituents other than quantification.

However, the existing methods of scope processing typically overgenerate
in the sense that some or even all generated formulas may be logically
equivalent. We present a new scoping restriction capable of reducing the
set of scopal disambiguations in underspecified semantics, avoiding the gen-
eration of logical redundancies that result from quantifier scope (a subset of
formulas with the same prenex normal form) and therefore greatly reducing

Proceedings of the Eighth ESSLLI Student Session
Balder ten Cate (editor)
Chapter 5, Copyright c© 2003, Rui Pedro Chaves

47

Non-Redundant Scope Disambiguation in Underspecified Semantics

the need for theorem provers. Section 2 briefly reviews the existing methods
for the elimination of redundant formulas. Section 3 formalizes a scope dis-
ambiguation restriction within Hole Semantics and applies it to Discourse
Representation Theory (Kamp and Reyle 1993) formulas. Finally, practical
implementation results and some extensions are discussed.

2 Logical Overgeneration: Redundant Scopings

It is well known that the relative orderings of identical first order quantifiers
do not result in distinct truth conditions. For instance, sentence (1) only
has a single reading, yet two equivalent formulas are typically generated:

(1) Every boy saw every girl.
(1a) (∀x)(boy(x) → (∀y)(girl(y) → saw(x, y)))
(1b) (∀y)(girl(y) → (∀x)(boy(x) → saw(x, y)))

A more complex case is visible in sentence (2), which typically receives
up to 60 equivalent formulas1 but only has a single reading:

(2) A boy that sings in a choir gave a flower with a velvet lace to a girl.

The formulas generated for each of the examples above have the same
prenex normal form2 and hence are equivalent. We are presently con-
cerned with equivalences that result from the Laws of Quantifier Movement
(pulling nested quantifiers out of formulas: (ϕ → (∀x)ψ(x)) ⇔ (∀x)(ψ →
ψ(x)) and (ϕ → (∀x)ψ(x)) ⇔ (∀x)(ψ → ψ(x)) where x is not free in ϕ
and from the Laws of Quantifier Independence (interchanging quantifiers:
(∀x)(∀y)ϕ(x, y) ⇔ (∀y)(∀x)ϕ(x, y) and (∃x)(∃y)ϕ(x, y) ⇔ (∃y)(∃x)ϕ(x, y)).

Much more subtle cases involve (possibly many) different sets of logi-
cally redundant scopings, as sentence (3) below illustrates. Here, a distinct
scopal operator (negation) induces partial non-redundancy: 6 possible per-
mutations but only 4 logically distinct readings.

(3) A cat doesn’t like a dog.
(3a) (∃y)(dog(y) ∧ (∃x)(cat(x) ∧ ¬like(x, y)))
(3b) (∃y)(dog(y) ∧ ¬(∃x)(cat(x) ∧ like(x, y)))
(3c) ¬(∃y)(dog(y) ∧ (∃x)(cat(x) ∧ like(x, y)))
(3d) (∃x)(cat(x) ∧ (∃y)(dog(y) ∧ ¬like(x, y)))
(3e) (∃x)(cat(x) ∧ ¬(∃y)(dog(y) ∧ like(x, y)))
(3f) ¬(∃x)(cat(x) ∧ (∃y)(dog(y) ∧ like(x, y)))

1The total number of scopings is not factorial (i.e. 5! = 120) because nested NPs
cannot have arbitrary semantic scope beyond their syntactical local domain, e.g. ‘a choir ’
may not simultaneously outscope ‘a velvet lace’ and be outscoped by ‘a flower ’.

2(Q0 x0) . . . (Qn−1 xn−1)ψ where Qi (0 < i < n) is a quantifier and ψ is quantifier-free.

48

Rui Pedro Chaves

Clearly, formula (3a) is equivalent to (3d) and formula (3c) is equivalent
to (3f). One solution to this problem is to use a theorem prover with a
search time limit to help decide the equivalence of each pair of formulas
generated: formulas P and Q are equivalent iff (P⇔Q) is provable. For n
generated formulas a theorem prover requires n(n − 1) proofs in the worse
case (i.e. equivalent formulas do not exist), for pairwise choices of P and Q.

Vestre (1991) presents a method that avoids quantifier scope redun-
dancy by limiting the selection of determiners in an enumerative algorithm
for scope processing that exhaustively generates and evaluates all possi-
ble scopings for a given quantifier. In contrast, we present a method that
does not search an exponential number of scopings. Rather, the proposed
strategy strictly generates irredundant quantifier scopings by keeping track
of the scope-bearing constituent undergoing disambiguation and prohibiting
certain disambiguation patterns. Because this method is formalized within
a semantic underspecification framework it is able to consider partially dis-
ambiguated structures and the interaction of other scope-bearing structures
besides quantification, such as negation, modality and indirect discourse.

Gabsdil and Striegnitz (1999) proposes and implements a general method
that orders all the formulas outputted by a scoping algorithm into a graph
structure in which logically equivalent readings are collapsed into a single
structure. This strategy requires the exhaustive enumeration of possible
formulas, the very problem that underspecification originally aimed to solve.
The next section formalizes a method, independent from the logic of choice,
that aborts (sets of) disambiguations that describe redundant scopings.

3 Non-Redundant Scopings in Hole Semantics

Hole Semantics (Bos 1996) is a general underspecification framework where
there is a clear distinction between the underspecification metalanguage and
the object language. In this framework, scopal ambiguity is represented via
partial subordination constraints in an upper-semilattice. What follows is a
brief excursion to Hole Semantics.

An Underspecified Representation (UR) is a triple 〈H,L,C〉 where H is
a set of metavariables (holes) over formulas; L is a set of labelled formulas;
and C is a set of subordination constraints expressed via a relation “≤ ” that
establishes a partial order (i.e. is reflexive, transitive and antisymmetric)
over labels and metavariables. This partial order is also an upper-semilattice
given that a special element, the supremum, subsumes any pair of elements
in the structure. An admissible disambiguation (henceforth a plugging) is
a bijection from holes to labelled formulas that does not violate the set of
constraints, operating recursively from a special top hole h0. When a hole is
plugged (i.e. P(h)=l), the hole variable is substituted by the formula iden-
tified by the correspondent label (e.g. “l :ϕ”). Bos (1996) shows that both

49

Non-Redundant Scope Disambiguation in Underspecified Semantics

Dynamic Predicate Logic and Discourse Representation Structures (DRSs
(Kamp and Reyle 1993)) can be used as object language in Hole Semantics.

We now formalize a general method within Hole Semantics that con-
sists in a restriction that acts to constrain the set of possible pluggings (i.e.
disambiguations that do not violate any subordination constraints), and is
therefore in principle applicable to any logic of choice. In essence, pluggings
shall be associated to a special unrestricted scope operator, initialised as
“	”, and as the disambiguation proceeds this operator may be updated, per-
colated or forced to abort (“⊥”) the plugging (in the latter case, plugging a
given hole with a given formula would result in a non-empty set of formulas
with logically equivalent scopings, if disambiguation is completed).

It must be expressly noted that we assume the numerical indexes asso-
ciated to each label are unique and lexically attributed according to surface
order. The Distinct Scope restriction will be endowed with a ‘short-term
memory’ of the disambiguation process and shall impose decreasing order
on the label indexes between formulas that may induce logical redundancy.
More generally, scope disambiguation in constraint based underspecifica-
tion formalisms can be further restricted in order to efficiently avoid the
symmetric scoping counterpart between specific operators capable of induc-
ing logical redundancy.

3.1 Metalanguage Definitions

Firstly, we shall define the set of metalanguage formula schemata that can
result in redundant disambiguations. Secondly, we provide a basis for de-
tecting formulas with identical outermost scopal operators and finally, we
formalize a general Distinct Scope function and the restrictions therein.

Definition 1: Scopal Schemata
Let S be the set of formula schemata {Op(ψ): Op(ψ) ∈ U}, defined in a
given metalanguage U, under the scope of an operator Op that can poten-
tially induce redundant disambiguations. For instance, in an underspecified
account of predicate logic such as Bos (1996), one would have S = {(∃x)(k),
(∀y)(k)}; where k is either a metavariable or a metalanguage formula.

Definition 2: Scopal Operator Equivalence
Formulas ϕ and ψ have an equivalent syntactical scope (ϕ ≡ ψ) iff ϕ and
ψ are of the form Opi(ϕ’) and Opj(ψ’) respectively, where Opi and Opj are
identical scope-bearing operators. E.g. : ‘(∃x)(α)’ ≡ ‘(∃y)(β)’
≡ ‘(∀z)(τ)’.

Definition 3: Distinct Scope Restriction
Let D be the function which is defined as follows D : Γ × Γ → Γ, where Γ
is a set of φ::= (l : ϕ)|	|⊥. This function establishes a mapping between a
ordered pair of main scope operators (either some labelled metaformula ‘l :ϕ’,

50

Rui Pedro Chaves

or the special symbols “	” (verum) and “⊥” (falsum)) and a new main
scope operator. For n equivalent readings, the ordering constraints enforced
by D are able to interrupt pluggings linearly, at most n times (i.e. depending
on the plugging strategy). Below, ϕ and ψ are metalanguage formulas:

D(, (li : ϕ)) = (li : ϕ) (initial scope domain update)

D((li : ϕ), (lj : ψ)) =




(li : ϕ) if ψ
∈ S (percolate)
(lj : ψ) if ψ ∈ S ∧ ϕ
≡ ψ (update)
(lj : ψ) if ϕ, ψ ∈ S ∧ ϕ ≡ ψ ∧ i > j (update)

⊥ otherwise (abort)

The crucial step takes place when both syntactically equivalent formulas
are in set S and have decreasing labelling indexes. Function D aborts this
specific plug, not allowing orderings where the numerical indexes increase,
thus eliminating the full permutation of logically identical quantificational
operators. For instance “every1 student2 read3 every4 poem5 to6 every7

girl8” would only have the disambiguation with the scoping order: 7>4>1.
Next, the main scope operator slot and D must be embedded into

the plugging procedure itself. To illustrate this we shall adopt unplugged
DRSs (Bos 1996) as a description language, extended in order to explicitly
consider duplex conditions and a basic account of indirect discourse.

3.2 Extended Plugging Procedure for DRTU

Typical disambiguation algorithms for DRT formulas will also be able to
overgenerate by building identical DRSs, given different scoping choices:

Syntax of DRTU formulas (adapted from Bos (1996))

1. If hi and hj are holes, p is a propositional discourse marker and Q is a
generalized quantifier, then 〈{},{hi ⇒ hj}〉, 〈{},{¬hi}〉, 〈{},{hi ∨hj}〉,
and 〈{p},{p : h}〉 are DRTU formulas.

2. If h is a hole, x is a discourse marker and k1 . . . kn are holes or DRTU
formulas then ⊗{k1, . . . , kn} and 〈{},{Qx(k, h)}〉 are DRTU formulas.

3. If x1 . . . xn are discourse markers and P is a symbol for an n-place
predicate, then 〈{x},{}〉 and 〈{},{P (x1, . . . , xn)}〉 are DRTU formulas.

4. Nothing else is a DRTU formula.

The merge operator “⊗” denotes the union of DRSs (Universes and
Conditions), e.g. ⊗{〈U1, C1〉, . . . , 〈Un, Cn〉}=〈U1 ∪ . . . ∪ Un, C1 ∪ . . . ∪ Cn〉.
By definition, the label of the formula subordinates every hole variable in-
troduced by that same formula. In these terms, a single underspecified
representation is assigned to an ambiguous sentence such as (4):

51

Non-Redundant Scope Disambiguation in Underspecified Semantics

(4) A boy didn’t read a book.

(5) UR =

〈



h0

h1

h2

h3

h4

h5



,




l1 : ⊗{〈{x}, {}〉, h1, h2}
l2 : 〈{}, {boy(x)}〉
l3 : 〈{}, {¬h3}〉
l4 : 〈{}, {read(x, y)}〉
l5 : ⊗{〈{y}, {}〉, h4, h5}
l6 : 〈{}, {book(y)}〉



,




l1 ≤ h0

l3 ≤ h0

l5 ≤ h0

l2 ≤ h1

h1 ≤ l2
l4 ≤ h2

l4 ≤ h3

l6 ≤ h4

h4 ≤ l6
l4 ≤ h5




〉

Graphically, subordination constraints are represented by arrows:

h0

l1 : ⊗{ x
, , }h1 h2 h4 h5l5 : ⊗{ y

, , }

l3 : ¬h3

l2 : boy(x)
l4 : read(x, y)

l6 : book(y)

����

�

����

�

�

�

�

�

�
�

�
�

���

	
	

	
	

	
	

		

Figure 1: Graphical representation of UR (5).

Note that the scope between the metavariables in the subject NP inde-
finite (h2), negation (h3) and complement NP indefinite (h5) is unspecified,
and therefore a total of 6 pluggings are possible:

P1 : {h0 = l1, h1 = l2, h2 = l5, h4 = l6, h5 = l3, h3 = l4}
P2 : {h0 = l1, h1 = l2, h2 = l3, h3 = l5, h4 = l6, h5 = l4}
P3 : {h0 = l3, h3 = l1, h1 = l2, h2 = l5, h4 = l6, h5 = l4}
P4 : {h0 = l3, h3 = l5, h4 = l6, h5 = l1, h1 = l2, h2 = l4}
P5 : {h0 = l5, h4 = l6, h5 = l3, h3 = l1, h1 = l2, h2 = l4}
P6 : {h0 = l5, h4 = l6, h5 = l1, h1 = l2, h2 = l3, h3 = l4}

Note also that P1 and P6 are redundant (i.e yield the same DRS), and so
are P3 and P4. In order to avoid this overgeneration, the labels of the formu-
las lexically introduced will be used to limit the range of possible pluggings as
outlined by function D. An extended plugging algorithm that incorporates
this function is defined below as a partial function Plug, restricting the set of
possible disambiguations. Firstly, assume S = {⊗{k, h, h}, 〈{}, {Qx(k, h)}〉}
for the schemata of DRTU formulas, whereQ is a given generalized quantifier
such as ‘every’ or ‘few’ (but not like ‘most’ or ‘many’, for the consecutive

52

Rui Pedro Chaves

interchanging of such quantifiers does not always preserve the same truth
conditions; see McCawley (1981: 53-54) for a brief discussion).

Definition 4: Extended Plugging Procedure
Plugging corresponds to the function Plug : (H ∪L)× Γ× SR → Σ , where
H is the set of holes and L the set of labelled metalanguage formulas, Γ
is the set of main scope operators φ as defined before, SR is the set of
solved Underspecified Representations 〈H,L,C〉, and finally, Σ is the set of
disambiguated object-language formulas.

The set of constraints C in a solved Underspecified Representation ex-
plicitly describes a solution to the original underspecified structure. In other
words, the constraints in C describe a tree of the formulas in L (i.e. sub-
ordinations l ≤ h and l ≤ h′ where h
= h′ do not exist). Althaus et al.
(2003) presents an efficient method for enumerating the described solutions
as forests in constraint graphs (a general framework for the partial descrip-
tion of trees) and these results can be used in several other underspecification
formalisms, including Hole Semantics (Koller et al. 2003).

The initial call to this function is Plug(h0,	, 〈H,L,C〉) where H is a
set of holes, L is a set of labelled unplugged formulas and C a set of solved
subordination constraints. The return shall be a disambiguated formula in
the object-language. The crucial step of avoiding spurious scopings takes
place when a consistent plug P(h) = l occurs and function D is applied:

Plug(h, φ, 〈H ∪ {h} , L ∪ {l : ψ} , C ∪ {(l ≤ h)} 〉) =

Plug(ψ,D(φ, l : ψ), 〈H,L,C〉)

Above, hole h is identified with a given outscoped formula ψ. Next,
a recursive call attempts to plug formula ψ iff D(φ, l : ψ)
= ⊥. More
explicitly, Plug(ψ, ⊥, 〈H,L,C〉) always fails. Note that D is compatible
with more straightforward, though less efficient, disambiguation strategies:
in Blackburn and Bos (1999) the original set C of the UR is updated after
each plug P(h) = l (i.e. every occurrence of h in C is replaced by l) and
is checked for consistency. Similarly, D applies to the next plug and the
remaining cases are identical to the presented below (Chaves 2002:325-330).

In duplex conditions the restrictor hole remains unconstrained (“	”)
while the scope hole does not, because nested generalized quantifiers within
a restrictor yield distinct readings, as illustrated below in sentence (6):

Plug(〈{}, {Qx(k, h)}〉, φ, 〈H,L,C〉) =

〈{}, {Qx(Plug(k,	, 〈H,L,C〉), P lug(h, φ, 〈H,L,C〉) }〉

(6) Every representative of every company protested.

53

Non-Redundant Scope Disambiguation in Underspecified Semantics

At least two readings are available for (6): companies with possibly
different representatives protested; representatives that simultaneously re-
present all companies protested. Note that if D imposed an increasing order
to the numerical indexes, nested quantifiers would not get wide scope read-
ings over the main quantifier (perhaps indexes might be able to reflect scopal
preferences via an underspecified partial order). Conditionals are similar:

Plug(〈{}, {hi ⇒ hj }〉, φ, 〈H,L,C〉) =
〈{}, {Plug(hi ,	, 〈H,L,C〉) ⇒ Plug(hj , φ, 〈H,L,C〉) }〉

Plug(⊗{k1, . . . , kn}, φ, 〈H,L,C〉) =
⊗{Plug(k1, φ, 〈H,L,C〉), . . . , P lug(kn, φ, 〈H,L,C〉)}

Indirect discourse, disjunction, negation (as well as modal operators)
and n-place predicates do not induce scopal logical redundancy, and have
unrestricted (“	”) pluggings (where α is a propositional discourse referent):

Plug(〈{α}, {α : h}〉, φ, 〈H,L,C〉) = 〈{α}, {α : (Plug(h,	, 〈H,L,C〉))}〉

Plug(〈{}, {hi ∨ hj}〉 , φ, 〈H,L,C〉) =
〈{}, {Plug(hi ,	, 〈H,L,C〉) ∨ Plug(hj ,	, 〈H,L,C〉)}〉

Plug(〈{}, {¬h}〉, φ, 〈H,L,C〉) = 〈{}, {¬Plug(h,	, 〈H,L,C〉) }〉

Plug(〈{}, {R(x1 , . . . , xn)}〉, φ, 〈H,L,C〉) = 〈{}, {R(x1, . . . , xn)}〉
Take for instance sentence (7) and the corresponding UR depicted in (8)

below, which has 6 distinct readings but a total of 18 possible pluggings:

(7) A girl that a teacher mentioned didn’t read a book.

(8)

〈




h0

h1

h2

h3

h4

h5

h6

h7

h8

h9




,




l1 : ⊗{〈{x}, {}〉, h1, h2}
l2 : 〈{}, {girl(x)}〉
l3 : ⊗{h3, h4}
l4 : ⊗{〈{y}, {}〉, h5, h6}
l5 : 〈{}, {teacher(y)}〉
l6 : 〈{}, {mentioned(y, x)}〉
l7 : 〈{}, {¬h7}〉
l8 : 〈{}, {read(x, z)}〉
l9 : ⊗{〈{z}, {}〉, h8, h9}
l10 : 〈{}, {book(z)}〉




,




l1 ≤ h0

l4 ≤ h0

l7 ≤ h0

l9 ≤ h0

l3 ≤ h1

h1 ≤ l3
l2 ≤ h3

h3 ≤ l2
l6 ≤ h4

l8 ≤ h2

l5 ≤ h5

h5 ≤ l5
l6 ≤ h6

l10 ≤ h8

h8 ≤ l10
l8 ≤ h9




〉

54

Rui Pedro Chaves

The 6 available readings are obtained through the following pluggings:

{h0=l4, h5 = l5, h6 = l1, h1 = l3, h3 = l2, h4 = l6, h2 = l7, h7 = l9, h8 = l10, h9 = l8}
(8a) 〈{y, x}, {teacher(y), girl(x),mentioned(y, x),¬〈{z}, {book(z), read(x, z)}〉}〉

{h0=l4, h5 = l5, h6 = l7, h7 = l9, h8 = l10, h9 = l1, h1 = l3, h3 = l2, h4 = l6, h2 = l8}
(8b) 〈{y}, {teacher(y),¬〈{z, x}, {book(z), girl(x),mentioned(y, x), read(x, z)}〉}〉

{h0=l9, h8 = l10, h9 = l4, h5 = l5, h6 = l1, h1 = l3, h3 = l2, h4 = l6, h2 = l7, h7 = l8}
(8c) 〈{z, y, x}, {book(z), teacher(y), girl(x),mentioned(y, x),¬〈{}, {read(x, z)}〉}〉

{h0=l9, h8 = l10, h9 = l4, h5 = l5, h6 = l7, h7 = l1, h3 = l3, h3 = l2, h4 = l6, h2 = l8}
(8d) 〈{z, y}, {book(z), teacher(y),¬〈{x}, {girl(x),mentioned(y, x), read(x, z)}〉}〉

{h0=l9, h8 = l10, h9 = l7, h7 = l4, h5 = l5, h6 = l1, h1 = l3, h3 = l2, h4 = l6, h2 = l8}
(8e) 〈{z}, {book(z),¬〈{y, x}, {teacher(y), girl(x),mentioned(y, x), read(x, z)}〉}〉

{h0=l7, h7 = l9, h8 = l10, h9 = l4, h5 = l5, h6 = l1, h1 = l3, h3 = l2, h4 = l6, h2 = l8}
(8f) 〈{}, {¬〈{z, y, x}, {book(z), teacher(y), girl(x),mentioned(y, x), read(x, z)}〉}〉

The remaining 12 pluggings are aborted by the ordering constraints in
D. For instance, plug P(h6) = l9 visible below (where ⊗{〈{z}, {}〉, h8 , h9}
is identified with h6 in ⊗{〈{y}, {}〉, h5 , h6}) is unsuccessful because 4
> 9:

{h0 = l4, h5 = l5, h6 = l9} (plugging aborted)

D(, l4: ⊗{〈{y}, {}〉, h5, h6}) = l4: ⊗{〈{y}, {}〉, h5, h6}
D(l4:⊗{〈{y}, {}〉, h5, h6}, l5: 〈{}, {teacher(y)}〉) = l4: ⊗{〈{y}, {}〉, h5, h6}
D(l4:⊗{〈{y}, {}〉, h5, h6}, l9: ⊗{〈{z}, {}〉, h8, h9}) = ⊥

If continued, this plugging would be equivalent to either (8c) or (8d) above:

↗ h9= l1, h1= l3, h3= l2, h4 = l6, h2 = l7, h7 = l8}
{h0=l4,h5=l5,h6 = l9, h8=l10,

↘ h9= l7, h7= l1, h1= l3, h3 = l2, h4 = l6, h2 = l8}

Similarly for (8a) and (8c), {h0 = l1, h1 = l3, h3 = l2, h4 = l4} is aborted:

D(, l1: ⊗{〈{x}, {}〉, h1, h2}) = l1: ⊗{〈{x}, {}〉, h1, h2}
D(l1: ⊗{〈{x}, {}〉, h1, h2}, l3: ⊗{h3, h4}) = l1: ⊗{〈{x}, {}〉, h1, h2}
D(l1: ⊗{〈{x}, {}〉, h1, h2}, l2: 〈{}, {girl(x)}〉) = l1: ⊗{〈{x}, {}〉, h1, h2}
D(l1: ⊗{〈{x}, {}〉, h1, h2}, l4: ⊗{〈{y}, {}〉, h5, h6}) = ⊥.

↗ h2= l7, h7= l9, h8= l10,h9= l8}
{h0= l1, h1= l3, h3= l2,h4=l4, h5= l5, h6= l6,

↘ h2= l9, h8= l10, h9= l7, h7= l8}

55

Non-Redundant Scope Disambiguation in Underspecified Semantics

In sum, the UR in (8) has a total of 18 disambiguations out of which 12
correspond to equivalent readings. The Distinct Scope restriction licenses
only a subset of 6 pluggings, all corresponding to logically distinct scopings.

A Prolog implementation indicates that D speeds up the disambiguation
of highly redundant URs by 10% to 25% (e.g. 1048 equivalent pluggings in
7.2 secs. vs a unique reading in 5.8 secs. total on a PIII 866MHz 256Mgs)
and that no noticeable computational delay is induced by irredundant URs
(CGI at http://www.clul.ul.pt/clg/scope.html). Although Chaves (2002)
uses a less efficient plugging method overall, maximum speed up is of 91%.

3.3 Double Negation

The wide/narrow scopings of the indefinite “a woman” in (9a) and (9b) res-
pectively, are equivalent because of double negation (Corblin (1995, 1996)):

(9) It is not true that John did not see a woman.
(9a) 〈{x, y}, {John(x), woman(y),¬〈{}, {¬〈{}, {see(x, y)}〉}〉}〉
(9b) 〈{x}, {John(x),¬〈{}, {¬〈{y}, {woman(y), see(x, y)}〉}〉}〉

This is also true of two of the readings of (10)(Gabsdil and Striegnitz (1999)):

(10) No criminal does not love a woman.
(10a) 〈{y}, {woman(y),¬ 〈{}, {¬〈{x}, {criminal(x), love(x, y)}〉}〉 }〉
(10b) 〈{}, {¬ 〈{}, {¬〈{x, y}, {criminal(x), woman(y), love(x, y)}〉}〉 }〉

These interpretations differ in dynamic potential (e.g. in the specific
readings (9a) and (10a) the referent for “woman” is anaphorically available
for continuations), and the resolution of such equivalences belongs to a differ-
ent processing stage. In spite of this, the weaker, non-specific readings could
in principle be dispensed with by extending S with ‘〈{}, {¬h}〉’ and adapting
Plug to prohibit indefinites under double negation (since generalized quan-
tifiers cannot have arbitrary wide scope and thus do not induce such equi-
valences). Informally: D(〈{}, {¬〈{. . .}, {¬ . . . h . . .}〉}〉,⊗{k, h1, h2}) = ⊥.

4 Conclusion

A general restriction is formalized within Hole Semantics with the aim of
efficiently avoiding the generation of equivalent quantifier scopings. The
proposed scopal ordering constraint interrupts redundant disambiguations,
being therefore able to significantly reduce the set of generated formulas.

Acknowledgements I am grateful to the anonymous referees for help-
full comments and to Johan Bos for providing a version of the Althaus et.
al. (2003) constraint solver. The errors that I failed to correct are mine.

56

Rui Pedro Chaves

References

Alshawi, H. and R. Crouch (1992). Monotonic semantic interpretation. In Pro-
ceedings of the 30th ACL, pp. 32–39. Newark, Delaware.

Althaus, E., D. Duchier, A. Koller, K. Mehlhorn, J. Niehren, and S. Thiel (2003).
An efficient graph algorithm for dominance constraints. Journal of Algorithms,
To appear.

Blackburn, P. and J. Bos (1999). Representation and Inference for
Natural Language - A First Course in Computational Semantics.
http://www.coli.uni-sb.de/~bos/comsem.

Bos, J. (1996). Predicate logic unplugged. In Proceedings of the 10th Amster-
dam Colloquium, pp. 133–142. ILLC / Department of Philosophy, University of
Amsterdam, The Netherlands.

Chaves, R. P. (2002). Fundamentos para uma Gramática Computacional do
Português – Uma abordagem lexicalista. Master’s dissertation, University of Lis-
bon, Lisbon.

Cooper, R. (1983). Quantification and Syntactic Theory. Reidel Publications,
Dordrecht.

Corblin, F. (1995). Compositionality and complexity in multiple negation. IGPL
Bulletin 3, 3-2, 449–473.

Corblin, F. (1996). Multiple negation processing in Natural Language. In Theoria,
pp. 214–260.

Egg, M. and K. Lebeth (1995). Semantic underspecification and modifier attach-
ment ambiguities. In J. Kilbury and R. Wiese (Eds.), Integrative Ansätze in der
computer linguistik, pp. 19–24. Düsseldorf, Seminar für Allgemeine Sprachwis-
senschaft.

Egg, M., J. Niehren, P. Ruhrberg, and F. Xu (1998). Constraints over lambda-
structures in semantic underspecification. In Joint COLING/ACL, pp. 353–359.
Montreal, Canada.

Gabsdil, M. and K. Striegnitz (1999). Classifying scope ambiguities. In C. Montz
and M. de Rijke (Eds.), ICOS-1, Institute for Logic, Language and Computation
(ILLC), Amsterdam, pp. 125–131.

Hobbs, J. R. and S. M. Shieber (1987). An algorithm for generating quantifier
scopings. Computational Linguistics 13(1-2), 47–55.

Kamp, H. and U. Reyle (1993). From Discourse to Logic: An Introduction to Mod-
eltheoretic Semantics of Natural Language, Formal Logic and DRT. Dordrecht,
Holland: Kluwer.

Keller, W. R. (1988). Nested Cooper storage: The proper treatment of quantifica-
tion in ordinary noun phrases. In U. Reyle and C. Roher (Eds.), Natural Language
Parsing and Linguistic Theories, Dordrecht: Reidel, pp. 432–447.

Koller, A., J. Niehren, and S. Thater (2003). Bridging the gap between under-
specification formalisms: Hole semantics as dominance constraints. In Proceedings
of the 11th EACL, Budapest.

57

Non-Redundant Scope Disambiguation in Underspecified Semantics

McCawley, J. D. (1981). Everything that Linguists always wanted to know about
logic. . . but were ashamed to ask. Chicago: The University of Chicago Press.

Reyle, U. (1993). Dealing with Ambiguities by Underspecification: Construction,
Representation and Deduction. Journal of Semantics 102, 123–179.

Vestre, E. J. (1991). An algorithm for generating non-redundant quantifier scop-
ings. In Fifth Conference of the European Chapter of the ACL, pp. 251–256. Berlin,
Germany.

58

The Beth Property for the Modal Logic of

Graded Modalities, with an Application

to the Description Logic ALCQ.

Willem Conradie
Department of Mathematics and Statistics,

Rand Afrikaans University,

P O Box 524, Auckland Park, 2006, South Africa
wec@rau.ac.za

Abstract. Abstract: We prove the Beth definability-property for a modal logic
with graded (or “counting”) modalities. The result has an important consequence
for the description logic known as ALCQ, as it implies that every definitorial ALCQ-
terminology is equivalent to an acyclic ALCQ-terminology. It is shown that the
Beth property fails for the logics obtained by adding the difference operator to the
logic of graded modalities or to basic modal logic.

1 Introduction

In section 1.1 we introduce the Beth property - a property standardly in-
vestigated for logics, which also happens to have a nice intuitive application
to description logics. These are introduced in section 1.2. In section 2 we
extend modal logic by adding to it the difference operator and graded modal-
ities. Certain combinations of these operators give rise to logics in which
the Beth property fails - two of these are illustrated is section 4, making
use of a characterization of the Beth property given in section 3. Section 5
centers around the proof of our main result - the Beth property for the logic
of graded modalities, and also makes use of the characterization provided in
section 3.

We assume basic knowledge of the syntax and semantics of modal logic,
as well the notions of bisimulation, generated submodel, the unravelling of a
model and the standard translation of a modal formula. A state of the art
reference here is [Blackburn et al., 2001]. From first-order model theory we
assume the notions of (countably) saturated model, type and ultraproducts
as well as related theorems such as that of �Los (see [Hodges, 1993]). All
work will be purely semantical, languages will always be interpreted over
the class of all possible models. With this in mind we will mostly identify

Proceedings of the Eighth ESSLLI Student Session
Balder ten Cate (editor)
Chapter 6, Copyright c© 2003, Willem Conradie

59

The Beth Property for the Modal Logic of Graded Modalities

logics with their languages for the sake of brevity. We shall work with a
global consequence relation �.

1.1 The Beth-Property

We parameterize a language L with a set of proposition letters Π, as follows
L(Π) is we want to be explicit about the proposition letters used in the
language. Similarly for sets of formulas: Γ(Π). When Π = {q1, q2, . . . , qi, p}
we shall write Γ(q, p).

Suppose that we are working in a logic S in a language L. Before in-
troducing the Beth-property for propositional (modal) logics, we need the
notions of explicit- and implicit definitions:

Definition 1.1 Let Γ(q, p) be a set of formulas in L and p′ a proposition
letter not occurring in any formula in Γ(q, p). Let Γ(q, p′) be the result
of uniformly substituting p′ for every occurrence of p in Γ. Γ is called an
implicit definition of p, if Γ(q, p),Γ(q, p′) �S p↔ p′. �

The intuitive meaning of this rather technical-looking definition is the fol-
lowing: Given an interpretation of the symbols in Γ except p, the interpre-
tation of p is fixed. Or stated another way, given any model for the language
L(Γ) − {p}, this model can be extended in at most one way to a model of
Γ, by giving a valuation for p. Showing that a set of formulas Γ is not an
implicit definition of p then boils down to demonstrating the existence of
two models of Γ, based on the same frame and having the same q-valuation,
but differing on their p-valuation. This was first observed by Padoa in 1900
in the context of first order logic, and the method has become known as
Padoa’s method.

Definition 1.2 Let p be a proposition letter and Γ(q, p) a set of formulas in
L. A formula φ ∈ L(q) is called an explicit definition of p relative to Γ(q, p)
if Γ(q, p) �S p↔ φ. �

Definition 1.3 A logic S is said to have the Beth-property if for any implicit
definition Γ, of a proposition letter p, there exists an explicit definition φ of
p relative to Γ. �

The Beth-property has been established for quite a number of (proposi-
tional) modal logics, including the logic K. One particularly interesting
result here is due to [Maksimova, 1993]. This states that all normal exten-
sions of the logic K4 have the Beth-property. One should also mention the
relationship between interpolation and the Beth property. Stated simply,
interpolation implies the Beth-property. For a detailed discussion of these
matters the reader is referred to [Hoogland, 2001].

60

Willem Conradie

1.2 Description Logic

An extensive hierarchy of knowledge representation formalisms, known as
description logics, exists in the literature (see [Baader et al., 2003]). Many
of these logics turn out to be syntactic variants of (extended) multi-modal
logics. For example, the description language ALC corresponds to a propo-
sitional modal language with (possibly) multiple diamonds. ALCQ, a much
more expressive description logic, corresponds to the modal logic with count-
ing modalities L≤, which we define below, but possibly with many unary
modalities. For an introduction to description logics the reader is referred
to [Baader and Nutt, 2003].

Certain sets of formulas in description logics are known as terminologies.
In such a terminology concepts (corresponding to our proposition letters)
are defined in terms of other base concepts (corresponding to a designated
subset of the proposition letters in the language). The definition of a concept
may also (directly or indirectly) make use of the concept itself. A terminol-
ogy in which this happens is said to by cyclic, and acyclic otherwise.

A terminology, T , is said to be definitorial if any interpretation of the base
concepts completely determines the interpretation of the defined concepts
on any model for T . This is clearly the same as saying that T is an im-
plicit definition of the defined concepts. The Beth property for a description
logic then says that on any model for a definitorial terminology, for every
defined concept there is a formulas equivalent to it, only making use of base
concepts. This implies that every definitorial terminology in the logic is
equivalent to a acyclic terminology. From a computational viewpoint this is
very important, as reasoning with acyclic terminologies is much easier that
doing so with cyclic ones.

2 The Difference Operator and Graded Modalities

We work on Kripke models with one binary relation (as for the basic modal
language). Let M = (W,R, V) be such a model and m ∈W . The difference
operator, D, has the following semantics

M,m � Dφ iff there exists a point n ∈M such that n�= m and M, n � φ.

Note that the difference operator allows us to define the universal modality
(cf. [Blackburn et al., 2001], p. 415)

Eφ ≡ φ ∨ Dφ

and
Aφ ≡ ¬(E¬φ).

61

The Beth Property for the Modal Logic of Graded Modalities

We are also able to count states in a limited way. Define

E!φ ≡ E(φ ∧ ¬Dφ)

which holds on a model precisely when exactly one state where φ holds.

Taking the idea of counting (successor) states more seriously leads us to
the idea of graded modalities: For each n ∈ ω we add the modality �≤n to
our language, with the following interpretation

M,m � �≤nφ if and only if |{y ∈M : Rmy and M, y � φ}| ≤ n.

One can now define

�>nφ ≡ ¬�≤nφ, �≥nφ ≡ �>n−1φ, �=nφ ≡ (�≤nφ∧�≥nφ), ♦φ ≡ �≥1φ

We shall be considering the languages L♦,D defined as

φ ::= p | � | ¬φ | φ ∨ ψ | ♦φ | Dφ

and L≤ given by
φ ::= p | � | ¬φ | φ ∨ ψ | �≤n φ

Note that, even though it does not contain the ♦-operator, L≤ subsumes
the basic modal language in terms of expressivity.

We extend the notion of a modal bisimulation to accommodate the dif-
ference operator and graded modalities respectively, obtaining the notions
of difference bisimulation and counting bisimulation. If w is a point in a
model we write R[w] for the set its R-successors in that model.

Definition 2.1 Let M = (M,R, V) and M′ = (M ′, R′, V ′) be models. A
relation Z ⊆ M ×M ′ is called a difference bisimulation if it satisfies the
following.

bisimulation Z is a bisimulation

difference forth if uZu′, v ∈ M and v �= u, then there exists a point
v′ ∈M ′ such that v′ �= u′ and vZv′

difference back if uZu′, v′ ∈ M and v′ �= u′, then there exists a point
v ∈M such that v �= u and vZv′

We write M,m ↔L♦,D
M′,m′ to indicate that there exists a difference

bisimulation between m and m′, or M,m ↔L♦,D(Π) M′,m′ if Π is the set
of proposition letters with respect to which the local harmony clause of the
bisimulation is taken, i.e. the clause specifying that bisimilar states satisfy
the same proposition letters. �

62

Willem Conradie

The proof of the next proposition is standard.

Proposition 2.2 Let M = (M,R, V) and M′ = (M ′, R′, V ′) be models,
m ∈M and m′ ∈M ′. If M,m ↔ L♦,DM′,m′ then M,m � L♦,DM′,m′.

Definition 2.3 Let M = (M,R, V) and M′ = (M ′, R′, V ′) be models.
A relation Z ⊆ M ×M ′ is called a counting bisimulation if the following
conditions are satisfied

local harmony if uZu′ then u and u′ satisfy the same proposition letters

counting forth if uZu′ and S ⊆ R[u] is a finite or countably infinite set,
then there exists a set S′ ⊆ R′[u′] such that (i) for each s ∈ S there
exists an s′ ∈ S′ such that sZs′, (ii) for each s′ ∈ S′ there exists an
s ∈ S such that sZs′ and (iii) |S| = |S′|.

counting back A similar condition for points in M′ and sets of their suc-
cessors.

�

We write M,m ↔L≤ M′,m′ to indicate that there exists a counting bisim-
ulation linking m and m′, or M,m ↔L≤(Π) M′,m′ if Π is the set of propo-
sition letters with respect to which the local harmony clause is taken.

Proposition 2.4 Let M = (M,R, V) and M′ = (M ′, R′, V ′) be two (not
necessarily distinct) models, m ∈ M , m′ ∈ M ′, and Z : M,m ↔L≤(Π)

M′,m′ a counting bisimulation linking m and m′. Then m �L≤(Π) m
′.

The logic L≤,D is obtained by adding the difference operator to L≤. The
notion of a difference counting bisimulation is obtained by adding difference
clauses to a counting bisimulation. The corresponding preservation result is
easily proved.

3 The Beth Property as the Extendability of Equiv-
alences

In this section we formulate and prove a necessary and sufficient condition
for a logic with Kripkean semantics to have the Beth property. This will be
used in the proof of our main result, theorem 5.5.

If m1 and m2 are points from (not necessarily distinct) Kripke models
M1 and M2 respectively, we write M1,m1 �L(Π) M2,m2 if m1 and m2

satisfy exactly the same formulas from the language L(Π). We say m1 and
m2 are equivalent with respect to L(Π).

63

The Beth Property for the Modal Logic of Graded Modalities

Theorem 3.1 Let S be a compact logic in a language L, and Γ(q, p) a
(possibly empty) set of formulas. There exists an explicit definition of p in
the language L(q) relative to Γ(q, p) if and only if for any models M1 and
M2 of Γ and points m1 ∈ M1 and m2 ∈ M2,

m1 �L(q) m2 only if m1 �L(q,p) m2.

Proof: Suppose there exists an explicit definition of p relative to
Γ(q, p), say φ ∈ L(q). Specifically Γ � p ↔ φ, hence if ψ ∈ L(q, p) and
ψ[p/φ] is the result of uniformly replacing p with φ in ψ, we have that
Γ � ψ ↔ ψ[p/φ]. Let M = (W,R, V) be any model of Γ and m1,m2 ∈ W .
Suppose m1 �L(q) m2. If ψ ∈ L(q, p) then M,m1 � ψ iff M,m1 � ψ[p/φ]
iff M,m2 � ψ[p/φ] iff M,m2 � ψ. Hence m1 �L(q,p) m2.

To prove the right-to-left direction we proceed by contraposition. Sup-
pose that there exists no explicit definition of p relative to Γ(q, p). Let
ψ0, ψ1, ψ2, . . . be an enumeration of the formulas in L(q). For each ψi let
ψ1

i = ψi and ψ0
i = ¬ψi.

Claim 1: For each n ∈ ω there exists a function χ : {0, 1, . . . , n} → {0, 1}
such that both p ∧

∧n
i=1 ψ

χ(i)
i and ¬p ∧

∧n
i=1 ψ

χ(i)
i are satisfiable on models

of Γ.

Proof of Claim 1: Let n ∈ ω. Note that there are 2n functions χ :
{0, 1, . . . , n} → {0, 1}, call them χ1, χ2, . . . , χ2n . Suppose to the contrary
that for no function χ : {0, 1, . . . , n} → {0, 1} both p ∧

∧n
i=1 ψ

χ(i)
i and

¬p∧
∧n

i=1 ψ
χ(i)
i are Γ-satisfiable. Hence for each χ, either Γ �

∧n
i=1 ψ

χ(i)
i → p

or Γ �
∧n

i=1 ψ
χ(i)
i → ¬p. Let Ψj =

∧n
i=1 ψ

χj(i)
i for each 1 ≤ j ≤ 2n. Note

that �
∨2n

j=1 Ψj ↔ �. Let J1 = {j : Γ � Ψj → p} and J2 = {j : Γ �
Ψj → ¬p}. Then clearly Γ �

∨
j∈J1

Ψj → p and Γ �
∨

j∈J2
Ψj → ¬p, and

J1 ∪ J2 = {1, 2, . . . , 2n}. Hence Γ �
∨

j∈J1
Ψj ↔ p, yielding an explicit

definition and a contradiction. �

Claim 2: There exists a chain of functions ρ1 ⊆ ρ2 ⊆ ρ3 ⊆ · · · where
for each i, ρi : {1, 2, . . . , i} → {0, 1}, such that if Φi =

∧i
j=1 ψ

ρi(j)
j then both

Φi ∧ p and Φi ∧ ¬p are Γ-satisfiable.

Proof of Claim 2: To see that this is the case, let as represent the
set of functions F = {χ : {0, 1, . . . , n} → {0, 1} : n ∈ ω} as a binary tree.
We call this tree T . More precisely, a function χ : {0, 1, . . . , n} → {0, 1} is
represented by a path from the root to level n+ 1, where, if the left branch
is taken at level i, it means that χ(i) = 0, and if the right is taken that

64

Willem Conradie

χ(i) = 1. Clearly there is a one-to-one correspondence between functions in
F and finite paths in T .

We call a function f ∈ F acceptable for n ∈ ω if f : {0, 1, . . . ,m} →
{0, 1} for some m ≥ n, and both p ∧

∧n
i=1 ψ

f(i)
i and ¬p ∧

∧n
i=1 ψ

f(i)
i are sat-

isfiable on models of Γ. Clearly, if f is acceptable for n, then f is acceptable
for all j ≤ n. We call a path of length n acceptable, if it corresponds to
some function in F which is acceptable for n.

By claim 1 there are arbitrarily long acceptable paths from the root of
T . Thus by König’s Lemma there must be an infinitely long path from the
root of T , call it P , such that every finite sub-path of P , starting at the root
is acceptable. The desired chain of functions is then the chain corresponding
to the finite sub-paths of P , starting at the root. �

Let U = {p} ∪ {Φi : i ∈ ω} and T = {¬p} ∪ {Φi : i ∈ ω}. Every finite
subset of U is Γ-satisfiable, as is every finite subset of T , hence U and T are
both Γ-satisfiable, hence by compactness (recall that by assumption we are
dealing with a compact modal logic) both U and T are satisfiable on models
of Γ. Moreover U and T are maximal satisfiable sets in the language L(q),
as for each ψi either ψi or ¬ψi is a conjunct of Φi. This means there are
models of Γ, M = (W,R, V) and M′ = (W ′, R′, V ′) say, and points w ∈W
and w′ ∈W ′ such that every formula in U is satisfied at w and every formula
in T is satisfied at w′. As U and T are maximal in L(q), w and w′ agree on
all formulas in L(q), but differ on their valuation of p, i.e w �L(q) w

′ but
w ��L(q,p) w

′. �

4 Two Negative Beth Results

Theorem 4.1 L♦,D and L≤,D do not have the Beth property.

Proof: Let p, q and r be proposition letters and let

Γ(q, r, p) = {E!(p ∧ q)),¬q → p,Er, r → ♦�, r → �(p ∧ q)}

The intuitive content of this proof is the following. On any model of Γ all
the ¬q-points are p-points, and further there is precisely one (p ∧ q)-point.
But at which q-point must p hold? This is pointed out by some r-point: the
unique point which is the successor of all the r-points. The death-blow to
any aspiring explicit definition however, is the fact that a p-point might not
be able to “see” if it is being pointed at by an r-point. It is not difficult to
prove that if M = (M,R, V) and M � Γ, then

[[p]]M = [[¬q]]M ∪ {m ∈M : M,m � q and
there is a w ∈M such that M, w � r and Rwm}

65

The Beth Property for the Modal Logic of Graded Modalities

So Γ implicitly defines p. But now consider the model in figure 1. It is easy
to check that it indeed models Γ. Note that α ↔L♦,D(q) β. It is also the case
that α ↔L≤,D(q) β. (The relation relating the top point to itself and α and
β to each other will suffice in both cases.) This means α �L♦,D(q) β and
that α �L≤,D(q) β. But yet α¬ �L♦,D(q,p) β and that α¬ �L≤,D(q,p) β.
Hence there can be no explicit definition of p relative to Γ. �

�

� �

�
�

�
�

���

�
�

�
�

���

p, ¬q, r

p, q, ¬r ¬p, q, ¬r
α β

Figure 1: Theorem 4.1

5 The Beth-property for L≤ or ALCQ
Before being able to prove theorem 5.5 we need the following remark, propo-
sitions and lemma:

Remark 5.1 Note that the truth of formulas of L≤ is invariant under the
taking of generated submodels. Specifically, if v ∈ M, then M, v �L≤
M(v), v, where M(v) denotes the submodel generated by {v}.

Proposition 5.2 If M = (M,R, V) is rooted at r, then M, r ↔L≤
�M, (r)

where �M is the unravelling of M.

The following two proposition are not difficult to prove. For a complete
proofs see [Conradie, 2002].

Proposition 5.3 Let M and N be countably saturated models. Then the
relation �L≤ is a counting bisimulation between M and N .

Lemma 5.4 Let T = (T,R, V) and T ′ = (T ′, R′, V ′) be two at most count-
able tree models, rooted at r and r′ respectively. If T , r ↔L≤ T ′, r′ then
T , r ∼=L≤ T ′, r′.1

Theorem 5.5 L≤ has the Beth-property.

1The symbol ∼= is taken to mean, as usual, isomorphism, while the subscript means
that the isomorphism respects the relations used in for the interpretation of the language
indicated.

66

Willem Conradie

Proof: Suppose as set of formulas Γ(q, p) implicitly defines p. Let M and
M′ be any models of Γ(q, p) of of at most countable cardinality. Let m and
m′ be points in M and M′ respectively such that M,m �L≤(q) M′,m′.
By theorem 3.1 it is sufficient to show that M,m �L≤(q,p) M′,m′. This is
what we now proceed to do.

Let UM and UM′ be ultrapowers of M and M′ respectively over some
countably incomplete ultrafilter U . Let idm and idm′ be the points a/U
and a′/U in UM and UM′ respectively where a(i) = m and a′(i) = m′

for all i. Note that these models are still at most countable. By �Los’s
theorem (and the fact that L≤-formulas may be translated into first-order
formulas preserving equivalence on the level of models) it is the case that
M,m �L≤(q,p) UM, idm and M′,m′ �L≤(q,p) UM′, idm′ and, further,
that UM and UM′ are models of Γ(q, p). Hence we have UM, idm �L≤(q)

UM′, idm′ . But since UM and UM′ are countably saturated it follows from
lemma 5.3 that in fact UM, idm ↔L≤(q) UM′, idm′ .

Now, unravel UM and UM′, around idm and idm′ respectively (by re-
mark 5.1 we may assume that the they are rooted at idm and idm′) to obtain
two tree models T and T ′ rooted at (idm) and (idm′) respectively. Note that
the tree models are at most countable and models of Γ(q, p). By proposition
5.2 we have UM, idm ↔L≤(q,p) T , (idm) and UM′, idm′ ↔L≤(q,p) T ′, (idm′)
and hence T , (idm) ↔L≤(q) T ′, (idm′). But it then follows from lemma 5.4
that T , (idm) ∼=L≤(q) T ′, (idm′). It must be the case that T , (idm) ∼=L≤(q,p)

T ′, (idm′), for otherwise, by Padoa’s method it would follow that Γ(q, p) did
not implicitly define p - a contradiction. But this implies that T , (idm) ↔L≤(q,p)

T ′, (idm′), hence that T , (idm) �L≤(q,p) T ′, (idm′). Now we have

m �L≤(q,p) idm �L≤(q,p) (idm) �L≤(q,p) (idm′) �L≤(q,p) idm′ �L≤(q,p) m
′

i.e. m �L≤(q,p) m
′ as desired.

This proves the Beth property for the logic over the class of all models of
at most countable cardinality. We may now apply the Löwenheim-Skolem
theorem upwards, to obtain the result for the logic over the class of all
models. �

6 Concluding Remarks

To conclude we mention some recent results and some open questions.
[Ten Cate, 2003] has recently proven that the smallest extension of the L♦,D

that has the interpolation property is the first order correspondence lan-
guage. It would be interesting to find a similar result for the smallest ex-
tensions of L♦,D and L≤,D that have the Beth-property. As far as ALCQ-
terminologies are concerned, it would be interesting to find an upper bound
on the size of the acyclic terminology corresponding to a cyclic terminology,
the existence of which is guaranteed by our result. Lastly, techniques for

67

The Beth Property for the Modal Logic of Graded Modalities

finding such an acyclic terminology constructively (analogous to those de-
veloped in [Blackburn and Marx, 2002] for finding interpolants) do not seem
to exist as yet.

References

[Baader and Nutt, 2003] F. Baader, W.Nutt. Basic Description Logics. In F.
Baader, D. Calvanese, D. McGuinness, D. Nardi and P. Patel-Schneider (edi-
tors). The Description Logic Handbook: Theory, Implementation and Appli-
cations, Cambridge University Press, 2003.

[Baader et al., 2003] F. Baader, D. Calvanese, D. McGuinness, D. Nardi and P.
Patel-Schneider (editors). The Description Logic Handbook: Theory, Imple-
mentation and Applications, Cambridge University Press, 2003.

[Beth, 1953] E. W. Beth. On Padoa’s method in the theory of definition. Indagiones
Math., 15:330-339, 1953.

[Blackburn et al., 2001] P. Blackburn, M. de Rijke, and Y. Venema. Modal Logic.
Cambridge University Press, 2001.

[Blackburn and Marx, 2002] P. Blackburn and M. Marx. Constructive interpolants
for every bounded fragment definable hybrid logic. To appear in Journal of
Symbolic Logic.

[Conradie, 2002] W. E. Conradie. Definability and Changing Perspectives - The
Beth Property for Three extensions of Modal Logic. MOL Thesis, Institute
for Logic, Language and Computation, Universiteit van Amsterdam, 2002.

[D’Agostino, 1998] G. D’Agostino. Modal Logic and non-well-founded Set Theory:
translation, bimsimulation, interpolation. PhD Thesis, Institute for Logic,
Language and Computation, Universiteit van Amsterdam, 1998.

[Fine, 1972] K. Fine. In so many possible worlds. Notre Dame Journal of Formal
Logic, 13(4):516-520, 1972.

[Hodges, 1993] W. Hodges. Model Theory. Cambridge University Press, 1993.

[Hoogland, 2001] E. Hoogland. Definability and Interpolation. PhD Thesis, Insti-
tute for Logic, Language and Computation, Universiteit van Amsterdam,
2001.

[Kurtonina and de Rijke, 1999] N. Kurtonina and M. de Rijke. Expressiveness of
concept expressions in first-order description logics. Artificial Intelligence,
107:303-333, 1999.

[Maksimova, 1993] L. L. Maksimova. An analogue of Beth’s theorem in normal
extensions of the modal logic K4. Siberian Mathematical Journal, 33(6):1052-
1065.

[Ten Cate, 2003] Ten Cate, B. Personal communication.

[Van der Hoek and de Rijke, 1995] W. van der Hoek and M. de Rijke. Counting
Objects. Journal of Logic and Computation, 5(3):325-345, 1995.

68

Alternations, monotonicity and the lexicon: an
application to factorising information in a Tree
Adjoining Grammar

BENOIT CRABBÉ

LORIA

Campus Scientifique

B.P. 239

F-54506 Vandoeuvre-lès-Nancy Cedex

Benoit.Crabbe@loria.fr

ABSTRACT. For reasons of maintenance, economy and consistency, devising ways of fac-
torising the information contained in a grammar is particularly important. This paper proposes a
factorising system for TAG (Tree Adjoining Grammar) taking its sources in Beth Levin’s alterna-
tions and thereby remains monotonic. It explains why monotonicity is an important caracteristic
of such a system and compares the proposed approach to existing, related proposals.

1 Introduction

Tree Adjoining Grammar (TAG)1 is a tree composition system whose units are el-
ementary trees. Two operations are defined for tree composition: adjunction and
substitution. TAG is mostly used in its lexicalized version (LTAG). The lexicaliza-
tion condition constrains each elementary tree to be anchored by a terminal symbol.
In this context the lexicon of a TAG is a set of elementary trees.

We further assume a syntax-semantics interface as illustrated by the following
tree2:

1See (Joshi et al. 1975) for an historical definition and (Joshi and Schabès 1997) for a more recent
presentation.

2The underlying version of TAG suggested here is Feature Based TAG (Vijay-Shanker 1987),
where nodes are associated with a top and a bottom feature structure. Though, for readability, top and
bottom features are not explicitly stated on the figures. Moreover, the following figures abbreviate
the notation: feature structures from left to right will be abridged respectively asNi, Vpred(i,j) and
Nj .

Proceedings of the Eighth ESSLLI Student Session
Balder ten Cate (editor)
Chapter 7, Copyrightc© 2003, Benoit Crabbé

69

Alternations, monotonicity and the lexicon: an application to factorising information

S

[
CAT N

INDEX i

] 


CAT V
PRED PRED

AGENT i

THEME j




[
CAT N

INDEX j

]

eats

Here the association between tree nodes and unification variables encodes the
syntax/semantics interface – it specifies which node in the tree provides the value
for which variable in the final semantic representation (Gardent and Kallmeyer
2003)

Our goal is to automate the production of such elementary trees and more gen-
erally, to give means of designing a TAG lexicon for French3. We argue (Section
3) that this automation process can benefit from Beth Levin’s ideas on alternations
(Levin 1993) and in particular, that alternations support the monotonic formulation
of a tree generation system. Section 4 provides a detailed example of how such a
system can be used in practice and Section 5 compares the proposed approach to
related proposals namely, Becker’s metarule based approach (Becker 1993), Evans
et al.’s DATR (Evans et al. 2000) treatment, Candito’s metagrammar (Candito
1999) and Xia’s LexOrg system (Xia 2001). We conclude with pointers for further
research.

2 Metagrammar and the lexicon

Computational implementations of TAGs (XTAG Research Group 2001; Abeillé
2002) abstract templates from elementary trees. A template is an elementary tree
where the anchor is left unspecified (marked as�). Elementary trees are dynami-
cally build at parse-time by adding the lexical anchor.

S

Ni ↓ Vpred(i,j) Nj ↓

mange

eats

S

Ni ↓ V�pred(i,j) Nj ↓

Factorising the grammar using only templates has to be improved. Indeed,
templates are massively sharing sub-structures: it is straightforward to identify
among templates common sub-trees as depicted in Figure 1 (all trees share the S-N
subtree).

Since a realistic TAG grammar comprises several hundreds or thousands of
templates, it is absolutely crucial to design trees using a factorizing system. Other-
wise such grammars quickly become difficult to maintain. To introduce any mod-
ification, each template has to be manually checked. This led to the idea of meta-
grammar: a system that semi-automates the task of tree description (Vijay-Shanker
and Schabes 1992; Candito 1996).

3This work focuses on French syntax and takes most of its justifications regarding structural
descriptions in the work of (Abeillé 2002).

70

Benoit Crabbé

(1)

S

Ni ↓ V�pred(i,j) Nj ↓

John sees a boy

(2)

N

N* S

Cj S

QUE Ni ↓ V�pred(i,j)

a boy that John sees

(3)

S

Nj ↓ V PPi

V V�pred(i,j) P N↓

ETRE PAR

a boy is seen by John

Figure 1: Structure sharing among templates

Moreover in a TAG, shared sub-trees often represent general linguistic proper-
ties. Thus for instance, the sub-trees encircled in Figure 1 all encode the structural
information associated with a subject NP (in English). Additionally a grammatical
function such as subject or object represents an abstraction over different possi-
ble realizations: sub-trees in bold face are different realizations of a direct object
(canonical (1) and relativized (2)). We callgrammatical alternations the possible
alternative realisations associated with a given grammatical function.

Besides this first kind of alternations, the tree (3) in Figure 1, which represents
a tree for a passive. Again the subject is encircled but a comparison with the two
other trees reveals that the semantic index in subject position has actually changed.
Alternations that specify the link between semantic arguments and grammatical
functions are namedlexical alternations.

More generally, it is important to note that a TAG lexicon encodes both gram-
matical and lexical information. A main feature of TAG is that a given lexical
item is linked toall elementary trees representing the possible syntactic envi-
ronments of that word, involving grammatical information. TAG differs in this
from phrase-structure grammars where the lexicon involves only lexical alterna-
tions whilst grammatical alternations are captured by means of rewriting rules.

3 Alternations: form and meaning

The novelty in our proposal lies in the way lexical alternations are handled. The
idea is inspired from (Levin 1993): rather than linking a word’s meaning to a
canonical subcategorization frame and then deriving additional frames, we asso-
ciate a meaning to its full set of frames, canonical and non-canonical.

Much work in computational linguistics4 associates a meaning (SEM) with a
syntactic canonical frame (SYN). For instance, the meaning of the verb EAT might
be linked to a syntactic canonical frame as follows5:

4See e.g. (Flickinger 1987; Sag and Wasow 1999; Evans et al. 2000). The thematic roles used
here are stated after (Saint-Dizier 1996).

5The first line indicates the part of speech of the word considered, the third (SEM) the thematic

71

Alternations, monotonicity and the lexicon: an application to factorising information

(1)
CAT V
SYN 〈SUBJ(NP)i, OBJ(NP)j〉
SEM 〈AGENTi, THEMEj〉

In a second step, syntactic variants of this canonical frame are derived by the
application of lexical rules6. For instance, the application to frame (1) of a lexical
rule mapping active to passive might yields the following additional frame:

(2)
CAT V
SYN 〈SUBJ(NP)j, BY-OBJ(PP)i〉
SEM 〈AGENTi, THEMEj〉

However, it is well known that lexical rules encounter many exceptions. Con-
sider for instance, the following examples:

(a) Peter broke the window
(b) The window broke
(c) Peter ate an apple
(d) *An apple ate

Whereasbreakallows the ergative rule application,eat doesn’t. This kind of
observation leads to a Bloomfield like conclusion: lexical rules encounter arbitrary
exceptions.

In other words, classical work associates a meaning only with its canonical
frame and then mechanically derives additional frames using lexical rules, which
requires in practice to specify many exceptions.

Here we want to identify a meaning with its full set of syntactic frames, canon-
ical as non-canonical, that is with its full set of alternations. Thus we deny any
status to lexical rules.

Indeed, that approach reflects lexical idiosyncrasy and removes the need to
specify exceptions. But, an obvious drawback of such an approach is the loss of
major syntactic generalisations expressed by lexical rules.

An alternation class is a set of alternations which are common to a significant
number of verbs: according to the syntactic point of view, these verbs behave ex-
actly the same way. Furthermore, it appears that verbs belonging to a given class
share the same kind of meaning: for English, B. Levin identifies classes such as
VERBS OFPUTTING, VERBS OFCOLOURING, VERBS OFPERCEPTION. . . As
for a given language, the set of classes is finite, it follows that establishing a lexi-
con using this approach only requires to identify a given lexeme with its alternation
class.

To sum up, we get a different degree of generality: instead of expressing gen-
erality through the use of lexical rules, it is done through the use of alternation
classes. It seems to be a better generalization in that it does not require to state any
exceptions.

roles realised by the syntactic arguments of this word, and the second (SYN) the grammatical function
and the category of the arguments. The linking between syntactic arguments and thematic roles is
given by the shared indices (herei andj). Thus frame (1) indicates that EAT is a verb that can take
a subject and an object NP as arguments, whereby the subject provides the agent and the object the
theme index.

6Such an application can be expressed as a proceduralif . . . then statement, as in early LFG, or
as an inheritance relation, see e.g. (Bouma et al. 1998; Sag and Wasow 1999).

72

Benoit Crabbé

3.1 A formal corollary: monotonicity

We have just seen the linguistic interest of alternations, but a further interest lies
on the formal side: using alternations permits us to express lexical knowledge in a
monotonic (hence declarative) way.

Systems for lexical representation are usually non-monotonic (Flickinger 1987;
Sag and Wasow 1999; Evans et al. 2000). A major source of non-monotonicity
comes from the use of lexical rules that erase arguments. A striking example comes
from a rule such asagentless passive. Given the two place subcategorization frame
of the canonical frame (1), this rule outputs a one place subcategorization frame:

CAT V
SYN 〈SUBJ(NP)j〉
SEM 〈AGENTi, THEMEj〉

Using erasing rules licenses the removal of information, here the subject ex-
pressed in the canonical frame has been removed. Erasing is related to sequencing:
allowing to remove information requires defining different states in the system.
Hence the resulting system is procedural .

In contrast, using alternations does not require to apply erasing rules since these
rules are not considered anymore. To handle agentless passive, we simply associate
with a given verb the agentless passive alternation as well as any other alternation
that is possible for that verb.

Besides erasing, there are cases were multiple lexical rules may be applied (in
a given order) to a canonical structure. Here is an example taken from French:

Marie lave Marie
Mary washes Mary
Mary washes Mary (canonical)
Marie se lave
Mary herself wash
Mary washes herself (+ reflexive)
Jean fait se laver Marie
John causes herself wash Mary
John causes Mary to wash herself (+ causative)

To account for this, we must ensure that the set of possible alternations also in-
clude these alternations that corresponds to each possible sequence of rules. How-
ever these cases are, in French, quite limited. Indeed, (Candito 1999) identifies
only ten such sequences, all involving the causative rule.

4 Formalization

This section concentrates on the use of alternations to factorise a TAG lexicon
and automate its production. The basic idea is to describe a TAG by means of a
(very big) disjunctive tree description. The TAG described is then the set of trees
satisfying this description.

We proceed in three steps. First, we show how to describe a single TAG tree.
Then, we show how the approach can be generalized to describing the full set

73

Alternations, monotonicity and the lexicon: an application to factorising information

of trees related to an alternation. Finally, we show how the formulas used for
descriptions can be integrated in a monotonic inheritance network.

4.1 Description of a single tree

The information contained in a tree is made both of a lexical alternation and of
some grammatical alternations. The description of a single tree illustrates this
distinction. We first start with a lexical alternation, saypassive-with-2-arguments,
as stated by (Saint-Dizier 1996)7.

CAT V
SYN 〈SUBJECTj(NP),BY-OBJECTi(PP)〉
SEM 〈AGENTi, THEMEj〉

Trees are described with a language taking its origin in (Rogers and Vijay-
Shanker 1992; Rogers and Vijay-Shanker 1994). Nodes are denoted by constants.
The connectives are∧ and∨. Relations are expressed with three binary predicates:

dominates (
�
�), immediately dominates (�) and precedes (≺). Additionally, each

constant may be associated to a feature structure (noted between square brackets).
For convenience, we also use here a graphical version of the language where the
dominance relation is indicated with a dashed edge and the immediate dominance
relation with a solid edge. Thus thepassive-with-2-argumentslexical alternation is
expressed in the language as:

φpass − alt

pred [cat = V; agent = i; theme = j]
∧ subj [cat = N; index = j]
∧ obl-obj [cat = PP; index = i]
∧ obl-prep [cat = by]
∧ φpass− morph
∧ φsubj − can
∧ φobl − pp − can

This formula representing the lexical alternation describes four nodes, each of
them associated with a feature structure and states three macros (noted in italics),
the grammatical alternations: as the names suggestφsubj − can, φobl − pp −
can, φpass − morph, abbreviates respectively appropriate tree descriptions for a
canonical subject, a canonical oblique PP and the morphology of a passive verb.

φsubj − can φobl − pp − can φpass − morph

s[cat = S]

subj[
cat = N
type =↓

] ≺ v[cat = V]

s[cat = S]

v[cat = V]) ≺ obl-obj[cat = PP]

prep[cat = P] ≺ obl-head[
cat = N
type =↓

]

obl-prep

s[cat = S]

v[cat = V]

syn-head[cat = V] ≺ pred[
cat = V
type =�

]

infl[cat = ETRE]

Relations between the lexical and grammatical alternations are performed through
a naming convention. As constants’s names are global to all the macros, some of

7Though to a lesser extent, (Saint-Dizier 1996; Saint-Dizier 1999) aims to be an adaptation to
French of (Levin 1993). He has added further information and in particular he associates a thematic
role to each argument.

74

Benoit Crabbé

them are used both in the lexical alternation and in the grammatical alternations. It
is apparent here with the use of thesubj, obl-objandpredconstants. In the lexical
part we specify semantic information that concerns each of these nodes without
paying attention to their position in a tree. The grammatical part mentions again
the same nodes but, their position is specified in a tree without taking care of se-
mantics.

As φpass-alt is now fully defined, its interpretation through a tree structure is
given as tree (3) in Figure 1. The process of tree generation consists of building
every (minimal) model satisfying the formula.

4.2 Generalization

The next step is to describe the full set of trees related to the passive alternation.
Other possible trees for passive alternations can be described through the introduc-
tion of disjunctions e.g.:

φpass− alt − gen

pred[cat = V; agent = i; theme = j]
∧ subj[cat = N; index = j]
∧ obl-obj[cat =PP; index = i]
∧ obl-prep[cat = par]
∧φpass− morph
∧(φsubj − can ∨ φsubj − cltq ∨ φsubj − extr)
∧(φobl − pp − can ∨ φobl − pp − extr)

Where we further assume thatφsubj − cltq, φsubj − extr andφobl − pp −
extr abbreviates tree descriptions for a clitic subject, an extraposed subject and an
extraposed oblique PP.

The translation to disjunctive normal form (DNF) show that intuitively, the
trees described byφpass − alt − gen are the trees for a passive with a canonical
subject and an oblique canonical PP, a passive with a canonical subject and an
extraposed oblique PP etc.8

(φpass-alt-core∧φsubj-can∧φobl-pp-can∧φpass-morph)
∨(φ pass-alt-core∧φsubj-can∧φobl-pp-extr∧φpass-morph)
∨(φ pass-alt-core∧φsubj-cltq∧φobl-pp-can∧φpass-morph)
∨(φ pass-alt-core∧φsubj-cltq∧φobl-pp-extr∧φpass-morph)
∨(φ pass-alt-core∧φsubj-extr∧φobl-pp-can∧φpass-morph)
∨(φ pass-alt-core∧φsubj-extr∧φobl-pp-extr∧φpass-morph)

More generally, a wide set of trees can be described by using a single disjunc-
tive formula.

It follows from that observation and our preceding considerations on mono-
tonicity that we are now theoretically able to describe a full TAG lexicon using
a single logical description: such a formula, describing the whole grammar, is a
disjunction of all the possible lexical alternations defined for a given language.

8In the following description,φpass-alt-core abbreviates the first four lines ofφpass-alt-gen.

75

Alternations, monotonicity and the lexicon: an application to factorising information

4.3 Lexical knowledge representation

The implementation used to test our ideas (Gaiffe et al. 2002) allows a structuring
of the lexical knowledge encoded in tree descriptions. It relies on two devices:
a monotonic inheritance hierarchy and a cancelling mechanism of resources and
requirements.

Inheritance hierarchies have been used extensively to structure the lexicon of
computational grammars and thus factorize information. Similarly, the tree de-
scriptions used in our approach can be organised in an inheritance hierarchy where
the nodes of the hierarchy are classes associated with tree descriptions and inheri-
tance is just conjunction of the tree descriptions associated with the parents of the
hierarchy node being considered.

For instance, a class expressing a subject in canonical position inherits infor-
mation from a superclass such as subject9, thus conforming to the semantics of an
inheritance relation: it is natural to state that a canonical subject is a particular kind
of subject.

SUBJ

SUBJ-CAN SUBJ-EXTR SUBJ-CLTQ

The second device used in the implementation is a cancelling mechanism of
resources and requirements. It is used to combine information from different hi-
erarchies (one for lexical alternations, one for grammatical alternations). This is
used for instance, to account for the relation between PASS-ALT on the one hand,
the passive morphology and the disjunctions of all the possible realisations of sub-
jects and oblique objects on the other hand. Intuitively, we want a mean to capture
the fact that the class PASS-ALT describes a set of trees where realisations of sub-
jects and oblique objects may vary.

4.4 An open question: principles

The developing framework has been used to produce TAG grammars that count
around 500 trees. Closer examination of the grammars output by the system re-
veals an over-generation problem however in that some of the output trees are not
linguistically correct. There are two reasons for this.

First given the complexity of even a medium size grammar, it becomes quickly
very difficult to be certain that the stated descriptions are linguistically adequate
and that the classes used in a given conjunction of lexical descriptions interact
appropriately.

Second, existing tree generators build tree structures through a semantics tak-
ing its sources in (Rogers and Vijay-Shanker 1994). A formula interpreted in that
way ensures that the generated trees are a set of finite trees satisfying this input for-
mula and nothing more. But nothing in this language ensures that we are actually

9To get a comparison with the macros previously used, the notation in small caps represents a
class that embeds the content of its corresponding formula: so PASS-ALT is the class that embeds
φpass-alt.

76

Benoit Crabbé

describing elementary trees. To do this we should indeed state more constrained
models, expressing additional interpretative conditions. Such models would give
us insurance that a tree contains at least one anchor (lexicalization), that a root and
foot node share the same label. . .

One way to overcome this over-generation problem is to use general linguistic
principles to filter out linguistically illegitimate trees. Recall that in TAG, gram-
mar rules are very empoverished (Indeed tree composition is done with only two
operations: adjunction and substitution) and that subsequently, most of the linguis-
tic content is described within elementary trees. From a theoretical perspective, it
would thus be of major interest to define principles of well formation of trees that
go far beyond the sole guarantee of describing finite trees. Target principles are,
for instance, LFG’s completeness-unicity, or a Predicate Argument Coocurrency
Principle (PACP).

Besides universal constraints such as completeness-unicity, a TAG lexicon has
to verify additional constraints that are language specific. For French, (Candito
1999) identifies constraints that are TAG counterparts to (Ross 1985) constraints
on transformations or to (Perlmutter 1970) surface constraints on clitic ordering
in Romance languages. These constraints are related to the interaction between
independently described phenomenons. Such a constraint is for instance:if there
is an extracted argument and if there is a sentential argument then the latter has to
be represented as a substitution node, which is a standard manner to account for
wh-islands constraints in TAG (Abeillé 2002; Frank 2002).

5 Comparison with related work

The idea of automating tree generation for TAG is not new. We review briefly the
four existing systems.

The first two systems are built upon an non monotonic inheritance network
to express structure sharing, patterned after the work of D. Flickinger (Flickinger
1987)10 for phrase structure grammar. Metarules (Becker 1993; Becker 2000) are a
way of emulating transformations over elementary trees. A set of base elementary
trees is manually defined and a set of metarules is applied to them in order to out-
put an extended set of elementary trees11. In the same register, (Evans et al. 2000)
show that the problem of compact lexical representation in TAG can be handled
using DATR, that is using a non-monotonic system designed for lexical represen-
tation. This proposal has lead to the compact encoding of a DTG lexicon (Smets
and Evans 1998). Both approaches differ from ours in that they take their founda-
tions in the use of lexical rules allowing to express non-monotonicity (erasing, rule
ordering. . .), thus reflecting the usual structuring of the lexicon.

10See also (Sag and Wasow 1999; Bouma et al. 1998) for an up to date presentation in HPSG.
11The reader is reported to (Prolo 2002) for an extensive evaluation with XTAG. See also (Kinyon

and Prolo 2002) for a more detailed comparison between metarules and metagrammar.

77

Alternations, monotonicity and the lexicon: an application to factorising information

The two remaining systems are based on a tree description language. How-
ever both systems include extra layers of representation allowing to express non-
monotonicity. Candito’s metagrammar is the closest work to ours (Candito 1996;
Candito 1999). First thought to be monotonic (Candito 1996), it eventually turned
out not to be (Candito 1999), for above mentioned reasons reflecting the use of
erasing rules. Her algorithm is procedural: first describing argument structure,
then diathesis lexical rules and finally grammatical alternations. She catches many
principles, but unfortunately they are partly mixed with her algorithm. This sys-
tem has been proven to generate wide coverage grammars but add-ons that adjust
the initial intuition make a formal system with unknown properties. Xia’s LexOrg
(Xia 2001) is two sided: a lexical side where lexical rules are applied on subcate-
gorization frames and a grammatical side responsible for describing sub-trees. The
two parts are linked by a translation module. For a classical, lexical-rule based
approach, her system seems to be a good compromise. But she has underestimated
the importance of language specific well-formation principles. As for Candito’s
system, her algorithm directly allows her to account for some constraints such as
there cannot be two extracted arguments in an elementary tree. Unfortunately,
there exists counter-examples to such a principle. (Abeillé 2002) mentions cases
of double extraction in French.

6 Conclusion and Perspectives

Our proposal aims to specify a system of lexical knowledge representation for
TAG. We have seen that alternations enable to state the lexicon using a monotonic
framework.

Technically, monotonicity allows to use only a logical language dedicated to
tree description for describing a TAG lexicon. For practical purposes, we add an
inheritance hierarchy, defined as a macro layer, allowing to structure the organisa-
tion of the lexicon.

On the linguistical side, monotonicity casts a different perspective on lexical
organisation. It specifically favours an in-depth exploration of Levin’s alternations
through its integration in syntax.

Subsequent work demands to define a formal system specifically crafted for
tree generation where the goal is to give a satisfactory account for the representa-
tion of principles.

7 Acknowledgements

The author would like to thank Claire Gardent and two anonymous reviewers.
Their support and their comments contribute to clarify and improve this work.

78

Benoit Crabbé

References

Abeillé, A. (2002). Une grammaire d’arbres adjoints pour le français. Paris: Editions
du CNRS.

Becker, T. (1993).HyTAG : A new Type of Tree Adjoining Grammars for Hybrid Syntactic
Representation of Free Word Order Language. Ph. D. thesis, Universität des Saarlandes.

Becker, T. (2000). Patterns in metarules for tag. In A. Abeillé and O. Rambow (Eds.),
Tree Adjoining Grammars. Formalisms, Linguistic Analysis and Processing. Stanford:
CSLI.

Bouma, G., F. van Eynde, and D. Flickinger (1998). Constraint-based lexicons. In F. van
Eynde, D. Gibbon, and I. Schuurman (Eds.),Lexicon Development for Speech and Lan-
guage Processing, Dordrecht. Kluwer. 1999.

Candito, M.-H. (1996). A principle based hierarchical representation of LTAGs.Pro-
ceedings of COLING 96.

Candito, M.-H. (1999).Organisation Modulaire et Paramétrable de Grammaires Elec-
troniques Lexicalisées. Ph. D. thesis, Université de Paris 7.

Evans, R., G. Gazdar, and D. Weir (2000). ’lexical rules’ are just lexical rules. In
A. Abeillé and O. Rambow (Eds.),Tree Adjoining Grammars. Formalisms, Linguistic
Analysis and Processing. Stanford: CSLI.

Flickinger, D. (1987).Lexical Rules in the Hierachical Lexicon. Ph. D. thesis, Stanford
University.

Frank, R. (2002).Phrase Structure Composition and Syntactic Dependencies. Boston:
MIT Press.

Gaiffe, B., B. Crabbé, and A. Roussanaly (2002). A new metagrammar compiler.Pro-
ceedings of TAG+6.

Gardent, C. and L. Kallmeyer (2003). Semantic construction in feature-based tree ad-
joining grammar. Proceedings of the 10th conference of the European Chapter of the
Association for Computational Linguistics.

Joshi, A. K., L. S. Levy, and M. Takahashi (1975). Tree adjunct grammars.Journal of
the Computer and System Sciences 10, 136–163.

Joshi, A. K. and Y. Schabès (1997). Tree adjoining grammars. In G. Rozenberg and
A. Salomaa (Eds.),Handbook of Formal Languages. Berlin: Springer Verlag.

Kinyon, A. and C. Prolo (2002). A classification of grammar development strategies.
Proc. GEE 2002.

Levin, B. (1993). English Verb Classes and Alternations. The University of Chicago
Press.

Perlmutter, D. (1970). Surface structure constraints in syntax.Linguistic Inquiry 1, 187–
255.

Prolo, C. (2002). Systematic grammar development int the XTAG project.Proceedings
of COLING’02.

Rogers, J. and K. Vijay-Shanker (1992). Reasoning with descriptions of trees.Proceed-
ings of ACL 92.

79

Alternations, monotonicity and the lexicon: an application to factorising information

Rogers, J. and K. Vijay-Shanker (1994). Obtaining trees from their descriptions: an
application to tree-adjoining grammars.Computational Intelligence 10, 401–421.

Ross, J. (1985).Infinite Syntax !Dordrecht: Reidel.

Sag, I. and T. Wasow (1999).Syntactic Theory. A Formal Introduction. Stanford: CSLI
Publications.

Saint-Dizier, P. (1996). Verb semantic classes in french. version 2. Technical report, IRIT
– CNRS, Toulouse.

Saint-Dizier, P. (1999). Alternations and verb semantic classes for french : Analysis and
class formation. In P. Saint-Dizier (Ed.),Predicative Forms in Natural Language and
Lexical Knowledge Bases. Dordrecht: Kluwer.

Smets, M. and R. Evans (1998). A compact encoding of a dtg grammar.Proc. TAG+4.

Vijay-Shanker, K. (1987).A study of Tree Adjoining Grammar. Ph. D. thesis, Department.
of computer and information science, University of Pennsylvania.

Vijay-Shanker, K. and Y. Schabes (1992). Structure sharing in lexicalized tree-adjoining
grammars.COLING 92.

Xia, F. (2001).Automatic Grammar Generation from two Different Perspectives. Ph. D.
thesis, University of Pennsylvania.

XTAG Research Group (2001). A lexicalized tree adjoining grammar for english. Tech-
nical Report IRCS-01-03, IRCS, University of Pennsylvania.

80

81

On a Unified Semantic Treatment of Donkey
Sentences in a Dynamic Framework

FABIO DEL PRETE
University of Milan
fabio_del_prete@hotmail.com

ABSTRACT. In this paper I take into account some irregularities concerning the
distribution of so called ∀-readings and ∃-readings on the set of relative clause donkey-
sentences. Dynamic semantics is assumed to provide the correct analysis of donkey
dependencies. I defend a theory of the distributional facts based on a notion of dynamic
monotonicity, and introduce for this end an algorithmic form of quantifier domain
restriction, whose representation at LF provides a key to explain away counter-
examples. No ambiguity is introduced in the semantics either of pronouns, or of
quantificational determiners.

1 The problem

Commonly held semantic judgments concerning truth-conditions of some

donkey-sentences pose a serious challenge to any theory of donkey-anaphora in
which uniform semantic representations are construed for such sentences. Take
the following representative pair:

(1) Every person who has a credit card pays a heavy charge for it.
(1') ∀x[(person(x)∧∃y(c-card(y)∧have(x,y))) → ∀y((c-card(y)∧have(x,y)) →

pay-charge-for(x,y))]

(2) Every person who has a credit card pays the bill with it.
(2') ∀x[(person(x)∧∃y(c-card(y)∧have(x,y)))→∃y(c-card(y)∧have(x,y)∧pay-

with(x,y))]

According to intuition, (1) shows a preference for a ∀-reading, formally
expressed in (1'), whereas (2) seems to require an ∃-reading construal, given in
(2'). The latter sentence is problematic for every classical approach to donkey-
anaphora: Kamp’s DRT (1981) and Groenendijk&Stokhof’s DPL (1991), on the
dynamic side, as well as the variants of the e-type approach proposed by Heim
(1990) and Neale (1990), on the static side, would all indeed converge in
predicting a ∀-reading for both (1) and (2). All these approaches lack a formally

Proceedings of the Eighth ESSLLI Student Session.
Balder ten Cate (editor)
Chapter 8, Copyright © 2003, Fabio Del Prete

On a Unified Semantic Treatment of Donkey Sentences in a Dynamic Framework

 82

implemented explanation of how ∃-readings of sentences with ‘every’ come
about.1

In the case at hand, the logical formulas hypothetically assumed as adequate
semantic representations are not isomorphic, in spite of the structural similarity
between the two sentences. The question thus arises, whether a uniform semantic
representation of (1) and (2) is conceivable, which has the potentiality of
accommodating both readings (1') and (2'). More generally, we are faced with the
question whether a principled explanation of how the two readings are distributed
can be provided. Hereafter, I will speak of ‘distribution’ simpliciter, meaning the
distribution of ∀/∃-readings on the set of donkey-sentences.

2 A monotonicity-based theory of distribution

I assume here that dynamic semantics provides the correct approach to the

analysis of donkey sentences; I stick further to a theory of distribution based on
extension of monotonicity to dynamic contexts2. According to Kanazawa (1994),
the distributional phenomena should be expected to correlate with monotonicity
patterns of determiners. In general, whether a donkey-sentence [detδ][N'γ][VPχ] has
a ∀-reading or an ∃-reading is relevant for the quantifier which interprets [detδ] to
preserve the usual monotonicity behaviour of the determiner itself. Take for
instance (3), which has intuitively a ∀-reading. If one accepts Kanazawa’s
theory, one has principled reasons to expect that (3) should have such a reading.
Roughly, his argument runs as follows: suppose (3) had the ∃-reading; as a
consequence, the downward monotonicity inference from (3) to (3c), which is
intuitively felt to hold, could not be valid:

(3) Every man who has a son loves him.
(3b) Every man who has a teen-age son is a man who has a son.
(3c) Every man who has a teen-age son loves him.

Suppose that in the discourse domain there be a man x who has just two sons
y, z : y is a teen-ager, z is six years old, and x loves only z. In a situation so
characterized, fixed an ∃-reading construal for both (3) and (3c), (3) could be
true, but (3c) could not; but if we assume that the base generated reading for a
sentence with ‘every’ is the universal one, we are in a position to explain the
validity of a monotonicity inference like the one exemplified by (3)-(3c): under
such an assumption, we could not have anymore the premiss true and the
conclusion false, since x would be a counter-instance for (3) too.

1 The extended e-type approach put forward by Lappin&Francez (1994) can indeed cope with these
data; but it seems to me that it gains empirical adequacy at the price of positing a semantic
ambiguity in donkey-pronouns, whose representations at LF happen to involve semantically
different types of functions (maximal functions vs. choice functions).
2 See Kanazawa (1993, 1994).

Fabio Del Prete

 83

The simple example I have thus given shows that there are important reasons
for expecting that sentences with ‘every’ have the ∀-reading, and more generally
that the distributional phenomena be not random, but conform to an ideal pattern
correlating with the exact distribution of monotonicity properties on the set of
quantificational determiners. These reasons concern preservation of a particular
semantic structure in the transition from simple (non-donkey) quantificational
contexts to quantified sentences with donkey-anaphora. The interesting point is
that semantic properties of quantifiers such as monotonicity have been assuming
a central role in contemporary semantic theory, so that the requirement that these
properties hold of quantifiers even when they occur in donkey-contexts appears
as perfectly natural and coherent with current assumptions concerning the role of
so-called semantic universals. However, an objection against the possibility of
extending the concept of monotonicity to donkey-sentences (hence to a concept
of dynamic monotonicity) may come from consideration of the following invalid
syllogism3:

(A) Every man who has a house is a man who has a garden.
(B) Every man who has a garden sprinkles it on Sundays.
(C) So(???), every man who has a house sprinkles it on Sundays.

Dynamic semantics allows one to explain the inferential failure in (A)-(C) in a
natural, non-ad hoc way, without giving up the idea that determiners maintain
their usual monotonicity behaviour in donkey-contexts. The reason of the failure
is that the premiss (A) expresses a simple inclusion between the set of house-
owners and the set of garden-owners, the latter being the static denotation of
(B)’s N'-restriction ‘man who owns a garden’, whereas a proper semantic
analysis of (B) would require to take into account the anaphoric potential of such
constituent, hence its dynamic denotation. To put it in an informal way, one can
say that in (B) the N'-restriction on ‘every’ sets up pairs of referents <x, y>, such
that x is a man and y is a garden that x has, whereas each of such pairs is relevant
for the evaluation of the VP. Hence, for the purpose of drawing (left)
monotonicity inferences from donkey-sentences, one should consider inclusions
between given sets of pairs of this kind. In what follows, I will provide a
formalization of left dynamic monotonicity principles, hence a more precise
characterization of the condition thus informally expressed.

3 The Monotonicity Principle in a dynamic setting
Following Kanazawa (1994), I assume a meta-semantic principle whose

function is that of regulating the distribution of the two readings on the pure
semantic ground represented by monotonicity of quantificational determiners. To
formulate the principle in a semi-formal manner, we need firstly to introduce

3 This syllogism is due to van Benthem.

On a Unified Semantic Treatment of Donkey Sentences in a Dynamic Framework

 84

some logical notation. In our language we want symbols for both static and
dynamic generalized quantifiers. We will use dynamic generalized quantifiers to
model donkey-sentences, so as to represent donkey-dependencies as binding
relations. The main characteristics of a DGQ is indeed that of allowing variables
occurring free in its right argument to be bound to existential quantifiers in its left
argument. For each SGQ Q, our dynamic logic has a corresponding DGQ Q; to
say that Q corresponds to Q as its dynamic counterpart means that Qx{Φ}{Ψ}
and Qx{Φ}{Ψ} get the same truth-conditions when Ψ does not contain free
occurrences of a variable which is accessible to existential quantifiers in Φ.
Logical signs comprehend static and dynamic connectives: on the static side, we
have the usual connectives ¬, ∧, →,…, with their usual interpretations; amongst
dynamic connectives we have ; and ⇒ for dynamic conjunction and dynamic
implication respectively. Dynamic existential quantifier is symbolized as E. 
Definitions of ; , ⇒ and E are as in Groenendijk&Stokhof (1991); given the
relevance of these logical operators in modeling donkey sentences, I report below
their semantic clauses, besides the one for the meta-connective ≤, which is put
for dynamic meaning inclusion and play a crucial role in the formalization of left
dynamic monotonicity:

(a) [[Exϕ]] = {<g,h>: ∃k k[x]g & <k,h>∈[[ϕ]] }
(b) [[ϕ;ψ]] = {<g,h>: ∃k <g,k>∈[[ϕ]] & <k,h>∈[[ψ]]}
(c) [[ϕ⇒ψ]] = {<g,h>: h=g & ∀k <g,k>∈[[ϕ]] → ∃m<k,m>∈[[ψ]]}
(d) [[ϕ≤ψ]]={<g,h>: g=h & ∀s <g,s>∈[[ϕ]] ⇒ <g,s>∈[[ψ]]}

The combined effect of (a)-(c) is that the following (static) equivalences hold:

(Exϕ)⇒ψ ≡ ∀x(ϕ⇒ψ)
 whether x doesn’t occur free in ψ or not
 (Exϕ);ψ ≡ Ex(ϕ;ψ)

As a purely language-internal matter, one finds the question of how to define
the semantics of a DGQ Q so as to create the possibility of indirect binding
relations between its two arguments. There are a lot of definitional options from a
technical point of view, but having to express either ∀-readings or ∃-readings, we
can restrict ourselves to two possibilities:

(Def.1) Qx{Φ}{Ψ} =def Qx{Φ}{Φ⇒Ψ}
(Def.2) Qx{Φ}{Ψ} =def Qx{Φ}{Φ;Ψ}

Assuming definition (Def.1) for DGQs, we are able to represent the ∀-reading
of (1) by means of the following logical structure:

 (1°) EVERY x {person(x) ; Ey c-card(y) ; have(x,y)}{pay-charge-for(x,y)}
 ≡ EVERY x {person(x) ∧ ∃y(c-card(y) ∧ have(x,y))} {∀y((c-card(y) ∧

have(x,y)) → pay-charge-for(x,y))}

Fabio Del Prete

 85

If we opt to define DGQs as in (Def.2), we can model a sentence like (2) so as
to represent its apparent ∃-reading. The linguistic structure is the same as in the
preceding case, but it will have structurally different semantic aspects:

(2°) EVERY x{person(x) ; Ey credit-card(y) ; have(x,y)}{pay-with(x,y)}
≡ EVERY x {person(x) ∧ ∃y(c-card(y) ∧ have(x,y))}{∃y((c-card(y) ∧

have(x,y) ∧ pay-with(x,y))}

General availability of the two kinds of reading imposes the following
condition: for our logical system to be materially adequate, it must contain both
types of DGQs. Indeed, given the apparent availability of both reading-types for
sentences with equi-monotone determiners, one may be induced to admit, for
each static quantifier Q, two dynamic counterparts: Q∀ (introduced through
(Def.1)) and Q∃ (introduced through (Def.2)). But this would reduce to introduce
a lexical ambiguity in every determiner. In particular, one would have two
different dynamic interpretations for the same item ‘every’, only one of which
(namely EVERY∀) would match with the familiar quantifier EVERY with respect
to monotonicity (this point has been established in discussing the inference from
(3) to (3c); for the inference to go through, the reading of the premiss must be the
universal one, what comes down to the claim that only EVERY∀ preserves the
familiar monotonicity properties of EVERY).

We are now in a position to formulate the meta-semantic principle which we
want to take as a rule governing the distribution of the two reading-types. We
state first the dynamic monotonicity principles (DMP1) and (DMP2), as well as
the semantic fact (F) and the definition (D):

(DMP1) Q is ↓DMON iff Φ′ ≤ Φ & Q x {Φ}{Ψ}╞ Q x {Φ′}{Ψ}
(DMP2) Q is ↑DMON iff Φ ≤ Φ′ & Q x {Φ}{Ψ}╞ Q x {Φ′}{Ψ}4
(F) Given a SGQ Q which is left monotone and right monotone in either

direction, just one of the two DGQs Q∀, Q∃, which can be defined on the
basis of Q, preserves the full monotonicity pattern of Q

(D) ‘Q is monotonically congruent with Q’ ≡ ‘Q preserves the full mp of Q’

MONOTONICITY PRINCIPLE (MP)

Be Q∀ (Q∃) the DGQ monotonically congruent with Q: it is stipulated that Q∀
(Q∃) is the only dynamic counterpart of Q allowed to enter semantic computation
for a donkey-sentence [δ N' VP] whose main determiner δ is conventionally
mapped onto Q.

This formulation corresponds very closely to the one given by Kanazawa
(1994), but I state the principle more explicitly as a choice-criterion.

4 The labels ↓DMON and ↑DMON are to be taken as abbreviations for ‘dynamically downward
monotone on the left’ and ‘dynamically upward monotone on the left’, respectively.

On a Unified Semantic Treatment of Donkey Sentences in a Dynamic Framework

 86

4 Quantifier Domain Restriction as a way out from
anomalies

In virtue of its simplicity and principled character, the monotonicity-based
theory meets empirical difficulties. If the instance of preserving monotonicity
inferences is taken seriously, one has to provide an explanation of distributional
anomalies such as one can find in sentences like (2). The explanation I propose is
based on the hypothesis that a certain form of quantifier domain restriction
(QDR) has come into play in the transition from the base-generated meaning of α
to the output of α’s interpretation in context (where α is whatever sentence for
which an unexpected reading has been observed). Following Stanley and Szabó
(2000), I assume that quantified sentences (including the donkey cases) are
mapped onto LFs characterized by free domain variables of the form ‘f(x)’ (‘f’
and ‘x’ being variables of type <e,<e,t>> and e, respectively), and show that,
given special assumptions on the binding of ‘x’ and on the evaluation of ‘f’, the
deviant readings can be represented within the dynamic framework referred to
above, without positing any change in the type of the DGQs involved. For the
purpose of introducing my proposal in an informal way, let me focus on sentence
(2):

(2) Every person who has a credit card pays the bill with it.

The most salient reading of this sentence is paraphrasable as ‘every person
having a credit card uses one credit card she has to pay the bill’. My idea is that
we are disposed to accept such a paraphrase because of our world knowledge,
which excludes as a rule the fact of a person paying a single bill with more than
one card. An utterance-context for (2) is thus supposed to include the assumption
(call it A) that a person pays a given bill with at most one credit card, whereas A
must be thought as something having the status of a presupposition publicly
accessible; it is properly A’s public accessibility what determines a hearer to
interpret (2) as stating something about no more than one object of the relevant
kind. The intuition underlying my proposal is that A interacts with the structural
elements in (2)’s LF, and that such interaction takes the form of a domain
restriction accomplished through accommodation of the content of A.

I proceed now to show how the explanatory proposal thus illustrated can be
formally implemented. Consider firstly the following rough LF for (2):

(2LF) EVERY x {person(x) ∧ ∃y(c-card(y) ∧ have(x,y))} {∃!y(c-card(y) ∧
have(x,y) ∧ pay-with(x,y))}

(2LF) represents the intuitively right reading of (2), but it seems completely
unrelated with the LF one would obtain if one used the DGQ EVERY∀. Anyhow,
if we take into account the accommodation of presupposition A referred to
above, and further conceptualize the process at issue as one of QDR, we shall be

Fabio Del Prete

 87

in a position to capture the apparent ∃-reading of (2) within the DGQ-analysis
that MP sanctions. A natural way of accomplishing accommodation of the
referred presupposition at the level of the restriction ‘person who had a credit
card’, is as follows: in the underlying logical structure of such N', two variables
x, y, are introduced; given that x is fixed to be a person and y a credit card owned
by x, presupposition A may be accommodated by supposing that x does not pay
her bill with any of her possibly multiple credit cards z, where z is distinct from
the card y previously introduced; this latter condition comes down to the proviso
that x pays her bill with no more than one credit card. A sentence we may think
to be derivable from (2) via a process of accommodation taking the form above
indicated is (2*), given along with the standard DGQ-analysis:5

(2*) Every person who has [a credit card]i and who doesn’t pay the bill with
[any [other]i of her credit cards] j pays the bill with [it]i.

(2*LF) person(x)
EVERY∀ x Ey card(y) ; have(x,y) {pay(x,y)}

 ∀z((card(z) ; have(x,z) ; z≠y)⇒¬pay(x,z))

As can be easily checked, (2*) has a ∀-reading, represented in (2*LF)
(whatever may be the credit card y introduced by the indefinite NP, it is true that
the owner of y pays her bill with y, if she doesn’t use any other of her cards).
(2*LF) can be claimed to bear a particular relation of equivalence to the naïve LF
(2LF): let’s call it pragmatic equivalence, to distinguish it from strict semantic
equivalence. The two logical structures cannot be said to be semantically
equivalent in a strict sense, (2LF) being about persons having credit cards, while
(2*LF) being about persons having credit cards and using at most one to pay their
bills. Nonetheless, I say they are pragmatically equivalent, because of a
background assumption according to which any person pays a single bill with at
most one credit card: because of this assumption, (2LF) can be seen as
pragmatically restricted to persons who pays with at most one credit card, when
they pay at all). Given the pragmatic equivalence between (2*LF) and (2LF), the
former, as well as the latter, can be assumed to fix (2)’s semantic content (with
respect to a context characterized as containing presupposition A). I propose to
take the former as an LF-representation of (2), modulo QDR. What we gain if we
accept this option is to keep our LF-analysis consistent with MP.

Consider now sentence (4), which is another problematic case for the
monotonicity-based account.

(4) No person who has an umbrella leaves it home on a day like this.

5 In the structural description and in the logical formulas I underline the adjoined predicate, in
order to mean that it is contextually integrated; I also give the relevant LFs in a non-linear notation,
for the sake of perspicuity; in such a notation, the lines in the restrictive part of a DPL-formula are
to be intended as (dynamically) conjoined in the top-down order.

On a Unified Semantic Treatment of Donkey Sentences in a Dynamic Framework

 88

(4LF) NO x {person(x) ∧ ∃y[umbrella(y) ∧ have(x,y)]} {∀y[(umbrella(y) ∧
have(x,y)) → leave'(x,y)]}

(4) seems to require the ∀-reading construal specified above, in spite of the
initial determiner ‘no’. Nonetheless, it is straightforward to show that the same
QDR-based strategy applied to (2) allows us to represent the intuitive reading of
(4) by means of the DGQ NO∃. In the present case, we focus on the existence of a
presupposition to the effect that a person takes at most one umbrella with her on
a rainy day. The presupposition gets accommodated via QDR in the following
way: given that in the restrictive part of the main quantifier x is fixed to be a
person and y an umbrella owned by x, the referred presupposition may be
integrated by supposing that x leaves z home, where z is any of x’s umbrellas
distinct from the umbrella y previously introduced.

(4*) No person who has [an umbrella]i and who leaves [each [other]i of her
umbrellas]j home, leaves [it]i home on a day like this.

(4*LF) person(x)
NO∃ x Ey umbrella(y) ; have(x,y) {leave'(x,y)}

 ∀z((umbrella(z) ; have(x,z) ; z≠y)⇒ leave'(x,z))

An ∃-reading construal for (4*) is materially adequate; indeed, the LF-
representation (4*LF) expresses its intuitive reading, and since it is pragmatically-
equivalent to (4LF) – under the background assumption that any man takes at
most one umbrella with him when going out –, it can be used to fix the truth-
conditions of (4). As for the preceding case, I propose to assign (4*LF) to (4) as a
possible LF-representation, modulo QDR. The interesting thing in this
connection is that (4*LF) is construed with the DGQ NO∃, which is the dynamic
counterpart of NO, according to MP.

In the QDR-based analyses given thus far, I have been presupposing that (2)
and (4) share an interpretational property, which can be highlighted by rephrasing
the latter as an every-sentence, along the lines indicated below:

(2) Every person who has a credit card pays the bill with it.
(2LF) EVERY x {person(x) ∧ ∃y[c-card(y) ∧ have(x,y)]} {∃!y[c-card(y) ∧

have(x,y) ∧ pay'(x,y)]}

(4) Every person who has an umbrella takes it with her on a day like this.
(4LF) EVERY x {person(x) ∧ ∃y[umbrella(y) ∧ have(x,y)]}

{∃!y[umbrella(y)∧have(x,y)∧take'(x,y)]}

The rough LFs (2LF) and (4LF) ascribe to the meaning of both sentences a
‘uniqueness feature’ (every individual in the domain bears a given relation to a
unique object of a given kind). I have assumed that the existence of such
interpretive feature depends on speakers’ world-knowledge (normally, a person
pays the bill with at most one credit card, and takes at most one umbrella with

Fabio Del Prete

 89

her when she goes out on a rainy day; that’s all). The complex predicates that I
have supposed to be contextually integrated in the restrictions capture indeed the
uniqueness feature, in virtue of their common logical structure (no individual in
the locally determined domain D can bear the pertinent relation R to more than
one object of the relevant kind X, since a contextual, non-local factor introduces
a priori the constraint: ceteris paribus, an individual in D bears R to no more
than one object X). The structure of those complex predicates can be expressed
by means of the meta-formula (DR), where ‘φ’ stays for the N'-restriction of the
antecedent indefinite NP, ‘ψ’ for the transitive verb of the antecedent containing
clause, and ‘χ’ may stay alternatively either for the verb V of the main clause or
for its negation ¬V.

(DR) ∀z((φ(z);ψ(x,z);z≠y)⇒χ(x,z))

 But if we applied (DR) as a rule whenever we found a sentence preferring the
unexpected reading, we would meet some difficulties. Take an every-sentence
with a surface ∃-reading, but lacking uniqueness implicatures of the sort
considered above; (5), given along with the naïve representation (5LF), is a case in
point:

(5) Every person who had a dime put it in the parking meter.
(5LF) EVERY x {person(x) ∧ ∃y[dime(y) ∧ have(x,y)]} {∃y[dime(y) ∧

have(x,y) ∧ put'(x,y)]}

If we derived now a sentence like (5*), through mechanical application of
(DR) to (5), we would get an unlikely result:

(5*) Every person who had [a dime]i and did not put [any [other]i of his dimes]j
in the parking meter put [it]i in the parking meter.

The problem is that there seems to be no background assumption according to
which any person puts at most one dime into the parking meter on a given
occasion. For this reason, a restriction like the one articulated in (5*), obtained by
means of the rule (DR), results to be too strong, having the effect of narrowing
down the quantifier domain too dramatically. This effect reduces to weakening
the truth-conditions of the original sentence. Nonetheless, it would be very
strange if the ∃-reading of (5) had nothing to do with a QDR-effect. After all, it
seems plausible to assume the existence of a background assumption concerning
normal behaviour of persons in a parking lot, where any of such persons is
supposed to put in the parking meter just as many dimes as it needs (hence, not
necessarily all of her dimes); moreover, we intuitively judge that an assumption
like this is relevant to the ∃-reading of (5). I suggest that, as in the preceding
cases we were able to account for the unexpected readings by allowing speakers’
presuppositions relevant to the subject-matter to interact with grammatical
structure, so one should be able to explain away (5)’s ∃-reading by giving a

On a Unified Semantic Treatment of Donkey Sentences in a Dynamic Framework

 90

suitable implementation at LF of the presupposition referred to above. It is
indeed straightforward to provide such an implementation: given that in the
restrictive part of the main quantifier x is fixed to be a person and y a dime
owned by x, the presupposition may be integrated by supposing that x did not use
any quantity of other dimes (each different from dime y) which were adequate for
the purpose. In order to give a logical translation of the relevant verbal structure,
one needs two ingredients: a) a notation for representing quantities of objects
(predicates and variables over i-sums), b) a unary predicate applying to i-sums,
which should express a general condition of pragmatic adequacy to whatever
relevant purpose. I provide here the required notation:

(a) {Σi}i∈N is a set of variables for i-sums
(b) the binary predicate constant ‘Π’ denotes the atomic-part relation:

‘Π(x,Σ)’ means that the individual x is an atomic part of the i-sum Σ
(c) the unary operator ‘*’ is prefixed to a distributive n-ary predicate over

individuals, giving an n-ary predicate with one place for i-sums
(d) the interpretation of a formula ‘*R(..,Σ,..)’ is fixed by the formula

‘∀x[Π(x,Σ)→R(..,x,..)]’
(e) the unary predicate constant ‘Ω’ denotes a context-sensitive property: with

respect to a context c, ‘Ω(Σ)’ means that Σ is large enough for a c-salient
purpose

In virtue of (a)-(e), we are in a position to construe an LF for the explicitly
restricted version (5°):

(5°) Every person who had [a dime]i and did not put [any sufficient quantity
of [other]i dimes] j in the parking meter put [it]i in the parking meter.

(5°LF) person(x)
EVERY∀x Ey d(y) ; h(x,y) {p(x,y)}

 ∀Σ((*d(Σ);*h(x,Σ);Ω(Σ);¬Π(y,Σ))⇒¬*p(x,Σ))

As for the previous QDR-based analyses, I propose to consider (5°LF) as a
possible semantic representation of sentence (5), modulo QDR; I do so in virtue
of its pragmatic equivalence to the immediate representation (5LF).

The treatment proposed for sentence (5) can be generalized to the previous
cases, where a uniqueness implicature was said to be present. The extension can
be made by specifying an algorithmic procedure of QDR. The two algorithms
given below provide a formalization of the accommodation processes which I
take to be responsible for the apparent reading-shifts6.

6 I recall that I assume LFs with domain variables for quantified sentences; domain variables
occupy a position in the restriction of quantifiers, and have the form f(x) – where ‘f’ and ‘x’ have
semantic type <e,<e,t>> and e, respectively –.

Fabio Del Prete

 91

Q∀ x {φ(x);Eyi ψ(x,yi);f(yj)(x)}{χ(x,y)} ⇒RES∀

 φ(x)
⇒RES∀ Q∀ x Ey ψ(x,y) {χ(x,y)}

 ∀Σ((*ψ(x,Σ); Ω(Σ);¬Π(y,Σ))→¬*χ(x,Σ))

Q∃ x {φ(x);Eyi ψ(x,yi);f(yj)(x)}{χ(x,y)} ⇒RES∃

 φ(x)
⇒RES∃ Q∃ x Ey ψ(x,y) {χ(x,y)}

 ∀Σ((*ψ(x,Σ); Ω(Σ);¬Π(y,Σ))→*χ(x,Σ))

RES∀ and RES∃ describe a structural procedure for evaluating the function
variable ‘f’ in the quantifier domain variable ‘f(yj)’; moreover, both algorithms
sanction the binding of the individual variable ‘yj’ to the quantifier ‘Eyi’, thus
imposing the further condition i=j. More precisely, the derivations given above
go through if we assume the following conditions:

 λy.λx.∀Σ((*ψ(x,Σ); Ω(Σ);¬Π(y,Σ))→¬*χ(x,Σ))
 if the sentence is of the form Q∀ x Φ Ψ
(a) [[f]] cg =
 λy.λx.∀Σ((*ψ(x,Σ); Ω(Σ);¬Π(y,Σ))→*χ(x,Σ))
 if the sentence is of the form Q∃ x Φ Ψ
(b) i=j

I intend the two algorithms to describe a procedure of QDR which is
contextual in nature, though it happens to be expressible in a form under which
the covert restrictive predicates are reconstructed in a syntax-driven fashion. The
algorithmic expression of the two processes mustn’t make one think that all
happens there within the realm of syntax, so to speak. The main factor calling for
restrictions of this special kind resides typically in the structure of utterance-
contexts. The fact that I recognize the restrictions at issue to have a contextual
character, and in particular to depend on the existence of certain presuppositions,
while describing at the same time a uniform procedure which happens to be
sensitive to grammatical structure, should not be regarded as denoting
incoherence: as I have shown with my sample-analyses, it is a matter of fact that
the presupposition π charged with the apparent reading-shift of the sentence α
bears such a relation to α’s subject-matter, that it can be expressed under a form
recoverable from α’s linguistic structure; this fact concerning formal
expressibility of π explains how accommodation of π can be represented in the
final analysis via expansion of the quantifier restriction according to a syntactic
algorithm.

On a Unified Semantic Treatment of Donkey Sentences in a Dynamic Framework

 92

Appendix

I provide here a sample-derivation of (5°LF) as semantic representation of (5)
with respect to a context satisfying the presupposition (π). The derivation is
intended to show that there is no necessary contrast between the idea that
accommodation of a contextually supplied assumption occurs and the idea that
the resulting restriction can be equated to the output of a syntactic algorithm.

(5) Every person who had a dime put it in the parking meter.
(5LF) EVERY∀ x {person(x) ; Eydime(y) ; have(x,y)} {put'(x,y)}
(π) Every person who has a dime put in the parking meter just as many of her

dimes as it needs.
(πLF) ∀x{[p(x) ; Ey d(y) ; h(x,y)] ⇒ Ey[d(y) ; h(x,y) ; ∀Σ((*d(Σ) ; *h(x,Σ) ;

Ω(Σ) ; ¬Π(y,Σ)) ⇒ ¬*put'(x,Σ))]}
(5LF′) person(x)

EVERY∀ x Ey dime(y) ; have(x,y) {put'(x,y)}
 (πLF)

(5LF″) person(x)
EVERY∀ x Ey dime(y) ; have(x,y) {put'(x,y)}

 Ey[d(y) ; h(x,y) ; ∀Σ((*d(Σ) ; *h(x,Σ) ;
 Ω(Σ) ; ¬Π(y,Σ)) ⇒ ¬*put'(x,Σ))]

(5°LF) person(x)
EVERY∀x Ey dime(y) ; have(x,y) {put'(x,y)}

 ∀Σ((*d(Σ);*h(x,Σ);Ω(Σ);¬Π(y,Σ))⇒¬*p'(x,Σ))

References

Barker, C.: 1996, “Presuppositions for Proportional Quantifiers”, in Natural Language Semantics 4,
237-259.

Chierchia, G.: 1995, Dynamics of Meaning: Anaphora, Presupposition, and the Theory of
Grammar, The University of Chicago Press, Chicago.

Groenendijk, J. and Stokhof, M.: 1991, “Dynamic Predicate Logic”, in Linguistics and Philosophy
14, 39-100.

Heim, I.: 1990, “E-type Pronouns and Donkey Anaphora”, in Linguistics and Philosophy 13, 137-
177

Kamp, H.: 1981, “A Theory of Truth and Semantic Representation”, in J. Groenendijk, T.M.V.
Janssen, M. Stokhof (eds.), Formal Methods in the Study of Language, Foris, Dordrecht.

Kanazawa, M.: 1993, “Dynamic Generalized Quantifiers and Monotonicity”, in M. Kanazawa and
C. J. Piñón (eds.), Dynamics, Polarity and Quantification, Center for the Study of Language
and Information, Stanford, California.

Kanazawa, M.: 1994, “Weak vs. Strong Readings of Donkey Sentences and Monotonicity
Inference in a Dynamic Setting”, in Linguistics and Philosophy 17, 109-158.

Fabio Del Prete

 93

Lappin, S. and Francez, N.: 1994, “E-type Pronouns, I-sums, and Donkey Anaphora”, in
Linguistics and Philosophy 17, 391-428.

Neale, S.: 1990, Descriptions, Cambridge, Mass.: MIT Press.
Stanley, J. and Szabó, Z. G.: 2000, “On Quantifier Domain Restriction”, in Mind and Language 15,

219-261.

94

On the Categorization via Rank-Distance

Anca Dinu

Bucharest University, Faculty of Mathematics

anca radulescu@yahoo.com

Liviu P. Dinu

Bucharest University, Faculty of Mathematics

ldinu@funinf.cs.unibuc.ro

Abstract. In this paper we present an unsupervised categorization method. The
method uses the rank distance (Dinu, 2003a), a metric which measures the similar-
ity between two classifications based on the ranks of objects. In the framework of
natural language, the most important information is carried by the first part of the
unit. By analogy, the difference on the first positions between two classifications
is more important than the difference on the last positions. This was the starting
point in the construction of the rank distance.

1 Introduction

When dealing with categorization and/or aggregation problems, there are
three important decisions to make: choosing the metric, the aggregation
method and the classifiers.

The long series of papers (Finch, 1993; Herdan, 1966; Kashyap and Oom-
men, 1983; Manning and Schütze, 1999; Marcus and others, 1971; Marcus,
1974; Mitchell, 1997; Păun, 1983; Schütze and others, 1995; Tin Kam Ho and
others, 1994) and their references dedicated to this topic proves the theoret-
ical and practical relevance of the problem. We mention here some metrics
as Euclidean metric, Manhattan metric, Spearman rank correlation coeffi-
cient, divergence, Hamming distance, Leuvenstein distance, etc. and some
classification and aggregation methods as decision trees, k nearest neighbor
classification, Bayesian classification, maximum entropy modeling, decision
inference, logistic regression, neural networks based method, Borda aggrega-
tion method, etc. encountered in the above works.

The classifications may differ not only by the position of the elements,
but also by the elements themselves: some element in a classification may
be absent in another classification. In this paper we present an unsupervised

Proceedings of the Eighth ESSLLI Student Session
Balder ten Cate (editor)
Chapter 9, Copyright c© 2003, A. Dinu and L. Dinu

95

On the Categorization via Rank-Distance

categorization method. The method uses the rank distance (Dinu, 2003a),
a metric which measures the similarity between two classifications based
on the ranks of objects. We define the aggregation of n classifications as
the classification for which the sum of distances from it to each of the n
classifications is minimal.

2 Rank distance

In this section we shortly present the rank distance (Dinu, L.P., 2003a,
2003b).

Any classification can be regarded as a word of finite length, obtained
from concatenation of the elements of the classification, in their appearance
order, from the first to the last one. By analogy with natural language
where the most important information is carried by the first part of the
lexical unit (Marcus, 1971), the difference on the first positions between two
classifications is more important than the difference on the last positions.
This was the starting point in the construction of the rank distance. Thus,
if the differences between two classifications are at the top (i.e., in essential
points), the distance has a bigger value then when the differences are at the
bottom of the classifications.

Let L = (x1, x2, · · · , xn) be a classification of length n, such that xi is
in ith position (1 ≤ i ≤ n) in classification L. In this classification xi

means the element itself, not the classification criterion (for example, if we
chose the frequency as classification criterion, xi would not represent the
frequency, but the element xi which is in position i). We assume that the
elements of the classification are mutually different. We shall attribute to the
first element of the classification the highest rank, i.e., n, to the second one
(n−1), and so on, to the final element the lowest rank, i.e., 1 (a classification
in Borda sense). It is possible that some elements require the same place
(e.g., some elements have the same frequency). In this case we adopt the
same strategy as in Spearman rank correlation coefficient method (Herdan,
1966; Finch, 1993): the rank of elements will be the mean of ranks they
should receive.

Notation 1 We denote the position of the element x in classification L with
ord(x|L).

Notation 2 We denote the vocabulary of the classification L with V(L),
i.e., V (L) = {x1, x2, . . . , xn−1, xn}.

Let L1 and L2 be two classifications of lengths n, m respectively. We
may presume m ≥ n.

96

A. Dinu and L. Dinu

Definition 1 The rank distance between L1 and L2 is given by:

∆(L1, L2) =
∑

x∈V (L1)∩V (L2)

|ord(x | V (L1)) − ord(x | V (L2))|

+
∑

x∈V (L1)\V (L2)

ord(x | V (L1)) +
∑

x∈V (L2)\V (L1)

ord(x | V (L2)).

Example 1 Set L1 = (a, b, c, d) and L2 = (x, a, b), V (L1) = {a, b, c, d},
V (L2) = {a, b, x}. According to Definition 1, we have:
∆(L1, L2) = |ord(a|L1)− ord(a|L2)|+ |ord(b|L1)− ord(b|L2)|+ ord(c|L1) +
ord(d|L1) + ord(x|L2) = |4 − 2| + |3 − 1| + 2 + 1 + 3 = 10.

Theorem 1 ∆ is a distance.

Proposition 1 The rank-distance between L1 and L2 is minimal when V (L1) ⊆
V (L2) and ord(xi|L1) + m − n = ord(xi|L2) for all i = 1, 2, . . . , n, and it is
maximal when V (L1)

⋂
V (L2) = Ø. In former case ∆(L1, L2) = n(m−n)+

m−n∑
i=1

i = 1
2 (m−n)(m+n+1) and in later ∆(L1, L2) = 1

2n(n+1)+ 1
2m(m+1).

Marcus (1974) has used a similar idea to measure the distance between
two codons (sixty-four triplets of nucleotide). He has modified the Hamming
distance (Hamming, 1950) by giving a different weight to each position of
the three possible position in a codon, in the decreasing order from left to
right, p1 > p2 > p3. The distance between two codons differing on the first
(second, third) position will be equal to p1 (p2, p3 respectively);the distance
between two codons differing on the first and the second (the first and the
third, the second and the third) positions will be equal to p1 + p2 (p1 + p3,
p2 + p3 respectively); the distance between two codons differing on each of
their positions will be equal to p1 + p2 + p3.

We must say that the existing distances are not appropriate yet for
genomics. In (Karp, 2002) it is shown that ”the distance between genomes
should be measured not only by counting mutations, but also by determining
the number of large-scale rearrangements needed to transform one genome
to another.

3 An aggregation method based on rank distance

The aggregation of classifications means to obtain a classification of given
objects that appear in the set of initial classifications. Categorization is the
task of assigning objects from a universe to two or more classes or categories
(Manning and Schütze, 1999).

In this section we present an aggregation method (Dinu, 2003b) based
on rank distance which can aggregate classifications having different vocab-
ularies. A particularity of this method is the non-determinist feature.

97

On the Categorization via Rank-Distance

3.1 Rank-distance aggregation method

Definition 2 Let A be a set with n elements. A classification L is of length
m over A if it contains m elements (|V (L)| = m) and V (L) ⊆ A. We write
L ∈ Am.

Definition 3 Let T = {L1, L2, . . . , Ln} be a sequence of n initial classifi-
cations. The vocabulary of the sequence T is the set V (T):

V (T) =
n⋃

i=1
V (Li).

Definition 4 Let T = {L1, L2, . . . , Ln} be a sequence of n initial classifi-
cations having the same length m and let L be a classification of length m.
We denote the distance between L and T with ∆(T , L):

∆(T , L) =
n∑

i=1
∆(Li, L).

Definition 5 Consider T = {L1, L2, . . . , Ln} as in Definition 4. The rank-
distance aggregation (RDA) is the classification L ∈ V m(T) for which one
obtain the minimum of the following expression:

min
X∈V m(T)

1
n

n∑
i=1

∆(Li,X),

i.e., ∆(T , L) = min
X∈V m(T)

∆(T ,X).

Remark 1 The aggregate classification is not unique. Thus, we introduce a
new set of classifications, containing all aggregate classifications that satisfy
the minimum condition from Definition 5.

Notation 3 Consider T as in Definition 4. We denote the set of RDA
classifications with agr(T).

Remark 2 The set agr(T) is not empty. It contains at least one element.

3.2 On the aggregation algorithm

We have introduced a new method for the aggregation of classifications.
One of the problems is the computational aspect. Some constructions that
produce a subset of agr (T) were developed, but we have not obtained yet
an efficient algorithm (i.e. polynomial) that produces all the RDA classifi-
cations for a given sequence T .

98

A. Dinu and L. Dinu

3.3 The equivalence of elements

In a given classification, two or more elements are said to be equivalent
if they have the same position. The RDA method cannot aggregate clas-
sifications that have equivalent elements. To overcome this problem we
shall decompose each classification L that contains n equivalent elements
ai+1, . . . , ai+n into n! classifications. Each of this classifications will contain
one of the n! possible permutations of the elements ai+1, . . . , ai+n.

3.4 Example

Example 2 Set the following sequence of 5 initial classifications: T =
{(a1 > a2 > a3), (a1 > a2 > a3), (a3 > a1 > a2), (a2 > a3 > a1), (a2 >
a3 > a1)}.
The vocabulary of this sequence is: V (T) = {a1, a2, a3}.
The set of classifications over V 3(T) contains 6 elements (permutations of
3 elements). We shall evaluate the distance between each classification to
T . We shall choose the classifications having the minimal distance.

1. L = (a1 > a2 > a3); ∆(L,T) = 12
5

2. L = (a1 > a3 > a2); ∆(L,T) = 14
5

3. L = (a2 > a1 > a3); ∆(L,T) = 12
5

4. L = (a2 > a3 > a1); ∆(L,T) = 12
5

5. L = (a3 > a2 > a1); ∆(L,T) = 14
5

6. L = (a3 > a1 > a2); ∆(L,T) = 16
5

min
X∈V 3(T)

∆(X,T) = 12
5 ,

agr(T) = {(a1 > a2 > a3), (a2 > a1 > a3), (a2 > a3 > a1)}.

We observe in Example 2 that agr(T) can have the cardinal bigger then 1
and that a RDA classification is not necessary an initial classification((a2 >
a1 > a3) is not in T).

4 A categorization method based on the RDA method

As most of the products of human mind, the aggregation and categoriza-
tion methods should have the characteristic of being rational. Arrow (1973)
proved that not any rationality conditions can be satisfied simultaneously:there
is no aggregation method that simultaneously satisfies the relevance, Pareto
optimality, independence and the absence of the dictator conditions, for all

99

On the Categorization via Rank-Distance

problems with at least 3 objects and at least 2 initial classifications, suppos-
ing any classification of those elements is admissible (can appear as initial
classification).

Păun (1987, 1983) mentions 17 conditions of rationality that should be
fulfilled by an aggregation method. Based on some subsets of this conditions,
he proposes some variants of the impossibility theorem of aggregation (Păun,
1983, 1987).

4.1 Properties of RDA

Definition 6 Pareto optimality. If ai is preferred to aj in all the initial
classifications, then ai is preferred to aj in the aggregated classification as
well.

Proposition 2 The rank-distance aggregation method satisfies the Pareto
optimality conditions.

Definition 7 Reasonability. An aggregation method is reasonable if, when
applied only for two elements, gives the same results as the simple majority
method.

Proposition 3 The rank-distance aggregation method satisfies the reason-
ability condition.

Definition 8 Independence The final order of any two objects ai and aj

only depends on ai and aj and it never depends on the presence of another
element ak.

Proposition 4 The rank-distance aggregation method does not satisfy the
independence condition.

4.2 Rank distance categorization method

An essential problem in text categorization is to choose the classifiers. Dif-
ferent classifiers may assign different classes to the same object. Decision
methods based on the inference of classifiers can be used to predict the class
of the object.

A method of inference of classifiers based on logistic regression is pre-
sented in (Ho et al., 1994). Each classifier receives a weight using a training
set.

In the following we propose an unsupervised method of categorization
based on rank-distance aggregation (called rank-distance categorization -
RDC).

Consider C=(C1, C2, . . . , Cn) a set of n classifiers and S={s1, s2, . . . , sm}
the possible classes of an object.

100

A. Dinu and L. Dinu

Each classifier gives a classification of classes; let T ={L1, �L2, . . . , �Ln} be
the set of this classifications.

Let agr(T)={A1, A2, . . . , Ak} be the aggregation of the set T .
The class of the object predicted by the RDC method is the one that

occupies most frequently the first position in the classifications A1, .., Ak.
Due to the Proposition 2, if all classifiers predict a class s on the first

place, then the RDC method will predict the same s class on first place.
We tested the RDC method on the data base World Now. The method

Näıve Bayes was used to choose four classifiers. The RDC method improved
the mean of individual performance of classifiers with fifteen-twenty percent.

5 Final remarks and further investigations

We have presented the rank distance aggregation (RDA) method, that de-
fines the aggregation of a sequence T of classifications as those classifications
L for which

∑
∆(T , L) has the minimum value, where ∆ is the rank distance

(Dinu, 2003a). The classification obtained by RDA method is not necessar-
ily unique. Based on RDA, we have defined the rank distance categorization
method (RDC).

As we have shown in section 3.2, the construction of an efficient algo-
rithm to compute agr(T), for a given sequence T , remains an open problem.
The investigation of rank distance in genome analysis applications and the
relationship of the RDC with other existing technique (e.g. Crammer and
Singer, 2003, 2001) are some future work which are in our attention.

Acknowledgements

We thank the anonymous referees for remarks permitting the improvement
of the text and for suggestions regarding future works.

References

[1] Borelli, M. and A. Sgarro. A Possibilistic Distance for Sequences of Equal and
Unequal Length. In Finite VS Infinite: Contributions to an Eternal Dilemma,
C. Calude and Gh. Păun eds., Springer-Verlag, London, 2000

[2] Crammer, K. and Y. Singer. Pranking with ranking. In Advances in Neural
information Processing Systems 14, 2001

[3] Crammer, K. and Y. Singer. A family of additive algorithms for category
ranking. Journal of Machine Learning Research, 3, 1025-1058, 2003

[4] Dinu, L. On the similarity of the classifications (submitted), 2003a

[5] Dinu, L. On the Aggregation of Hierarchies with Different Constitutive Ele-
ments, Fundamenta Informaticae, 55, (1), 39-50, 2003b

[6] Finch, S.P. Finding stucture in language. PhD thesis, Univ. of Edinburgh, 1993

101

On the Categorization via Rank-Distance

[7] Hamming, R.W. Error detecting and error correcting codes. Bell System Tech-
nical Journal, 29, 146-160, 1950

[8] Herdan, G. The advanced theory of language as choice and chance. Springer,
New York, 1966

[9] Karp, R. Mathematical Challenges from Genomics and Molecular Biology.
Notices of the AMS, 49, 544-553, 2002

[10] Kashyap, R.L. and B.J. OOmmen. Similarity Measure for Sets of Stringst.
Intern. J. Computer Math. 13, 95-104, 1983

[11] Manning, C. and H. Schütze. Foundations of statistical natural language pro-
cessing, MIT Press, 1999

[12] Marcus, S., E. Nicolau and S. Stati. Introduzione alle linguistica matematica.
Casa editrice Riccardo Patron, Bologna, 1971

[13] Marcus, S. Linguistic structures and generative devices in molecular genetics.
Cahiers Ling. Theor. Appl., 11, 77-104, 1974

[14] Marcus, S. An emergent triangle: semiotics-genomics-computation. In Pro-
ceedings of the Congress of the German Semiotic Society, Kassel, July 2002
(to appear)

[15] Mitchell, T.M. Machine Learning. McGraw-Hill, New York, 1997

[16] Păun, Gh. An imposibility theorem for social indicators aggregation, Fuzzy
Sets and Systems, 9, pp. 205-210, 1983

[17] Sgarro, A. A Fuzzy Hamming Distance, Bull. Math. de la Soc. Sci. Math de
la Roumanie, Tome 21 (69), no. 1-2, 1977

[18] Schütze, H., D.A. Hull and J.O. Pedersen. A comparison of classifiers and
document representations for the routing problem. In SIGIR ’95, pp. 229-237,
1995

[19] Tin Kam Ho, J. Hull and S. Srihari. Decision Combination in Multiple Clas-
sifier Systems, IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 16, no 1, pp. 66-75, 1994.

102

103

Resumptive Elements: Pronouns or Traces?

JUDIT GERVAIN
University of Szeged and Scuola Internazionale di Studi Avanzati (SISSA)
gervain@sissa.it

ABSTRACT. Resumptives have been characterized in the literature both as resembling
pronouns and traces. The aim of the present paper is to confront the two theories on the
basis of their empirical predictions. A small-scale experimental survey was carried out
to test speakers judgments with respect to several diagnostic constructions as they apply
to focus-raising via resumption in Hungarian. It is concluded that resumptives have a
dual nature, their syntactic behavior is ambiguous between pronouns and traces. This
ambiguity is theoretically captured by an analysis in terms of vehicle change (Fiengo
and May 1994; Safir 1999).

1 Resumptives in Hungarian Focus-Raising

Previous work (Gervain forthcoming) has found that focus-raising (FR)
constructions ((1b) vs. (1a), an expletive construction), traditionally analyzed as
instances of A’-movement (É.Kiss 1987; Kenesei 1994; Lipták 1998), are
construed via resumption (focus-raising via resumption, FRR), at least for certain
speakers of Hungarian (1c)1.

(1) a Azt mondtad, (hogy) GÁBOR síel jól.
expl.acc said.2s that Gábor.nom ski.3s well
“You said Gábor can ski well.”

b (*Azt) GÁBORTi mondtad, hogy ei jól síel.
 expl.acc Gábor.acc said.2s that well ski.3s

c [CP GÁBORTi mondtad, [CP hogy proi jól síel]].
The empirical evidence for this assumption comes from an experimental

survey (for the methods and the statistical analyses, see Gervain 2002), where
speakers of Hungarian were shown to cluster into three groups (“dialects”2 or
microvariants) with respect to their grammaticality judgment patterns for focus-
raising sentences. Besides the irrelevant group of informants who rejected FR
altogether, the other two dialects exhibited opposite patterns for subject focus-

1 Small capitals indicate focus.
2 No implication of a geographical or sociological distinction is intended here.

Proceedings of the Eighth ESSLLI Student Session.
Balder ten Cate (editor)
Chapter 10, Copyright © 2003, Judit Gervain

Resumptive Elements: Pronouns or Variables?

104

raising along two factors, namely the case of the focused DP and number
agreement on the embedded verb (of which the focused DP is the subject).

Before the experimental findings are discussed, a peculiarity of Hungarian
number morphology has to be introduced. Plurality is not marked on a noun that
is preceded by a numeral or a (plural) quantifier (2a). Moreover, the whole DP
agrees with its verb in the singular (2b), but it still clearly refers to plural entities,
as cross-sentential anaphora illustrates (2c). So [Num/Quantpl [Nsg]]sg, pl type DPs3
act as morphologically/syntactically singular, but semantically plural entities.

(2) a [DP [NumP két [NP fiú]]]
 two boy.sg
“two boys”

b Két fiú jött/ *jöttek.
two boy.sg.nom come.past.3s/ come.past.3p
“Two boys came.”

c Két fiú jött. Leültettem *őt/ őket.
two boy.sg.nom come.past.3s seat.past.1s him/ them
“Two boys came. I offered them seats.”

The results of Gervain (2002) show that when such a DP is in the matrix focus
position, one dialect (3) tolerates both nominative and accusative case on the DP,
but strictly rejects plural embedded verbs, whereas the other dialect (4) accepts
only one of the cases, accusative, but both agreements.

(3) a ???AZ ÖSSZES LÁNY mondtad, hogy jön.
the all girl.sg.nom said.2s that come.3s

“You said that all the girls were coming.”
b *AZ ÖSSZES LÁNY mondtad, hogy jönnek.

 the all girl.sg.nom said.2s that come.3p
c ?AZ ÖSSZES LÁNYT mondtad, hogy jön.

 the all girl.sg.acc said.2s that come.3s
d AZ ÖSSZES LÁNYT mondtad, hogy jönnek.

the all girl.sg.acc said.2s that come.3p
(4) a ??Az ÖSSZES LÁNY mondtad, hogy jön.

 the all girl.sg.nom said.2s that come.3s
“You said that all the girls were coming.”

b ???AZ ÖSSZES LÁNY mondtad, hogy jönnek.
the all girl.sg.nom said.2s that come.3p

c ?AZ ÖSSZES LÁNYT mondtad, hogy jön.
 the all girl.sg.acc said.2s that come.3s

d ??AZ ÖSSZES LÁNYT mondtad, hogy jönnek.
 the all girl.sg.acc said.2s that come.3p

3 Indices in italics refer to semantic, non italicized ones to syntactic properties.

Judit Gervain

105

These empirical generalizations were analyzed as reflecting two underlying
strategies for FR. Speakers of the first dialect (3) display a pattern that is readily
describable as resulting from movement. The raised DP is base-generated as the
subject of the embedded verb, thus it agrees with it in the singular and receives
nominative case. When it undergoes raising, it optionally takes up the accusative
case of the matrix verb, which is normally assigned to the expletive in the non-
raising expletive constructions (1a). Consequently, it can surface in either of the
two cases (for the technical details of how double case is licensed and derived for
chains, see Bejar and Massam 1999; Español-Echevarría and Ralli 2000).

The second dialect (4), however, doesn’t lend itself to this account, since the
embedded verb is in the plural, which is excluded under regular subject-verb
agreement in simple clauses (2b). Rather, Gervain (forthcoming) proposes a
resumptive strategy to account for this dialect. Under this view, the DP is base-
generated directly in the matrix clause, in the position occupied by the expletive
in the non-raising counterpart. Here, it receives accusative as its only case, in
which it obligatorily surfaces. As for the embedded subject position, it is filled by
a phonologically null4 resumptive pronoun, which establishes a dependency with
the antecedent DP. Through this dependency, the resumptive inherits among
others the number feature of the DP. Just how this is done exactly will constitute
the subject of this paper, but even without going into the details, it can be argued
that because of the number ambiguity of the DP, the resumptive may inherit
either of the number features. Depending on the value of the transmitted feature
then, the resumptive can trigger singular or plural agreement on the embedded
verb.

Gervain (2002) presents further empirical and theoretical evidence to ground
the above distinction between a movement and a resumptive strategy of FR. Most
of them are not discussed here in detail, however one is worth mentioning at this
point and some others will also be evoked in later discussions. The most common
diagnostic tool to tell apart movement and resumption is movement constraint
violations, e.g. islands, as suggested by Chomsky (1981, 1982) and exemplified
in (5).

(5) a I wonder whoi Mary marries (*himi).
b I wonder [whoi they think [that [if Mary marries *(himi)] then

everybody will be happy]]
Speakers of the two different FR dialects are expected to behave differently

with respect to such diagnostics. Judgments on FR sentences containing complex
NPs were measured and compared. Informants in the two dialects answer
statistically differently both as a group and individually. Movement speakers

4 That the resumptive pronoun is phonologically null comes as no surprise, since
Hungarian is a pro-drop and an Avoid Pronoun language. Languages of this kind
typically exhibit null resumptives (Engdahl 1985; Suñer 1998). A formal account of these
observations is given by Montalbetti’s (1984) Overt Pronoun Constraint.

Resumptive Elements: Pronouns or Variables?

106

fully reject, while resumptive speakers accept sentences like (6). This further
confirms the movement-resumption dissociation.

(6) b AZ ÖSSZES VENDÉGET mondtad, hogy hallottad
the all guest.sg.acc say.past.2s that hear.past.2s
“You said that you heard the news that all the guests had arrived.”
a hírt, hogy megérkeztek.
the news that arrive.past.3p

In light of the above considerations, the two strategies are well established.
However, Gervain (2002) and Gervain (forthcoming) leave the issue about the
nature of the resumptive dependency unresolved. Two alternatives are proposed,
but theoretical considerations and empirical data are not conclusive. The first
possibility outlined assumes that the dependency is entirely syntactic, i.e.
operator-variable binding and coindexation between the antecedent and the
resumptive. In such a scenario, the optionality of number results from the fact
that the DP is transparent for coindexation, à la Longobardi (2001), so the
resumptive may target either the plural Num/QuantP or the singular NP. The
second option consists of positing a mixed type dependency, one that can be
either syntactic or semantic. In the former case, the resumptive will inherit the
feature of the whole DP, i.e. singular. In the latter, coreference obtains, which, as
(2c) showed, is plural. Notice that the ultimate difference between the two
possibilities hinges on the nature of the resumptive element. If resumptives are
like variables, they always have to be bound, whereas if they resemble pronouns,
they may be bound, but may also corefer.

The nature of resumptives appears to vary considerably across languages, and
no theoretical consensus has been reached in the literature either. The present
paper attempts to contribute to the debate by introducing experimental evidence,
as well as by offering a theoretical account of Hungarian resumptives in FR
constructions.

2 Theories of resumption

Resumptive elements come in various shapes and sizes in the world’s languages.
Their theoretical analyses are equally heterogeneous. In the following, I will give
a brief overview of the resumptive landscape.

As referred to above, one of the first detailed theoretical treatments of
resumptive pronouns was given in Chomsky (1981, 1982). The main assumption,
based mostly on English data of the type (5), was that resumptives appear in
positions from where gaps/traces are excluded by constraints on movement (e.g.
in island contexts). The resumptive pronoun is base-generated in its surface
position and is A’-bound at LF by its antecedent, with which it is coindexed. On
this view, resumptive pronouns are expected to be in complementary distribution
with traces, and they come as a kind of last resort device to save otherwise

Judit Gervain

107

disallowed movement configurations. Overall, they were thought of as a rare and
marked strategy, with no specific UG constraints required to account for them.
Rather their distribution was believed to fall out from independent UG principles.

This approach was later challenged on several grounds. Resumptive strategies
turned out to be subject to considerable cross-linguistic variation, which led to
the introduction of different typologies (Engdahl 1985; Demirdache 1991; Suñer
1998; Aoun et al. 2001). The last resort nature of resumption has also been
questioned (see e.g. Shlonsky 1992 and Aoun et al. 2001 for strong last resort
views; but Suñer 1998 and Willis 2000 for challenges).

In addition to the above cited works, some analyses specifically address the
question whether resumptives are pronouns or traces. These will be presented in
somewhat more detail.

Discussing relative clauses in Hebrew, Sharvit (1999) points out that some of
the syntactically free and optional alternations between traces and resumptives
actually produce interpretational differences. Pair-list/multiple individual
readings are not available for resumpives, while they are possible with traces in
non-equative relative clauses, while this asymmetry disappears in equative
clauses. In his account, resumptives are licensed under two conditions: (i) they
need a contextually salient (e.g. D-linked) antecedent, and (ii) they can only be
assigned values that the given pronoun can take when it is A/A’-free. Pair-list
readings generally violate the first condition, but this impairment is amended in
equative clauses, where a highly salient antecedent is available. Sharvit further
claims that resumptives have a dual nature. Like traces, they are A’-bound and
are interpreted as bound variables, while their distribution (e.g. within islands)
resembles that of ordinary pronouns.

Falk (2002) offers an LFG account of resumptives. He introduces the pronoun
vs. variable debate, and summarizes some of the empirical evidence. As
arguments for the trace hypothesis, he enumerates the following observations: (i)
resumptives, just like gaps, are linked to some discourse function or operator (cf.
also Erteschik-Shir 1992; Sharvit 1999), (ii) anaphora between a possessive
reflexive in a fronted whP and its antecedent DP in an embedded subject position
is allowed when the extraction site of the whP contains a trace or a resumptive
(cf. Zaenen et al. 1981), (iii) like traces, resumptives are able to license parasitic
gaps (cf. Engdahl 1985; Shlonsky 1992), (iv) both traces and resumptives show
crossover effects (cf. Shlonsky 1992), and (v) they can be coordinated. On the
other hand, as Falk underlines, resumptives are exempt in most (but not all)
languages from the island constraints traces/movement obey (Chomsky 1981,
1982). Also, resumptives are associated with special morphology on the verb or
the complementizer in some languages (cf. McCloskey 2001, Vailette 2002). In
Falk’s own analysis, which is cast in LFG terms, resumptives receive the same
treatment as gaps, except for their licensing. Interestingly, on the basis of the
same empirical evidence as Sharvit, Falk makes the additional claim that

Resumptive Elements: Pronouns or Variables?

108

resumptives are referential and cannot be bound variables. Rather, they are D-
linked, and besides syntactic constraints, they also respect the principle of
Sufficiency of Expression, which claims that syntactic elements providing clues
for parsing are exceptions to (syntactic) considerations of economy.

As it is apparent from the above argumentations, the debate between the
pronoun and the trace hypotheses is far from being resolved. In the following, I
will examine resumptives in Hungarian FR, by applying some of the
aforementioned empirical tests.

3 The experiment

Focus-raising in itself is not a good testing ground to distinguish between the
trace and the pronoun hypotheses. Therefore, some of the diagnostics had to be
applied to allow a better comparison between the predictions of the two
approaches.

If resumptives behave like traces, i.e. bound variables, they are expected not
to be able to corefer. They are supposed to license parasitic gaps and show
crossover effects. Moreover, their coordination with another trace should be
grammatical. If, on the other hand, they resemble ordinary pronouns, they can
corefer, they don’t license parasitic gaps or show crossover effects and it is
impossible to coordinate them with traces.

To test these predictions, a paper-and-pencil survey was carried out,
comprising the following diagnostics: i, parasitic gap licensing; ii, coordination
with traces/pronouns; iii, crossover effects. Responses were given statistical
treatment5.

Material. Sentences were constructed to test the following structures:
(i) FR from embedded subject position: acceptable/ unacceptable
(ii) FR from embedded object position: acceptable/ unacceptable
(iii) coreference: acceptable/unacceptable
(iv) overt resumptive pronoun in FR of embedded subject:

acceptable/unacceptable
(v) overt resumptive pronoun in FR of embedded object:

acceptable/unacceptable
(vi) parasitic gaps in FR: licensed/not licensed
(vii) strong crossover effects: present/absent

5 The use and interpretation of statistics carried out on grammaticality scales is not

without its difficulties. Lack of space precludes any serious discussion here, but Schütze
(1996), Cowart (1997), Keller (2000) and Gervain (2002) give ample treatment to the
subject. One consideration is noteworthy here. The use of parametric statistics means that
judgments are interpreted not only as absolute values, which is the general practice in
(non-experimental) syntactic research, but also as relative ones.

Judit Gervain

109

(viii) weak crossover effects: present/absent
(ix) coordination of resumptive pronoun: with null pronoun/with overt

pronoun
Factor (i) served as the criterion for inclusion; all subjects rejecting subject FR

via resumption were automatically excluded from all further analysis. As
discussed above, parasitic gap licensing and crossover phenomena have been
proposed as diagnostics to distinguish between gaps and pronouns. As crossover
phenomena are more readily testable with wh-movement than with other types of
displacement, wh-raising (whR) constructions, rather than FR, were used in
crossover sentences. This should introduce no confound in the test, given the fact
that whR and FR are both instantiations of the more general phenomenon of
operator-raising6. However, to exclude all potential biases, additional sentence
types were constructed to serve as controls for (vii)-(viii) above.

(viic) whR from embedded subject position: acceptable/ unacceptable
(viiic) anaphor binding between raised subject and reflexive pronoun in the

embedded object position: acceptable/ unacceptable
To avoid lexical biases and to enable the statistical treatment of judgments,

each sentence type was instantiated by three sentence tokens. Thus, for example,
(i) is represented by (7a-c).

(7) a KÉT FIÚT mondtál, hogy jönnek.
two boy.sg.acc say.past.2s that come.3p
“You said that two boys were coming.”

b NÉGY LÁNYT mondtál, hogy táncoltak.
four girl.sg.acc say.past.2s that dance.past.3p
“You said that four girls had danced.”

c HÁROM DIÁKOT hiszel, hogy feleltek.
three student.sg.acc believe.2s that reply.past.3p
“You believed that three students were interrogated.”

Since plural verbal agreement with két fiút type NPs is a telltale sign of FR via
resumption, sentences with raised subjects were construed with plural embedded
verbs. In addition, for sentence types (vii), (viii), (viic) and (viiic), singular
variants were also included. This adds up to 48 test and control sentences.
Furthermore, habituation and repetition effects were counterbalanced by the
insertion of 15 grammatical and ungrammatical filler sentences. These were

6 In early treatments (e.g. Marácz 1987, É. Kiss 1987), the two kinds of opertaror-

raising receive identical treatment. Moreover, Bródy (1995) argues for an essential
underlying similarity between focus and questions in Hungarian. Recently, however the
similarity between whR and FR has been challenged by Lipták (1998). Nevertheless,
even if Lipták (1998) is right, the differences are very subtle and do not concern the
properties under investigation in this study. For empirical confirmation of the similarity,
see the current results.

Resumptive Elements: Pronouns or Variables?

110

never included in the data used for the statistical analyses. The complete survey
thus contained 63 sentences.

Subjects. Twenty-two informants participated in the survey. Four of them
rejected FRR completely (i.e. assigned a grammaticality value lower than 0 to at
least two of the test sentences used as inclusion criteria (7), therefore they were
excluded from the statistical analyses.

Procedure. A paper-and-pencil questionnaire was administered to informants
through electronic mail or physically. Informants were given detailed instructions
and examples. Subjects were asked to evaluate the sentences on a five-grade
scale (from –2 to +2), ranging from totally unacceptable (-2) through three
intermediate levels (-1, 0, 1) to fully acceptable (+2). The five-grade scale was
adopted in order to allow comparison, as it is one of the most commonly used
ratings and was also employed in Gervain (2002).

Results. First a baseline of comparison had to be established, i.e. the
grammaticality of pure FRR had to be calculated. The mean grammaticality
values of subject FRR were 1.167, 1.278 and –.5567, their average being .630.
Object FRR (values 1.056, –.222, 1.611) had an average of .815. A t-test showed
no statistical difference between the two means (t(17)=.777, ns.), absolute
grammaticality values were also very similar. Secondly, the availability of overt
resumptive pronouns had to be evaluated. The means for overt subject
resumptives were –1.056, 0.000 and –.278 for the individual sentences, with an
overall average of –.444. Overt object resumptives obtained mean grammaticality
values –1.056, –1.389 and –1.556, the overall average was –1.333. A repeated
measures analysis of variance (ANOVA) was carried out with the factors
Overtness (null vs. overt pronoun) and Constituent Type (subject vs. object).
Constituent Type, just like in the previous t-test, had no significant main effect
(F(1, 17)=3.610, ns.), whereas Overtness did (F(1,17)=78.555, p< .0001). In
addition, the Constituent Type × Overtness interaction was also very significant
(F(1,68)=16.980, p<.001). Results thus show that FRR resists overt resumptives.

Secondly, diagnostic sentences were examined in comparison to the
established baselines. Test sentences combining parasitic gaps with object FR
obtained sentence means of .167, -.556 and .444, with an average of .019. This
was compared to object FRR in a t-test, which revealed a significant difference
(t(17)=–3.690, p<.05). Nevertheless, note that the average grammaticailty of
parasitic gap + object FRR sentences is still within the positive range of the –2 to
+2 scale. Parasitic gaps do worsen grammaticality, but do not induce severe
violations. These results are not decisive. Further evidence could be gained from

7 The grammaticality of sentence 11 is considerably lower than that of the other two
subject FRR sentences. A possible explanation, also suggested by previous data (Gervain
2002) is that the verb hisz „to believe” is not clearly a bridge verb in Hungarian. This
case nicely shows the advantages of the experimental procedure. A lexical bias is
compensated for by other, non-biased lexicalisations.

Judit Gervain

111

a comparison with simple parasitic gap constructions, i.e. those not containing an
additional resumptive dependency.

Co-ordination with traces was designed as a second diagnostic tool. This
measure, however, crucially depends on the availability of overt resumptives,
which turned out not to be the case in Hungarian. Therefore, the analysis of this
diagnostic test will not be further pursued.

Several instanciations of cross-over effects were also tested8. Strong cross-
over (SCO) was lexicalized both with singular and plural embedded verbs (the
latter being an overt sign of the presence of resumptives). The means of the
singular sentences were –1.500, –1.500 and –1.500, those of the plurals were –
1.722, –1.333 and –1.000 respectively. The overall means were –1.500 for
singular, –1.352 for plural sentences. There was no significant difference
between the grammaticality of the two types (t(17)=–1.512, ns.). The absolute
values were very low, implying that SCO sentences are quite marginal, as
expected. Weak-cross over (WCO) effects, on the other hand, appear to be finer
diagnostic tools (Bissell 1999; Ruys 2000). Like SCO, these constructions were
also lexicalized both with singular and plural morphology, but the relevant site of
agreement is not the embedded verb, but the possessive suffix of the embedded
subject DP9. The means of the sentences were .560, .278, .556 and –.500, –.333,
–.167, with averages .296 and –.333. Controls for WCO were whR sentences in
which the wh-constituent was in the subject, rather than the object position of the
embedded clause, hence no crossover could obtain. Both singular and plural were
tested. The means for the individual sentences were 1.222, 1.500, 1.444 and
1.000, 1.333, 1.222. The overall averages are 1.315 and 1.185. A t-test showed
no difference between the two types (t(17)=1.236, ns.). To compare WCO
sentences to their controls, a repeated measures ANOVA was performed with
factors Crossover (WCO vs. control) and Number (singular vs. plural). The factor
Crossover had a highly significant main effect (F(1,17)=47.361, p<.0001),
indicating that WCO sentences are less grammatical than controls. The main
effect of Number was also significant (F(1,17)=8.286, p<.05). There was no two-
way interaction between the factors (F(1,17)=3.180, ns.).

8 Several types of controls were introduced for cross-over sentences. Space

considerations prevent me from giving an appropriate description of these, but some
statistics will be mentioned where necessary.

9 An example sentence is:
(i) ???Hány férfiti gondolsz, hogy a feleség-ei/

how.many man.acc think.2s that the wife.poss3g
“How many men do you think his/their wife loves?”
feleség-üki szeret ti?
wife.poss3p love.3s

Resumptive Elements: Pronouns or Variables?

112

To sum up new results, the presence of crossover effects shows a variable-like
behavior, while the marginality of the parasitic gap test points in the other
direction.

Discussion. The present results attest to an ambiguity in the syntactic behavior
of resumptives. Some previous evidence is worth evoking here that also shows
the same ambiguity. Empirical results in Gervain (2002) suggest that the
resumptive dependency is grammatical with a quantified DP antecedent, even
through islands. This is indicative of a variable-like nature, at least at LF. On the
other hand, reciprocals in the embedded object position improve or even force
plural agreement (which is not the case in simple clauses, where agreement is
strictly singular). This property goes in the direction of the pronoun hypothesis.
An antecedent that is made contextually more salient is easier to establish
coreference with. The most general conclusion on the basis of these results is that
resumptives have both trace-like properties, for instance crossover effects and
(possibly) parasitic gaps licensing, while they also exhibit traits characteristic of
pronouns, e.g. they appear in islands and are sensitive to contextual salience.
Therefore, I conclude, in accordance with Sharvit (1999) and Falk (2002), that
resumptives are ambiguous in nature between traces and pronouns.

4 Towards a syntactic analysis

Some previous accounts, such as Sharvit (1999) and Falk (2002) do acknowledge
the two-faceted nature of resumptives. However, they propose solutions, in
which the ambiguity results from a tension between syntactic constraints and
other considerations, e.g. semantic or processings (e.g. Falk 2002). Without
denying the need for a complex, multilevel account (for some discussion, see
section 5), I argue that the ambiguity of resumptives has to be captured on a
syntactic level, as well. I propose that resumptives, at least in the examined FR
context, are best analyzed as instances of vehicle change.

Vehicle change, as defined by Fiengo and May (1994) and Safir (1999), is a
mechanism that allows copies/traces of names to be treated as pronouns by
interpretive principles. It was originally proposed to explain the lack of Principle
C effects in certain elliptic constructions (8).

(8) a ???Lara loves Soli and hei thinks that Sally loves Soli too.
b Lara loves Soli and hei thinks that Sally does too.

Sentence (8a) violates Principle C on the reading that the indices define,
because the second occurrence of Sol is not free. However, the same does not
hold for the elliptic counterpart (8b). Fiengo and May (1994) argue that the first
instance of Sol is not copied identically into its trace in the second VP. Rather,
the trace changes into identically into its trace in the second VP. Rather, the trace
changes into a pronominal element for purposes (and mechanisms) of
interpretation, e.g. binding.

Judit Gervain

113

I claim that the same mechanism applies to FR in Hungarian. The resumptive
pronoun behaves like a variable in many respects, e.g. crossover or parasitic
gaps, but it can be treated as a pronoun for interpretive purposes, for instance
when there is a contextually salient antecedent that facilitates coreference. A
clear objection that can be made at this point is that vehicle change was proposed
for names, i.e. non-quantificational DPs, while Hungarian FR is grammatical
with quantified DPs as antecedents. The reason for this, I believe, has to do with
the fact that resumptives in FR are linked with quantified DPs that are focused.
Focus obviously comes with strong discursive/contextual relevance, and creates a
set of possible interpretations. Thus I claim that focused quantifiers lose their real
quantificational force, and behave like ordinary, non-quantified DPs. This is
illustrated in (9).

(9) a *MINDEN LÁNY jött el.
 every girl.sg.nom come.past.3s PART
“It was every girl that came.”

b SOK LÁNY jött el,
many girl.sg.nom come.past.3s PART
“It was many girls that came (not a few/a few boys).”
(nem KEVÉS/ KEVÉS FIÚ)
not few/ few boy

As (9a) shows, when there is nothing to contrast with the focused quantifier,
the result is ungrammatical. When some contrastive interpretation is possible, the
sentences is ruled in. Without a more elaborate theory of the semantics of focus,
strong conclusions might appear far-fetched, but (9) suggests that when in focus,
quantifiers suspend their usual function of quantifying over NPs, rather they
denote contrastable elements with a set, for instance many girls as opposed to just
a few girls, no girls or some boys (within the contextually relevant group of boys
and girls). In this situation, quantified DPs are not different from ordinary ones,
thus vehicle change is allowed to apply. Note how this approach parallels
Sharvit’s (1999) two constraints on resumptives, but offers a syntactic account at
the same time. Focus provides a contextually salient antecedent, which can be
further reinforced by other coreferent pronouns, e.g. a reciprocal. When in focus,
quantified DPs act like ordinary ones, which makes them possible referents for
the free counterpart of the pronoun, in other words, the difference between két fiú
and az összes fiú is minimized.

Safir (1999) also raises the possibility that vehicle change is responsible for
resumptives, and hypothesizes that restrictions on the type of the antecedent
might be relaxed in resumptive contexts, as opposed to ellipsis and
reconstructions. However, in the absence of empirical evidence, he elaborates the
claim no further. I assume that the Hungarian data presented in this work offers
exactly this evidence. Furthermore, restrictions do not need to be relaxed in an ad

Resumptive Elements: Pronouns or Variables?

114

hoc, thus unattractive way. The interaction of quantifiers and focus takes care of
this issue.

A prediction of my proposal is that resumptives should not be able to link to
their antecedents when those are quantified and nothing intervenes to modify
their interpretation. This prediction seems to be borne out, for instance in
Lebanese Arabic, where resumptives cannot be construed with QPs in certain
contexts (see Aoun et al. 2001 for the data, although the account they give is
different; see also Sharvit (1999) and Falk (2002) on some relevant Hebrew
data).

In sum, it has been proposed that the syntactic duality of resumptives can be
explained if we assume that they are mediated by vehicle change. The otherwise
variable-like resumptives are seen as pronouns by interpretive mechanisms. To
answer the original question left open in Gervain (2002), the two options that
were put forward to describe the resumptive dependency do not represent an
either/or choice. Rather, the mixed kind of chain (coindexation and coreference)
is „seen” by interpretive mechanisms, while the „coindexation only” chain
applied in the rest of the syntax.

5 Conclusion and perspectives

A proposal has been put forth claiming that the syntactic ambiguity of
resumptives is best explained as a case of vehicle change. This account makes
special reference to interpretive mechanisms. As mentioned earlier, this is not the
only analysis of resumptives that links their syntactic properties to semantic
(Sharvit 1999), pragmatic (Erteschik-Shir 1992) or even parsing (Falk 2002)
considerations.

The questions that need to be addressed on these levels of description are
somewhat similar to the one formulated in syntax above. What is the semantic
type of resumptives? Are they bound variables or rather pronouns that refer to
individuals (e-type entities)? If resumptives play a role in parsing, as some
experimental results suggest (Alexopoulou and Keller 2002), what is the
interaction between their syntax, semantics and psychology? In more general
terms, what level of language is responsible for resumptives: is it possible that
they constitute an „intrusion” into the autonomy of syntax?

Judit Gervain

115

References

Alexopoulou, T. and F. Keller. 2002. Resumption and locality. Papers from

the 38th Meeting of the Chicago Linguistic Society, Vol. 1: The Main
Session. Chicago.

Aoun, J., L. Chouieri, N. Hornstein. 2001. Resumption, Movement, and
Derivational Economy. Linguistic Inquiry 32: 3.

Bissell, T. 1999. Further Evidence for Null Pronominal Variables.
Unpublished MA Thesis. University of California at Santa Cruz.
Downloadable at http://www.mit.edu/~bissell/NullPro.pdf

Bródy, M. 1995. Focus and checking theory. In Levels and Structures
(Approaches to Hungarian 5.) edited by I. Kenesei. Szeged:
JATEPress.

Chomsky, N. 1981. Lectures on Government and Binding. Dordrecht: Foris.
Chomsky, N. 1982. Some Concepts and Consequences of the Theory of

Government and Binding. (Linguistic Inquiry Monographs 6.)
Cambridge, MA.: The MIT Press.

Cowart, W. 1997. Experimental Syntax: Applying Objective Methods to
Sentence Judgments. Thousand Oaks: Sage Publications.

Demirdache, H. 1991. Resumptive chains in restrictive relatives, appositives
and dislocation structures. Doctoral dissertation. MIT.

É. Kiss, K. 1987. Configurationality in Hungarian. Budapest: Akadémiai
Kiadó.

Engdahl, E. 1985. Parasitic gaps, resumptive pronouns, and subject
extractions. Linguistics 23: 3-44.

Erteschik-Shir, N. 1992. Resumptive Pronouns in Islands. In Island
Constraints edited by H. Goodluck. and M. Rochemont, 89-108.
Dordrecht: Kluwer.

Español-Echevarría, M., A. Ralli. 2000. Case mismatches in Greek: Evidence
for the autonomy of Morphology. Acta Linguistica Hungarica 47(1-4):
179-203.

Falk, Y. 2002. Resumptive Pronouns in LFG. In Proceedings of the LFG 02
Conference edited by M. Butt and T. Holloway King, 154-173. On-line
publication at http://.cslipublications.standord.edu/LFG/7/lfg02.html

Gervain, J. forthcoming. Syntactic microvariation and methodology. Acta
Linguistica Hungarica.

Gervain, J. 2002. Linguistic Methodology and Microvariation in Language.
MAThesis. University of Szeged.

Horvath, J. 1995. Partial Wh-Movement and Wh ‘Scope-Markers’. In Levels
and Structures (Approaches to Hungarian 5.) edited by I. Kenesei, 89-
124. Szeged: JATEPress.

Resumptive Elements: Pronouns or Variables?

116

Horvath, J. 1998. Multiple wh-pharses and the wh-scope-marker strategy in
Hungarian Interrogatives. Acta Linguistica Hungarica 45(1-2): 31-60.

Keller, F. 2000. Gradience in Grammar. Ph.D. dissertation. University of
Edinburgh, Edinburgh.

Kenesei, I. 1994. Subordinate Clause. In The Syntactic Structure of
Hungarian. Syntax and Semantics 27, edited by F. Kiefer and K. E.
Kiss, 275-354. New York: Academic Press.

Lipták, A. 1998. A magyar fókuszemelések egy minimalista elemzése. In
Proceedings of “A mai magyar nyelv leírásának újabb módszerei III.”
L. Büky, M. Maleczki M., 93-115. Szeged: JATEPress.

Longobardi, G. 2001. NP structure. In The Handbook of Current Syntactic
Theory edited by Ch. Collins and M. Baltin. Cambridge, Mass.: MIT
Press.

Marácz, L. 1987. Wh-strategies in Hungarian: data and theory. In Logic and
Language edited by I. Ruzsa and A. Szabolcsi. Budapest: ELTE.

McCloskey, J. 2001. The morphosyntax of wh-extraction in Irish. Journal of
Linguistics 37: 67-100.

McDaniel, D., W. Cowart. 1999. Experimental evidence for a minimalist
account of English resumptive pronouns. Cognition 70: B15-B24.

Montalbetti, M. 1984. After binding. Doctoral Dissertation. MIT.
Ruys, E.G. 2000. Weak Crossover as a Scope Phenomenon. Linguistic Inquiry

31(3): 513-539.
Safir, K. 1999. Vehicle Change and Reconstruction in A’-Chains. Linguistic

Inquiry 30(4): 587-620.
Schütze, C. 1996. The empirical base of linguistics. Grammaticality

judgments and linguistic methodology. Chicago: Chicago University
Press.

Sharvit, Y. 1999. Resumptive Pronouns in Relative Clauses. Natural
Language and Linguistic Theory 17: 587-612.

Shlonsky, U. 1992. Resumptive Pronouns as a Last Resort. Linguistic Inquiry
23(3): 443-468.

Suñer, M. 1998. Resumptive restrictive relatives: A cross-linguistic
perspective. Language 74(2): 335-364.

Vailette, N. 2002. Irish gaps and resumptive pronouns in HPSG. In
Proceedings of the 8th International HPSG Conference edited by F.
van Eynde et al., 284-299. On-line publication:
http://cslipublications.stanford.edu

Willis, D. 2000. On the distribution of resumptive pronouns and wh-traces in
Welsh. Journal of Linguistics 36: 531-573.

Zaenen, A., E. Engdahl, J. Maling. 1981. Resumptive Pronouns can be
syntactically bound. Linguistic Inquiry 12(4): 679-682.

Formalized Interpretability in Primitive

Recursive Arithmetic

Joost J. Joosten
Department of Philosophy, University of Utrecht,

Heidelberglaan 8, 3584CS Utrecht, The Netherlands

http://www.phil.uu.nl/∼jjoosten/

jjoosten@phil.uu.nl

Abstract. Interpretations are a natural tool in comparing the strength of two
theories. In this paper we give a brief introduction to the topic of interpretability
and interpretability logics. We will focus on the, so far, unknown interpretability
logic of PRA. One research technique will be treated. This technique can be best
described as restricting the realizations in the arithmetical semantics.

1 What are interpretations and why study them?

How to interpret “Eli, Eli, lama sabachtani”? Let us consider the concept
of interpretation in the previous phrase1. What does it actually mean to
interpret something. Or more specifically, what do we mean when we say
that T interprets some utterance ϕ of S? Well, in this case T can first
translate ϕ to its own language, then place it in an adequate context and
then somehow make sense of it.

The mathematical notion of interpretation is somewhat similar. We
say that a theory T interprets another theory S whenever there is some
translation such that all translated theorems of S become provable in T .
We give a precise definition. Throughout this paper we will stay in the
realm of first-order logic.

Definition 1 K is a relative interpretation of a theory S into a theory T ,
we write K : T � S, whenever the following holds. K is a pair 〈δ, F 〉. The
first component, δ, is a formula in the language of T with a single free
variable. This formula is used to specify the domain of our interpretation
in a sense that we will see right now. The second component, F , is an

1“Eli, Eli, lama sabachtani” were Jesus’ last words. Some scholars translate this to
“My God, my God, why hast thou forsaken me?”. Others read it as “My God, my God,
how thou dost glorify me!”.

Proceedings of the Eighth ESSLLI Student Session
Balder ten Cate (editor)
Chapter 11, Copyright c© 2003, Joost J. Joosten

117

Formalized Interpretability in Primitive Recursive Arithmetic

easy (primitive recursive) map that sends formulas ψ in the language of
S, to formulas F (ψ) in the language of T . We demand for all ψ that the
free variables of ψ and F (ψ) are the same. The map F should commute
with the boolean connectives, like F (α ∧ β) = F (α) ∧ F (β). Moreover F
should relativize the quantifiers to our domain specifier δ. Thus, for example
F (∀x α) = ∀x (δ(x) → F (α)).

We think this notion of interpretation is a natural one and comes close
to our every day use of the concept of interpretation. And indeed it is a
natural tool in comparing the the proof strength of two theories.

A first guess to say what it means that some theory T is at least as
strong as some other theory S could be the following. Whenever S sees the
truth of a formula ψ, T should also be able to see the truth of ψ. But, S and
T might speak different languages. This is where the idea of a translation
comes in.

Of course the translation should preserve some structure. Also it seems
unreasonable that T should have the same domain of discourse as S. Tak-
ing these considerations into account it comes quite natural to say that T
is at least as strong as S whenever T interprets S in the sense of Definition 1.

In the mathematical and metamathematical literature the here defined
notion of interpretation turns up time and again. Perhaps the most famous
example is in the proof of the consistency of non-euclidean geometry. In
this proof (see for example [Gre96]) a model for non-euclidean geometry is
built in a uniform way inside a model for euclidean geometry. Of course
we somehow “know” that euclidean geometry is consistent. This uniform
model construction is really nothing but an interpretation.

Tarski, Mostowski and Robinson first studied interpretations as a (meta)
mathematical tool in a systematic way in [TMR53]. They also used inter-
pretations to determine the undecidability of certain theories. It is not hard
to convince oneself that some consistent theory T is undecidable whenever
T interprets some essentially undecidable theory S. We say that S is essen-
tially undecidable if S is undecidable and every consistent extension of T in
the same language is also undecidable.

2 Formalized interpretability

In the previous section we have introduced the mathematical notion of inter-
pretability. We have given some arguments to plea that it is a natural and
interesting notion to consider. In this section we will add one more argu-
ment to our list. We will see that theories can in a certain way speak about
interpretations. This insight will provide us with a simple yet expressive for-
malism in which large parts of metamathematical practise are expressible.

118

Joost J. Joosten

Amongst these are the Model Existence lemma as used in Gödel’s Complete-
ness theorem, Gödel’s Second Incompleteness theorem, but also the method
of relative consistency using interpretations.

Ever since Gödel we know that in theories of some minimal strength we
can code syntax and syntactical notions like provability. We write �Tϕ for
the very long statement that codes the fact that the sentence ϕ is provable
in the theory T . As usual we denote ¬�¬ϕ by �ϕ. Once we realize that
the notion of provability can be coded in a theory, it does not come as a
surprise that we can do the same for interpretability.

For, what does it mean that S is interpretable in T ? This means that
there is a primitive recursive translation such that all translated theorems of
S are provable in T . With some sloppy notation this can be written down as
∃j ∀x (�Sx→ �Tx

j). Indeed, it turns out that the notion of interpretability
can be expressed by a Σ3-sentence.2 We will denote the formalized statement
of T interprets S by T � S.

In this paper we will, for reasons that will become clear below, be mainly
interested in interpretability relations between theories that are both finite
extensions of some base theory T . Thus, we are interested in statements of
the form (T +α)� (T +β) which we will abbreviate with α�T β. When the
base theory T is clear from the context we will even omit sometimes the T
in �T and in �T .

After having introduced this notation we see that many interesting prop-
erties can be expressed. For example (i) : α�β → (�α→ �β). The formula
(i) expresses that T + β is consistent whenever it is interpretable in a con-
sistent theory T + α. We would like to say that (i) actually holds for any
choice of α and β. One way of doing so is by working with arithmetical
realizations and modal logics.

Definition 2 By FormIL we denote the set of formulas in the modal lan-
guage of interpretability logic. This is the smallest set containing ⊥, �, a
countable infinite set of propositional variables and being closed under the
boolean connectives, a unary modal operator � and a binary modal operator
�. The � will be an abbreviation for ¬�¬.

Definition 3 An arithmetical realization (relative to a theory T) is a map
(·)∗ that sends any propositional variable p to some arithmetical sentence
p∗. This map is extended to FormIL by stipulating that it commutes with
the boolean connectives and demanding that (�A)∗ = �TA

∗ and that (A �

B)∗ = A∗ �T B
∗. An interpretability principle of a theory T is a formula

in FormIL that is provable in T under any arithmetical realization. By the
interpretability logic of T we mean the set of all interpretability principles
of T or some system generating this set. We write IL(T).

2A Σ3-sentence is one that starts with a sequence of an existential- then universal- and
then again existential quantifier to be followed by some formula only containing bounded
quantification.

119

Formalized Interpretability in Primitive Recursive Arithmetic

Note that by � we might now denote either the modal operator or the
formalized notion of interpretability. We are confident however that this
will not cause any confusion. Also note that the interpretability logic of a
theory is the interpretability behaviour of that theory as seen by itself.

The modal language we have just introduced is rather expressive. Gödel’s
Second Incompleteness theorem can be written down as �� → ¬���.
Some reflection learns us that �� → ¬(����) can be seen as a generalized
version of Gödel’s Second Incompleteness theorem; Under the assumption
of the consistency, the consistency itself is not only just not provable, but
not even interpretable!

An interpretation of S in T provides in an obvious way a uniform pro-
cedure to define a model of S within any model of T . Thus, the formula
�A�A expresses in a certain sense the Model Existence lemma; whenever
A is consistent in T , we can make a model of T +A.

Now consider a theory T . What is the modal characterization of its
interpretability logic? For two classes of theories the answer to this question
is known. If T is finitely axiomatizable IL(T) is known to be ILP as defined
below. If T is essentially reflexive3 IL(T) is also known. It is ILM, which is
defined below. (See for an overview of these results [Vis97].)

We now present a logic IL that generates interpretability formulas that
are interpretability principles for any reasonable theory. The logic IL is the
smallest set of formulas in FormIL that is closed under the necessitation rule
A/�A and under Modus Ponens that contains all propositional tautologies
and all instantiations of the following axiom schemata.

L1 : �(C → D) → (�C → �D)
L2 : �A→ ��A
L3 : �(�A→ A) → �A
J1 : �(C → D) → C �D
J2 : (C �D) ∧ (D � E) → C � E
J3 : (C � E) ∧ (D � E) → C ∨D � E
J4 : C �D → (�C → �D)
J5 : �A�A

The logic that arises from only the provability schemes L1-L3 is often
called GL after Gödel and Löb. In this logic we have only formulas which
are built up using the � modality. We call this class of formulas FormGL.

Two other prominent principles are M : A � B → A ∧ �C � B ∧ �C
and P : A� B → �(A � B). The logic that arises by adding more axiom
schemes to IL is denoted by IL with the names of the principles postfixed
to it.

3A theory is reflexive if it proves the consistence of any finitely axiomatized subtheory.
It is essentially reflexive if all its finite extensions are reflexive.

120

Joost J. Joosten

For no theory T that is neither finitely axiomatizable nor essentially
reflexive, IL(T) is known. PRA is such a theory.

3 What is PRA?

Primitive Recursive Arithmetic, we will write PRA, is a theory that has been
studied extensively in the literature. We can think of PRA as the theory
with minimal strength that can do basic reasoning about primitive recursion.
In a rudimentary form PRA was first introduced by Skolem in 1923. (See
for a translation [Sko67].) The emergence of PRA is best understood in the
light of Hilbert’s programme and finitism (see [Tai81]).

The precise formulation is not very much to our interest in this paper
but the reader may think of it as I∆0 (see for example [HP93]) together with
the Σ1 induction rule. The latter allows one to conclude ∀x σ(x) from σ(0)
and ∀x (σ(x) → σ(x+ 1)) whenever σ is a Σ1-formula.

It is well known that PRA is a reflexive theory but not essentially re-
flexive. However, any extension of PRA by Σ2-sentences is reflexive (see
[Bek97]). This important feature of PRA is reflected in our treatise of a
lowerbound of IL(PRA). It is worth noting that we use no specific proper-
ties of PRA in providing an upperbound for IL(PRA) and indeed our results
hold for a large class of theories.

4 A specific research tool: restricting the possible

arithmetical realizations.

As we mentioned before, it is unknown what is IL(PRA). In this situation
lower and upper bounds are already quite informative. This section makes
some comments on these bounds. Also we shall reflect a bit on one technique
that is used in determining upperbounds.

A lowerbound PRA certainly is a reasonable theory according to [JV00].
From [JV00] we thus get for free that ILM0P0W ⊆ IL(PRA). With these
letters we refer to the corresponding schemata:

M0 : A�B → �A ∧ �C �B ∧ �C
P0 : A� �B → �(A�B)
W : A�B → A�B ∧ �¬A

In [Joo03] two more interpretability principles of PRA are formulated.

B : A�B → A ∧ �C �B ∧ �C
Z : (A�B) ∧ (B �A) → A�A ∧B

121

Formalized Interpretability in Primitive Recursive Arithmetic

In B we require that A be an ES2 (essentially Σ2) formula. In Z we require
that both A and B be ED2 (essentially ∆2) formulas. These two classes of
formulas are defined as follows.

ES2 := �FormIL | ¬�FormIL | ES2 ∧ ES2 | ES2 ∨ ES2 | ¬(ES2 � FormIL)
ED2 := �FormIL | ¬ED2 | ED2 ∧ ED2 | ED2 ∨ ED2

Consequently ILBM0P0WZ is also a lowerbound for IL(PRA).

An upperbound In our Definition 3 we defined IL(T) to be the set of all
interpretability principles of T . An interpretability principle of T is a modal
formula in FormIL that is provable in T under any arithmetical realization.

Let Sub(Γ) be the set of realizations that take their values in Γ. We
define the Γ-interpretability logic of T to be set of all formulas in FormIL

that are provable in T under any realization in Sub(Γ). We denote this logic
by ILΓ(T). Clearly we have that IL∆(T) ⊆ ILΓ(T) whenever Γ ⊆ ∆. This
observation can be used to obtain a rough upperbound for IL(PRA). In
order to do so, we first calculate the Γ-provability logic of PRA for a specific
Γ. This is defined completely analogously to its interpretability variant and
is denoted by PLΓ(PRA).

First we define the set B of arithmetical sentences as follows.

B := ⊥ | � | �(B) | �(B) | B → B | B ∨ B | B ∧ B

Definition 4 The logic RGL is obtained by adding the linearity axiom
schema �(�A → B) ∨ �(�B → A) to GL. Here �B is an abbreviation of
B ∧ �B.

The logic RGL (the R stands for restricted) has been considered before
in the literature. It is the system J in Chapter 13 of Boolos’ book [Boo93].
Ever since Solovay (see [Sol76]) we know that GL is the provability logic of
any strong enough theory and certainly for PRA.

In the proof below we will make use of the standard modal semantics
for GL. A GL-frame F is a pair 〈W,R〉 where W is a finite non-empty
set of worlds and R is a transitive conversely well-founded relation on it. A
GL-model is a triple 〈W,R,�〉. Here � is a relation on W×FormGL such
that for all m∈M the set {A∈FormGL | m � A} is a maximal GL-consistent
one. Moreover we demand m � �A ⇔ ∀n (mRn → n � A). We write
M |= A and say that A holds on M if for all m∈M we have m � A. For F a
frame we write F |= A if A holds on any model that has F as its underlying
frame. It is well known that GL
 A if and only if A holds on all finite
transitive and conversely well-founded models.

Theorem 5 PLB(PRA) = RGL

122

Joost J. Joosten

Proof of Theorem 5. Let Ln be the linear frame with n elements. For
convenience we call the bottom world n−1 and the top world 0. It is well
known that RGL
 A ⇔ ∀n (Ln |= A). Our proof will thus consist of
showing that ∀ ∗ ∈Sub(B) PRA
 A∗ ⇔ ∀n (Ln |= A).

For the ⇐ direction we assume that ∃ ∗ ∈Sub(B) PRA � A∗ and show
that for some m∈ω, Lm �|= A. So, fix a ∗ for which PRA � A∗. The
arithmetical formula A∗ can be seen as a formula in the closed fragment
of GL. By the completeness of GL we can find a GL model such that
M,x � ¬A∗. By ρ(y) we denote the rank of y, that is, the length of the
longest R-chain that starts in y. Let ρ(x) = n. As the valuation of ¬A∗ at x
solely depends on the rank of x (see for example [Boo93], Chapter 7, Lemma
3), we see that Ln+1, n � ¬A∗ for every possible valuation on Ln+1 (we also
denote this by Ln+1, n |= ¬A∗). We define Ln+1,m � p⇔ Ln+1,m |= p∗. It
is clear that Ln+1, n � ¬A.

For the ⇒ direction we fix some n∈ω such that Ln �|= A and construct a
∗ in Sub(B) such that PRA � A∗. Let Ln be a model with domain Ln such
that Ln, n−1 � ¬A. Instead of applying the Solovay construction we can
assign to each world m the arithmetical sentence

ϕm := �m+1
PRA⊥ ∧ �m

PRA�.

(We define �0
PRA⊥:=⊥ and �n+1

PRA⊥:=�PRA(�n
PRA⊥). From now on we will

omit the subscript PRA.) It is easy to see that

1. PRA
 ϕl → ¬ϕm if l �= m,

2. PRA
 ϕl → �(
∨∨

m<l ϕm),

3. PRA
 ϕl →
∧∧

m<l �ϕm.

We set p∗ :=
∨∨

Ln,m�p ϕm. Notice that ∗ is in Sub(B). Using 1, 2 and 3 we
can prove a truth lemma, that is, for all m

Ln,m � C ⇒ PRA
 ϕm → C∗ and
Ln,m �� C ⇒ PRA
 ϕm → ¬C∗.

By this truth-lemma, Ln, n − 1 � ¬A ⇒ PRA
 ϕn−1 → (¬A)∗ and conse-
quently PRA
 �ϕn−1 → ¬�A∗. Thus N |= �ϕn−1 → ¬�A∗. As ϕn−1 is
consistent with PRA we see that N |= �ϕn−1 whence N |= ¬�A∗ and thus
PRA � A∗. qed

Definition 6 The logic RIL is obtained by adding the linearity axiom schema
�(�A→ B) ∨ �(�B → A) to ILW.

Theorem 7 RIL = ILB(PRA)

123

Formalized Interpretability in Primitive Recursive Arithmetic

Proof of Theorem 7. We will expose a translation from formulas ϕ in
FormIL to formulas ϕtr in FormGL such that

RIL
 ϕ⇔ RGL
 ϕtr (∗)
and

RIL
 ϕ↔ ϕtr. (∗∗)

If we moreover know (∗∗∗) : RIL
 ϕ⇒ ∀ ∗ ∈Sub(B) PRA
 ϕ∗ we would
be done. For then we have by (∗∗) and (∗∗∗) that

∀ ∗ ∈Sub(B) PRA
 ϕ∗ ↔ (ϕtr)∗

and consequently

∀ ∗ ∈Sub(B) PRA
 ϕ∗ ⇔
∀ ∗ ∈Sub(B) PRA
 (ϕtr)∗ ⇔
RGL
 ϕtr ⇔
RIL
 ϕ.

We first see that (∗∗∗) holds. From our remarks concerning a lowerbound
of IL(PRA) we know that ILW ⊆ ILB(PRA). Thus it remains to show
that PRA
 �(�A∗ → B∗) ∨ �(�B∗ → A∗) for any formulas A and B in
FormIL and any ∗∈Sub(B). As any formula in the closed fragment of ILW is
equivalent to a formula in the closed fragment of GL (see [HŠ91]), Theorem
5 gives us that indeed the linearity axiom holds for the closed fragment of
GL.

Our translation will be the identity translation except for �. In that
case we define

(A�B)tr := �(Atr → (Btr ∨ �Btr)).

We first see that we have (∗∗). It is sufficient to show that RIL
 p�q →
�(p→ (q∨�q)). We reason in RIL. An instantiation of the linearity axiom
gives us �(�¬q → (¬p∨q))∨�((¬p∨q)∧�(¬p∨q) → ¬q). The first disjunct
immediately yields �(p → (q ∨ �q)).

In case of the second disjunct we get by propositional logic �(q → �(p∧
¬q)) and thus also �(q → �p). Now we assume p � q. By W we get
p � q ∧ �¬p. Together with �(q → �p), this gives us p � ⊥, that is �¬p.
Consequently we have �(p→ (q ∨ �q)).

We now prove (∗). By induction on RIL
 ϕ we see that RGL
 ϕtr.
All the specific interpretability axioms turn out to be provable under our
translation in GL. The only axioms where the �A → ��A axiom scheme
is really used is in J2 and J4. To prove the translation of W we also need L3.

If RGL
 ϕtr then certainly RIL
 ϕtr and by (∗∗), RIL
 ϕ.
qed

124

Joost J. Joosten

We thus see that RIL is an upperbound for IL(PRA). Using the trans-
lation from the proof of Theorem 7, it is not hard to see that both the
principles P and M are provable in RIL. Choosing larger Γ will generally
yield a smaller ILΓ(PRA) and thus a sharper upperbound.

Finally we remark that if RGL � ϕ, then ϕ is certainly not a provability
principle. But in this case we can find a counterexample with a “clear
(meta)mathematical” content.

I would like to thank Lev Beklemishev for many enligthening discussions
and for pointing out an error in an earlier version of this paper. Also I would
like to thank an anonymous reviewer who helped improving the readability
of this paper.

References

[Bek97] L.D. Beklemishev. Induction rules, reflection principles, and provably
recursive functions. Annals of Pure and Applied Logic, 85:193–242, 1997.

[Boo93] G. Boolos. The Logic of Provability. Cambridge University Press, Cam-
bridge, 1993.

[Gre96] M.J. Greenberg. Euclidean and Non-Euclidean Geometries, 3rd edition.
Freeman, 1996.

[HP93] P. Hájek and P. Pudlák. Metamathematics of First Order Arithmetic.
Springer-Verlag, Berlin, Heidelberg, New York, 1993.

[HŠ91] P. Hájek and V. Švejdar. A note on the normal form of closed formulas
of interpretability logic. Studia Logica, 50:25–38, 1991.

[Joo03] J.J. Joosten. The closed fragment of the interpretability logic of PRA
with a constant for IΣ1. Logic Group Preprint Series 128, University of
Utrecht, February 2003.

[JV00] J.J. Joosten and A. Visser. The interpretability logic of all reasonable
arithmetical theories. Erkenntnis, 53(1–2):3–26, 2000.

[Sko67] T. Skolem. The foundations of elementary arithmetic established by
means of the recursive mode of thought, without the use of apparent
variables ranging over infinite domains. In J. van Heijenoort, editor,
From Frege to Gödel, pages 302–333. iUniverse, Harvard, 1967.

[Sol76] R.M. Solovay. Provability interpretations of modal logic. Israel Journal
of Mathematics, 28:33–71, 1976.

[Tai81] W. Tait. Finitism. Journal of Philosophy, 78:524–546, 1981.

[TMR53] A. Tarski, A. Mostowski, and R. Robinson. Undecidable theories. North–
Holland, Amsterdam, 1953.

[Vis97] A. Visser. An overview of interpretability logic. In M. Kracht, M. de
Rijke, and H. Wansing, editors, Advances in modal logic ’96, pages 307–
359. CSLI Publications, Stanford, CA, 1997.

125

126

A Simple Semantics for Destructive

Updates

Ján Kľuka
Institute of Informatics, Comenius University, Mlynská dolina, 842 48 Bratislava, Slovakia

jan.kluka@fmph.uniba.sk

Abstract. Many algorithms intended to destructively update arrays can be
implemented in declarative programming languages by programs operating on lists.
These programs are easy to understand and prove, but possibly inefficient. We
sketch a semantic method ensuring that a suitably annotated program operating
on lists can be correctly transformed into an efficient program that destructively
updates arrays.

1 Introduction

Many algorithms on arrays can be presented in declarative languages in
terms of list constructions and concatenations. Such declarative programs
operating on lists are often simpler to understand and easier to prove than
naive translations of array algorithms to declarative programs that use array
indexing and updates. On the other hand, programs that use indexing are
easy to compile to a lower level code that actually indexes and destructively
updates arrays.

The note [Vod02] has suggested how to transform a declarative program
that operates on lists into one that uses array indexing and updates. In this
paper, we describe how a programmer should control the transformation
by annotating the program that operates on lists. Moreover, we outline a
method for ensuring correctness of the program resulting from the trans-
formation. The method is based on checking certain semantic properties
of an intermediate form of the original program. We use the algorithm of
quicksort partitioning as an example.

Various approaches to the problem of destructive updates in declara-
tive languages have been proposed. Static analysis enables the compiler
to turn some updates into destructive. It is based either on specialized
nonstandard semantics [Hud87, Blo94], or on purely syntactic properties of
programs [Sha99]. In other approaches, the programmer marks some up-
dates as destructive, and the program is then checked by typing [Wad90], or

Proceedings of the Eighth ESSLLI Student Session
Balder ten Cate (editor)
Chapter 12, Copyright c© 2003, Ján Kľuka

127

A Simple Semantics for Destructive Updates

abstract interpretation [Ode91]. Our approach lets the programmer anno-
tate the program in a way that does not interfere with syntax, and provides
semantic conditions in standard semantics necessary for the correctness of
desired destructive updates. For most programs, these conditions can be
proved automatically by a proof assistant. We define programs and express
their properties in the same language—Peano arithmetic—in the style of the
programming language and proof assistant CL [KV99, CL].

2 Two Declarative Implementations of Quicksort
Partitioning

2.1 Preliminaries: Pairs, Lists, and Clausal Definitions. All func-
tions and predicates in this paper are definable in Peano arithmetic as func-
tions and predicates over natural numbers. We use the pairing function
written in infix form as x, y to construct both lists and pairs. This function
is best thought of as the (cons x y) operation of Lisp. The pairing func-
tion is defined so that no pair equals the number 0, which thus serves as the
empty list (() in Lisp).

Throughout the paper, we use the singleton list function [x] which yields
the list x, 0 (an equivalent of Lisp’s (list x)), and the concatenation func-
tion x⊕y (analogous to (append x y) in Lisp) yielding a list of all elements
of x followed by all elements of y. We also use the predicate x ε y which holds
if x is an element of the list y. The modified subtraction x .− y, mentioned
in the next paragraph, equals x− y if x ≥ y, and 0 otherwise.

Functions and predicates are defined either explicitly (in which case the
definition is preceded by the symbol �PAx) or clausally. Clausal definitions
resemble the clausal definitions of Prolog. Unlike in Prolog, we define both
predicates and functions clausally in our language, which is why we strictly
demand the clauses to be mutually exclusive. We allow pattern matching
in both clause heads (within formal arguments) and clause bodies (pattern
matching may occur only on the right-hand side of an identity).

More information on clausal definitions and the pairing function can be
found in [KV99].

2.2 A Naive Declarative Partitioning Operating on an Array. In
Peano arithmetic, we can represent arrays as lists. If a is an array, let (a)i
denote its element at index i, and a[i↔ j] a new array which is just like a,
but with elements at indices i and j swapped. If our compiler can compile
these operations into actual indexing and destructive array updates, they
take constant time. Then we can define an efficient quicksort partitioning
function Partn as shown in Fig. 1.

Let a[i . . j) denote the segment of the array a between indices i (in-
cluding) and j (excluding). The function takes three arguments—an ar-

128

Ján Kľuka

Partn(a, l, u) = a, l .− 1 ← l = u

Partn(a, l, u) = Partn(a, l, u .− 1) ← l < u ∧ (a)u .−1 ≥ (a)l .−1

Partn(a, l, u) = a[l .− 1↔ l], l ← l < u ∧ (a)u .−1 < (a)l .−1 ∧ l + 1 = u

Partn(a, l, u) = Partn(a2, l + 1, u)← l < u ∧ (a)u .−1 < (a)l .−1 ∧ l + 1 < u ∧
a[l .− 1↔ l] = a1 ∧ a1[l .− 1↔ u .− 1] = a2

Figure 1: A naive declarative implementation of quicksort partitioning.

ray a and indices l, u—, partitions the segment a[l .− 1 . . u) according to the
pivot (a)l .−1, and returns a pair consisting of the modified array a1 and the
new position l1 of the pivot. Elements of the segment a[l .− 1 . . u) that are
less than the pivot are placed in a1[l .−1 . . l1), those greater than or equal to
the pivot are in a1[l1 + 1 . . u). This is expressed by the following property:

Partn(a, l, u) = a1, l1 ∧ 0 < l ∧ l ≤ u ∧ u ≤ L(a)→
a1 ∼ a ∧ l .− 1 ≤ l1 ∧ l1 < u ∧
a1[0 . . l .− 1) = a[0 . . l .− 1) ∧ a1[u . . L(a)) = a[u . . L(a)) ∧
∀x(x ε a1[l .− 1 . . l1)→ x < (a)l .−1) ∧ (a1)l1 = (a)l .−1 ∧
∀x(x ε a1[l1 + 1 . . u)→ x ≥ (a)l .−1)

where L(a) denotes the length of the array a, and a1 ∼ a is a predicate
expressing that a1 is a permutation of a. The property and consequently
its proof rely heavily on indexing and arithmetic which makes them rather
complicated. Besides, the property must contain explicit statement that
elements at indices below l .− 1 and above u remain unchanged.

2.3 An Inefficient Implementation Operating on Lists. If correct-
ness is our primary concern, we can define a partitioning function operating
on two lists r and x as shown in Fig. 2 (for the time being, ignore the ar-
rows). The list r represents the array segment containing only the pivot,
the list x represents the segment to be partitioned. The function Part yields
a triple consisting of a list of elements of x less than the pivot, a singleton
(atomic) list containing only the pivot, and a list of elements of x greater
than or equal to the pivot.

This function is quite inefficient—it performs pattern matching at the
end of its second argument and several list concatenations. On the other
hand, its main property

Part([p], x) = l, r, u→
[p]⊕ x ∼ l ⊕ r ⊕ u ∧ ∀v(v ε l→ v < p) ∧ r = [p] ∧ ∀v(v ε u→ v ≥ p)

129

A Simple Semantics for Destructive Updates

Part([p], 0) = 0, [p], 0
∧

Part([p], x⊕ [v]) = l, r, u1 ← v ≥ p ∧ Part([p], x) = l, r, u ∧ u⊕ [v] = u1
∧ ∧

Part([p], 0⊕ [v]) = [v], [p], 0 ← v < p
∧ ∧

Part([p], [w]⊕ x⊕ [v]) = l1, r, u← v < p ∧ Part([p], x⊕ [w]) = l, r, u ∧ [v]⊕ l = l1
∧ ∧ ∧

Figure 2: A partitioning function operating on lists.

is expressed in terms of operations on lists, and is considerably easier to
prove than the corresponding property of Partn.

In the following paragraphs, we shall sketch how, given some additional
information provided by the programmer, we can mechanically transform
this function into one that operates destructively on an array similarly
to Partn. We also outline how the correctness of the transformed function
is ensured.

2.4 Annotation and Additional Requirements. Annotations repre-
sent a programmer’s intention to place certain values at specific indices in
an array. We represent such an intention by an arrow leading from a pattern
matching of a singleton list to a construction of another singleton list. The
value used in the destination singleton is intended to be placed at the index
of the source singleton. The annotation of function Part displayed in Fig. 2
closely follows the pattern of indexing from the function Partn.

Apart from annotating the reuse of indices, the programmer should state
additional requirements for the transformation of the Part function:

1. Its two arguments are supposed to be adjacent segments of an input
array, and the members of the result triple are supposed to be adjacent
segments of an output array.

2. The arguments reside at the same indices of the input array as the
indices occupied by the members of the result triple in the output
array.

3. The input array is the same as the output array, which is thus updated
destructively.

130

Ján Kľuka

Lln(0)
Lln((v, �), w)← Lln(w)

[v]� = (v, �), 0

Labels(0) = 0
Labels((v, �), w) = �,Labels(w)

Unl(0) = 0
Unl((v, �), w) = v,Unl(w)

Lln(x ⊕ y)↔ Lln(x) ∧ Lln(y)

Unl([v]�) = [v]
Lln(x⊕ y)→ Unl(x ⊕ y) = Unl(x)⊕Unl(y)

Figure 3: Labeled lists.

Part�([p]�1 , 0) = 0, [p]�1, 0

Part�([p]�1 , x⊕ [v]�2) = l, r, u1 ← v ≥ p ∧ Part�([p]�1 , x) = l, r, u ∧
u⊕ [v]�2 = u1

Part�([p]�1 , 0⊕ [v]�2) = [v]�1 , [p]�2 , 0 ← v < p

Part�([p]�1 , [w]�3 ⊕ x⊕ [v]�2) = l1, r, u← v < p ∧ Part�([p]�3 , x⊕ [w]�2) = l, r, u ∧
[v]�1 ⊕ l = l1

Figure 4: The labeled version of the function Part .

3 From Lists to Destructively Updated Arrays

3.1 Labeled Lists. The intention to put a value at a certain index can
be expressed semantically in terms of labeled lists. A labeled list is a list
of pairs v, � where v is a value, and � is a label representing an array index
where the value resides.

The predicate Lln (cf. Fig. 3) is defined to hold for such lists. We
shall construct labeled lists by concatenation and the labeled-singleton func-
tion [v]�. We also define two projection functions: Labels yielding a list of
labels of a labeled list, and Unl yielding an unlabeled version of such a list,
i.e., its list of values.

3.2 Transforming a Function Operating on Lists to a Function
Operating on Labeled Lists. Given the annotated function, we now
mechanically construct a function operating on labeled lists such that it
manipulates the values of list elements just like the function Part , and ma-
nipulates their labels as prescribed by the annotation. We call the new
function Part �, or the labeled version of the function Part . Its clausal defi-
nition is shown in Fig. 4.

131

A Simple Semantics for Destructive Updates

�PAx x �⊥ y ↔ ∀p∀v1∀�1∀v2∀�2∀q(x = p⊕ [v1]�1 ∧ [v2]�2 ⊕ q = y → �1 + 1 = �2)

�PAx Vect(x)↔ ∀y∀z(y ⊕ z = x→ y �⊥ z)
�PAx x � y ↔ Lln(x) ∧ Lln(y) ∧ Labels(x) = Labels(y)

x � x

x � y → y � x

x � y ∧ y � z → x � z

x � y ↔ z ⊕ x � z ⊕ y
x � y ↔ x⊕ z � y ⊕ z
[v1]�1 � [v2]�2 ↔ �1 = �2

x �⊥ 0
0 �⊥ x

x � y → x �⊥ z ↔ y �⊥ z
x � y → z �⊥ x↔ z �⊥ y

Vect(x⊕ y)↔ Vect(x) ∧ Vect(y) ∧ x �⊥ y
x � y → Vect(x)↔ Vect(y)

Figure 5: The Adjacency (�⊥), Vector (Vect), and the Same-Sequences-of-
Labels (�) predicates.

3.3 The Basic Correctness Property of the Transformed Func-
tion. Before continuing any further, we have to be sure that the results of
the function Part � are equivalent to those of the function Part except for
labeling, which is stated formally as follows:

Lln(r ⊕ x)→
Part �(r, x) = l, r1, u↔ Part(Unl(r),Unl(x)) = Unl(l),Unl(r1),Unl(u) .

This can be proved automatically on object level by a proof assistant from
obvious properties of unlabeling mentioned in Fig. 3, or we can prove on the
meta-level that any function and its labeled version behave the same except
for labeling.

3.4 Labeled Lists and Array Segments. Our next step is to show
that the function Part � meets requirements 1 and 2 from Par. 2.4. We need
some definitions (see Fig. 5) to do that.

We say that two labeled lists x and y are adjacent (x �⊥ y) iff the first
label in y immediately succeeds the last label in x. We call a labeled list
representing an array segment a vector, and define the predicate Vect to
hold for a list x iff every two lists y and z such that x = y ⊕ z are adjacent.
Finally, x � y means that the labeled lists x and y have identical lists of
labels.

The first two requirements from Par. 2.4 can now be expressed by the
two formulas (proof obligations) below:

Lln(r ⊕ x) ∧ Vect(r ⊕ x) ∧ Part �(r, x) = l, r1, u→ Vect(l ⊕ r1 ⊕ u) (1)
Lln(r ⊕ x) ∧Vect(r ⊕ x) ∧ Part �(r, x) = l, r1, u→ r ⊕ x � l ⊕ r1 ⊕ u (2)

132

Ján Kľuka

Properties of the predicates Vect and � together with (2) imply (1). It is
therefore sufficient to prove the second obligation. A sufficiently sophisti-
cated proof assistant can construct the proof automatically when given the
properties from Fig. 5.

Nevertheless, there is another problem to be addressed here. A concate-
nation of array segments can be performed if and only if they are adjacent.
It can then be carried out in constant time, since it involves only calculation
of limits of the resulting segment. Note that the result of a concatenation
of labeled lists is a vector (i.e., a representation of an array segment) iff the
concatenated lists are adjacent vectors (Fig. 5). We refer to a concatenation
whose result is a vector as admissible.

To outline how to check that all concatenations are admissible, let ϕ[�a]
be a formula representing the requirements imposed on the arguments �a of
a labeled version f� of a function, and assume a concatenation occurs in
the following context in a clause of that version (ψ[x, y] and ω are possibly
empty conjunctions of literals):

f�(�a) = �r ← ψ[x, y] ∧ x⊕ y = z ∧ ω .

Then to ensure that this concatenation is admissible, it is sufficient to prove

ϕ[�a] ∧ ψ[x, y]→ Vect(x⊕ y) .

Formulas of this type are mechanically derivable from the function defini-
tion, and if the annotation is correct, they are automatically provable using
the properties of vectors, the requirement (2), and the properties of the
predicate �.

In the particular case of the function Part �, we have ϕ[r, x] ≡ Lln(r ⊕
x) ∧ Vect(r ⊕ x). From the last clause of the function, the following proof
obligations are generated:

ϕ
[
[p]�1 , [w]�3 ⊕ x⊕ [v]�2

]→ Vect(x⊕ [w]�2)

ϕ
[
[p]�1, [w]�3 ⊕ x⊕ [v]�2

] ∧ v < p ∧ Part �([p]�3 , x⊕ [w]�2) = l, r, u→
Vect([v]�1 ⊕ l) .

3.5 Labeled Lists and Destructive Updates. Recall that in Par. 2.4,
an arrow leading from a pattern matching of a singleton list to a construction
of another singleton list, say [v], declares a programmer’s intention to put
the value v at the same index where the pattern matching occurred. In a
labeled version of a function, the index is represented by a label.

Suppose we have a clause whose body contains a pattern matching x =
[v]�⊕ y followed by a construction [w]� = z. The construction is intended to
destructively update an array at the index �. If x is implemented as a pair
of indices limiting a segment of that array, then x cannot be used further in

133

A Simple Semantics for Destructive Updates

�PAx x # y ↔ ∀�∀v1∀v2(v1, � /ε x ∨ v2, � /ε y)

�PAx x � y ↔ ∀�∀v1∀v2(v1, � ε x ∧ v2, � ε y → v1 = v2)

x # 0
Lln(x)→ x # x↔ x = 0

x # y → y # x

x # [v]� ↔ ∀v(v, � /ε x)
x # y ⊕ z ↔ x # y ∧ x # z

x � y → x # z ↔ y # z

Lln(x⊕ y) ∧Vect(x ⊕ y)→ x # y

x � 0
x � y → y � x

x � y ⊕ z ↔ x � y ∧ x � z
x # y → x � y

Lln(x⊕ y) ∧Vect(x⊕ y)→ x⊕ y � x
Lln(x⊕ y) ∧ Vect(x⊕ y)→ x⊕ y � y

Figure 6: Definitions and selected properties of the Disjoint-Labels predicate
#, and the Correctly-Aliased predicate �.

the clause since the list of values of x may be no longer actually present in
the corresponding array segment.

A simple solution to this problem is to allow each list variable to be
used only once after it is given a value. Although the function Part (and
consequently Part �) complies with this constraint, it is too restrictive—in
the above example, using the variable x between the pattern matching and
the construction would do no harm.

To deal with this problem in a more permissive semantic manner, we
define the predicates shown in Fig. 6. Formula x # y expresses the fact that
the sets of labels of two labeled lists x and y are disjoint. We shall call two
lists x and y correctly aliased and write x � y iff for every label � shared by
these lists, the value that occurs at label � in the list x is the same as the
value occurring at that label in the list y. If these lists are vectors, and they
actually share a label, they represent two overlapping array segments.

Let ϕ[�a] stand for the requirements imposed on the arguments of a la-
beled version f� of a function (as in Par. 3.4). Furthermore, assume that
labeled-list variables x and y occur in a clause of f� in the following con-
text (ξ, ψ, and ω[x] are possibly empty conjunctions of literals, τ and ρ are
terms):

f�(�a) = �r← ξ ∧ τ = x ∧ ψ ∧ ρ = y ∧ ω[x] .

The identity τ = x gives a value to the variable x, ρ = y gives a value to y.
After that, x is used in the rest ω[x] of the clause.

We claim, that if a property of the form

ϕ[�a] ∧ ξ ∧ τ = x ∧ ψ ∧ ρ = y → y � x

134

Ján Kľuka

holds, then the contents of the array segment denoted by the variable x
will not be affected by a destructive update which implements the identity
ρ = y if ρ contains a singleton construction. This holds even if variables x
and y denote overlapping array segments. The clause context above shows
one of three cases. The other two cases apply when the variable x is one of
arguments �a, or a member of the result tuple �r; properties that should hold
are similar.

As an example, consider the last clause of Part � with atomized list op-
erations:

Part �([p]�1 , [w]�3 ⊕ x⊕ [v]�2) = l1, r1, u← v < p ∧ [p]�3 = r ∧
x⊕ [w]�2 = x1 ∧
Part �(r, x1) = l, r1, u ∧
[v]�1 ⊕ l = l1

The corresponding proof obligations are:

ϕ
[
[p]�1 , [w]�3 ⊕ x⊕ [v]�2

]→ [p]�3 � x ∧ x⊕ [w]�2 � [p]�3

ϕ
[
[p]�1, [w]�3 ⊕ x⊕ [v]�2

] ∧ Part �([p]�3 , x⊕ [w]�2) = l, r1, u→
[v]�1 ⊕ l � r1 ∧ [v]�1 ⊕ l � u .

Again, a suitable proof assistant can automatically construct a proof of
these obligations, which is based on the properties from Fig. 6 and the
property 3.4(2).

3.6 Mechanical Transformation of the Function Operating on La-
beled Lists into One Operating on Arrays. Finally, we sketch the
transformation of the function Part � to a function operating destructively
on an array. Let a[i := v] denote a destructive update of the array a placing
the value v at index i. Every vector from the function Part � is transformed
into a pair of indices that limit the corresponding array segment. The sin-
gleton construction [v]� is transformed into the destructive update a[� := v].
Concatenations are replaced by calculations of limits of array segments.

After elimination of unnecessary variables, a function Parta(a, r, x, t) =
a1, l, r1, u, t1 is obtained, where a is the array to be partitioned, the pair of in-
dices r, x limits the singleton segment containing the pivot, indices x, t limit
the segment to be partitioned, l, r1 limit the segment containing elements
less then the pivot, r1, u limit of the new pivot segment, and indices u, t1
are limits of the segment of elements greater than the pivot.

References

[Blo94] A. Bloss. Path analysis and the optimization of nonstrict functional lan-
guages. ACM Transactions on Programming Languages and Systems,
16(3):328–369, 1994.

135

A Simple Semantics for Destructive Updates

[CL] The CL homepage. http://www.ii.fmph.uniba.sk/cl .

[Hud87] P. Hudak. A semantic model for reference counting and its abstraction. In
S. Abramsky and C. Hankin, editors, Abstract Interpretation of Declara-
tive Languages. Ellis Horwood Ltd., 1987.

[KV99] J. Komara and P. Voda. Theorems of Péter and Parsons in computer pro-
gramming. In G. Gottlob, E. Grandjean, and K. Seyr, editors, Proceedings
of CSL’98, number 1584 in LNCS, pages 204–223. Springer Verlag, 1999.

[Ode91] M. Odersky. How to make destructive updates less destructive. In Con-
ference Record of the Eighteenth Annual ACM Symposium on Principles
of Programming Languages, Orlando, Florida, pages 25–26. ACM Press,
1991.

[Sha99] N. Shankar. Efficiently Executing PVS. Technical report, SRI In-
ternational, Menlo Park, CA, 1999. Available through WWW from
http://www.csl.sri.com/users/shankar/shankar-drafts.html.

[Vod02] P. Voda. On modification of declarative arrays, 2002. Available through
WWW from http://www.diku.dk/undervisning/2002e/213/segm.ps.

[Wad90] P. Wadler. Linear types can change the world! In M. Broy and C. Jones,
editors, IFIP TC 2 Working Conference on Programming Concepts and
Methods, Sea of Galilee, Israel, pages 347–359. North Holland, 1990.

136

137

A New Proof of Decidability for the Modal Logic
of Subset Spaces

GISELA KROMMES
FernUniversität Hagen
krommes@aol.com

ABSTRACT. We present a simplified proof of decidability for the bimodal logic of
subset spaces, introduced by Moss and Parikh, and discuss some difficulties in deter-
mining the complexity of the decision problem. Basically designed for elementary rea-
soning about points and sets in general topology, this logic gives basis to suitable for-
malisms for reasoning about various subjects, especially topology or the acquisition of
knowledge.

1 Introduction

The logic of subset spaces of Moss and Parikh [MP92], let us call it LSS,
combines the two well-known modal systems S4 and S5. As the name already
indicates, the most natural interpretation of LSS is not in usual Kripke structures
but in subset spaces (,)X , where the S5-operator K quantifies 'horizontally'

across points from a given set X and the S4-operator quantifies 'vertically'
across the elements of a distinguished set of non-empty subsets of X. The in-
teraction of both modalities is basically described by the cross axiom

 K Kϕ ϕ→ .

This interpretation leads to an interesting application of LSS as a topological
logic of knowledge. McKinsey [McK41] first investigated the close connection
between S4 and topology. He pointed out that the interior operator on a topologi-
cal space has S4-like properties and although is not necessarily closed under
finite union and intersection, it gives a good intuition to think about (,)X as a

kind of topological space. Moreover, the S5 component of LSS can be taken as
the widely used tool for the logical treatment of an agent's knowledge,
cf. [FHMV96], i.e. Kϕ can be read as 'the agent knows ϕ '. In this way LSS con-
nects the notion of knowledge with elementary topological reasoning.

What is the benefit of this connection? LSS provides a formalism to describe
knowledge acquisition. In subset spaces, formulae are evaluated at neighborhood

Proceedings of the Eighth ESSLLI Student Session.
Balder ten Cate (editor)
Chapter 13, Copyright © 2003, Gisela Krommes

A New Proof of Decidability for the Modal Logic of Subset Spaces

138

situations (p,U) ∈ {(q,V) ∈ X × | q∈V}, consisting of a point (or state) p and a
neighborhood U thereof.
The basic LSS deals only with the knowledge of one agent: U consists of all
states the agent considers alternative to his actual state p and the knowledge op-
erator K quantifies across all the states in U. Hence the agent's knowledge de-
pends crucially upon the actual neighborhood of its state p.

If in the actual situation (p,U) the agent doesn’t know whether ϕ holds or
not, he considers both as possibilities, so we have

p,U ² Lϕ ∧ L¬ϕ
(as usual we use Lϕ as an abbreviation of ¬K¬ϕ and ◊ϕ as an abbreviation of
¬ ¬ϕ). But the more the agent knows, the smaller number of alternatives he
takes into account, thus acquisition of knowledge corresponds to shrinking the set
of possible alternatives or, in the notion of topology, to shrinking p's neighbor-
hood U. At this point the S4- comes into play: forced by the cross axiom, it
quantifies across all neighborhoods of p that are subsets of U.

But since points and sets are general tools for formalization, LSS can also be
useful for the treatment of quite different subjects as the description of decision
or selection processes, where step-by-step additional constraints are satisfied.
Moreover the underlying ideas gave rise to the development of special variants,
which differ in the class of subset spaces, cf. [DMP96] (here is additionally the
case treated where ∪ ∅ is in fact a topology on X), [Geo97] (treelike spaces),
[Hei98a] (spaces satisfying finite chain conditions), [WP02] (directed spaces,
which are related to bases of neighborhood filters of topological spaces) or the
modalities in use, cf. [Hei98b] (S4 weakened to a partial function to obtain a
"next-time" operator), [DG00] (two S4 systems). The last paper is motivated by
the application domain of continuous and hybrid dynamic systems with practical
use in several engineering tasks.

Syntax, semantics and a list of axioms for LSS are introduced in the next Sec-
tion. Section 3 is dedicated to the decision problem. For this section, we assume
some familiarity with canonical models and filtration methods. (For a very acces-
sible introduction see e.g. [BdRV01]). The proof of decidability given in
[DMP96] is based on the finite model property (f.m.p.) of LSS w.r.t. a special
class of models. The f.m.p. is established via filtration of the canonical model
using the minimal filtration for both modalities. But proving that the so obtained
quotient structure belongs to the relevant class of models turns out to be hard to
do. Pursuing a suggestion by Heinemann, we replace the minimal filtration for
the modality by its transitive closure, thus having transitivity by definition and
cutting away the main difficulties of the original proof. We also use a bigger fil-
ter set with better closure properties and for the resulting quotient structure, we
can state a nice property which is as easy to imagine as to prove. With this prop-
erty at hand, the proof is quickly done.

Gisela Krommes

139

Up to now we could only establish PSPACE as a lower bound for the com-
plexity of the decision problem. We discuss this result and the difficulties in de-
termining the exact complexity briefly in Section 4. We will finish with some
concluding remarks in Section 5.

The work presented in this paper is part of our forthcoming diploma thesis.

2 The Logic LSS

We start with the definition of the logical language for LSS.

Definition 2.1 (Syntax of LSS) Let PV be a recursive1 and countable set of
atomic propositions. The set of LSS-formulae is recursively generated by:

 1 2 :: | | | |A Kϕ ϕ ϕ ϕ ϕ ϕ= ¬ ∧

with A∈PV, an atomic proposition.

The other Boolean connectives, logical constants and dual modalities are de-
finable in the standard way. The semantical domains of LSS are subset models
and defined as follows:

Definition 2.2 (Subset Models) A subset space is a pair
(,)X

where X is a non-empty set of points (or states) and is a set of non-empty sub-
sets of X, called opens.
A subset model is a triple

(), ,X σ=
where (,)X is a subset space and σ is a mapping : ()PV Xσ → , called

valuation.

Although formulae are evaluated at neighborhood situations the valuation σ is
defined with respect only to points and this fact gives reason to the persistence
axiom introduced later on. For a given subset model we now define the satis-
faction relation ² between neighborhood situations of the underlying model
and formulae in .

Definition 2.3 (Satisfaction relation) Let (), ,X σ= be a subset model. For

p U∈ ∈ and ϕ ∈ the satisfaction relation ² is defined by recursion

on ϕ :
(p,U) ² A iff p∈σ (A)

(p,U) ² ¬ϕ iff (p,U) ϕ

1 Since we focus on the decidability of LSS we stress that PV is a decidable set and there-
fore the set of valid LSS-formulae is decidable as well.

A New Proof of Decidability for the Modal Logic of Subset Spaces

140

(p,U) ² ϕ ∧ ψ iff (p,U) ² ϕ and p,U ² ψ
(p,U) ² Kϕ iff (q,U) ² ϕ for all q∈U

(p,U) ² ϕ iff (p,V) ² ϕ for all V ∈ such that p ∈ V ⊆ U

In other words, we are considering a Kripke structure whose worlds are the
pairs (p,U) and with two accessibility relations corresponding to shrinking an open
() while maintaining a reference point, or to moving a reference point inside
the given open (K).

The following schemata of formulae are suitable for the axiomatization of the
set of LSS-validities:

(1) All -instances of propositional tautologies

(2) K(ϕ → ψ) → (Kϕ → Kψ)

(3) (ϕ → ψ) → (ϕ → ψ)

(4) ϕ → ϕ (reflexivity)

(5) ϕ → ϕ (transitivity)

(6) Kϕ → ϕ (reflexivity)

(7) Kϕ → KKϕ (transitivity)

(8) Lϕ → KLϕ (Euclidean property)

(9) (A → A) ∧ (¬A → ¬A) for atomic A (persistence axiom)

(10) K ϕ → Kϕ (cross axiom)

The deductive system LSS is established by adding rules of inference:

(),
modus ponens

ϕ ψ ϕ
ψ

→
 ()-necessitationK

K

ϕ
ϕ

 ()-necessitation
ϕ
ϕ

The cross axiom is the typical one for the logic of subset spaces. In the notion
of knowledge, this so-called cross property demands that the agent under consid-
eration does not forget. The axioms are often used in their dual form, e.g. the
cross axiom K ϕ → Kϕ ≡ ◊Lϕ → L ◊ϕ. Note that because of the persistence
axiom, LSS is not closed under substitution.

We conclude the introduction of LSS by stating its soundness and complete-
ness w.r.t. subset frames and turn to the proof of decidability in the next section.

Theorem 2.4 (Soundness and Completeness of LSS) Let ϕ ∈ be a formula.
Then ϕ is LSS-derivable iff it is valid in every model based on a subset frame.

The soundness part of theorem 2.4 is obvious, completeness is much harder to
show. See [DMP96] for a proof using a rather complicated step-by-step con-
struction.

S4-
axioms

S5-
axioms

Gisela Krommes

141

3 Decidability of LSS

It is folklore that the above given axiomatization together with the f.m.p. would
immediately yield the decidability of the satisfaction problem. But we have bad
news: the logic of subset spaces lacks the f.m.p. To see this, consider the follow-
ing scheme of infinity axioms:

():ψ ϕ ϕ= ◊ ∧ ◊¬ .

No sentence of this form can have a finite subset model. For suppose that
were a finite model containing p and U such that ,p U ψ . We may assume that

U is a ⊆-minimal open about p with this property. But the minimality implies

(),p U ϕ ϕ∧ ¬ , and this is absurd.

However, substitute ϕ by ()()L B KB LC∧ ∨ and see [DMP96] for an infinite

subset model of the resulting formula ψ '.

The problem that ψ ' has only infinite subset models, stems from the fact that
in subset spaces the accessibility relation corresponding to the -operator is an-
tisymmetric, as according to the ⊆-relation, although this property is not de-
manded by the axioms. But there is a class of models avoiding this difficulty, the
class of cross axiom models, to which LSS is also sound and complete and satis-
fies the f.m.p. as shown below.

Definition 3.1 (Cross Axiom Model) A cross axiom frame is a tuple

(), , LJ ◊→ →

such that J is a non-empty set, L
→ is an equivalence relation on J, ◊

→ is a

preorder on J, and the following property holds: If i ◊
→ j

L
→ k, then there is

some l such that i L
→ l

◊
→ k.

A cross axiom model is a cross axiom frame together with an interpretation σ of
the atomic propositions of ;. σ must satisfy the condition that

if i ◊
→ j, then i ∈ σ (A) iff j ∈ σ (A).

A cross axiom model is simply a bimodal Kripke structure such that the ac-
cessibility relations satisfy the corresponding axioms and also the cross axiom
holds. In addition, the valuation σ satisfies the persistence axiom. Hence, LSS is
obviously sound w.r.t. the class of cross axiom models (not frames, because of
the persistence axiom). Moreover, every subset model (), ,X σ= gives rise to

a cross axiom model

(), , , 'LJ σ◊→ →=
as follows:

J := {<p,U> ∈ X × | p ∈ U} (<p,U> denotes a single point of J)

A New Proof of Decidability for the Modal Logic of Subset Spaces

142

<p,U> L
→ <q,V> iff U = V

<p,U> ◊
→ <q,V> iff p = q and V ⊆ U

σ ' (A) := {<p,U> | p ∈ σ (A) ∩ U } for all atomic propositions A

A simple induction shows that

(p,U) ² ϕ ⇔ <p,U> ² ϕ
for all formulae ϕ ∈ , thus we can state:

Lemma 3.2 (Completeness w.r.t. Cross Axiom Models) LSS is sound and
complete w.r.t. the class of cross axiom models.

Hence, for any formula ϕ ∈ it suffices to look for a finite cross axiom model.

Since the canonical model of LSS satisfies every LSS-consistent ϕ and the fil-

tration method constructs a finite quotient structure out of , also a model of ϕ,

the remaining problem is to choose a filtration method such that is a cross axiom
model.

The canonical model

() : , , , L σ◊→ →=

 is formed in the usual way, i.e. consists of all maximal LSS-consistent sets of
formulae and the accessibility relations induced by the modal operators K and
are for all S, T∈ defined by

{ } : |LS T K S Tψ ψ→ ⇔ ∈ ∈ ⊆ and

{ } : | S T S Tψ ψ◊
→ ⇔ ∈ ∈ ⊆ .

Finally, the valuation σ is defined by

() : A T A Tσ∈ ⇔ ∈ for all A∈PV and T ∈ .

Let us now fix a formula ϕ ∈ and gather together the notions needed to define

: Corresponding to ϕ, we build the filter set Σ ⊆ in several steps. Starting

with the set sf (ϕ) of subformulae of ϕ we define:

Σ¬
 := sf (ϕ) ∪{¬ψ ∈ | ψ ∈ sf (ϕ)}

Σ' := Σ¬ ∪{ψ | ψ is a conjunction or disjunction of pairwise distinct x∈Σ¬}

Σ" := Σ' ∪ {ψ | ψ is a conjunction or disjunction of pairwise distinct x∈Σ' }

Σ := Σ" ∪ {Lψ | ψ ∈ Σ" } ∪ {Kψ | ψ ∈ Σ" }.

Note that all sets are finite and subformula closed and that Σ" is a kind of Boo-
lean closure of sf (ϕ).

For T∈ let [T] denote the set {S∈ | T ∩ Σ = S ∩ Σ } which is the equiva-
lence class of T w.r.t. Σ . The minimal filtration []L→ of L→ is defined by

Gisela Krommes

143

[S] []L→ [T] : ⇔ ∃ S' ∈ [S], T' ∈ [T] : S L→ T for all S, T ∈
and the minimal filtration of ◊→ is defined accordingly. With these notions
available, we can define

 := ([], []L→ , [◊]
→ , σ),

where [] := {[T] | T ∈ }, []L→ is the minimal filtration of L→ , [◊]
→ is the

transitive closure of the minimal filtration of ◊→ , and for all atomic A we have

σ (A) := { [T] ∈ [] | A ∈ T ∩ Σ}.

The following proposition guaranties that is indeed a model of ϕ.

Lemma 3.3 Let () , , , L σ◊→ →= be the canonical model of LSS and

 = ([], []L→ , [◊]
→ , σ) the quotient structure described above. Then is a

filtration of .

Proof. We have to show that []L→ and [◊]
→ are filtrations of L→ and ◊→ ,

respectively. For []L→ , the common minimal filtration, this is clear. Concerning
 [◊]

→ this is an easy consequence of the definition of the minimal filtration and
its transitive closure; for the complete proof we refer to [CZ97], p. 141 ff.

To prepare the proof that is a cross axiom model, we first state a very use-

ful property of the filter set Σ.

Lemma 3.4 Let :T Tγ
γ γ

∈ ∩Σ
= ∧ be the identifying formula for the above defined

equivalence class [T] of T w.r.t. Σ. Then

TLγ ∈ S' for some S' ∈ [S] ⇒ TLγ ∈ S" for all S"∈ [S].

Proof. Let TLγ ∈ S' ∈ [S]. By definition of
L→ , there is some T' ∈ such that

S' L→ T ' and Tγ ∈ T'. By the same argument, we get {Lψ | ψ ∈ T' ∩ Σ−Σ"} ⊆ S'.

We now make use of the S5 property that every formula Oψ ∈ with a prefix

O ∈{K, L}2 is equivalent to some O'ψ, where O' ∈{K, L}1. So with the definition
of Σ−Σ" we also get {Lψ | ψ ∈ T' ∩ Σ−Σ"} ⊆ S" for arbitrary S"∈ [S].
Since all formulae in Σ−Σ" are K or L sentences we obtain with the S5 laws

()' "
' :T T

K K
γ

γ γ
∈ ∩Σ−Σ

= ∧ ∈ S". *

Clearly TLγ ∈ S' ⇒ "TLγ ∈ S', where
"

" :T Tγ
γ γ

∈ ∩Σ
= ∧ , and since "TLγ ∈ Σ by

construction of Σ, we also have

"TLγ ∈ S". **

A New Proof of Decidability for the Modal Logic of Subset Spaces

144

Putting * and ** together we get { 'TKγ , "TLγ } ⊆ S". Hence there exists some

U ∈ such that S" L→ U and { 'Tγ , "Tγ } ⊆ U. Since 'Tγ ∧ "Tγ ≡ Tγ ∈ U

we finally get TLγ ∈ S".

Now let us turn to the question of how to show that has the cross property.

Whenever [S] [◊]
→ [T] []L→ [U], we need some [V] ∈ [] such that

[S] []L→ [V] [◊]
→ [U].

By definition of [◊]
→ and []L→ , there are S' ∈ [S], T' and T" ∈ [T], U' ∈ [U]

such that S' ◊→ T' and T" L→ U'. If T' = T", the cross property of supplies the

desired V' ∈ [V] such that S
L→ V' ◊→ U and hence, [S] []L→ [V] [◊]

→ [U]. But
possibly T'≠T". However, Lemma 3.4 gives a solution: According to T' we can

always find some U"∈[U] such that T' L→ U", i.e. we have S' ◊→ T' L→ U" and
therefore, the set V' we are looking for must exist. This is the announced nice

property of .

Lemma 3.5 Let := ([], []L→ , [◊]
→ , σ) be defined as above. Then for all

[S], [T]∈ [] the following holds:

[S] []L→ [T] ⇒ for all S' ∈ [S] there exists some T' ∈ [T]

such that S' L→ T '.

Proof. This is a direct consequence of Lemma 3.3, observing that [S] []L→ [T]

implies the existence of some S' ∈ [S] such that Lγ T ∈ S'.

We are now well prepared to show that is a cross axiom model and in this
way prove that LSS has the f.m.p. with respect to cross axiom models.

Theorem 3.6 (Finite Model Property) Every satisfiable ϕ ∈ has a finite cross
axiom model.

Proof. Let ϕ be satisfiable and the model described above. Obviously [◊]
→

is reflexive and transitive and σ satisfies the required property. Reflexivity and

symmetry of []L→ are direct consequences of the fact that this is the minimal

filtration of L→ . Finally, we get transitivity of []L→ and the cross property by

iterated application of Lemma 3.4. Hence is a finite cross axiom model of ϕ.

Since satisfiability and validity are dual problems, this leads to the following:

Corollary 3.7 (Decidability) The set of satisfiable ϕ ∈ and the set of LSS-
theorems are both decidable.

Gisela Krommes

145

4 Complexity

There are few variants of the basic LSS with reasonable computational behavior,
cf. [Hei98c], where linear subset spaces and binary computation structures are
investigated, both of them NP-complete.

But not surprisingly, the basic LSS turned out to be at least PSPACE-hard.
Using techniques introduced by Ladner [Lad77] and very comprehensively ap-
plied in [HM92], we proved this result by reducing the problem of deciding
whether an element of the quantified Boolean formulae (QBF) is true to that of
deciding whether a formula is LSS satisfiable2. The first problem is known to be
PSPACE-hard.

However, this result gives us only one lower bound and says nothing about
the exact complexity of LSS since up to now we could not establish PSPACE as
an upper bound. Obviously, LSS lacks the tree model property, cf. [Grä99a] defi-
nition 3.5, so the commonly used tableau method to get a PSPACE decision algo-
rithm may not work.

Possibly, the complexity of the decision problem is worse, thus we tried to
prove EXTIME as a lower bound. One may take it as a good sign that we did not
get along with it. The methods we know to show EXTIME-hardness are based on
tiling problems, cf. [vEm96], or on formulae that force any satisfying model to
have a path of exponential length, cf. [HM92]. In any case, these methods require
the encoding of an n-bit binary counter, but LSS seems to be too weak for this
purpose.

There is still another possibility to show EXTIME-hardness: The criterion
Edith Hemaspaandra provides in [Spa93]. This criterion looks for a formula ca-
pable to simulate full irreflexive, asymmetric, intransitive binary trees of arbi-
trary but finite height. To this end we would have to translate a formula ϕ out of
some logical language having such a tree as model into a satisfiable formula

ψ ∈ , simulating this tree. The problem is that in LSS both accessibility rela-
tions are transitive. To overcome this we could add special atomic propositions
H0 , H1 ,…,Hn , each one true at exactly one level of the tree, to encode the height
of a node. But since we do not know a bound for the height of the tree model for
ϕ we do not know how to choose n. Hence this does not seem to work either.

So until now the facts we can state about the complexity of the decision
problem for LSS are: PSPACE as a lower bound and NEXTIME as an upper
bound, supplied by the original proof of decidability. The filter set we used in our
proof leads to N2EXTIME as an upper bound, that is the price we have to pay for
the simplification of the proof.

2 This proof is also part of our diploma thesis.

A New Proof of Decidability for the Modal Logic of Subset Spaces

146

5 Conclusions and Future Work

We introduced the bimodal logic of subset spaces invented by Moss and Parikh and
explained its interpretation as a topological logic of knowledge. For decidability a
simplified proof was presented and finally we discussed the difficulties in determin-
ing the complexity of the decision problem. To overcome these difficulties and find
out what the complexity of the decision problem really is seems to us a task worthy
of further research. We didn't yet give up the hope that LSS may be PSPACE-
complete − and if so, this would be a reason for a party!3

Furthermore, we think it is a good idea to follow the referee's suggestion and try to
find other applications for LSS or related systems. This seems indeed another inter-
esting and important task and we appreciate this hint very much.

Acknowledgement

We would like to thank Bernhard Heinemann and the anonymous referees for several
valuable suggestions and helpful comments.

References

[BdRV01] P. Blackburn, M. de Rijke, Y. Venema. 2001. Modal Logic, volume 53 of
Cambridge Tracts in Theoretical Computer Science. Cambridge University
Press, Cambridge, 2001.

[CZ97] A. Chagrov, M. Zakharyaschev. 1997. Modal Logic, volume 35 of Oxford
Logic Guides. Clarendon Press, Oxford, 1997.

[DG00] J.M. Davoren, R.P. Goré. 2000. Bimodal logics for reasoning about
continuous dynamics. In Proceedings of Advances in Modal Logic. Leipzig,
to appear.

[DMP96] A. Dabrowski, L.S. Moss, R. Parikh. 1996. Topological reasoning and the
logic of knowledge. Ann. Pure Appl. Logic, 78 (1996) 73-110.

[FHMV96] R. Fagin, J.Y. Halpern, Y. Moses, M.Y. Vardi. 1995. Reasoning about
Knowledge. MIT Press, Cambridge, MA.

[Geo97] K. Georgatos. 1997. Knowledge on Treelike Spaces. Studia Logica,
59:271-301.

[Grä99a] E. Grädel. 1999. On the restraining power of guards. Journal of Symbolic
Logic, 64(4): 1719–1742, 1999.

3 This remark about logics with a decision problem solvable with a PSPACE-algorithm is

said to stem from Vardi, cf. [Grä99b].

Gisela Krommes

147

[Gra99b] E. Graedel. 1999. Why are modal logics so robustly decidable?. Bulletin of
the European Association for Theoretical Computer Science, vol 68,
pp 90-103.

 [Hei98a] B. Heinemann. 1998. Topological Modal Logics Satisfying Finite Chain
Conditions. Notre Dame Journal of Formal Logic, 39(3):406-421.

[Hei98b] B. Heinemann. 1998. Topological nexttime logic. In M. Kracht et al., editor,
Advances in Modal Logic, Volume 1, pages 99-113. CSLI.

[Hei98c] B. Heinemann. 1998. Subset pace logics of knowledge and time. Habilitation
Thesis, Fachbereich Informatik, FernUniversität Hagen.

[Spa93] E. Spaan. 1993. Complexity of modal logics. PhD thesis, University of
Amsterdam, Institute for Logic, Language and Computation.

[HM92] J.Y. Halpern, Y. Moses. 1992. A Guide to Completeness and Complexity for
Modal Logics of Knowledge and Belief. Artificial Intelligence 54:319-379.

[Lad77] R.E. Ladner. 1977. The Computational Complexity of Provability in Systems
of Modal Propositional Logic. SIAM Journal of Computing 6:467-480.

[McK41] J.C.C. McKinsey. 1941. A solution to the decision problem for the Lewis
systems S2 and S4, with an application to topology. J. Symbolic
Logic 6 (3) 117-141.

[MP92] L.S. Moss, R. Parikh. 1992. Topological reasoning and the logic of
knowledge. Theoretical Aspects of Reasoning about Knowledge, TARK
1992, ed. Y. Moses, 95-105. Morgan Kaufmann.

[vEm96] P. van Emde Boas. 1996. The convenience of tilings. Technical
Report CT-96-01, Institute for Logic, Language and Computation, University
of Amsterdam

[WP02] A. Weiss, R. Parikh. 2002. Completeness of Certain Bimodal Logics for
Subset Spaces. Studia Logica, 71:1-30.

148

An application of Sahlqvist Theory to

Bisorted Modal Logic

Wouter Kuijper
ILLC/University of Amsterdam, the Netherlands.

wkuijper@science.uva.nl

Jorge Petrúcio Viana
Institute of Mathematics/Federal Fluminense University and COPPE/Federal University of Rio

de Janeiro, Brazil. Visiting ILLC/University of Amsterdam, the Netherlands. Supported by

CAPES, Proc. n. BEX0493/02-3.

petrucio@cos.ufrj.br

Abstract. We axiomatize two bisorted modal logics: basic hybrid logic and sub-
set modal logic. The systems are presented as normal multimodal logics allowing
us to freely apply Sahlqvist Theory. The proposed axiomatizations are clearer and
more concise than existing axiomatizations of the same theories. In particular, the
axioms have better motivations because each corresponds in a very direct sense
to a frame condition. Proving completeness becomes a straightforward exercise
by appealing to canonicity directly avoiding the usual canonical model construc-
tion. Moreover the resulting systems are automatically complete to all Sahlqvist
extensions, even those containing nominals.

1 Introduction

It is a well established fact that modal logic over models can be seen as
a fragment of first order logic whereas over frames it is a fragment of
monadic second order logic . The study of the connections in the expressivity
hierarchy of these three languages — or language families — is what is
commonly called Correspondence Theory [10]. Comparing different systems
with regard to expressivity, in some sense, presupposes a common, adequate
semantics. Although for a lot of modal logics that interest us relational
structures do the job nicely, not every logic is sound and complete with
respect to some frame class [5, 9]. A huge amount of research has gone
into uncovering which logics are. In all generality we could call this field
Completeness Theory [3].

At the intersection of both these well explored paths we find a nice set of
results generally referred to as Sahlqvist Theory. In essence Sahlqvist Theory

Proceedings of the Eighth ESSLLI Student Session
Balder ten Cate (editor)
Chapter 14, Copyright c© 2003, Wouter Kuijper and Jorge Petrúcio Viana

149

An application of Sahlqvist Theory to Bisorted Modal Logic

seeks to identify large classes of modal formulas that are both canonical and
that correspond to an elementary frame condition which can be effectively
computed from the formula. The landmark result in this research is the
theorem below. (All terminological and conceptual pre–requisites can be
found in [3].)

Definition 1.1 (Sahlqvist Formulas). Positive and negative formulas
are defined as usual. A Sahlqvist antecedent is a formula built up from
formulas that are either negative or of the form �np, using only ∧ , ∨ and
♦. A Sahlqvist implication is any implication that has a Sahlqvist antecedent
and a positive consequent. A Sahlqvist formula is built up from Sahlqvist
implications using � and ∧ freely, and ∨ only to disjuncts that do not share
proposition symbols.

Theorem 1.1 (Sahlqvist 1974). For every Sahlqvist formula A it holds

(i) A is canonical,

(ii) A has a local first order frame correspondent AFO that can be effec-
tively computed from A.

It is not decidable in general whether an arbitrary formula has a first
order correspondent [4]. The Sahlqvist fragment can be seen as a good com-
promise between simplicity and generality in picking out a large portion of
formulas for which this is decidable. Of course this leaves room for gener-
alization of the result [6, 8]. Here we will use a version that in addition to
unary modalities allows nullary modalities (or modal constants) to occur in
Sahlqvist formulas [3].

Sorting was proposed by P. Blackburn [2] and V. Goranko [7] as a gen-
eral strategy to improve the expressive power of modal languages. A basic
example of a bisorted logic is basic hybrid logic (BHL), obtained from basic
modal logic by introducing nominals, a second type of proposition symbols
that serve as unique names for states, also added are satisfaction opera-
tors to jump to these named states and continue evaluation there [1]. As a
first step in establishing a general theory of sorted modal logics, Goranko
started to investigate Subset Modal Logic (SML), inspired on BHL, SML is
obtained by relieving the restriction of nominals to be interpreted strictly
as singletons [7].

In relation to the traditional logical issues, such as expressiveness, axiom-
atization, decidability, and complexity, a lot of results to BHL have already
been established (cf. [2] and the bibliography therein).

In this paper we study versions of these systems. We consider the
problem of the transfer of results from the basic (unisorted) modal setting
to this more general context. In particular, we investigate Sahlqvist theory
and its use to obtain simpler sets of axioms and simpler completeness proofs
to our versions of BHL and SML.

150

Wouter Kuijper and Jorge Petrúcio Viana

This paper contains three main contributions in the line of research
sketched above. Firstly, we provide new axiomatizations to two bisorted
modal logics: basic hybrid logic and subset modal logic. Secondly, we ex-
emplify how to treat sorted modal logics as normal multimodal logics using
infinite axiomatizations. Lastly we show that it is possible, as a consequence
of this approach, to easily apply Sahlqvist Theory to sorted modal logics.

The paper is structured as follows. In Section 2 we review the syntax
and semantics of the basic hybrid logic in its common form. In Section 3
we present the basic subset modal logic as a normal multimodal logic with
nullary modalities. In Section 4 we axiomatize the minimal subset modal
logic. Next, we proceed to show, in Section 5, how by extending the minimal
subset modal logic with two very simple axioms we obtain the minimal basic
hybrid logic. We conclude with some more comments, discussion and
suggestions for further research.

2 Basic Hybrid Logic

In this section we review syntax and semantics of basic hybrid logic [1].
BHL is usually presented as a two sorted modal logic, viewing nominals
as proposition symbols whose interpretation on models is restricted. In
Section 3, we present BHL as a multimodal logic, viewing nominals as special
kinds of modal constants, interpreted on frames. As will be shown, this
change in approach allows us transfer existing results for orthodox modal
logics, in particular the multimodal version of Theorem 1.1 to BHL.

The basic hybrid language has countably many distinct nominals i and
associated satisfaction operators @i to identify, respectively refer to, po-
tentially countably many named states. The idea is that by using these
nominals we can identify a unique state in our model. Basic modal logic, as
it is bisimulation invariant, cannot express this [3]. Hence we have improved
the expressive power of BML getting it closer to first–order logic, hopefully
without losing its modal flavor [2].

Definition 2.1 (Basic Hybrid Language). The basic hybrid language is
produced by

φ := ⊥ | p | i | φ1 ∨ φ2 | ¬φ | ♦φ | @iφ, where i ∈ Ω.

Basic hybrid logic is interpreted with respect to exactly the same frame
class as the basic modal logic. This means that at the level of frames there is
no interpretation for nominals nor for their associated satisfaction operators.
The following definitions make clear exactly how this information arises at
the level of models.

Definition 2.2 (Hybrid Models). A hybrid model is a pair (F, V) where
F = (W,R) is a basic modal frame and V is a hybrid valuation, i.e., a function

151

An application of Sahlqvist Theory to Bisorted Modal Logic

[K@] @i(p → q) → (@ip → @iq)

[self-dual] @ip ↔ ¬@i¬p

[introduction] i ∧ p → @ip

[ref] @ii

[sym] @ij ↔ @ji

[nom] @ij ∧ @jp → @ip

[agree] @j@ip ↔ @ip

[back] ♦@ip → @ip

Table 1: The axioms to the minimal Hybrid Logic given in [3].

that maps proposition symbols to subsets of W and nominals to singletons
of W .

Definition 2.3 (Hybrid Satisfaction). A hybrid formula φ being satisfied
in the hybrid model M at state w, notation:

M, w � φ,

is inductively defined as follows

M, w � p iff w ∈ V (p),
M, w � i iff {w} = V (i),

M, w � ♦φ iff there exists v ∈ W such that Rwv and M, v � φ,

M, w � @iφ iff M, v � φ where {v} = V (i).

with the boolean cases in the obvious way. Validity in a frame is defined as
usual.

For some examples of hybrid validities cf. Table 1.
Note that here nominals have same status as proposition symbols. This

is in fact inconvenient when we want to define the class of hybrid frames,
i.e. frames with interpretation for nominals and their associated satisfaction
operators.

3 Subset Modal Logic

Subset modal logic was introduced by V. Goranko [7] — in connection with
what he calls “vanilla set sorts” — as a step in extending the basic hy-
brid mechanisms to sorted modal languages. In [7], Goranko advocates the

152

Wouter Kuijper and Jorge Petrúcio Viana

study of sorted modal formalisms and provides examples from the litera-
ture, showing that this kind of strategy can improve the expressive power
of modal logics. One of the basic ideas of Goranko’s approach, also present
in [2], is that sorted modal logics can be seen as a more general type of
hybrid logics. Goranko starts the extension of hybrid ideas to sorted modal
logics, presenting SML and proposing an axiomatization to it. As a problem
he left to prove his axioms are complete.

For some intuition about SML observe that in the basic hybrid case
a frame can be seen as a general frame in which the family of admissible
subsets, for nominals, is exactly the set generated from all singletons. The
hybrid language has the power to denote these unique states. In SML, in
the basic case, this restriction to singletons is dropped. Nominals —in SML
we call them subset constants— can be interpreted on any subset again, just
like ordinary proposition symbols. This in turn establishes the duality of
our @ operators now written as @∃ and @∀. In terms of satisfaction this
will work out in the following way

M, w � @∃
i φ iff there exists v ∈ W such that M, v � i ∧ φ, (3.1)

and dually,

M, w � @∀
i φ iff for all v ∈ W it holds M, v � i → φ. (3.2)

Goranko specifies the SML syntax and semantics in an informal way.
We choose to formulate SML as a “regular” normal modal logic [3], in this
way, trying to avoid the difficulties we pointed out in the last paragraph of
Section 2.

Definition 3.1 (SML Similarity Type). The similarity type for SML
expands the similarity type for basic modal logic with a countable set Ω of
nullary modalities called subset constants and an associated countable set
{@∀

i }i∈Ω of unary modalities called subset accessibility operators.

In the frame correspondence language the unary predicate associated to
the subset constant i is denoted Si and the binary predicate associated to
the the subset accessibility operator @∃

i is denoted Ri.
The definitions of satisfaction and validity are the same as in modal logic.

To ensure condition (3.1) and (3.2) we define the appropriate semantics for
SML.

Definition 3.2 (SML Frame). An SML frame

F =
(
W,R, (Ri)i∈Ω , (Si)i∈Ω

)

is a frame for the SML similarity type that satisfies for each i ∈ Ω the follow-
ing defining condition on the interplay between subsets and their associated

153

An application of Sahlqvist Theory to Bisorted Modal Logic

accessibility relations:

∀xy(Rixy ↔ Siy). (3.3)

A hybrid SML frame is an SML frame where all Si are singleton.

Observation 3.1 (Hybrid SML Frames and Hybrid Models). When
we identify the @∀ and @∃ operators in the SML language over the class of
all hybrid SML frames, we end up with the same theory as the basic hybrid
language over the class of all hybrid models.

4 Axiomatizing the Minimal SML

In this section we present an infinite axiomatization to minimal SML and
prove completeness.

Recall that a normal modal logic is a set of modal formulas closed un-
der generalization, uniform substitution and modus ponens; containing all
propositional tautologies plus special axioms saying how each modality re-
lates to its dual and how it distributes over implication.

We denote by K the minimal modal logic, i.e. the normal modal logic
that is sound and complete with respect to the class of all frames.

Definition 4.1 (Logic KS). Let S be the countable collection of Sahlqvist
axioms given in Table 2. Define KS as the normal modal logic for the SML
similarity type with the additional axioms in S.

[trans] @∃
j @

∃
i p → @∃

i p ∀xyz(Rjxy ∧ Riyz → Rixz)

[trans♦] ♦@∃
i p → @∃

i p ∀xyz(Rxy ∧ Riyz → Rixz)

[eucl] @∃
i p → @∀

j @
∃
i p ∀xyz(Rixy ∧ Rjxz → Rizy)

[eucl♦] @∃
i p → �@∃

i p ∀xyz(Rixy ∧ Rxz → Rizy)

[label] @∀
i i ∀xy(Rixy → Siy)

[ref] i ∧ p → @∃
i p ∀x(Six → Rixx)

Table 2: Sahlqvist axioms to minimal SML with their First–Order corre-
spondents; i, j ∈ Ω.

The following lemma motivates our choice of axioms. It shows that we
have defined a broader class of frames that has the same modal theory as
the intended frame class of all SML frames.

First we recall the definition of a rooted or point generated subframe Fw

which is the restriction of F to all nodes that are reachable from w by a

154

Wouter Kuijper and Jorge Petrúcio Viana

path consisting of R and Ri steps. Taking generated subframes is a frame
construction that preserves truth of modal formulas.

Lemma 4.1. The following holds

(i) S is valid on SML frames.

(ii) If a rooted frame validates S then it is an SML frame.

Proof. Note that by the correspondence part of Sahlqvist’s theorem to mul-
timodal logic we can actually confuse our axioms with the first order prop-
erties they define.

For (i), it suffices to check that all first–order correspondents in Table 2
are consequences of (3.3). For [label] and [ref] this is immediate. For [trans],
observe that by (3.3) Riyz implies Siz which warrants Rixz. The other cases
are similar.

For (ii), let Fw be a point generated subframe that satisfies S. We show
(3.3) holds on Fw. Take arbitrary x, y ∈ Fw. For the left to right direction,
assume Rixy then by [label] we have Siy. For the right to left direction,
assume Siy then by [ref] we have Riyy. Because y is in Fw there is a path
leading from w up to y. By induction on the length of this path, using
[trans] and [trans♦], we get Riwy. Since x is in Fw, again, there is a path
leading from w up to x. By induction on the length of this path, using [eucl]
and [eucl♦], we get Rixy.

Theorem 4.1. KS is the minimal subset modal logic.

Proof. Let S be the class of all SML frames. With S′ we denote the class of
frames defined by S. Note that by Sahlqvist’s theorem we have automatic
soundness and completeness with respect to S′

KS = Th(S′),

hence it suffices to show that

Th(S′) = Th(S).

By Lemma 4.1(i), S ⊆ S′ and we have Th(S′) ⊆ Th(S). This corresponds
to soundness of our axiom system.

For the other direction Th(S) ⊆ Th(S′), we will show that every non–
validity of Th(S′) has a counterexample in S. This corresponds to complete-
ness.

Let φ /∈ Th(S′) then there exists a counterexample F, w � φ. Clearly
by modal invariance under taking generated subframes Fw � φ. Then by
Lemma 4.1(ii), we have Fw ∈ S is the required counterexample.

155

An application of Sahlqvist Theory to Bisorted Modal Logic

5 Back to Hybrid Logic

We adapt SML to obtain the minimal hybrid logic. To this end we add the
two new axiom schemes in Table 3.

The known axiomatizations of the minimal hybrid logic require us to
replace the uniform substitution rule in the normal modal logic Hilbert–
style proof system by a new rule called sorted substitution that allows us
to uniformly substitute proposition symbols by formulas and nominals by
nominals [3]. Our logic is equipped with plain old uniform substitution, but
this does not present a problem because nominals are now treated as nullary
modalities and not as proposition symbols anymore. To simulate the power
of sorted substitution we have axioms to all (permutations of) nominals.

The next proposition shows the strength of the two new axioms [ser] and
[func] in relation to the axioms to minimal SML.

Proposition 5.1. [trans], [trans♦], [ser], [func] 	 [eucl], [eucl♦], [self-dual],
[label].

Proof. We prove only [eucl] and [label].
To prove [eucl] assume Rixy and Rjxz. By [ser] there is a w such that

Rizw and Siw. By [trans] we get Rixw and this, together with Rixy, gives,
by [func], y = w. So, we obtain Rizy.

To prove [label] assume Rixy. By [ser] there is a z such that Rixz and
Siz. Hence y = z, by [func], and we get Siy.

Definition 5.1 (Logic KH). Let H be the countable collection of Sahlqvist
axioms given by [trans], [trans♦], [ref], [ser], and [func]. Define KH as the
normal modal logic for the SML similarity type with the additional axioms
in H.

[ser] @∃
i i ∀x∃y(Rixy ∧ Siy)

[func] @∃
i p → @∀

i p ∀xyz(Rixy ∧ Rixz → y = z)

Table 3: Additional Sahlqvist axioms for minimal Hybrid Logic; i ∈ Ω.

Lemma 5.1. The following holds

(i) Every axiom in Table 3 is valid in a hybrid SML frame.

(ii) Every point generated subframe satisfying H is a hybrid SML frame.

Proof. The first part is left to the reader.
Let Fw be a point generated subframe that satisfies H. By Proposi-

tion 5.1 Fw is an SML frame.

156

Wouter Kuijper and Jorge Petrúcio Viana

We show that Fw is hybrid, i.e. each Si is singleton.
Take arbitrary x, y ∈ Fw. By [ser] we have x′, y′ ∈ Fw such that Rixx′

and Riyy′. By [trans] and [trans♦] we have Riwx′ and Riwy′. Finally by
[func] x′ = y′. Hence Ri is a constant total function. By condition (3.3) it
follows Si is singleton.

Theorem 5.1. KH is the minimal Hybrid Modal Logic.

Proof. Analogous to the proof of Theorem 4.1 now using Lemma 5.1 to carry
over the counterexample.

6 Perspectives

The hybrid logic literature tends to stress the analogies between hybrid
logic and first-order logic, and to emphasize the first order aspects of hybrid
logic. But, as we showed in this paper, hybrid logic is genuinely modal too.
An important aspect of our approach, that brings out the modal aspect of
hybrid logic very well, is that our results give automatic completeness for
all Sahlqvist formulas. In fact, the following result is immediate.

Corollary 6.1. Let Σ be a set of Sahlqvist formulas in the SML similarity
type, possibly containing nominals. Then, the logics obtained by extending,
KS and KH to, respectively KSΣ and KHΣ are sound and complete for,
respectively, the subclass of all SML frames and the subclass of all hybrid
SML frames they define.

To see this, note that the proofs of Theorems 4.1 and 5.1 do not depend
in any way on the properties we want to impose on the generated subframes.
In fact both proofs are completely analogous. For any Sahlqvist formula that
locally corresponds to a first order canonical property the proof is still valid.

There are some obvious directions for future research. Firstly, in relation
to subset modal logic, we have only touched the obvious aspect of complete-
ness. We can ask what can be said about other properties of SML, e.g.
expressivity, filtrations, finite model property, decidability, and complexity.

Secondly, one of the main motivations of this work was to exemplify the
alternative technique to prove completeness presented. We can ask what are
the merits of the new technique and if it really leads to more general results.

For HL it is known that by adding stronger deductive capabilities to the
proof system, allowing introduction of new names while reasoning, we can
obtain a strong automatic completeness result for all pure extensions with
respect to the class of all named models. Where a named model is simply
a hybrid model where every state has at least one name (makes at least
one nominal true) and a pure extension is any axiom that doesn’t contain
proposition symbols, only nominals.

157

An application of Sahlqvist Theory to Bisorted Modal Logic

In a way these extensions can be viewed as hybrid extensions since they
must obviously use the added hybrid expressivity to define meaningful prop-
erties. In contrast, Sahlqvist axioms can be viewed as intrinsically modal.

As we noted in Corollary 6.1 our systems are trivially complete to all
pure extensions. However they are complete with respect to the class of all
hybrid models which contains among all the names ones also models with
unnamed states. This reduces significantly the expressivity of pure axioms
since, obviously, a pure axiom can only define meaningful properties on a
countable subset of the universe: the named part of the model. Hence the
question remains in what way we can obtain automatic correspondence and
completeness of bisorted Sahlqvist formulas to the class of all named models.

Acknowledgments

We are much indebted to Patrick Blackburn, Balder ten Cate, Valentin
Goranko, Maarten Marx and the two anonymous referees.

References

[1] P. Blackburn. Internalizing labelled deduction. Journal of Logic and Compu-
tation, 10:137–168, 2000.

[2] P. Blackburn. Representation, reasoning, and relational structures: a hybrid
logic manifesto. Logic Journal of the IGPL, 8:339–365, 2000.

[3] P. Blackburn, M. de Rijke, and Y. Venema. Modal Logic. Cambridge University
Press, Cambridge, 2002.

[4] L.A. Chagrova. An undecidable problem in correspondence theory. Journal of
Symbolic Logic, 56:1261–1272, 1991.

[5] K. Fine. An incomplete logic containing S4. Theoria, 40:23–29, 1974.

[6] M. Gehrke, H. Nagahashi, and Y. Venema. A Sahlqvist theorem for distributive
modal logic. ILLC Prepublications, PP-2002-9, 2002.

[7] V. Goranko. Sorting and hybrid logics. Unpublished manuscript, 2000.

[8] V. Goranko and D. Vakarelov. Sahlqvist formulas in hybrid polyadic modal
logics. Journal of Logic and Computation, 11:737–754, 2001.

[9] S.K. Thomason. An incompleteness theorem in modal logic. Theoria, 40:150–
158, 1974.

[10] J. van Benthem. Correspondence theory. In Handbook of Philosophical Logic,
volume 2, pages 167–247. Kluwer, Dordrecht, 1974.

158

Contextual Grammars and Go Through

Automata

Florin Manea

Faculty of Mathematics, Bucharest University

flmanea@funinf.cs.unibuc.ro

Abstract. In this paper we apply different variants of go through automata
for the recognition of languages generated by internal contextual grammars (with
or without choice) and shuffled contextual grammars. Go through automata are
generalizations of the push-down automata in the area of context-sensitivity.

1 Introduction

Contextual grammars were introduced in 1969 by Solomon Marcus [3] as
an attempt to transform in generative devices some procedures developed
within the framework of analytical models (see [4] for a comprehensive dis-
cussion on the linguistic motivations of contextual grammars).

Contextual grammars are alternatives to Chomsky-like generative de-
vices. Main aspects that individualize contextual grammars are the integrity
of the derivation sequence and the global derivation, at the sentence level.

Classes of languages generated by contextual grammars are usually in-
comparable with the classical classes of languages from the Chomsky hier-
archy. Usual automata, like finite or push-down automata do not apply for
any class of contextual grammars. With a notable exception (see [5]), there
is a lack of automata for the recognition of contextual languages.

In this paper, we propose the recognition of threes classes of contextual
grammars (shuffled, internal without choice and internal with choice) by
means of various go through automata. Go through automata were intro-
duced in [1], as a generalization of push-down automata.

The following general definitions and notations will be used throughout
the paper. Let V be finite alphabet. By V + we denote the set of non empty
words over V, by λ the empty word, and by V ∗ = V + ∪ {λ}. We denote
by |w| the length of the word w. For a set A, Pf (A) is the set of all finite
subsets of A. The shuffle operation between sentences,denoted �⊥ , is defined
recursively by av �⊥ bw = a(v �⊥ bw)∪b(av �⊥ w) and w �⊥ λ = w, λ �⊥ w = w

Proceedings of the Eighth ESSLLI Student Session
Balder ten Cate (editor)
Chapter 15, Copyright c© 2003, Florin Manea

159

Contextual Grammars and Go Through Automata

where a, b ∈ V and v,w ∈ V ∗ (where singleton sets are denoted by their
unique element).

2 Basic Definitions

We will present the definitions of contextual grammars that will be used
later in this paper. For further details, the reader is referred to [6].

An internal contextual grammar without choice is a construct
G = (V,A,C) where V is an alphabet, A is a finite language over V (i.e.
A ⊂ V ∗ and A is finite), and C is a finite subset of V ∗×V ∗. The derivation
style is defined as x ⇒in y ⇐⇒ x = x1x2x3 and y = x1ux2vx3 where
(u, v) ∈ C. By ∗⇒in we denote the reflexive and transitive closure of ⇒in.
Then Lin(G) = {x ∈ V ∗| w

∗⇒in x,w ∈ A} is the language generated by G.
An internal contextual grammar with choice is a construct G =

(V,A,C.φ) where V is an alphabet, A is a finite language over V (i.e. A ⊂ V ∗

and A is finite), C is a finite subset of V ∗ × V ∗, and φ : V ∗ →P(C). The
derivation style is defined as x ⇒in y ⇐⇒ x = x1x2x3 and y = x1ux2vx3

where (u, v) ∈ φ(x2). By ∗⇒in we denote the reflexive and transitive closure
of ⇒in. Then Lin(G) = {x ∈ V ∗| w

∗⇒in x,w ∈ A} is the internal language
generated by G. G is called an internal contextual grammar with finite
choice if φ−1(c) is a finite set, for any c ∈ C.

A shuffled contextual grammar is a construct G = (V,A,C) where
V is an alphabet, A is a finite language over V, and C is a finite subset of
V ∗. The language generated by G is the smallest subset L of V ∗ such that:
A ⊆ L and if x ∈ L and c ∈ C then x �⊥ c ⊆ L.

We will present the definitions of go through automata that will be used
later in this paper.

A go through automaton (gta) is a construct M =(Q,V,W, q0, Z, F, δ)
where: Q,V and W are non-empty sets (called the set of states, the input
alphabet and the stack alphabet, respectively); q0 is the initial state; Z
is the initial symbol of the stack; F ⊆ Q is the set of final states; δ :
Q × (V ∪ {λ}) × W → Pf (Q × W ∗ × {↓, ↑}) is the transition function,
satisfying the condition:

[q2, η, ↓] ∈ δ(q1, a, b) ⇐⇒ a = λ,

[q2, η, ↑] ∈ δ(q1, a, b) ⇐⇒ a �= λ.

↑ and ↓ are denotations for the movement of the head in the stack.

Remark 2.1 A gta with the constraint [q2, η, x] ∈ δ(q1, a, b) ⇒ x =↑ is a
(real-time) push-down automaton (pda).

An instant configuration of a gta M is a triple (q, α, β.γ) where q ∈ Q
is the current sate of M, α ∈ V ∗ is the input tape and β, γ ∈ W ∗; βγ is the

160

Florin Manea

stack of the automaton (with the top of the stack to the left), and . indicates
the position of the head in the stack. The behavior of a gta is described
by the transitions between instant configurations. We extend the transition
functions to instant configurations in the following way:

(q1, aα, β.bγ)
 (q2, α, .βηγ) ⇐⇒ [q2, η, ↑] ∈ δ(q1, a, b),
(q1, aα, β.bγ)
 (q2, aα, βη.γ) ⇐⇒ [q2, η, ↓] ∈ δ(q1, λ, b)

for any q1, q2 ∈ Q, a ∈ V, α ∈ V ∗, b ∈ W,β, γ, η ∈ W ∗. An initial con-
figuration of the automaton M is an instant configuration (q0, α, Z). We

denote by
∗

 the reflexive and transitive closure of
. For the rest of this

paper, we will consider the empty stack as the acceptance method. Conse-
quently, we will take every time an empty set of final states, F = ∅. The
language recognized by the go through automaton M (with the empty stack)

is: Lλ(M) = {w ∈ V ∗|(q0, w, Z)
∗

 (q, λ, .)}.

A go through automaton M is non-expansive iff: [q2, λ, x] ∈ δ(q1, a, b) ⇒
a �= λ. A go through automaton M is weak iff: [q2, η, ↓] ∈ δ(q1, a, b) ⇒ η =
b. A go through automaton M is simple iff: [q2, η, ↓] ∈ δ(q1, a, b) ⇒ q2 =
q1 & η = b.

3 Implementations

Theorem 3.1 For any shuffled contextual grammar G there exists a simple
go through automaton M such that L(M) = L(G).

Proof: Let G = (V,A,C) be a shuffled contextual grammar. Let M =
(Q,V,W, q0, Z, ∅, δ) be a simple gta defined by: Q = {q0, q1}, W = {Z} ∪
{(c, k) ∈ (C ∪ A) × IN | k < |c|} where by [c : k] we highlight that we have
found the first k symbols of c. The function δ is defined by the following
transitions:

1. (q, yx, ↑) ∈ δ(q, a, x) iff q ∈ Q is an arbitrary state, c ∈ C is a context
and a ∈ V is its first symbol, x ∈ W is an arbitrary stack symbol and
y = [c, 1] if |c| > 1, otherwise y = λ

2. (q1, y, ↑) ∈ δ(q0, a, Z) iff c ∈ A is an axiom and a is its first symbol
and y = [c, 1] if |c| > 1, otherwise y = λ

3. (q, x, ↓) ∈ δ(q, λ, x) iff q ∈ Q is an arbitrary state and x ∈ W is an
arbitrary stack symbol

4. (q, y, ↑) ∈ δ(q, a, [c, k]) iff q ∈ Q is an arbitrary state, c ∈ C ∪ A is a
context or an axiom and a is the (k+1)th symbol of c and y = [c, k+1]
if k < |c| − 1, otherwise y = λ

161

Contextual Grammars and Go Through Automata

The algorithm implemented by M is mainly the following: for every input
symbol a we try to match it to a context in the stack(we can go through the
stack to find that context) or we put into the stack a new context starting
with a. It is necessary to have in the stack a word from A or we will not
empty the stack (the state q1 appears only when a word from A was put into
the stack, replacing the initial symbol Z, and also guarantees that we will
not put another word from A in the stack). After a context is completed
(every symbol of the context was matched) it will be erased from the stack.
We have L(M) = L(G). ��

Example 3.1 Let G = (V,A,C) be a shuffle contextual grammar, with
V = {a, b, c}, A = {abc} and C = {abc}. Then L(G) = {w ∈ V + |
|w|a = |w|b = |w|c and for any x such that w = xy, |x|a ≥ |x|b ≥ |x|c}. Let
M = ({q0, q1}, {a, b, c}, {Z, [abc : 0], [abc : 1], [abc : 2]}, ∅, δ) be a simple gta
for L(G), where δ is defined by:

(q, [abc : 1]x, ↑) ∈ δ(q, a, x) iff q ∈ Q, x ∈ W ;
(q, [abc : 1], ↑) ∈ δ(q, a, Z) iff q ∈ Q;
(q1, [abc : 1]x, ↑) ∈ δ(q0, a, x) iff x ∈ W ;
(q1, [abc : 1], ↑) ∈ δ(q0, a, Z)
(q, x, ↓) ∈ δ(q, λ, x) iff q ∈ Q, x ∈ W ;
(q, [abc : 2], ↑) ∈ δ(q, b, [abc : 1]) iff q ∈ Q;
(q, λ, ↑) ∈ δ(q, c, [abc : 3]) iff q ∈ Q.

Let w = aaabbcbcc. We will show how the automaton works on this example:
(q0, aaabbcbcc, .Z)
 (q1, aabbcbcc, .[abc : 1])

(q1, abbcbcc, .[abc : 1][abc : 1])
 (q1, bbcbcc, .[abc : 1][abc : 1][abc : 1])

(q1, bcbcc, .[abc : 2][abc : 1][abc : 1])
 (q1, bcbcc, [abc : 2].[abc : 1][abc : 1])

(q1, bcbcc, [abc : 2][abc : 1].[abc : 1])
 (q1, cbcc, .[abc : 2][abc : 1][abc : 2])

(q1, bcc, .[abc : 1][abc : 2])
 (q1, cc, .[abc : 2][abc : 2])

(q1, c, .[abc : 2])
 (q1, λ, .λ)

Note that it does not matter the order of the insertion of contexts in the
initial axiom, so it is useless to try to keep a track of this order of insertion.
In the next we will need such a technique, and for this we will use the order
of insertion in the stack.

In the following we will work with grammars G = (V,A,C, φ), such that
C contains only contexts with their sides not empty, and also λ /∈ A. These
restrictions are due to the fact that any insertion and deletion in the stack
of the gta should be made without λ transitions.

Theorem 3.2 For any internal contextual grammar without choice G, hav-
ing any (u, v) ∈ C ⇒ u ∈ V +, v ∈ V + and λ /∈ A, there exists a weak go
through automaton M such that L(M) = L(G).

Proof: Let G = (V,A,C) an internal contextual grammar without choice.
For this grammar we define a gta M = (Q,V,W, q, Z, F, δ) where: Q = {q},

162

Florin Manea

W = {Z} ∪ {[u : k, v : l]|(u, v) ∈ C, k, l ∈ IN, k < |u| + 1, l < |v| + 1}∪
{[w : k]|w ∈ A, k ∈ IN, k < |w| + 1}. Here by [u : k, v : l] we highlight that
we have found the first k symbols of u and the first l from v, where (u, v) is a
context. For axioms the same interpretation of [w : k] holds. The transition
function δ is defined by the following relations:

1. (q, [u : 1, v : 0]Z, ↑) ∈ δ(q, a, Z) iff (u, v) ∈ C and the first symbol of u
is a

2. (q, [w : 1], ↑) ∈ δ(q, a, Z) iff w ∈ A and the first symbol of w is a

3. (q, [u : 1, v : 0]x, ↑) ∈ δ(q, a, x) iff (u, v) ∈ C and the first symbol of u
is a and x ∈ W

4. (q, [u : 0, v : 0], ↑) ∈ δ(q, a, [w : |w| − 1]) iff (u, v) ∈ C and the last
symbol of w is a;

5. (q, [u∗ : 0, v∗ : 0], ↑) ∈ δ(q, a, [u : |u|, v : |v| − 1]) iff (u∗, v∗) ∈ C and
the first symbol of v is a

6. (q, [u : k + 1, v : 0], ↑) ∈ δ(q, a, [u : k, v : 0]) iff (u, v) ∈ C, k < |u| and
the (k + 1)th symbol of u is a

7. (q, [w : k + 1], ↑) ∈ δ(q, a, [w : k]) iff w ∈ A, (k + 1) < |w| and the
(k + 1)th symbol of w is a

8. (q, [u : |u|, v : 0], ↓) ∈ δ(q, λ, [u : |u|, v : 0]) iff (u, v) ∈ C

9. (q, [w : 1], ↑) ∈ δ(q, a, Z) iff w ∈ A and a is the first symbol of w

10. (q, [u : |u|, v : k + 1], ↑) ∈ δ(q, a, [u : |u|, v : k]) iff (u, v) ∈ C, (k + 1) <
|v| and the (k + 1)th symbol of v is a

11. (q, λ, ↑) ∈ δ(q, a, [u : |u|, v : |v| − 1]) iff (u, v) ∈ C and the last symbol
of v is a

12. (q, λ, ↑) ∈ δ(q, a, [w : |w| − 1]) iff w ∈ A and the last symbol of w is a

We will prove that L(M) = L(G).
First we will prove that L(M) ⊆ L(G). For this let w be a word from

L(M). Let C1 be the set of all the contexts (u, v) such that [u : k, v : l]
was inserted in the stack during the computation for w.If the context (u, v)
was inserted more than once we will consider each apparition as a distinct
one. In this set we will consider the relation > defined by (u, v) > (x, y) for
some (u, v), (x, y) ∈ C1 iff [u : k, v : l] appeared above [x : s, y : t]. Let � be
the transitive closure of >. We will say that (x, y) is in relation with (u, v)
iff any of (u, v) � (x, y) or (x, y) � (u, v) holds. We will define inductively
(Ak)k∈IN by:

163

Contextual Grammars and Go Through Automata

A0 = {(u, v) ∈ C1|(x, y) in relation with (u, v) ⇒ (u, v) � (x, y)}
Ak = {(u, v) ∈ C1|(x, y) in relation with (u, v) ⇒ (u, v) � (x, y) if (x, y) /∈ Ai

for i < k} for k > 0.
Let max = argmax(Ak|Ak �= ∅). A0 is the set of contexts that have been
on the top of the stack and no other contexts have been above them until
they were completed. Ak is the set of contexts that have had above them in
the stack only contexts from Ai, i < k. Ak can be seen as the set of contexts
that could have been on the top only if the contexts from Ai, i < k were not
present. From the condition that we can go over one context in the stack
only if it has its left side completed it results that the contexts from Ai were
inserted in the word after the contexts Ai+1. Let α be the word from A
found on the stack. If we insert into α the contexts from Ak, k > 0 starting
from Amax and we continue descending, according to the indexes, it is easy
to see that we obtain w.

We will prove now that L(G) ⊆ L(M). For this let w be a word from
L(G) such that it was obtained from α ∈ A by inserting contexts (ci)i>0

in increasing order, according to the indexes. The acceptance of w follows
the next algorithm. A context ci is inserted (in the stack) such that every
context inserted above has bigger index and every context below him (in
the stack) has lower index. This can be done because when ci is inserted,
if we have the context ck = (uk, vk), where k > i, present in the stack then
we have read uk entirely from the input tape, or we have read the whole
ck from the input tape. In this way we will have on the top of the stack
the most recent inserted context. It is easy to see that an acceptance can
be done only when we have deleted the initial symbol of the stack Z, i.e.
when a word from A was inserted in the stack. So, we have proven that
L(M) = L(G). ��

Remark 3.1 The restriction that we cannot go over contexts in stack if
they do not have their left side completed, and their right side is not in the
process of completion, is natural if we remember that in this grammars the
contexts are not shuffled in the word, but they are inserted as a right word
and a left word, with the property that inside this two words we will not find
symbols inserted before them.

Remark 3.2 The way gtas are used in acceptance of internal contextual
grammars without choice can be now summarized: for every symbol of the
input tape we will try to match it into an existing context or axiom (and this
is done by going through the stack following the rules stated in remark 3.1)
or by inserting in the stack a new context having its first symbol the symbol
of the input tape that was just read. The transitions of the automaton from
Theorem 3.2 implement this strategy, taking into account all the different
cases that could occur.

164

Florin Manea

Remark 3.3 Note that the sets Ak produced during the acceptance of some
word w can be used as a description of the strucutre of a derivation of w. If
we associate with every context c from Ak the string that was read from the
input tape before c was inserted in the stack, then c will be inserted in the
sentential form after every context from Ak−1 was inserted, and right after
(as position) the string associated with it. We will start the derivation with
the axiom found in the stack.

Theorem 3.3 For any internal contextual grammar with finite choice G,
having any (u, v) ∈ C ⇒ u ∈ V +, v ∈ V + and λ /∈ A, there exists a non-
expansive go through automaton M such that L(M) = L(G).

Proof: Let G = (V,A,C, φ) be an internal contextual grammar with finite
choice. We define a non-expansive gta M = (Q,V,W, q, Z, F, δ) by the fol-
lowing: Q = {q} ∪ {ql|l ∈ V }, W = {[u : k, x : p, v : t]|(u, v) ∈ φ(x), k, p, t ∈
IN, k < |u|+ 1, p < |x|+ 1, t < |v|+ 1} ∪ {[w : k]|w ∈ A, k ∈ IN, k < |w|+ 1}
(where we will interpret [u : k, x : p, v : t] and [w : k] as we have done in
Theorem 3.2) and δ is defined using the same principles as in the precedent
theorem:

1. (q, [w : 1], ↑) ∈ δ(q, a, Z) iff a is the first symbol of w ∈ A

2. (q, [u : 1, x : 0, v : 0]Z, ↑) ∈ δ(q, a, Z) iff a is the first symbol of u where
(u, v) ∈ φ(x), x ∈ V ∗

3. (q, [u : 0, 0 : 0, v : 0], ↑) ∈ δ(q, a, [w : |w| − 1]) iff a is the last symbol of
w and (u, v) ∈ φ(λ)

4. (q, [u∗ : 0, 0 : 0, v∗ : 0], ↑) ∈ δ(q, a, [u : |u|, x : |x|, v : |v| − 1]) iff a is the
last symbol of v and (u∗, v∗) ∈ φ(λ)

5. (q, [u : 1, x : 0, v : 0]M, ↑) ∈ δ(q, a,M) iff (u, v) ∈ φ(x), the first symbol
of u is a and M ∈ W

6. (q, [u : k + 1, x : 0, v : 0], ↑) ∈ δ(q, a, [u : k, x : 0, v : 0]) iff (u, v) ∈ φ(x),
k < |u| and the (k + 1)th symbol of u is a

7. (q, [w : k + 1], ↑) ∈ δ(q, a, [w : k]) iff w ∈ A, (k + 1) < |w| and the
(k + 1)th symbol of w is a

8. (q, [u : k + 1, x : 0, v : 0], ↑) ∈ δ(ql, l, [u : k, x : 0, v : 0]) iff (u, v) ∈ φ(x),
k < |u| and the (k + 1)th symbol of u is l

9. (q, [w : k + 1], ↑) ∈ δ(ql, l, [w : k]) iff w ∈ A, (k + 1) < |w| and the
(k + 1)th symbol of w is l

10. (q, [u : |u|, x : |x|, v : k + 1], ↑) ∈ δ(ql, l, [u : |u|, x : |x|, v : k]) iff
(u, v) ∈ φ(x), (k + 1) < |v| and the (k + 1)th symbol of v is l

165

Contextual Grammars and Go Through Automata

11. (q, [u : 1, x : 0, v : 0]M, ↑) ∈ δ(ql, l,M) iff (u, v) ∈ φ(x), the first symbol
of u is l and M ∈ W

12. (q, [u : 0, 0 : 0, v : 0], ↑) ∈ δ(ql, a, [w : |w| − 1]) iff a is the last symbol
of w and (u, v) ∈ φ(λ)

13. (q, [u∗ : 0, 0 : 0, v∗ : 0], ↑) ∈ δ(ql, a, [u : |u|, x : |x|, v : |v|− 1]) iff a is the
last symbol of v and (u∗, v∗) ∈ φ(λ)

14. (q, λ, ↑) ∈ δ(ql, l, [w : |w| − 1]) iff w ∈ A and the last symbol of w is l

15. (ql, [u : |u|, x : k + 1, v : 0], ↓) ∈ δ(q , λ, [u : |u|, x : k, v : 0]) iff
(u, v) ∈ φ(x) and l is the k + 1th symbol of x

16. (ql, [u : |u|, x : k + 1, v : 0], ↓) ∈ δ(ql, λ, [u : |u|, x : k, v : 0]) iff
(u, v) ∈ φ(x) and l is the k + 1th symbol of x

17. (q, [u : |u|, x : |x|, v : k + 1], ↑) ∈ δ(q, a, [u : |u|, x : |x|, v : k]) iff
(u, v) ∈ φ(x), (k + 1) < |v| and the (k + 1)th symbol of v is a

18. (q, λ, ↑) ∈ δ(q, a, [u : |u|, x : |x|, v : |v| − 1]) iff (u, v) ∈ φ(x) and the
last symbol of v is a

19. (q, λ, ↑) ∈ δ(q, a, [w : |w| − 1]) iff w ∈ A and the last symbol of w is a

To prove that L(G) = L(M), we can take the same strategy used in
Theorem 3.2

First we prove that L(M) ⊆ L(G). Let w be a word from L(M). We
can construct, as we have already seen, an ordered set C1 as being the set
of all triples (u, v, p) such that (u, v) ∈ φ(p) and [|u| : k, |p| : l, |v| : t] was
present during the computation in the stack. In this set we will consider
the relation > defined by (u, v, p) > (x, y, r) for some (u, v, p), (x, y, r) ∈ C1

iff [|u| : k, |p| : t, |v| : l] appeared above [|x| : s, |r| : j, |y| : t].Let � be the
transitive closure of >. We will say that (x, y, r) is in relation with (u, v, p)
iff any of (u, v, p) � (x, y, r) or (x, y, r) � (u, v, p) holds. It is easy to see
that the relation is not contradictory. We will define inductively (Ak)k∈IN

by:
A0 = {(u, v, p) ∈ C1|(x, y, r) in relation with (u, v, p) ⇒ (u, v, p) � (x, y, r)}
Ak = {(u, v, p) ∈ C1|(x, y, r) in relation with (u, v, p) ⇒ (u, v, p) � (x, y, r)
if (x, y, r) /∈ Ai for i < k} for k > 0.
Let max = argmax(Ak|Ak �= ∅). We observe that between any two symbols
a, b of w such that a, b are symbols of the left side of a context from Ai

there are no symbols from any context in Ak, k > i. The same affirmation
holds for right sides. A0 is the set of contexts that have been on the top
of the stack and no other contexts have been above them until they were
completed. Ak is the set of contexts that have had above them in the stack
only contexts from Ai, i < k. Ak can be seen as the set of contexts that

166

Florin Manea

could have been on the top of the stack only if the contexts from Ai, i < k
were not present. From the condition that we can go over one context in the
stack only if it has its left side completed it results that the contexts from Ai

were inserted in the word after the contexts Ai+1. Let α be the word from
A found on the stack. We insert into α the contexts from Ak, k > 0 starting
from Amax, and every context (u, v) is inserted in α around x (if there is
more than one we could try all possiblities, or we can keep, together with
the contexts, the words that were read from the input tape before certain
context was inserted using the same strategy stated in Remark 3.3), where
(u, v, x) ∈ Ak (x is in α, otherwise the computation will not be completed).
It is easy to see that, in the end, we will obtain w.

Now we will prove the reverse implication L(G) ⊆ L(M). Let w be
a word from L(G) obtained from α ∈ A by inserting contexts (ci)i>0 in
increasing order. The acceptance of w will follow the next algorithm (also
simillar with the one in theorem 3.2). An context ci is inserted such that
every context inserted above it in the stack has bigger index and every
context below him (in the stack) has lower index. This can be done because
when ci is inserted, any ck = (uk, vk), where k > i, which is present in the
stack will have its left side uk already found on the input tape, or the whole
ck was already found; anyways the selector xk of ck will be necessarily found
when we try to complete vk. In this way we will have on the top of the stack
the most recent inserted context (the last context inserted in the sentential
form), and, when we will descend in the stack, for every context that will
be passed by, we will complete its selector with one symbol (this symbol is
memorized in the state of the automaton). This algorithm will lead to the
acceptance of w. Note that an acceptance can be done only when we are in
state q, i.e. when a word from A was inserted in the stack, and consequently
Z was deleted from the stack.

We now have that L(M) = L(G). ��

Remark 3.4 The way gtas are used in acceptance of internal contextual
grammars with finite choice is quite simillar with what we have done in
the case of internal contextual grammars without choice. We go through the
stack to find the right position of a symbol (in what context it fits), keeping in
mind the conditions from Remark 3.1. We will point out the main differences
that occur in the design of an automaton for internal contextual grammars
with finite choice. An important condition is raised by the usage of selectors:
now when we descend in the stack we must change every context that we
meet, by highlighting that a symbol from its selector was found (this is done
by increasing the number associated with the selector). We can only go past
contexts that have uncompleted selectors. Since gta can descend in the stack
only using λ transitions we suppose before we start descending that we will
find the symbol a on the input tape, we find its place in the stack following
the restrictions already stated, and then we check if the first not-consummed

167

Contextual Grammars and Go Through Automata

symbol of the input tape is really a. If it is so we continue the computation,
otherwise the gta is blocked.

Remark 3.5 The sets Ak produced during the acceptance of some word w
can be used as a description of the strucutre of a derivation of w in the same
way they were used in derivation in internal grammars without choice.

4 Conclusions

The results presented above point out the main idea in using go through
automata in recognition of different languages: for every input symbol we
go through the stack trying to match it exactly where is its place. Of course
a tool that can permit the search of that place unrestricted is too powerful.
So the constraint that for each symbol we can go only once through the stack
is meant to restrict the power of the device. Further, we intend to apply go
through automata for the recognition of other non-context free languages.

References

[1] R. Gramatovici, Bounded Deterministic Go-Through Automata, Third Interna-
tional Conference on Discrete Mathematics and Theoretical Computer Science
- DMTCS’01, Constanţa, România, 2001, to appear, 2003.

[2] R. Gramatovici, On the Recognizing Power of Go Through Automata, to ap-
pear, 2002

[3] S. Marcus, Contextual grammars, Rev. Roum. Math. Pures Appl., 14 (10), 1969,
69-74.

[4] S. Marcus, Contextual grammars and natural languages, in The Handbook of
Formal Languages, G. Rozenberg, A. Salomaa, eds., Springer-Verlag, Berlin,
Heidelberg, New-York, vol. 2, 215-235, 1997.

[5] F. Mráz, M. Plátek, M. Procházcha, Restarting automata, deleting and Marcus
grammars, in Recent Topics in Mathematical and Computational Linguistics,
C. Martin-Vide, Gh. Păun, eds., Romanian Academy Publishing House, 2000,
218-233.

[6] Gh. Păun, Marcus Contextual Grammars, Kluwer, Dordrecht, Boston, London,
1997.

168

Coreferential Definite and Demonstrative

Descriptions in French: A Corpus Study

for Text Generation

Hélène Manuélian
LORIA, Nancy, France

helene.manuelian@loria.fr

Abstract. This paper presents a new classification for the use of definite and
demonstrative descriptions, its application in a corpus analysis and the results
of this analysis. The proposed classification is based on existing literature and
extended to support the generation of definite and demonstrative NPs. The corpus
analysis shows in particular, that subsequent mentions of a referent can perform two
functions (repeating given information and/or introducing new information). The
comparison between definite and demonstrative determiners leads to preliminary
data for generation algorithms.

1 Introduction

Algorithms for the generation of referring expressions [Dale et Reiter, 1995,
Van Deemter, 2001, Van Deemter, 2000, Krahmer et al., 2001] essentially gen-
erate definite descriptions. The purpose of these algorithms is to produce
given a referent that is already present in the context a referring expression
that is informative enough for the identification of the intended referent by
the listener. In a different perspective, [Gardent, Striegnitz, 2000] present
an algorithm for the generation of bridging descriptions based on a struc-
tured model of the context and a tight interleaving between inference and
generation. All these algorithms generate definite descriptions referring to
objects already present in the context and sometimes handle the definite /
pronoun opposition. However, they never handle the distinction between
definite and demonstrative descriptions. A good way to extend these algo-
rithms could be to introduce the distinction between the definite and the
demonstrative. Both determine anaphoric noun phrases, so we need to know
how to choose between them [Kleiber, 1986, Kleiber, 1988, Corblin, 1987].

This paper is a first step in this direction: we propose to explore this dis-
tinction through a corpus study of the anaphoric uses of definite and demon-
strative. We show that the literature about French definite and demonstra-

Proceedings of the Eighth ESSLLI Student Session
Balder ten Cate (editor)
Chapter 16, Copyright c© 2003, Hélène Manuélian

169

Coreferential Definite and Demonstrative Descriptions in French

tive is not precise enough to handle the generation of coreferential expres-
sions. We further present a corpus study based on this literature from which
we derived a new classification of determiner use, taking into account im-
portant data for generation which is not mentioned in the literature namely,
the global content of the noun phrase. We give in conclusion some directions
for the generation of referring expressions.

2 A First Corpus Study

The corpus studied is a part of the PAROLE corpus1 which contains 65 000
words, 8777 definite noun phrases and 555 demonstrative noun phrases. The
corpus is composed of articles from the French newspaper Le Monde which
are taken from every section (national and international politics, economics,
culture, sports, and leisure). It is annotated at the morphosyntactic level
according to the Multext / Multitag annotation scheme [Lecomte, 1997,
Beaumont et al. 1998].

Our goal was to maximally automatize the corpus processing, so we ap-
plied much preprocessing before performing the annotation described in this
section. We used the G-search tool [Corley et al., 2001] to identify the noun
phrases in the corpus and we wrote several filters to adapt the resulting out-
put to the format used by our annotation tool, MMAX [Muller, Strube, 2001].
The annotation with MMAX is completely manual.

2.1 Annotation Scheme

The first distinction between demonstrative and definite is linked with the
process of referent identification. The definite determines an expression
whose referent is unique in the context with respect to the description con-
tained in the noun phrase. The demonstrative NP denotes a referent which
is highly focused, and the semantic content of the description is not used to
identify the intended referent [Kleiber, 1986, Kleiber, 1988, Corblin, 1987].
The literature identifies three main uses for both determiners: first mention,
anaphoric mention or bridging. Our annotation identifies all these uses for
both determiners.

First mention This is the case when the referent has not been mentioned
before in the context and cannot be inferred from any antecedent. With
the definite, the referent must be uniquely identifiable in the context. The
demonstrative must be used with a gesture (”deictic use” of the demonstra-
tive).

1This corpus is shared with the ATILF research unit (Analyse et Traitement Infor-
matique de la Langue Française) in the context of the regional collaboration ”CPER
Intelligence Logicielle”.

170

Hélène Manuélian

Anaphoric Noun Phrases Both determiners can be used in coreference.
The difference is explained by the process of referent identification. The
demonstrative requires the referent to be highly focused whereas it is not
the case with the definite. Three types of anaphoric uses are found and
annotated in our corpus. For each anaphoric use, an antecedent has to be
identified in the previous text.
Direct Coreference Both determiners can be used in direct coreference
situations. This is the case when the phrase head noun is the same in the
antecedent and in the anaphor.
Indirect Coreference This is the case when the head noun of the anaphoric
phrase is different from the head noun of the antecedent. The indirect
coreference is also found with both determiners. Several ways of realising
coreference are found and subtyped in the annotation, but this is out of the
scope of this paper (for more details, see [Manuélian, 2003]).
Bridging This category of referring expression is essentially used with the
definite [Clark, 1977]. This is the case when the antecedent and the anaphor
do not corefer, but the anaphor is interpreted as a part of the antecedent or
as an object linked to the antecedent by the world knowledge. We can find
cases of demonstrative in bridging descriptions but these are rather rare.

Attributes and appositions We classified in a separated category def-
inite noun phrases which corefer to another noun phrase in apposition, or
attributes coreferring with the subject of the verb to be, considering that it
was a particular case of coreference, expressed explicitly, and using different
mechanism from classical coreference.

2.2 Results and Analysis

The table (1) shows the annotation results for both determiners. They con-
firm the results of previous theoretic and empirical studies [Corblin, 1987,
Kleiber, 1986, Kleiber, 1988, Poesio, Vieira 1998, Vieira et al. 2002].

We can see clearly that the definite can be used in first mention cases,
which is less the case for demonstrative. The proportion of first men-
tion for the definite is very high compared with other empirical studies
[Poesio, Vieira 1998], because it also contains the ”containing inferrable”
which are usually distinguished from other first mention uses (cases as the
light of the Sun, that are uniquely identifiable in their first mention). Indeed,
we can see that the most important use for demonstrative is the anaphoric
use, which is not the case for definite (about 75% of the uses of the demon-
strative are - directly or indirectly - coreferential against 16% for the defi-
nite).
We can also find an illustration of the reclassification power of the demon-
strative if we look at only the coreferential uses: 312 cases of coreferential

171

Coreferential Definite and Demonstrative Descriptions in French

uses of the demonstrative are indirect, which represent 77% of its coreferen-
tial uses (direct and indirect). 819 cases of indirect coreferential uses of the
definite are found, which represents 57% of its coreferential use.
The bridging phenomena is not so important for both categories and we can
confirm that it is more frequent with the definite than with the demonstra-
tive (For more details see [Gardent et al. 2003]). This annotation nonethe-
less confirmed the existing results but also permitted the extraction of coref-
erential noun phrases (1400 definite and 400 demonstrative), and their more
detailed study presented in the next section of this paper.

demonstrative demonstrative definite definite
Relation number proportion number proportion
First Mention 113 20,36% 6893 78,53%
Association 9 1,62% 417 4,75%
Direct Coreference 94 16,94% 607 6,92%
Indirect Coreference 312 58,02% 819 9,33%
Appositions / attributes 17 3,06% 41 0,47%
TOTAL 555 100 8777 100

Figure 1: First Annotation Results

3 A New Classification of Determiner Use

3.1 Motivations

The classification used in our annotation is helpful if we want to study the
linguistic uses of coreferential descriptions. The problem for generation is
that this classification does not handle certain elements which are essential
for the generation of anaphoric expressions. In particular, modifiers are not
taken into account, and one of the problems for generation is to decide the
semantic content of a complete description, not only the semantic content of
the head noun. Moreover, studying our data, we found that the information
contained in the anaphoric noun phrases is not necessarily given information
(i.e. explicitly or implicitly entailed by the context). Indeed, in some cases,
we found that the anaphoric noun phrase introduces new information about
the referent. Given these observations, questions that need to be adressed
to support better generation are:

• What is the communicative function of the noun phrase to be gen-
erated: does it conveys given information or does it introduce new
information?

• If the information contained in the anaphoric noun phrase is given,
does it always come from the antecedent, or from the context?

• If the information contained in the anaphoric noun phrase is new,
which linguistic means are used to express it?

172

Hélène Manuélian

3.2 Classification and Examples

We first distinguished anaphoric expressions repeating information (Infor-
mation Repeating Anaphors) from anaphoric expressions which add infor-
mation (Information Adding Anaphors). The first category is divided into
five subcategories, according to the source from which the information is
taken (explicitly or inferred). The second category is divided into four classes
according to the linguistic mean used to carry the new information. All the
examples here are taken from the corpus.

Information Repeating Anaphors (IRA)

The information is given by the antecedent only (AO)

Example: Celle-ci, (...) aurait tissé un réseau de liens ambigus dans la

gendarmerie, la sûreté de l’Etat, les clubs de tir. Le procès (...) avait
permis de mettre ces liens en relief.
Translation: She would have established some ambiguous links in the
police, and clubs. The trial brought these links further.

The information is given by the antecedent and the context (A+C)

Example: Le patronat avait très sensiblement modifié son comportement.
(...) La clé de ce nouveau comportement tient en deux chiffres.
Translation: The employers modified strongly their behaviour. The reason
for this new behaviour (...).

The given information is inferred from a lexical relation with the
antecedent (LR)

Example: L’Inde paie un tribut sans cesse plus lourd à la sécheresse,(...).
Ce phénomène a été accentué par des choix économiques erronés.
Translation: India suffers more and more of the drought. This phe-
nomenon has been provoked by wrong economical choices.

The given information is inferred from a lexical relation with the
antecedent and from the context (LR + C)

Example: La municipalité s’est dotée récemment d’un somptueux Palais

des concerts. C’est dans ce bâtiment confortable et flambant neuf

qu’a eu lieu l’inauguration.
Translation: The city council build recently a beautiful Palace of concert.
The inauguration took place in this comfortable and very new building.

The given information is inferred by world knowledge from the
antecedent and from the context (WKL)

Example: Les journalistes ne feront pas de reportage sur la visite de M.

Honecker au cimetière de Neunkirchen, dans la Sarre, où sont en-

terrés ses parents. (...) après que le chef d’Etat eut requis la ”tranquillité”

173

Coreferential Definite and Demonstrative Descriptions in French

pour cette partie ”privée” de son voyage en République fédérale.
Translation: The journalist won’t make reports about the visit of M. Ho-
necker in the Neunkirchen graveyard where his parents are buried.
(...) after the head of state asked for quietness during this private part of
his travel in the Federal Republic.

Information Adding Anaphors

The new information is introduced by a specifying lexical relation
(SLR)

Example: Ce document souligne (...) les conséquences médicales de la con-
sommation de tabac, (...). Les auteurs de ce rapport (...).
Translation: This document stresses the consequences of consuming to-
bacco. The authors of this report (...).

The new information comes from a specifying lexical relation and
from modifiers: (SLR + mod)

Example: Mais à Roubaix (...), le personnel a l’impression de compter les
points. (...) Pour ces ouvrières du bassin houillier dont quelques-

unes ont déjà trois heures de transport par jour, la nouvelle (...).
Translation: But in Roubaix the staff has the feeling to count points. For
these workers from the coalfield who travel three hours a day the
news (...).

The new information comes from modifiers: (mod)

Example: L’ aviation israélienne a effectué (...) un raid sur le camp de

refugiés palestiniens d’Ain-el-Heloue, dans les faubourgs de Saida,

chef-lieu du Liban-sud. Les chasseurs-bombardiers israéliens ont effectué
(...) plusieurs attaques sur ce camp qui compte soixante-mille habi-

tants, (...).
Translation: The Israelian air force attacked the palestinian refugee camp
of Ain El Heloue in Saida suburb. The israelians bombers made several
dive attacks on this camp which counts sixty thousand of inhabitants.

The new information is in the whole phrase and no lexical relation
is used: (No LR)

Example: (...) je tombe sur un article intitulé ” Pourquoi les maris pren-
nent le large”. Je me dis : cherche pas, ils se débinent pendant que tu
t’échines à faire des pompes et des flexions, ces salauds-là.
Translation: I find a paper which title is ”Why husbands escape?”. I say
”They escape when you are practising sports, these bastards.”

174

Hélène Manuélian

3.3 Comparison between Definite Use and Demonstrative
Use According to the New Classification

The two top tables of figure 2 show the source of the information used
in IRA according to the categories defined in section (3.2), in relation to
categories defined in the annotation scheme (section 2). For each category
of annotation we distinguished in the table the modified anaphors by ”+
mod”. The bottom tables in 2 synthetize the results by showing the number
of demonstrative and definite IRA in regard to the necessity of relating them
to their antecedent with inferences. We assume that it is not necessary to
make inferences if the information contained in the anaphor is explicitly
given in the antecedent. The tables (3) shows the linguistic means for adding
information for IAA, according to the classification defined in section (3.2)
in relation with the annotation categories. As for tables in (2), we indicate
when the anaphoric noun phrase is modified.

We removed from these results the NPs which have non-nominal an-
tecedents. From these two tables which classify 1412 coreferential definite
NPs and 352 coreferential demonstrative NPs, we can say as a first result
that for both determiners, the most frequent use is the information repeat-
ing anaphoric one (about 75% of the noun phrases belong to the category of
IRA). However, this leaves at least one fourth of definite and demonstrative
descriptions which contain new information, a fact which should be taken
into account in text generation. We will now compare the definite and the
demonstrative inside each category of use.

Information Repeating Anaphors From the tables (2) we can observe
the following facts: First, the information comes from the antecedent (di-
rectly or not - results in AO and LR column of the tables) in 70% of the
cases for definite and in 57% of the cases with the demonstrative. This
means that the demonstrative is probably more able to allow inferences
from the context. Second, the content of IRA must be inferred with 69% of
the demonstrative NPs and with 51% of the definite NPs.

These data are important because the existing generation algorithms
only generate anaphoric noun phrases from the explicitly given information
in the antecedent. These results show that if we introduce the possibility
of generating demonstrative anaphoric noun phrases we will have to allow
inference from other sources than the antecedent.

Information Adding Anaphors For noun phrases which add informa-
tion, we found (3) that the most IAA demonstrative fall in the ”modifier”
category and most of the definite description fall into the No Lexical Re-
lation one. We should approach this result with caution because the high
proportion of proper nouns, combined with the fact a proper noun never
have a lexical relation with a common noun, strongly biases the result,

175

Coreferential Definite and Demonstrative Descriptions in French

Demon-
strative

AO A+C LR LR+C WKL

Dir+mod 7 4 0 0 0
Dir 72 0 0 0 0
Ind+mod 1 0 10 15 17
Ind 0 22 57 10 44
total 80 26 67 25 61
proportion 21% 10% 26% 10% 23%

Definite AO A+C LR LR+C WKL
Dir+mod 90 59 0 0 4
Dir 410 0 0 0 0
Ind+mod 4 6 72 31 53
Ind 0 9 136 22 126
total 511 73 208 53 183
proportion 50% 7% 20% 5% 18%

Demonstrative Without in-
ferences

With
inferences

Direct 72 0
Direct + mod 7 4
Indirect 0 133
Ind + mod 1 42
total 80 (21%) 179 (69%)

Definite Without in-
ferences

With
inferences

Direct 410 0
Direct + mod 90 63
Indirect 0 299
Ind + mod 4 162
total 504 (49%) 524 (51%)

Figure 2: Results for Information Repeating Anaphors

thus hiding the possibility that if the content of the anaphor has no lexical
relation with a common noun antecedent, the demonstrative is used very
frequently. Moreover, 43% of the demonstrative add information by this
mean and most of them have a common noun as antecedent which is not the
case for definite. So, the reclassifying power of demonstrative is illustrated
by this data, and is obviously a mean to add information about a referent
with the demonstrative.

Demonstrative SLR Mod SLR
+mod

No
LR

Direct mod 0 11 0 0
Indirect mod 2 33 8 22
Indirect 4 0 0 13
total 6

6,3%
40
42%

8
8,4%

41
43%

Definite SLR Mod SLR
+mod

No
LR

Direct mod 0 43 0 0
Ind. mod 1 7 0 108
Indirect 12 38 14 61
total 13

4,6%
81
28,5%

21
7,4%

169
59,5%

Figure 3: Results for Information Adding Anaphors

Synthesis We have now to observe the distribution of the different phe-
nomena among all the anaphoric noun phrases. We present it in the table
(4). The top table presents the proportion of the different anaphoric noun
phrases within the category of IRA, and the bottom table the proportion of
each category for IAA (each category is abreviated as before and preceded
by the type of determiner). Because of the bias mentioned in the previ-
ous section we divided each table into two parts, one for anaphoric noun
phrases with proper nouns as antecedent, the second for common nouns as
antecedent.

We propose the following basis for a generation algorithm. It is based
on the salience criteria proposed in the literature and on the frequency of
occurences in the corpus which is the only parameter available at this mo-

176

Hélène Manuélian

IRA dem
AO

dem
A+C

dem
LR

dem
LR+C

dem
WKL

def
AO

def
A+C

def
LR

def
LR+C

def
WKL

proper N 0 0 0 0 25 3 1 0 0 91
proportion 0% 0% 0% 0% 20,8% 2,5% 0,8% 0% 0% 75,8%
common N 80 26 67 25 36 508 72 208 53 92
proportion 6,8% 2,2% 5,7% 2,1% 3,1% 43,5% 6,2% 17,8% 4,5% 7,9%

IAA dem
SLR

dem
mod

dem
SLR+mod

dem
NoLR

def
SLR

def
mod

def
SLR+mod

def
NoLR

proper N 0 10 0 11 0 15 0 160
proportion 0% 5,1% 0% 5,6% 0% 7,6% 0% 81,6%
common N 6 30 8 30 13 66 21 9
proportion 3,3% 16,4% 4,4% 16,4% 7,1% 36% 11,5% 4,9%

Figure 4: Functions of anaphoric noun phrases in the whole corpus

ment:
If the function of the description is IRA

If antecedent = proper noun
If the referent is focused, use a demonstrative and infer the content of the

anaphor from the world knowledge
If the referent is unique in the context, use the definite and infer the content

from:
- world knowledge
- the antecedent (give the type of the antecedent)
- the antecedent and the context

If antecedent = common noun:
If the referent is focused, use the demonstrative and infer the content from:
- the antecedent
- a lexical relation
- world knowledge
- antecedent and context
- lexical relation and context
If the referent is unique, use the definite and infer the content from:
- antecedent
- lexical relation
- world knowledge
- antecedent and context
- lexical relation and context

If the function of the description is IAA
If antecedent = proper noun

If the referent is unique in the context, use the definite and
- a NP without lexical relation
- a noun describing the type of the referent and modifiers
If the referent is focused use the demonstrative and :
- a NP without lexical relation
- a noun describing the type of the referent and modifiers

177

Coreferential Definite and Demonstrative Descriptions in French

If antecedent = common noun
If the referent is unique in the context, use the definite and :
- modifiers
- specifying lexical relation and modifiers,
- specifying lexical relation
- a NP without lexical relation

If antecedent = common noun and if focused, use the demonstrative and
- equally use modifiers or a NP without lexical relation
- a specifying lexical relation and modifiers
- lexical relation

4 Conclusion and Future Work

In this paper we laid the ground for an extension of the existing genera-
tion algorithms for referring expressions which would encompass not only
anaphoric definite descriptions but also anaphoric demonstrative descrip-
tions. Based on the classification proposed in the literature, we described
the results of a first corpus analysis. We then proposed a more detailed clas-
sification whose classes are arguably needed for a better specification of the
different uses of definite and demonstrative. We applied this classification
to the corpus thereby extracting from the resulting analysis interesting facts
about both definite and demonstrative. We ended by sketching the basis of
an algorithm supporting the choice between the two determiners. This study
must be completed by adding parameters to lead to a real algorithm. These
parameters could be discourse-linked restrictions (position in the anaphoric
chain for example) or syntactic restrictions (distance from the antecedent,
grammatical functions of the antecedent...).

5 Acknowledgements

I would like to thank Claire Gardent for her precious help and support,
and Eric Kow for all the scripts and programmes he wrote for the corpus
exploitation.

References

[Beaumont et al. 1998] Beaumont C., Lecomte J., et Hatout N., (1998) Etiquetage
morpho-syntaxique du corpus ”Le Monde” pour les besoins du projet PAROLE,
Technical Report, INALF, Nancy.

[Clark, 1977] Clark H.H., Bridging Thinking: Readings in Cognitive Science,
Johnson-Laird P.N., Wason P.C. (eds), Cambridge, Cambridge University
Press.

178

Hélène Manuélian

[Corblin, 1987] Corblin F. (1987), Indéfini, Défini et Démonstratif, Genève, Paris,
Droz.

[Corblin, 1999] Corblin F. (1999), Les références mentionnelles : le premier, le
dernier, celui-ci. In La référence (2) Statut et processus, Mettouch A. and
Quinyin H. (eds.), Travaux linguistiques du CERLICO, Rennes, PUF.

[Corley et al., 2001] Corley S., Corley M., Keller F., Crocker M.W., et Trewin S.,
(2001) Finding Syntactic Structure in Unparsed Corpora : The Gsearch corpus
query system, Computer and Humanities, 35(2), pp81-94.

[Dale et Reiter, 1995] Dale R. Reiter E., (1995), Computational Interprerations
of the Gricean Maxims in the Generation of Referring Expressions Cognitive
Sciences 19(2), pp233-263.

[Gardent, Striegnitz, 2000] Gardent C., Striegnitz K., (2000), Generating Indirect
Anaphora, proceedings of IWCS’00 (International Workshop on Computa-
tional Semantics).

[Gardent et al. 2003] Gardent C., Manuélian H., Kow E., (2003), Which Bridges
for Bridging Descriptions, in EACL Workshop on Linguistically Interpreted
Corpora proceedings.

[Kleiber, 1986] Kleiber G., (1986), Pour une explication du paradoxe de la reprise
immédiate un N - le N / un N - Ce N Langue Française, 72, pp 54-79.

[Kleiber, 1988] Kleiber G., (1988), Reprise immédiate et théorie des contrastes,
Studia Romanica Posnaniensa, 13, pp 67-83.

[Krahmer et al., 2001] Krahmer E., van Erk S., Verleg A., (2001), A Meta-
Algorithm for the Generation of Referring Expressions, proceedings of 8th
European Workshop on Natural Language Generation pp 29-39.

[Lecomte, 1997] Lecomte J., (1997) Codage Multext - GRACE pour l’action
GRACE / Multitag, Technical Report, INALF, Nancy.

[Manuélian, 2002] Manuélian H., (2002), Annotation des descriptions définies : le
cas des reprises par les rôles thématiques, proceedings of RECITAL 2002,
Nancy, France, pp455-467.

[Manuélian, 2003] Manuélian H., (2003), Une analyse du démonstratif en corpus,
proceedings of TALN 2003, Batz sur Mer, France.

[Muller, Strube, 2001] Muller C., Strube M., (2001) Annotating Anaphoric and
Bridging Relations with MMAX, proceedings of 2nd SIGDial Workshop on
Discourse and Dialogue, pp90-95.

[Poesio, Vieira 1998] Poesio M., Vieira R., (1998), A Corpus Based Investigation
of Definite Description Use, Computational Linguistics, 24-2 pp183-216.

[Vieira et al. 2002] Vieira R., Salmon-Alt S., Gasperin C., Schang E., Othero G.,
(2002), Coreference and Anaphoric Relations of Demonstrative Noun Phrases
in a Multilingual Corpus, proceedings of DAARC.

[Van Deemter, 2000] Van Deemter K., (2000), Generating Vague Descriptions, pro-
ceedings of First International Conference on Natural Language Generation,
pp 179-186.

179

Coreferential Definite and Demonstrative Descriptions in French

[Van Deemter, 2001] Van Deemter K., (2001), Logical Form Equivalence : the Case
of Referring Expressions Generation, proceedings of 8th European Workshop
on Natural Language Generation 21-29.

180

Formalizing a Constituency Based Dynamic
Grammar

ALESSANDRO MAZZEI

Dip. Informatica, Università di Torino

mazzei@di.unito.it

ABSTRACT. Dynamic grammars are a grammatical formalism that describes the derivation
and recognition processes via dynamics: a string is derived and parsed as a consequence of a
transition between states. This paper formalizes tree adjoining based dynamic grammar (DV-
TAG). In particular, we show that DV-TAG is adequate to describe some linguistic phenomena,
and that we can also generate languages beyond the context-free power.

1 Introduction

Incrementality is a property of natural language understanding: humans build up
partial analyses of the sentences as soon as the words are heard or seen ([MW73]).
This property has important effects at syntactic and semantic analysis level: the
language processor interprets syntactic structures, word by word, and incremen-
tally produces semantic representation.

In two ways a syntactic theory can satisfy incrementality: working at perfor-
mance level, it can respect the constraints in parsing and derivation strategies. Or
working at competence level, it can modify the grammatical formalism, thus the
grammar derives only structures that respect incremental constraints. In the latter
case we fulfill the transparency hypothesis ([BW84]): a syntactic theory must re-
flect the behaviour of the human syntactic processor in its formal operations.
Stabler (cf. [Sta94]) formalized a stronger property (that we call strong incre-
mentality): people incorporate each word into a single, totally connected syntactic
structure before any further words follow. Incremental interpretation is achieved
interpreting this single connected syntactic structure.

Dynamic grammars1 can satisfy the strong incrementality and transparency hy-
pothesis both: the time evolution of a single fully connected syntactic structure is
governed by the appearance of lexical items. The syntactic process in a dynamic
grammar is a sequence of transitions between adjacent states Si−1 and Si moving
from left to right in the input string.

1cf. [Gel98] for an overview of the dynamic paradigm in cognitive science.

Proceedings of the Eighth ESSLLI Student Session
Balder ten Cate (editor)
Chapter 17, Copyright c© 2003, Alessandro Mazzei

181

Formalizing a Constituency Based Dynamic Grammar

In the schema proposed by Milward ([Mil94]) to define a dynamic grammar, we
have to define the states of the dynamic process, a set of axioms that relate a lexical
item with a transition between states, some deduction rules that specify the time
evolution of the process, and the sets of initial and final states. In this schema a
grammar derives a sentence if and only if starting from an initial state and follow-
ing the transitions associated with the words in the sentence, the decision process
will be in a final state after reaching the last word of the sentence. We can also
specify a dynamic grammar starting from a lexicalized grammatical formalism,
and redefining the combination operations in a dynamic fashion, as the axioms of
the dynamic grammar. In such a way Milward defined the dynamic version of
dependency grammars.

In this paper, we formalize a TAG-related dynamic grammar, called Dynamic
Version of TAG (DV-TAG), that satisfies strong incrementality. Following the in-
formal work presented in [LS02], this dynamic grammar builds upon the lexicon
and the attachment operations of Lexicalized TAG (L–TAG [Sch90]) in order to
define the states and the transitions. This paper is an ongoing work about viability
of the formalism in term of basic mechanisms of syntactic construction. States Si

are partially derived trees that span the input string from the beginning to the i-th
word; transitions extend the left contexts Si−1 by attaching some elementary tree
anchored by the word wi through dynamic versions of Substitution and Adjoining.
To our knowledge, DV-TAG is the first attempt to define a constituency based dy-
namic grammar. The constituency nature of DV-TAG also allows to state easy
relationship with the mainstream frameworks of computational linguistics. For ex-
ample, we can introduce some statistical parameters and define a stochastic version
of our formalism to yield a wide coverage parser.

The following purely syntactic question remains open: where are DV-TAG
grammars in the Chomsky hierarchy? We will show, as a starting point, that DV–
TAG is powerful enough to derive a linguistically relevant context–sensitive lan-
guage. Many other linguistic phenomena, including extractions and nested depen-
dencies, can be accounted by DV-TAG. As an example we will show a derivation
in DV-TAG for cross-serial dependencies.

2 Dynamic Version of Tree Adjoining Grammar (DV-TAG)

The standard version L-TAG does not respect the strong incrementality: we cannot
always build a fully connected partially derived tree composing the elementary
trees and following the word sequential order.

The intuitive idea behind DV-TAG is to convert the derivation process of Lex-
icalized TAG into a dynamic system. A DV-TAG grammar, as L-TAG grammar
([Sch90]), is a set of elementary trees, divided into initial trees and auxiliary trees,
and attachment operations for combining them. In DV-TAG attachment operations
always occur between the left context and an elementary tree, and some combi-
nations are not permitted. In particular, the derivation tree, which illustrates the

182

Alessandro Mazzei

derivation process in L-TAG (a context-free process), becomes a derivation se-
quence. In the rest of this section, we sketch a formal definition of DV-TAG. This
definition is necessary for the study of the expressive power of the formalism, that
we will show in future works. We will not use linguistic examples, only formal
symbols (a, b, c, etc.) without semantic role, since we want to stress the discussion
about syntactic issues. Therefore the paper does not present a formal definition of
semantic interpretation.

First of all, we provide some general terminology. Let Σ be an alphabet of ter-
minal symbols, and V an alphabet of non–terminal symbols. a, b, c, d, ... ∈ Σ indi-
cate terminal symbols, A,B,C,D, ... ∈ V for non–terminal symbols, x, y,w, z ∈
Σ∗ are strings of terminals, ρ, σ, τ ∈ (Σ ∪ V)∗ are mixed strings; |ρ| is the length
of the string ρ. We denote initial trees with α, auxiliary trees with β, derived and
generic trees with γ, δ, ζ; with N we denote a node belonging to a tree. yield(γ)
is the string of terminal and non–terminal symbols on the frontier of a tree γ;
yieldi(γ) is the i–th element of the yield(γ).

We introduce two useful notions that are borrowed from parsing2 dotted tree
and fringe.

Definition 2.1. A dotted tree is a couple 〈γ, i〉where γ is a tree and i ∈ 0...|yield(γ)|.

Definition 2.2. The left fringe of dotted tree 〈γ, i〉 is a path from yieldi(γ) to the
root, minus the path from yieldi+1(γ) to the root. The right fringe of a dotted tree
〈γ, i〉 is the path from yieldi+1(γ) to root, minus the path from yieldi(γ) to root.
We will use dotted lines to denote fringes in the trees (fig 1).

Dotted tree is the basic data structure in DV–TAG: the dot denotes a point in the
yield of the tree and the fringes point where the next attachment operation can be
applied.

Now we can define the attachment operations. Since an elementary tree brings
new lexical material in the string, we need to be careful about the linear positioning
of such material during the derivation process, in order to avoid holes in the left
fragment of the sentence. Constraints involve the shape of the elementary trees
(in particular, we keep distinct three types of auxiliary trees) and the definition of
operations. Following the definitions of [SW95], we define left auxiliary trees
AL as auxiliary trees that have (non–empty) terminal symbols only on the left of
the foot node, right auxiliary trees AR as auxiliary trees that have (non–empty)
terminal symbols only on the right of the foot node, wrapping auxiliary trees AW

as auxiliary trees that have (non–empty) terminal symbols on both the left and the
right of the foot node. Elementary trees where the leftmost symbol of the yield is a
terminal symbol are called left anchored trees. For left anchored auxiliary trees,
it can be the case that the foot node is at the left of the leftmost anchor.
We define six attachment operations on a dotted tree: two substitutions (similar

2In dynamic grammars parsing and derivation are achieved by the same mechanisms, then it is
very spontaneously to use some parser concepts.

183

Formalizing a Constituency Based Dynamic Grammar

�

�

�

�

�

�Æ� ��
�

� ��

�

��� ��

�

�

��� ��

�

� �

� � ��

�Æ� ��

�

� �

�

�

�

�

��� ��
�

� �

�

�

�

�

��� ��

��

��

��

�

�� �

� ��

��� ��
�

�

��� ��

Figure 1: Operations in DV–TAG.

to L–TAG substitution), three adjunctions (similar to L–TAG adjunction), and one
shift.

• Substitution 〈δ, i + 1〉 = Sub→(〈α, 0〉, 〈γ, i〉)
Let α be a left anchored initial tree that has the same root label as the substi-
tution node N↓ on the right fringe of 〈α, i〉. The root of α is merged into the
node N, and the dot in the new dotted tree is immediately to the right of the
leftmost anchor of α (figure 1-A).

• Inverse Substitution 〈δ, i + 1〉 = Sub←(〈α, 0〉, 〈γ, i〉)
Let α be an initial tree, such that yield1(α) is a substitution node N↓ labelled
like the root of γ, and yield2(α) is the leftmost anchor of α: the root of γ is
merged into N↓, and the dot in the new dotted tree is on the right of the left
anchor of α (figure 1-B).

• Shifting 〈γ, i + 1〉 = Shi(〈γ, i〉)
Let 〈γ, i〉 be a dotted tree. The dot is shifted on the right to the next position

184

Alessandro Mazzei

� �Æ� ��

�

�

�
�

�

��

��� ��

�

�

�
�

�

�

��

� �

�

�

�
� �

�

��

� �

��� ��

��

��

�

�

�

�

��

�

�

�

�

�Æ� ��
�

�

�
�

�

��

�

�

��� ��

��

�

�

�

��

� ��� ��

�

�

�

��� ��

��� �� �Æ� ��

Figure 2: Operations in DV–TAG.

of the frontier (figure 1-C).

• Adjoining from the left 〈δ, i + 1〉 = ∇→L (〈β, 0〉, 〈γ, i〉,N)
Let β ∈ (AL ∪ AW) be a left anchored left or wrapping auxiliary tree: β
is grafted into a non–terminal node N that belongs to the right fringe of the
dotted tree 〈γ, i〉 and has the same label as the root of β. In the new dotted
tree, the dot is at the position i + 1 of the frontier (figure 2-D).

• Adjoining from the right 〈δ, i + 1〉 = ∇→R (〈β, 0〉, 〈γ, i〉,N)
Let β ∈ AR be a left anchored right auxiliary tree: β is grafted into a non–
terminal node N that belongs to the left fringe of the dotted tree 〈γ, i〉 and
has the same label as the root of β. In the new dotted tree the dot is in the
position i + 1 of the frontier (figure 2-E).

• Inverse Adjoining from the Left 〈δ, i + 1〉 = ∇←L (〈ζ, 0〉, 〈γ, i〉,N)

185

Formalizing a Constituency Based Dynamic Grammar

Let γ be a left or wrapping auxiliary tree: γ is grafted into a non–terminal
node N that belongs to the right fringe of the dotted tree 〈ζ, 0〉. In the new
dotted tree the dot is to the right of the leftmost anchor of ζ (figure 2-F).

Finally, we can give a formal definition of a DV–TAG. We adapt the schema
defined in [Mil94] for the dynamic dependency grammars. Like in L–TAG, we
have two sets of trees: a set of initial trees I , and a set of auxiliary trees A =
AL ∪ AR ∪ AW .

Definition 2.3. Given a lexicon L = (I,A), the DV–TAG G is a quadruple con-
sisting of the set of states (including initial and final states), the set of axioms, the
deduction rule, and the specification of the legal strings and trees.

• Set of states, where a state is a dotted tree 〈γ, i〉;
– Initial states: {〈S ↓, 0〉}
– Final states:
{〈γ, n〉 : Rfringe(〈γ, n〉) = ∅}.

• Set of axioms: 〈γ, i〉 a−→ 〈δ, i + 1〉
1. a ∈ Σ, a ∈ Rfringe(〈γ, i〉)

〈δ, i + 1〉 = Shi(〈γ, i〉) = 〈γ, i + 1〉
2. a ∈ Σ, leftmost anchor of ζ , with

ζ = α ∈ I , or
ζ = βL ∈ AL ∪ AW , or
ζ = βR ∈ AR

〈δ, i + 1〉 =




Sub→(〈α, 0〉, 〈γ, i〉)
Sub←(〈α, 0〉, 〈γ, i〉)
∇→L (〈βL, 0〉, 〈γ, i〉,N)
∇→R (〈βR, 0〉, 〈γ, i〉,N)
∇←L (〈ζ, 0〉, 〈γ, i〉,N)

• Deduction rule (a, b terminal symbols):

〈γ, i〉 a−→ 〈δ, i + 1〉 〈δ, i + 1〉 b−→ 〈ζ, i + 2〉
〈γ, i〉 ab−→ 〈ζ, i + 2〉

• Specification of the legal strings and trees:

– A string w is generated by the grammar if and only if

〈S ↓, 0〉 w−→ 〈γ, n〉
with 〈γ, n〉 final state.

186

Alessandro Mazzei

��

���� �� �

�

�
�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�
�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

���� �� ���� �� ���� ��

���� ��
���� ��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

���� ��

���

Figure 3: A fragment of DV–TAG derivation of the string “abcabc”.

– A tree γ is derived by the grammar if and only if ∃w such that

〈S ↓, 0〉 w−→ 〈γ, n〉
with 〈γ, n〉 final state.

Left–context can be defined as a dotted tree 〈γ, i〉 such that yield(γ) = wρ,
with w ∈ Σ∗, ρ ∈ (V ∪ Σ)∗ and |w| = i. DV–TAG derivation is the sequence of
left contexts.

Cross–serial dependencies

Formally speaking, the dependencies in a string are equivalence relations between
elements of the words. As usual we represent these relations with lines that link
the elements. A grammatical system generates dependencies in a string, if in the
derivation of the string, elements in the dependency relation are inserted in the
same step of the derivation ([BRN92]). The derivational generative capacity of
a grammatical formalism is the set of the dependencies that the formalism can
generate.

Cross-serial dependencies, expressed by the string� � � � � �, are well-known
test-bed for grammatical formalism attempting to describe natural languages. There

187

Formalizing a Constituency Based Dynamic Grammar

are real linguistic constructions, as subordinate phrase construction in Dutch, that
show these dependencies. It is easy to show that context-free grammars cannot
generate this type of dependencies, therefore we need a more powerful formalism
to take this phenomenon into account. Indeed the cross-serial dependencies play a
key role in the definition of mildly context-sensitive languages ([VSJW90]).
We show that DV-TAG is powerful enough to derive cross-serial dependencies,
and to produce a derived tree equal to the verb-raising analysis of Dutch sub-
ordinate phrase construction given in [KS91], using a DV-TAG with the lexicon
I = {αc},A = {βa, βb} (figure 3). The complete DV–TAG derivation of the
string “abcabc” is:

〈S ↓, 0〉 a−−−→ 〈γ1, 1〉
b−−−→ 〈γ2, 2〉

c−−−→ 〈γ3, 3〉
ε−−−→ 〈γ4, 4〉

ε−−−→ 〈γ5, 5〉
ε−−−→

〈γ6, 6〉
a−−−→ 〈γ7, 7〉

b−−−→ 〈γ8, 8〉
c−−−→ 〈γ9, 9〉,

where the first operation is an adjoining from the left operation, the second and
third operations are inverse adjoining from the left operations (figure 3 depicts
these operations), and the last six steps are shifting operations.

Beyond the CF–power

Weakly generative capacity of DV-TAG is greater than weakly generative capacity
of CF-grammars. This expressive power is a direct consequence of L–TAG gener-
ative capacity ([VSJW90]). DV–TAG with the lexicon I = {αe},A = {βa, βb}
(figure 4) derives the language

L = {wew′ | w,w′ ∈ {a, b}∗, |w| = |w′|,
number of a in w = number of a in w′,
number of b in w = number of b in w′ }.

This language is the context-sensitive language3 related to example discussed by
Shieber ([Shi85]) against the context-freeness of natural languages. There is the
initial fragment of the DV-TAG derivation for the sentence “abeab” in figure 4.

3 Open questions

We gave a formal definition for a dynamic grammar based on tree adjoining gram-
mars, and we showed that several linguistic related formal languages can be derived
by these grammars.

In this paper we do not define any semantics for DV-TAG (we are stile working
on this part of the formalism) even if there are two important issues that could be
pointed out about semantics:

• In standard L-TAG we can couple each elementary tree with a semantic unit.
Thus obtaining the semantics of the derived tree via the composition of these

3The intersection of L with the regular language a∗b∗ea∗b∗ gives the language anbmeanbm: the
CF-languages are closed under intersection with regular languages, then L is not context-free.

188

Alessandro Mazzei

�� �

�

�

�

�

�

�

�

�

�

�
�
� �

�

�

�

�

���� ��
���� ��

���� �� ���� ��

���� ������ ��

���� ��

���

�

�

�

�

�
�

� �

�

��
�

�

�
�

� �

�

�

�

Figure 4: A DV–TAG deriving a context–sensitive language

units. We have to distinguish adjoining and substitution through different
rules of semantic composition. We can say that “the derivation trees repre-
sent predicate-argument structures” ([AR00]).

In DV-TAG, in order to satisfy the strong incrementality, and then to allow
incremental construction of a derivation tree, we have to “augment” the el-
ementary structures with nodes that are not projected by the lexical anchor
of the tree4. To respect the semantic compositionality we have to define an
“unification-substitution” operation to check which nodes of the elementary
tree are yet in the partially derived tree ([LS02]). In this paper, we did not
formalize this unification operation, because it does not change the expres-
sive power of the formalism, even if it is necessary for linguistic reasons.

• In the standard TAG, the derivation tree plays a key role in the definition of
semantic interpretation but, the way the derivation tree is built is irrelevant.
In DV-TAG we have a more powerful structure, called derivation sequence,
describing the derivation tree and also how it is built. In our opinion, seman-
tics for DV-TAG could be better defined using this structure.

In the future work we will first draw the exact position of DV–TAG in Chomsky
hierarchy, answering the question whether DV–TAGs are mildly context-sensitive

4This procedure resembles the type-raising procedure of CCG formalism ([Ste00])

189

Formalizing a Constituency Based Dynamic Grammar

grammars ([VSJW90]). In this case, we have to show that DV–TAG is polynomi-
ally parsable and this will allow us to develop a wide coverage parser.

References

[AR00] Abeillé Anne and Owen Rambow, editors. Tree Adjoining Grammars: For-
malisms, Linguistic Analysis and Processing. (CSLI-LN) Center for the Study
of Language and Information-Lecture Notes, 2000.

[BRN92] T. Becker, O. Rambow, and M. Niv. The Derivational Power of Formal System
or Scrambling is beyond LCFRS. Technical report, Institute for Research in
Cognitive Science, University of Pennsylvania, 1992.

[BW84] R. Berwick and A. Weinberg. The grammatical basis of linguistic perfor-
mance: language use and acquisition. MIT Press, 1984.

[Gel98] Tim Van Gelder. The dynamical hypothesis in cognitive science. Behavioral
and Brain Sciences, 21:1–14, 1998.

[KS91] A. Kroch and B. Santorini. The derived constituent structure of the West Ger-
manic verb-raising construction. In R. Freidin, editor, Principles and Param-
eters in comparative grammar, pages 269–338. MIT Press, Cambridge: MA,
1991.

[LS02] Vincenzo Lombardo and Patrick Sturt. Towards a dynamic version of tag. In
Proceedings of 6th International Workshop on Tree Adjoining Grammars and
Related Frameworks (TAG +6), pages 101–110, Venice (Italy), 20-23 May
2002.

[Mil94] D. Milward. Dynamic dependency grammar. Linguistics and Philosophy,
17(6), 1994.

[MW73] W. Marslen-Wilson. Linguistic structure and speech shadowing at very short
latencies. Nature, 244:522–533, 1973.

[Sch90] Yves Schabes. Mathematical and Computational Aspects of Lexicalized
Grammars. PhD thesis, Department of Computer and Information Science,
University of Pennsylvania, 1990.

[Shi85] S. M. Shieber. Evidence against the context-freeness of natural language. Lin-
guistics and Philosophy, 8:333–343, 1985.

[Sta94] E. P. Stabler. The finite connectivity of linguistic structure. In C. Clifton,
L. Frazier, and K. Reyner, editors, Perspectives on Sentence Processing, pages
303–336. Lawrence Erlbaum Associates, 1994.

[Ste00] M. J. Steedman. The syntactic process. A Bradford Book, The MIT Press,
2000.

[SW95] Yves Schabes and Richard C. Waters. Tree insertion grammar: A cubic-time,
parsable formalism that lexicalizes Context-free grammar without changing
the trees produced. Computational Linguistics, 21(4):479–513, 1995.

[VSJW90] K. Vijay-Shanker, A. Joshi, and D. Weir. The convergence of mildly context-
sensitive grammatical formalisms. In Peter Sells, Stuart Shieber, and Tom Wa-
sow, editors, Foundational Issues in Natual Language Processing. MIT Press,
Cambridge MA, 1990.

190

Exploiting Sequent Structure in

Membership Algorithms for the Lambek

Calculus

Ryan T. McDonald
Department of Computer and Information Science

University of Pennsylvania

ryantm@cis.upenn.edu

Abstract. This paper will examine the open problem of whether or not a se-
quent is derivable in the Lambek Calculus (L) in polynomial-time. This will be
done through an investigation of Lambek Calculus Graphs (LC-Graphs), which
were introduced by Penn[7] to represent the well-formedness constraints of a se-
quent’s derivation in L. Presented here is a simplified version of LC-Graphs and
their integrity criteria. We also show that storing a small amount of structural
information about a sequent during parsing can reduce the number of integrity
criteria for LC-Graphs from four to two. To this effect, a polynomial-time mem-
bership algorithm is presented that recognizes all derivable sequents and falsely
recognizes an identifiable class of underivable sequents.

1 Introduction

Substructural logics are a group of logics whose proof systems only use a
subset of the structural rules of classical proof systems. The most well
known substructural logics include Relevance Logic, which does not employ
weakening, and Girard’s[3] Linear Logic, which uses neither weakening nor
contraction. The complexity of membership algorithms for these logics is
well studied with results often proving their intractability [4, 5].

Also in the class of substructural logics is the Lambek Calculus (L),
which has the following structural rules:

(/L) Γ′�B Γ,A,Γ′′�S
Γ,A/B,Γ′,Γ′′�S

(/R) Γ,B�A
Γ�A/B

(∗)
(\L) Γ′�B Γ,A,Γ′′�S

Γ,Γ′,B\A,Γ′′�S
(\R) B,Γ�A

Γ�B\A

(∗)

(•L) Γ,A,B,Γ′�S
Γ,A•B,Γ′�S

(•R) Γ�A Γ′�B
Γ,Γ′�A•B

* if Γ is non-empty.

These operators are known as left-implication (\), right-implication (/) and
product (•), where A/B means looking for premise B on the right to imply A

Proceedings of the Eighth ESSLLI Student Session
Balder ten Cate (editor)
Chapter 18, Copyright c© 2003, Ryan T. McDonald

191

Exploiting Sequent Structure in Membership Algorithms for the Lambek Calculus

and A\B means looking for premise A on the left to imply B. For simplicity
this paper will focus on the product-free fragment of L and sequents with
non-empty sequences of premises.

The Lambek Calculus is of interest to both computer scientists and lin-
guists because it is a basis for a deductive system for Categorial Grammars
(CG). A CG consists of a set of base categories (N, NP, S, etc.), a lexi-
con and a distinguished category, s. Given a grammar, a string of words,
w = (w1, . . . , wn) and their corresponding categories, C = (C1, . . . , Cn)1,
the principle question is whether or not w is generated by the grammar. If
we view each category Ci as a premise and the distinguished category, s,
as the consequent, then this question is the same as asking “is the sequent
C1 C2 . . . Cn � s, derivable in L?”. It is, however, unknown whether or
not a sequent can be derived in L in polynomial-time as a function of the
input size.

There are many reasons to believe that sequent derivability in L is in-
tractable, including results showing that membership in LP (L with permu-
tation) and Semidirectional Lambek Calculus [2] is NP-complete. However,
since both these logics either partially or completely allow for permutation
there is still a reasonable basis for believing that the Lambek Calculus can
achieve membership recognition in polynomial-time. This paper essentially
focuses on finding such a polynomial solution, but it may be the case that
observations made here lead to an NP-complete reduction. During this pro-
cess we will exclusively work with Lambek Calculus Graphs (LC-Graphs)[7].
Section 2 describes the basic framework that will be used in this investigation
as well as presents a simplified version of LC-Graphs and their correctness
criteria. In section 3 a complete but unsound polynomial-time chart pars-
ing algorithm is presented which satisfies all but two of the four correctness
criteria of LC-Graphs.

2 The Framework

Much of this and the next section have been drawn from Penn[7]. Both
it and Roorda[8] have a more complete account. Below is only meant to
provide enough background information to proceed.

Before the definition of LC-Graphs is presented we must first define two
central constructs, axiomatic formula and axiomatic linkage.2 Their
definitions follow from how they are constructed from some given sequent.
To illustrate, we will consider the sequent S:

(A/(A\A))/A A A\A A\A � A

1Here we assume a one-to-one correspondence of words and categories.
2Axiomatic formulae and linkages also serve as the basis for Lambek proof-nets [8],

from which the correctness criteria of LC-Graphs is based [7].

192

Ryan T. McDonald

2.1 Axiomatic Formulae

Polarize S so that each premise category becomes negatively polarized and
the consequent becomes positively polarized. Then label each of these cat-
egories with a unique variable (see below).

For each polarized category, unfold it to obtain a sequence of axiomatic
formulae using the following lexical unfolding rules:

(A\B)
−
: t −→ A

+
: u B

−
: tu

(A\B)
+
: v −→ B

+
: v′ A

−
: u [v := λu.v′]

(A/B)
−
: t −→ A

−
: tu B

+
: u

(A/B)
+
: v −→ B

−
: u A

+
: v′ [v := λu.v′]

An axiomatic formula is an unfolded base category that was part of some
base/complex category in either the sequent’s premise set or it’s conclusion.
For example, the following sequent is labeled and unfolded to a produce a
sequence of axiomatic formulae as follows:

(A/(A\A))/A A A\A A\A � A −→
((A/(A\A))/A)

−
: b A

−
: a (A\A)

−
: h (A\A)

−
: l A

+
: m −→

(A/(A\A))
−
: bc A

+
: c A

−
: a (A\A)

−
: h (A\A)

−
: l A

+
: m −→

A
−
: bcd (A\A)

+
: d A

+
: c A

−
: a (A\A)

−
: h (A\A)

−
: l A

+
: m −→

A
−
: bcd A

+
: e A

−
: f A

+
: c A

−
: a (A\A)

−
: h (A\A)

−
: l A

+
: m −→

A
−
: bcd A

+
: e A

−
: f A

+
: c A

−
: a A

+
: g A

−
: hg (A\A)

−
: l A

+
: m −→

A
−
: bcd A

+
: e A

−
: f A

+
: c A

−
: a A

+
: g A

−
: hg A

+
: k A

−
: lk A

+
: m where d = λf.e

Creating a sequence of axiomatic formulae from some sequent S is com-
pletely deterministic and takes a linear amount of time, with respect to the
length of the sequent.

2.2 Axiomatic Linkages

To create an axiomatic linkage, match up pairs of positively and negatively
polarized axiomatic formulae, X+ and X−, i.e. with the same base category.
Below is an example of a spanning linkage (spanning the whole sequent) for
the above sequence of axiomatic formulae:

A
−
: bcd A

+
: e A

−
: f A

+
: c A

−
: a A

+
: g A

−
: hg A

+
: k A

−
: lk A

+
: m

There can be many such linkages for a given sequence of axiomatic formulae.
Any non-spanning linkage is defined as a sub-linkage and a linkage in which
no two links cross is called a planar linkage (i.e. the above linkage is planar).

2.3 LC-Graphs

An LC-Graph for a spanning (or sub) linkage is a directed graph, G = (V,E)
such that V is the set of unique labels created at any point during lexical

193

Exploiting Sequent Structure in Membership Algorithms for the Lambek Calculus

unfolding3 and (v, u) ∈ E iff either,

1. v labels a category that was positively unfolded and u labels the pos-
itive category that resulted from the unfolding.

2. There is a link between categories X
+
: v and X

−
: u in the linkage that

G represents. Where u may be of the form u = u1u2 . . . un, in which
case (v, u1), (v, u2), . . . , (v, un) ∈ E.

For example, the spanning linkage above has the following LC-Graph:

b−

m+ c+ a− l−

d e+ k+ h−

g+ f−

Nodes labeled with + or − are referred to as plus-nodes and minus-nodes
respectively. These nodes either label a positive axiomatic formula or a
negative axiomatic formula after unfolding. We define a lambda-node as
any node that labels a positive category which was unfolded during the
creation of the axiomatic formulae. For instance, the node d, in the above
graph, is a lambda-node since it labels the positive category (A\A) that was
unfolded. We represent these nodes by enclosing them in circles. We may
also define a lambda-minus-daughter as any node that labels a negative
category which was the direct result of a positive category being unfolded.
In the above graph, f is a lambda-minus-daughter. Similarly we can define a
lambda-plus-daughter as any node that labels a positive category which
was the direct result of another positive category being unfolded. The node e
is a lambda-plus-daughter in the above graph. The concept of lambda-nodes
and their daughters is central to a sequent’s derivability in L.

A planar linkage and its corresponding LC-Graph, G, are Integral iff G
satisfies:

• I(1) there is a unique node in G with in-degree 0 (a unique root), from which
all other nodes are path-accessible,

• I(2) G is acyclic,
• I(P) for every lambda-node v ∈ V , there is a path from its plus-daughter, u,

to its minus-daughter, w, and
• I(CT) for every lambda-node v ∈ V , there is a path in G, v → ... → u → x,

where x is a terminal node and u is not a lambda-plus-daughter (of any
lambda-node).

Penn[7] showed that a sequent is valid if and only if there exists a planar
spanning linkage whose corresponding LC-Graph is integral4.

3V={a,b,c,d,e,f,g,h,k,l,m} for the above axiomatic formulae.
4The definition of an LC-Graph presented here is not exactly the same as that provided

by [7]. However, it can be easily shown that, in terms of a sequent’s derivability, they are
equivalent.

194

Ryan T. McDonald

2.4 Definitions

Definition 2.1 An LC-Graph, G, is said to be lambda-fragile iff by adding
edges from every lambda-node to their corresponding minus-daughters causes
G to become connected (in the category of undirected graphs).

Example:

m+ f−

d

e+ b−

add edge (d, f)

m+

d f−

e+ b−

It should be noted that all connected LC-Graphs are already lambda-fragile.

Definition 2.2 A lexical-unfolding is a contiguous sequence of axiomatic
formulae that can be derived from some polarized category using the lexical-
unfolding rules from §2.1.

Example: The category ((A/(A\A))/A)
−
: b unfolds to the following lexical-

unfolding,

(A/(A\A))
−
: bc A

+
: c ⇒ A

−
: bcd (A\A)

+
: d A

+
: c ⇒ A

−
: bcd A

+
: e A

−
: f A

+
: c

Observe that all the axioms of a lexical-unfolding will be contiguous, and
all axioms belong to only one lexical-unfolding.

Definition 2.3 An axiomatic formula is considered left-peripheral (right-
peripheral) iff it exists at the left (right) endpoint of a lexical-unfolding.

Example: A
+
: g and A

−
: bcd are left-peripheral and A

−
: gh and A

+
: c are right-

peripheral in the following two lexical-unfoldings that result from unfolding
the categories, (A\A)

−
: h and ((A/(A\A))/A)

−
: b

A
+
: g A

−
: gh A

−
: bcd A

+
: e A

−
: f A

+
: c

Definition 2.4 A linkage L (sub or spanning) is said to span an axiomatic
formula A iff A is completely enclosed by the two axioms that the L connects.

Example: The linkage L spans A
+
: e, A

−
: f , A

+
: c, A

−
: a, A

+
: g and A

−
: hg.

A
−
: bcd A

+
: e A

−
: f A

+
: c A

−
: a A

+
: g A

−
: hg A

+
: k A

−
: lk A

+
: m

L

Definition 2.5 An axiomatic formula X in a linkage L is considered ex-
posed iff in L, there is no linkage that spans X.

195

Exploiting Sequent Structure in Membership Algorithms for the Lambek Calculus

Example: In the following linkage A
−
: bcd, A

+
: k, A

−
: lk and A

+
: m are exposed:

A
−
: bcd A

+
: e A

−
: f A

+
: c A

−
: a A

+
: g A

−
: hg A

+
: k A

−
: lk A

+
: m

We will further define A
−
: bcd and A

−
: lk as left-exposed and A

+
: k and A

+
: m

as right-exposed.

Definition 2.6 A closed-linkage of some set of lexical-unfoldings, U , is
a linkage that uses only and all the axioms in U . A sublinkage may contain
a closed-linkage.

Example: Consider the sequent below with the following lexical-unfoldings,
U1, U2, U3, U4 and U5. The linkage below contains two closed-linkages,
U ′ = {U1, U2, U5} and U ′′ = {U3, U4}

A
−
: bcd A

+
: e A

−
: f A

+
: c A

−
: a A

+
: g A

−
: hg A

+
: k A

−
: lk A

+
: m

U1 U1 U2 U3 U3 U4 U4 U5

2.5 Simplifying LC-Graphs

At this point we consider three new integrity criteria for LC-Graphs:
• I(C) G is connected
• I(LF) G is lambda-fragile
• I(R) G has a unique root node (node with in-degree of 0)5

Proposition 2.1 If an LC-Graph satisfies I(R), then I(1), I(2) and I(C)
are equivalent.

Proof. I(C) ⇒ I(2): Follows from the fact that all nodes in an LC-Graph
have a maximum in-degree of 1. I(1) ⇒ I(C): Follows directly from the
definition of I(1). I(2) ⇒ I(1): Given by [7] proposition 5.1.

Proposition 2.2 I(P) and I(LF) imply I(C).

Proof. Consider some lambda-node d, and it’s corresponding plus and
minus-daughters e and f . By I(P), there is a path from e to f . Furthermore,
by the definition of an LC-Graph, there is a path from d to e. Therefore
there is a path from d to f . So adding another edge (d, f) to the graph has
no bearing on that graphs connectivity. Therefore the graph must already
be connected.

5Note we don’t require that the root node have a path to all other nodes as is the case
with I(1)

196

Ryan T. McDonald

Proposition 2.3 A sequent S is derivable in L iff there exists a planar
spanning linkage, whose corresponding LC-Graph satisfies I(R), I(LF), I(P)
and I(CT).

Proof. Consequence of propositions 2.1 and 2.2

Where I(R) can be easily checked during lexical unfolding by ensuring
the existence of exactly one consequent in the sequent, leaving only I(LF),
I(P) and I(CT) needing to be enforced.

3 Enforcing Lambda-Fragility

Penn[7] displayed an algorithm that used a chart parser to incrementally
create all the possible planar spanning linkages for a given sequent. Chart
parsers were designed for CFGs, in which the use of non-terminals on RHSs
is invariant over their specific LHS derivations. Therefore each edge in the
chart could correspond to possibly many different sublinkages. Penn also
showed how to store LC-Graphs on each edge so that each graph corresponds
to some linkage represented by that edge. A sequent’s derivability may
then be determined by ensuring that at least one of the LC-Graphs on
the spanning edge is integral. However, because an edge may represent
an exponential number of linkages, it must then also store an exponential
number of LC-Graphs.6

Here an extension to this algorithm is presented that enforces lambda-
fragility. In other words it forces each LC-Graph associated with the span-
ning edge in the chart to be lambda-fragile.

Proposition 3.1 All nodes a1, . . . , an that represent labels in the same lex-
ical unfolding will exist in the same connected component (in the undirected
sense) for any spanning lambda-fragile LC-Graph.

Proof. By induction on the number of unfoldings to create the lexical-
unfolding (see lexical unfolding rules in §2.1). A single unfolding will either
result in two axiomatic formula with a common label (negative unfolding)
or two axiomatic formula that are the positive and negative daughters of
some lambda node (positive unfolding). In the former case, the common
label will ensure that all the labels are in the same connected component
and in the latter case, the edges from the lambda-node to its plus and minus
daughters will force all labels to be in the same component.

Inductively assume after n unfolding steps a lexical unfolding consits
of m different unfolded categories (possibly not axiomatic). The n + 1st

unfolding step must be on only one of these categories. By a similar analysis
6This approach is similar to the parsing algorithm presented by Morrill[6]. Where Penn

stores possible LC-Graphs over spans, Morrill stores possible unifications over spans.

197

Exploiting Sequent Structure in Membership Algorithms for the Lambek Calculus

to the base case all the labels of the two new categories created will be in
the same connected component. Hence by induction, all of the labels for the
lexical-unfolding will be in the same component.

Proposition 3.2 A spanning LC-Graph, G, for spanning linkage L is not
lambda-fragile iff L contains a closed-linkage.

Proof. Assume some LC-Graph G is not lambda-fragile. By proposition 3.1
all the labels in a single lexical-unfolding are in the same connected compo-
nent. So if G is not lambda-fragile, then there are at least two connected
components and each will consist of all and only a set of labels for some
subset of lexical unfoldings. This component can only have been created by
a closed-linkage (since links correspond to edges in LC-Graphs).

Conversely assume that L contains a closed-linkage over some subset
of lexical-unfoldings U and that G is lambda-fragile. By proposition 3.1
we know that all the labels of some unfolding in U will be in the same
connected component. Also, since each link creates an edge in the LC-
Graph, it must be the case that all the labels of all the axioms in U will be
in the same connected component. And, since there are no other links to
lexical-unfoldings outside of U , then it also must be the case that there are
no edges from any node in the component of the labels of U to nodes outside
of it. Hence, this component is disconnected from the rest of the graph and
G cannot be lambda-fragile since adding an edge from a lambda-node to a
minus-daughter can only connect two nodes in the same lexical-unfolding.

With proposition 3.2 in mind we would like each edge to store some kind
of periphery information such that it forces the parser to never add an edge
to the chart that can only be created using a sub-linkage that contains a
closed-linkage.

To do this the chart parser will use the following six rules7:

1) L → B L
2) B → X− L X+, for every basic category X
3) B → X+ L X−, for every basic category X
4) B → X− X+, for every basic category X
5) B → X+ X−, for every basic category X
6) L → B

Using these six rules and by following the procedures outlined by Penn[7,
sec. 7] it is possible to store LC-Graphs on each edge in the chart that
correspond to the different sublinkages that that edge represents. However,
as stated earlier, this may result in an exponential number of LC-Graphs.
In order to keep the amount of information polynomial in size, we will drop

7These are the rules Penn[7] uses in his algorithm.

198

Ryan T. McDonald

the idea of keeping LC-Graphs on the edges8. Instead we will store a small
amount of information on each edge that will allow us to claim that if a
spanning edge is created, then there exists at least one spanning linkage
whose corresponding LC-Graph is lambda-fragile. The idea here is to take
the first step towards storing just enough information so that one can answer
the yes/no derivability question after parsing.

The information that will be stored on each edge are the following strings:

‘l’: there is a left-peripheral axiom left-exposed in the sublinkage this edge
represents.

‘r’: there is a right-peripheral axiom right-exposed in the sublinkage this edge
represents.

‘rl’: a combination of the two cases above, with all right-peripheries existing
to the left of all left-peripheries.

‘nil’: there are no exposed peripheries in the sublinkage this edge represents.

Example: Consider the partial sequent with lexical-unfoldings, U1, U2, U3

and U4. Below is an example of a sub-linkage with the final edge having
both left and right-peripheral exposed axioms, A

−
: a and A

+
: g:

A
−
: f A

+
: c A

−
: a A

+
: g A

−
: ihg A

+
: i A

+
: k A

−
: lk

U1 U1 U2 U3 U3 U4 U4

L ‘r′

B ‘r′ L ‘l′

L ‘rl′

In order to use this new information some additional steps must be taken
as the chart-parser uses each rule.

Rules 2 & 4: If axiomatic formula X− is left-peripheral or axiomatic for-
mula X+ is right peripheral then B will store ‘l’ or ‘r’ accordingly. However,
if X− is left-peripheral and X+ is right-peripheral then do not add B to the
chart unless B will be a spanning edge. B stores nothing otherwise. There
is never a case when B will store an ‘rl’. Note: Rule 2 pays no attention to
what L is storing.

Rules 3 & 5: are symmetric to rules 2 & 4.

Rule 6: L stores whatever B is storing.

Rule 1: The following table outlines what Lleft (the left-hand-side non-
terminal) stores for all cases:

8The number of edges stored for chart parsing is known to be polynomial in size for a
CFG.

199

Exploiting Sequent Structure in Membership Algorithms for the Lambek Calculus

B Lright Lleft

‘nil’ ‘nil’,‘r’,‘l’ or ‘rl’ ‘nil’,‘r’,‘l’ or ‘rl’ respectively
‘l’ ‘nil’,‘l’ ‘l’
‘l’ ‘r’,‘rl’ do not add to chart
‘r’ ‘nil’,‘r’ ‘r’
‘r’ ‘l’,‘rl’ ‘rl’
‘rl’ * cannot happen (B never stores ‘rl’)

Observe that we do not add any edge to the chart that adjoins a left-exposed
left-periphery to a right-exposed right-periphery. Also, we stipulate that if
Lleft is the spanning edge, then it is always added to the chart.

In order to make the number of edges polynomial in size we will union
edge periphery information. If two edges of the same type (B or L) for the
same span are created, E1 and E2, we will replace them with a third edge
E3 that stores the union of the periphery information stored in E1 and E2.
For example, if E1 is storing {‘l’,’rl’} and E2 is storing {‘nil’,‘l’} then E3

will store {‘l’,‘rl’,‘nil’}.
Edge union causes no change in the behaviour of parsing rules 2-6 due

to the uniqueness of B-edges for a given span. Parsing rule 1 does need to
be updated so that the resulting edge Lleft stores all the possible periphery
outcomes when adjoining edges B and Lright. This can easily be done in
constant time by considering the bounded number of finite possibilities.

Proposition 3.3 An edge E that is stored on the chart has a right-exposed
right-peripheral axiom iff it is storing either ‘r’ or ‘rl’ (similarly for left-
exposed left-peripheral axioms).

Proof. Assume edge E has a right-exposed right-peripheral axiom. If the
edge is a B-edge, then it can only have a right-exposed right-peripheral
axiom at its rightmost axiom. By inspection of the augmented parsing rules
2-5 it is can be seen that E will store an ‘r’. Say that E is an L-edge. If
it was created by rule 6, then its structure will be identical to some B-edge
and must store an ‘r’. If it was created by rule 1, then it is the adjunction
of some B-edge and some L-edge. Inductively we can assume that if one of
these edges contain a right-exposed right-peripheral axiom then they will be
storing ‘r’ or ‘rl’. Then, by inspecting the augmented parsing rule 1, it can
be seen that E will store an ‘r’ or an ‘rl’ depending on the structure of the
B and L-edge it is being created from.

Assume E is storing either an ‘r’ or an ‘rl’. If the edge is a B-edge,
then by inspection of the augmented parsing rules 2-5 it can be seen that
E will store an ‘r’ iff its rightmost axiom is a right-periphery (and hence
right-exposed). Say that E is an L-edge. If it was created by rule 6, then
its structure will be identical to some B-edge and so will store an ‘r’ only
if its rightmost axiom is a right-periphery. If it was created by rule 1, then
it is the adjunction of some B-edge and some L-edge. By inspection of the

200

Ryan T. McDonald

parsing rules, E will store an ‘r’ or an ‘rl’ iff at least one of the two adjoining
edges are storing an ‘r’ or ‘rl’. Inductively we can assume that since one
of these edges is storing an ‘r’ or an ‘rl’ then it contains a right-exposed
right-peripheral axiom and therefore so will E.

Proposition 3.4 An edge E, for a sub-linkage SL is added to the chart iff
it is not the case that SL contains a closed-linkage for some set of lexical-
unfoldings U .

Proof. Assume an edge E for a sub-linkage SL is added to the chart. By an
examintion of the augmented parsing rules above, the only means by which
an edge cannot be added to the chart is if it can only be created over a
sub-linkage that has a left-exposed left-periphery axiom to the left of some
right-exposed right-periphery axiom. This is precisely when a closed-linkage
occurs and therefore SL does not contain a closed-linkage.

Conversely, assume that SL does not contain a closed-linkage. Again,
there cannot be a left-exposed left-periphery axiom to left of a right-exposed
right-periphery axiom (otherwise there would be a closed-linkage). So again,
E will be added to the chart.

Proposition 3.5 A spanning edge is added to the chart iff at least one of
its representative LC-Graphs is lambda-fragile.

Proof. A consequence of 3.2 and 3.4.

After the parsing algorithm is run, it can be said whether or not there ex-
ists a lambda-fragile LC-Graph for some spanning linkage. Since all integral
LC-Graphs are lambda-fragile, then this algorithm recognizes all valid se-
quents. Furthermore, if we stored LC-Graphs on chart edges in conjunction
with periphery information, then all lambda-fragile graphs will be stored on
the spanning edge and all non-lambda-fragile graphs discarded. Hence, the
algorithm does not throw away any valid parses that may become useful in
methods to efficiently enforce I(P) and I(CT) - if such methods exist.

We can also identify the precise class of invalid sequents that are being
recognized by this algorithm - those that have a planar linkage/LC-Graph
pair that satisfy I(R) and I(LF), but do not satisfy at least one of I(P) or
I(CT). For example, the following underivable sequent falls into this class:

(A/(A\(A\A))) : a � A : m ⇒ A
−
: abc A

+
: f A

−
: g A

−
: e A

+
: b A

+
: m

where c = λe.d and d = λg.f

has a planar spanning linkage with the following LC-Graph satisfying I(R)
and I(LF):

a−
m+ b+ e−

c d f+ g−

201

Exploiting Sequent Structure in Membership Algorithms for the Lambek Calculus

4 Discussion

By storing a small amount of bounded information on each edge in
a chart parser, it was shown that we could force certain properties of the
LC-Graphs that are associated with those edges - namely that they are all
lambda-fragile. Of course the only problem is that not all lambda-fragile
LC-Graphs are integral, which means the algorithm presented here is not
sound.

Future studies should focus on finding a similar method that uses sequent
structure to force all LC-Graphs on the spanning edge to satisfy I(P). If this
can be done in conjunction with the above algorithm, then it would be likely
that I(CT) could be satisfied as well, since both integrity criteria involve
ensuring the existence of particular paths.

References

[1] Carpenter, Bob. Type-Logical Semantics. Cambridge, MA: The MIT Press
(1997).

[2] Dörre, Jochen. Parsing for semidirectional lambek calculus is NP-Complete,
Proceedings of the Thirty-Fourth Annual Meeting of the Association for Com-
putational Linguistics (1996), pp. 95-100.

[3] Girard, J.-Y. Linear Logic, Theoretical Computer Science 56 (1987), pp. 1-102.

[4] Kanovich, M. The multiplicative fragment of linear logic is NP-complete, Tech-
nical Report X-91-13, Institute for Language, Logic and Information (1991).

[5] Lincoln, P., Mitchell, A., Scedrov, A. and Shankar, N. Decision problems for
propositional linear logic, In Proceedings 31st Annual IEEE Symposium on
Foundations of Computer Science (1990).

[6] Morrill G. Memoisation of categorial proof nets: parallelism in categorial pro-
cessing, Technical Report LSI-96-24-R, Dept. de Llenguatges i Sistemes In-
formàtics, Universitat Politècnica de Datlunya (1996).

[7] Penn, Gerald. A Graph theoretic approach to sequent derivability in the lambek
calculus, Electronic Notes in Theoretical Computer Science 53 (2001).

[8] Roorda, Dirk. “Resource Logics: Proof Theoretic Investigations” Ph.D. Thesis,
Universiteit van Amsterdam (1991).

[9] Urquhart, A. The undecidability of entailment and relevant implication, Jour-
nal of Symbolic Logic, 49 (1990), pp. 1059-1073.

Acknowledgments

The author would like to thank Gerald Penn for donating much of his valu-
able time to provide many useful discussions and insights on the presented
work. This work was supported by a grant from the Natural Sciences and
Engineering Reasearch Council of Canada.

202

A Category Theoretic Method for

Comparing Evolutionary Computation

Techniques via Their Representation

Boris Mitavskiy

Department of Mathematics

University of Michigan

Ann Arbor, MI, 48109

bmitavsk@umich.edu

Abstract. In the current paper we use category theory to build a rigorous
foundation for comparing various evolutionary computation techniques via their
representation. Moreover, the best possible coarse graining of a given search algo-
rithm to make it embeddable into a binary semi-genetic and/or a binary genetic
algorithm is constructed in terms of the left adjoint to the corresponding forgetful
functor.

1 Introduction

Over the past 25 years evolutionary algorithms have been widely exploited
to solve various optimization problems. The aim of this paper is to develop a
rigorous mathematical foundation to compare the representations of various
evolutionary computation techniques. The importance of this problem is
emphasized in the introduction to chapter 17 of [9] in [10] and in [8]. To
accomplish this task we exploit the language of Category Theory (see [3] for
a detailed exposition). In the current section we describe the notation and
introduce the actual notion of what a representation is. In the next section
we introduce a few special evolutionary algorithm which play an important
role in this paper. In section 3 we introduce rigorous definitions and list a
number of results (the proofs are omitted due to space limitations). Many of
these results (proposition 3.1, Theorem 3.2, corollary 3.3 and corollary 3.4 as
well as a very special case of theorem 3.7) are available with proofs in [5]. The
use of universal constructions (or, equivalently, adjunctions) in connection
with coarse graining issues (see definition 3.8, theorem 3.6, definition 3.10
and theorem 3.7) appears for the first time in the current paper. The proofs
are available upon request from the author. Theorem 3.7 (a special case

Proceedings of the Eighth ESSLLI Student Session
Balder ten Cate (editor)
Chapter 19, Copyright c© 2003, Boris Mitavskiy

203

Comparing Evolutionary Computation Techniques

of this theorem, namely theorem 20 of [5] is sufficient) implies that every
Genetic Programming algorithm which uses either one-point or the uniform
homologous crossover operators can be embedded into the classical binary
genetic algorithm.

In order to apply an evolutionary algorithm to attack a specific opti-
mization problem, one needs to model the problem in a suitable manner.
That is, one needs to construct a search space Ω (the set whose elements
are all possible solutions to the problem) together with a computable pos-
itive valued fitness function f : Ω → (0, ∞) and an appropriate family of
“mating” and “mutation” transformations. One can say, therefore, that a
representation of a given problem by an evolutionary algorithm is an ordered
4-tuple (Ω, F , M, f) where Ω is the search space, F is a family of binary
operations on Ω and M is the family of unary transformations on Ω, that is,
M is just a family of functions from Ω to itself. Intuitively F is the family
of mating transformations: every element of F takes two elements of Ω (the
parents) and produces one element of Ω (the child).1 while M is the family
of mutations (or asexual reproductions) on Ω. For theoretical purposes it
is usually assumed that M is ergodic in the sense that the only invariant
subsets under M are the ∅ and the entire search space Ω. (The ergodicity
assumption ensures that the Markov process modelling the algorithm is ir-
reducible (see, for instance, [1]). A typical evolutionary algorithm works
as follows: A population P = (x1, x2, . . . , x2m)T where xi ∈ Ω is selected
randomly 2. The algorithm cycles through the following stages:

Evaluation:
Individuals of P are evaluated:


x1

x2
...

x2m




→ f(x1)
→ f(x2)
...

...
→ f(x2m)

Selection:
A new population P ′ = (y1, y2, . . . , y2m)T is obtained where yi = xj with

probability f(xj)

Σ2m
l=1f(xl)

.

In other words, all of the individuals of P ′ are these of P , and the
expectation of the number of occurrences of any individual of P in P ′ is
proportional to the number of occurrences of that individual in P times the
individual’s fitness value. In particular, the fitter the individual is, the more
copies of that individual are likely to be present in P ′. On the other hand,

1In general there is no reason to assume that a child has exactly two parents. All of the
results in this paper are valid for the families of m-ary operations on Ω. The only reason
F is assumed to be the family of binary transformations is to simplify the notation.

2Here we exploit the transpose notation to convert a column vector into a row vector
to save space

204

Boris Mitavskiy

the individuals having relatively small fitness value are not likely to enter
into P ′ at all. This is designed to imitate the natural survival of the fittest
principle.

Partition:
The individuals of P ′ are partitioned into m pairwise disjoint couples for

mating according to some probabilistic rule: For instance the couples could
be

Q1 = (yi11
, yi12

)T , Q2 = (yi21
, yi22

)T , . . . , Qj = (y
ij1

, y
ij2

)T , . . . , Qm = (yim1
, yim2

)T

Reproduction:
Replace every one of the selected couples Qj = (y

ij1
, y

ij2
)T with the

couples Q′ = (T1(yij1
, y

ij2
), T2(yij1

, y
ij2

))T for some couple of transformations

(T1, T2) ∈ F2. The couple (T1, T2) is selected according to a fixed probabil-
ity distribution on F2. This gives us a new population P ′′ = (z1, z2, . . . , z2m)T

Mutation:
Finally, with small probability we replace zi with F (zi) for some ran-

domly chosen F ∈ M. This, once again, gives us a new population

P ′′′ = (w1, w2, . . . , w2m)T

Upon completion of mutation start all over with the initial population
P ′′′. The cycle is repeated a certain number of times depending on the
problem. A more general and extensive description is given in [9]. A few
special evolutionary algorithms are introduced in the next section.

2 Special Evolutionary Algorithms

Classical Genetic Algorithm with Masked Crossover:
Let Ω =

∏n
i=1 Ai. For every subset M ⊆ {1, 2, . . . , n}, define a binary

operation LM on Ω as follows:

LM(a,b) = (x1, x2, . . . , xi, . . . , xn)

where a = (a1, a2, . . . , an) and b = (b1, . . . , bn) ∈ Ω and xi =

{
ai if i ∈ M

bi otherwise
.

The reader will recognize LM as a masked crossover operator with mask M .
Let F = {LM | M ⊆ {1, 2, . . . , n}}. That is, F in this example is simply

the family of masked crossover transformations. The probability distribution
on the set F2 is concentrated on the pairs of the form (LM , LM̄) where M̄
denotes the complement of the set M in {1, 2, . . . , n}. Most often the pairs
are equally likely to be chosen from that diagonal-like subset.

The family of mutation transformations, M in this (and in all of the
following examples) consists of the transformations M�a : Ω → Ω where

205

Comparing Evolutionary Computation Techniques

�a ∈ ⋃
S⊆{1, 2,...,n}

∏
i∈S Ai so that �a = (ai1 , ai2 , . . . , aik) for i1 ≤ i2 ≤ . . . ≤

ik ∈ S�a ⊆ {1, 2, . . . , n} defined as follows: ∀x = (x1, x2, . . . , xn) ∈ Ω we

have M�a(x) = y = (y1, y2 . . . , yn) where yq =

{
aq if q = ij for some j

xq otherwise
In other words, M�a simply replaces the qth coordinate of its argument with
aq ∈ Ai whenever q ∈ S�a.

Binary Genetic Algorithm with Masked Crossover:
When every Ai = {0, 1} (which means that Ω = {0, 1}n) in the example

above, one obtains the classical binary genetic algorithm.
Binary Random Respectful Recombination
The search space Ω and the family of mating transformations F and the

family of mutations M are exactly the same as these for the binary genetic
algorithm with masked crossover described above. The only difference is
that the probability distribution on F2 is now completely uniform (rather
than being concentrated on the diagonal-like subset described in the classical
genetic algorithm example). This particular family of transformations was
introduced in [6]. For instance, if n = 5, M1 = {2, 3, 4}, M2 = {1, 3, 5}
and the pair (TM1 , TM2) is selected for mating, we have, for instance,(

1 0 0 1 1
1 1 0 0 1

)
�−→

(
TM1((1, 0, 0, 1, 1), (1, 1, 0, 0, 1))
TM2((1, 0, 0, 1, 1), (1, 1, 0, 0, 1))

)
=

(
1 0 0 1 1
1 1 0 0 1

)

This type of a binary search algorithm can be classified by the following
property: If both parents have a 1 in the ith position then the offspring also
has a 1 in the ith position. Likewise, if both parents have a 0 in the ith

position then the offspring also has a 0 in the ith position. If, on the other
hand, the alleles of the ith gene don’t coincide, then the ith allele could be
either a 0 or a 1.

The following type of algorithm may seem useless at first. Its importance
will become clear in the next section when we present the binary embed-
ding theorem which shows that the binary semi-genetic algorithm (described
below) possesses an interesting universal property.

Binary Semi-Genetic Algorithm:
The search space Ω = {0, 1}n, just as in the case of the binary genetic

algorithm. The family of mating transformations F is defined as follows:
Fix u = (u1, u2, . . . , un) ∈ Ω. Define a semi-crossover transformation Fu :
Ω2 → Ω as follows: For any given pair (x, y) ∈ Ω2 with x = (x1, x2, . . . , xn)
and y = (y1, y2, . . . , yn) we have Fu(x, y) = z = (z1, z2, . . . zn) ∈ Ω where

zi =

{
1 if xi = yi = 1
ui otherwise

In other words, Fum preserves the ith gene if it is equal to 1 in all of the
rows of P , and replaces it with ui otherwise. Let F = {Fu |u ∈ Ω} be

206

Boris Mitavskiy

the family of all semi-crossover transformations. The family of mutation
transformations M is exactly the same as in the examples above.

Example:
With n = 5 and u1 = (0, 1, 1, 0, 1), u2 = (0, 1, 0, 0, 1) we have(

1 0 0 1 1
1 1 0 0 1

)
�−→

(
Fu1 2((1, 0, 0, 1, 1), (1, 1, 0, 0, 1))
Fu2 2((1, 0, 0, 1, 1), (1, 1, 0, 0, 1))

)
=

(
1 1 1 0 1
1 1 0 0 1

)

Notice, that if 1 is present in the ith position of both parents, then it
remains in the ith position of both offsprings. There are absolutely no other
restrictions, though.

In practice the choice of the search space Ω is primarily determined by the
specific problem and related circumstances. The general methodology for
the construction of the search spaces first appeared in the work of Radcliffe
(see, for instance, [6]). In the current paper we introduce the category
of evolutionary heuristic search tuples which allows us to compare various
evolutionary computation techniques via their representation.

3 The Category of Heuristic 3-tuples

As we have seen in the introduction, a given evolutionary heuristic search
algorithm is determined primarily by the ordered 4-tuple (Ω, F , M, f). In
the current paper we shall only be concerned with the search space Ω, the
family of mating transformations F and the family of mutations M. As
mentioned in the introduction, the family of mutation transformations is
ergodic, meaning that the only invariant subsets under M is the ∅ and the
entire search space Ω. This motivates the following definitions:

Definition 3.1. For a given family of m-ary operations Γ on a set Ω (that
is, functions from Ωm into Ω) a subset S ⊆ Ω is invariant under Γ if and
only if ∀T ∈ Γ we have T (Sm) ⊆ S. We shall denote by ΛΓ the family of all
invariant subsets of Ω under Γ . In other words, ΛΓ = {S | S ⊆ Ω, T (Sm) ⊆
S ∀ T ∈ Γ}.
Definition 3.2. A heuristic 3-tuple Ω = (Ω,F ,M) is a 3-tuple where Ω
denotes an arbitrary set, F is a family of binary operations on Ω (in other
words, a family of functions from Ω2 to Ω) and M is a family of unary
transformations on Ω (in other words, a family of functions from Ω to itself)
such that ΛM = {∅, Ω}.

It is easy to verify (see Proposition A1 of [4]) that the family ΛΓ is closed
under arbitrary intersections and contains Ω. It then follows that for every
element x ∈ Ω there is a unique element of ΛΓ containing x (namely the
intersection of all the members of ΛΓ containing x.)

207

Comparing Evolutionary Computation Techniques

Definition 3.3. Given a heuristic 3-tuple Ω = (Ω,F ,M), denote by SΩ
x

the smallest element of ΛF containing x.

The following definition is a natural extension of the notion of a genetic
representation function.

Definition 3.4. Given two heuristic 3-tuples Ω1 = (Ω1, F1, M1) and Ω2 =
(Ω2, F2, M2), a morphism δ : Ω1 → Ω2 is just a function δ : Ω1 →
Ω2 which respects the reproduction transformations in the following sense:
∀T ∈ F1 and ∀x = (x1, x2) ∈ Ω2 ∃Fx ∈ F2 such that δ(T (x1, x2)) =
F(x1, x2)(δ(x1), δ(x2)). Analogously, we must have ∀M ∈ M1 and ∀x ∈
Ω ∃Hx ∈ M2 such that δ(M(x)) = Hx(δ(x)). We shall denote by Mor(Ω1, Ω2)
the collection of all morphisms from Ω1 into Ω2.

Example 3.1. In [7] many examples where a group L acts on the search
space Ω so that the action commutes with the crossover scheme (see the
beginning of section 3.4 of [7] up to and including theorem 5) where given.
Every element of L induces a permutation πg of Ω associated with the group
action. From theorem 5 of [7] it follows that commutativity of the group
action with F implies that every πg is a morphism from Ω onto itself. In
fact, πg−1 is also a morphism from Ω onto itself, so that every πg is an
isomorphism from Ω onto itself.

It is easy to see that heuristic 3-tuples and morphisms between them
form a well-defined concrete category. A morphism δ : Ω1 → Ω2 provides
the means for encoding the heuristic 3-tuple Ω1 by the heuristic 3-tuple Ω2.
Unless the underlying function δ is one to one, there is some nontrivial coarse
graining involved. We, therefore have a special name for these morphisms
whose underlying functions are injective.

Definition 3.5. We say that a morphism δ : Ω1 ↪→ Ω2 is an embedding if
the underlying function δ : Ω1 → Ω2 is one-to-one3.

It can be shown that under certain technical conditions on the family of
mating transformations F2 a given function δ : Ω1 → Ω2 is a morphism of
evolutionary heuristic 3-tuples ⇐⇒ the preimage of an invariant set under
δ is invariant:

Proposition 3.1. Let Ω1 = (Ω1, F1, M1) and Ω2 = (Ω2, F2, M2) denote
heuristic 3-tuples with F2 and M2 being composition closed (see definition
A.6 of [4]). Let δ : Ω1 → Ω2 be a function. Then δ is a morphism of
heuristic 3-tuples if and only if ∀ S ∈ ΛF2 we have δ−1(S) ∈ ΛF1 .

3these are precisely all the monomorphisms in the category of heuristic 3-tuples. In
fact, one can show that the category of heuristic 3-tuples is complete (has all limits) and
that forgetful functor into the category of sets preserves limits. The dual statements hold
as well

208

Boris Mitavskiy

It is fairly straightforward to verify that every one of the families of
mating transformations involved in the examples of section 2 is composition
closed.

These facts allow us to characterize all possible morphisms from various
heuristic 3-tuples to the standard types described in section 2 in terms of
n-tuples of invariant subsets.

Definition 3.6. Fix any heuristic 3-tuple Ω = (Ω, F , M). We say that
collection

Υn = {I | I = (I1, I2, . . . , In) Ij ∈ ΛF , ∀ x, y ∈ Ω with x �= y ∃ 1 ≤ j ≤ n

such that either (x ∈ Ij and y /∈ Ij) or vise versa: (y ∈ Ij and x /∈ Ij)}
is a family of separating n-tuples. Notice that Υn ⊆ (ΛF)n.

Theorem 3.2. Fix a heuristic 3-tuple Ω = (Ω, F , M). We now have the
following bijection φ : (ΛF)n → Mor(Ω, Sn) (here Sn denotes the binary
semi-genetic heuristic 3-tuple with the search space {0, 1}n, see also defini-
tion 3.4 for the meaning of Mor(Ω, Sn)) which is defined explicitly as fol-
lows: Given an ordered n-tuple of sets from ΛF , call it I = (I1, I2, . . . , In) ∈
(ΛF)n let φ(I) = δI where δI(x) = (x1, x2, . . . , xn) ∈ S = {0, 1}n with

xj =

{
1 if x ∈ Ij

0 otherwise
∀x ∈ Ω. Moreover, δI is an embedding (injective) if

and only if I ∈ Υn (see definition 3.6). In other words, the restriction of φ
to Υn is a bijection onto the collection of all embeddings of Ω into Sn.

It turns out that the conditions under which a given heuristic 3-tuple
can be embedded into a binary semi-genetic heuristic 3-tuple are rather mild
and naturally occurring as the following two corollaries demonstrate:

Corollary 3.3. Given a heuristic 3-tuple Ω = (Ω, F , M), the following are
equivalent:

1. Ω can be embedded into an n-dimensional semi-genetic heuristic k-
tuple for some n.

2. ∀x, y ∈ Ω with x �= y we have either x /∈ SΩ
y (see definition 3.3) or

vise versa: y /∈ SΩ
x .

3. ∀x, y ∈ Ω with x �= y we have SΩ
x �= SΩ

y . (Another way to say this, is
that the map sending x to SΩ

x is one-to-one.)

Moreover, if an embedding exists for some n, then there exists one for
n = |Ω|. We also must have n ≥ �log2 |Ω|�.

209

Comparing Evolutionary Computation Techniques

Corollary 3.4. Given a heuristic 3-tuple Ω = (Ω, F , M), if for every
T ∈ F , T is pure in the sense of [6] (in other words, ∀ x ∈ Ω T (x, x) = x
) then Ω can be embedded into a binary semi-genetic heuristic 3-tuple of
dimension less than or equal to |Ω|.
Definition 3.7. We say that a heuristic 3-tuple Ω = (Ω, F , M) is em-
beddable if it can be embedded into a semi-genetic heuristic 3-tuple (see
example in section 2).

Remark 3.1. According to corollary 3.3, a given heuristic 3-tuple Ω =
(Ω, F , M) is embeddable if and only if ∀ x �= y we have Sx �= Sy.

Proposition 3.1, Theorem 3.2 as well as corollaries 3.3 and 3.4 appear
with proofs in [5]. In what follows we use the language of Category Theory
(see [3] for a detailed exposition) to extend the results of [5]. We construct
“the least possible coarse graining” of a given evolutionary search algorithm
to make it embeddable into a binary semi-genetic, or, better yet, to a binary
genetic algorithm. The notion of the ‘the least possible coarse graining” is
captured precisely in terms of a universal object in an appropriate category.

Denote by C and by Ce the category of all heuristic 3-tuples and its full
subcategory of the embeddable heuristic 3-tuples respectively.

The following definition gives an explicit construction of the universal
embeddable binary heuristic 3-tuple FΩ for a given heuristic 3-tuple Ω:

Definition 3.8. Given a heuristic 3-tuple Ω = (Ω, F ,M), let FΩ =
(FΩ, FF , FM) denote the heuristic 3-tuple obtained from Γ as follows:
FΩ = {Sx | x ∈ Ω} and FΓj is obtained from Γj in the following manner:

FΓj = {T |T : FΩj → FΩ ∀ u = (u1, u2, . . . , uj) ∈ FΩj

∃ H ∈ Γj and x = (x1, x2, . . . , xj) with xi ∈ ui such that T (u) = SH(x)}

where Γj =

{
F if j = 2
M if j = 1

. Let φΩ : Ω → F (Ω) be the function sending

x ∈ Ω to Sx.

There are a number of little things needed to prove that F (Ω) is, indeed,
a universal embeddable heuristic 3-tuple.

Proposition 3.5. The function φΩ : Ω → FΩ, sending x ∈ Ω to Sx,
in the definition 3.8 is a morphism of heuristic 3-tuples in the sense of
definition 3.2.

It still remains to show that the morphism φΩ : Ω → FΩ is universal in
the following sense:

Theorem 3.6. Given any morphism of heuristic 3-tuples α : Ω → Φ where
Φ = (Φ, Θ, Γ), and Φ is embeddable, ∃! morphism ᾱ : FΩ → Φ such that
we have ᾱ ◦ φΩ = α.

210

Boris Mitavskiy

Notice that propositions 3.5 and 3.6 together say that the functor F :
C → Ce is the left adjoint to the forgetful functor from Ce into C. A somewhat
analogous construction can be carried out for the full subcategory of the
heuristic tuples which can be embedded into a binary genetic algorithm:

Definition 3.9. We say that a heuristic 3-tuple Ω = (Ω, F , M) is ge-
netic if it can be embedded into a binary genetic algorithm (see example in
section 2). Denote by Cg the full subcategory of all genetic 3-tuples.

Definition 3.10. Given a heuristic 3-tuple Ω = (Ω, F , M) let TΩ =
(TΩ, TF , TM) be the heuristic 3-tuple obtained from Ω as follows: In-
troduce the following equivalence relation ∼ on Ω: x ∼ y if and only if x
and y can not be separated by a complementary pair of invariant subsets. In
other words, ∀A, B ∈ ΛF with A ∪ B = Ω and A ∩ B = ∅ we have either x
and y ∈ A or x and y ∈ B. (∼ is an intersection of equivalence relations, so
it is also an equivalence relation.) Let TΩ be the set of equivalence classes
under ∼. TF and TM are defined in the same way as in definition 3.8: just
replace F with T everywhere in the second part of definition 3.8.

Theorem 3.7. The functor T : C → Cg constructed in definition 3.10 is
the left adjoint to the forgetful functor Cg → C. The map ηΩ : Ω → TΩ
sending an element in Ω to its equivalence class under ∼ in TΩ is the unit
of adjunction.

Theorem 3.7 implies, in particular, that a heuristic 3-tuple Ω = (Ω, F , M)
can be embedded into a binary genetic algorithm if and only if any x, y ∈ Ω
with x �= y can be separated by a disjoint pair of invariant subsets. (Ac-
cording to definition 3.10 this is what it means to say that x � y ∀ x �= y so
that every SΩ

x = {x} and ηΩ is an isomorphism) It is easy to show (but the
details are omitted due to space limitations) that the above scenario is satis-
fied by the heuristic 3-tuples corresponding to various genetic programming
techniques so that they can be regarded as “sub-algorithms” of the classical
binary genetic algorithm introduced by John Holland.

4 conclusions

In the current paper we have developed a category theoretic framework
for comparing various evolutionary computation techniques via their rep-
resentation. In particular, we have constructed the “most suitable” coarse
graining of a given heuristic search algorithm to make it imbeddable into a
binary semi-genetic and/or by a binary genetic algorithm in terms of uni-
versal properties (see theorems 3.6 and 3.7).

211

Comparing Evolutionary Computation Techniques

5 Acknowledgements

I want to thank my thesis advisor, Professor Andreas Blass for the numerous
helpful advisor meetings which have stimulated many ideas for this and for
my future work. I also want to thank Professors John Holland and Rick
Riolo and the entire University of Michigan Complex Systems Group for
helpful discussions. Finally I want to thank the unanimous referees for the
useful comments and suggestions.

References

[1] Coffey, S. (1999) An Applied Probabilist’s Guide to Genetic Algorithms. A
Thesis Submitted to The University of Dublin for the degree of Master in Sci-
ence.

[2] Liepins, G. and Vose, M. (1992). Characterizing Crossover in Genetic Algo-
rithms. Annals of Mathematics and Artificial Intelligence, 5: 27 - 34.

[3] Mac Lane, S. (1971) Categories for the working mathematician. Graduate Texts
in Mathematics 5, Springer-Verlag.

[4] Mitavskiy B. (Resubmitted). Crossover Invariant Subsets of the
Search Space for Evolutionary Algorithms. Evolutionary Computation.
http://www.math.lsa.umich.edu/�bmitavsk/

[5] Mitavskiy B. (2003). Comparing Evolutionary Computation Techniques via
Their Representation. Proceedings of the Genetic and Evolutionary Computa-
tion (GECCO) Conference, The Conference will be held July 12 - 16.

[6] Radcliffe, N. (1992). The algebra of genetic algorithms. Annals of Mathematics
and Artificial Intelligence, 10:339-384.

[7] Rowe, J., Vose, M., and Wright, A. (2002). Group properties of crossover and
mutation. Evolutionary Computation, 10(2): 151-184.

[8] Stephens, C. (2001). Some exact results from a coarse grained formulation of
genetic dynamics. Proceedings of the Genetic and Evolutionary Computation
(GECCO) conference, pages 631-638, Morgan Kaufmann.

[9] Vose, M. (1999). The simple genetic algorithm: foundations and theory. MIT
Press, Cambridge, Massachusetts.

[10] Vose, M. and Wright, A. (2001). Form invariance and implicit parallelism.
Evolutionary Computation, 9(3): 355-370.

[11] Wright, A., Rowe, J., Poli, R., and Stephens C. (2002). A fixed point
analysis of a gene pool GA with mutation. Proceedings of the Genetic
and Evolutionary Computation Conference (GECCO) Morgan Kaufmann.
http://www.cs.umt.edu/u/wright/.

212

Properties of Translations for Logic

Programs

Juan Antonio Navarro Pérez

Universidad de las Américas - Puebla

ma108907@mail.udlap.mx

Abstract. We present a study of some properties of program translations in
the context of logic programming. In particular we provide, under the answer set
semantics, a translation for arbitrary propositional theories into the simple class
of disjunctive programs. We also show how syntactic and semantic properties
of translations can be related. The work follows a line of research that applies
mathematical logic to study notions and concepts in logic programming.

1 Introduction

Program translations are functions that map logic programs in a given class
of programs to another class. Translations for logic programs can be very
interesting for several different reasons: they can allow to simplify the struc-
ture of programs (Osorio et al. 2001; Pearce et al. 2002; Sakama and Inoue
1998), to derive correct programs from specifications (Pettorossi and Proietti
1998), and even to perform program updates and belief revision for agent
systems (Alferes et al. 2002; Eiter et al. 2000).

We are interested in the study of the properties that translations should
have in order to preserve the semantical meaning of programs. In particular
we want to investigate this sort of properties in the context of Answer Set
Programming (ASP). This semantic, originally introduced by Gelfond and
Lifschitz (1988) and generalized later to include broader classes of programs
(Lifschitz et al. 1999; Osorio et al. 2003), rapidly became a popular logic
programming paradigm.

The great power of this semantic to express a wide variety of problems,
and the existence of very efficient software to compute answer sets, allowed
the development of several real life applications based on ASP. The possi-
bilities range from solving combinatorial problems, modeling logic agents,
planning (Dimopoulos et al. 1997), knowledge representation (Baral 2003)
and querying deductive databases (Eiter et al. 1997); just to mention a few.

Proceedings of the Eighth ESSLLI Student Session
Balder ten Cate (editor)
Chapter 20, Copyright c© 2003, Juan Antonio Navarro Pérez

213

Properties of Translations for Logic Programs

Previous work from Janhunen (2001) studies several syntactic and se-
mantic properties of translations for arbitrary semantic operators. This
kind of properties are relevant for several theoretical and practical reasons,
as we will discus along this presentation. Pearce et al. (2002) shows, in par-
ticular, a translation for programs containing nested expressions to the class
of disjunctive programs that preserves the original semantics of programs.

In this paper we follow an approach, motivated from (Pearce 1999; Osorio
et al. 2003), that tries to explain answer set programming in terms of
intermediate logics. We provide a translation, with nice syntactical and
semantical properties, that can reduce propositional theories to the class of
nested programs considered by Pearce et al. (2002).

We also show that, under certain simple assumptions, the syntactic prop-
erties of a translation that preserves the answer set semantics can be enough
to be sure that the translation can also preserve the semantics for partially
translated programs. This sort of results show how the use of intuitionis-
tic and other intermediate logics is an approach that can help us to better
understand the notion and concepts of answer sets.

Because of the lack of space, the proofs of some minor results were left
out from the main discussion of the paper. A complete version of the paper,
including an appendix with all the omitted proofs, will be made available at
http://www.udlap.mx/~ma108907/papers.html.

2 Background

We review in this section the language of propositional logic used to describe
logic programs. We briefly introduce intuitionistic and some multivalued-
logics, state some notation and basic results. A more detailed presentation
can be found at (Mendelson 1987; Zakharyaschev et al. 2001). We also
define several concepts for logic programming: classes of logic programs,
semantic operators and answer sets. Original definitions and related results
are available in (Lloyd 1987; Lifschitz et al. 1999; Osorio et al. 2003).

Propositional Logic We consider a formal language built from an alpha-
bet containing: a denumerable set L of elements called atoms, the 2-place
connectives ∧, ∨, →, the 0-place connective ⊥, and auxiliary symbols (,).
Formulas are constructed as usual in logic. The formula � is introduced as
an abbreviation of ⊥ → ⊥, ¬A as an abbreviation of A → ⊥, and A ↔ B
to abbreviate of (A→ B) ∧ (B → A). The notation A← B is just another
way of writing the formula B → A.

A theory is a set of formulas, we will restrict our attention, however,
to finite theories. We use Prp to denote the set of all finite propositional
theories. For a given theory T its signature is the set LT of atoms occurring
in the theory T . A literal is either an atom a or a negated atom ¬a. Given
a theory T we also define the negated theory ¬T = {¬A | A ∈ T} and, for

214

Juan Antonio Navarro Pérez

a set of atoms M , the closure of M (w.r.t. T) as M = M ∪ ¬(LT \M).

Intermediate Logics Intuitionistic logic, denoted I, was developed as an
alternative to classical logic. It explains the meaning of the connectives in
terms of knowledge or provability, instead of absolute truths. We consider a
formulation of intuitionistic logic where a juantheorem is a formula that can
be proved using the ten axioms that define I and modus ponens as inference
rule (van Dalen 1980).

Gödel also defined the multivalued logics Gi, with i truth values, where a
model of a formula is a truth assignment to the atoms that, when propagated
over its connectives, evaluates to some designated true value. A formula is
a tautology if it is true for every possible truth assignment. The two valued
logic G2 corresponds to the classical logic, denoted C. (Mendelson 1987)

It was shown that the set of intuitionistic theorems is a proper subset
of the set of classical tautologies, and that the logics Gi lie in between. So
we call intermediate logics to those logics whose set of provable formulas is
between intuitionistic and classical logics (inclusive). A proper intermediate
logic is an intermediate logic that is not the classical one.

Notation and Basic Results We use the notation
X F to denote that
the formula F is provable (a theorem or tautology) in logic X. If T is a
theory we use the symbol T
X F to denote
X (F1 ∧ · · · ∧ Fn) → F for
some formulas Fi ∈ T . We say that a theory T is consistent if it is not the
case that T
C ⊥. It is easy to prove that the definition of a theory of being
consistent does not depend on the logic chosen. The proof is given in the
appendix at the end of the full version of this document.

We also introduce, if T and U are two theories, the symbol T
X U to
denote that T
X F for all formulas F ∈ U . We will write T �X U to denote
the fact that (i) T is consistent and (ii) T
X U . Finally we say that two
theories T1 and T2 are equivalent (w.r.t. logic X), denoted T1 ≡X T2 if it
holds that both T1
X T2 and T2
X T1.

Logic Programs In order to introduce the terminology of logic programs,
using the propositional logic we have just presented, we define a clause as a
formula H ← B where principal connective is implication. The formulas H
and B are known as the head and the body of the clause respectively.

The special case of a clause with the form ⊥ ← B is known as a con-
straint, in this case the head is said to be empty. Each formula H that does
not have implication as the principal connective can be associated with the
clause H ← �, this kind of clauses are known as facts. Then we can define a
logic program as a finite set of clauses and a class of logic programs as some
set of logic programs.

There are several kind of clauses defined in literature. The head and the
body of augmented clauses are constructed from the connectives ∧, ∨ and ¬
arbitrarily nested. Note that the general case of implication is not allowed.
The clause ¬(a ∧ ¬b) ← p ∨ (¬q ∧ r) is, for example, augmented while the

215

Properties of Translations for Logic Programs

clause a ← (b → c) is not. An augmented program is a set of augmented
clauses and Aug denotes the class of all augmented programs.

Another, more restricted, class is the disjunctive one. A disjunctive
clause allows only a (non-empty) disjunction of positive literals in the head
and a conjunction of literals in the body, for example a ∨ b ← p ∧ q ∧ ¬r.
Similarly, a disjunctive program is a set of disjunctive clauses and Dis is the
class of all disjunctive programs. Observe that we have Dis ⊂ Aug ⊂ Prp.
Answer Sets Given a class of programs C, a semantic operator Sem is a
function that assigns to each program P ∈ C a set of sets of atoms M ⊆ LP .
These sets of atoms are usually some “preferred” models of the program P .
One popular semantic operator is the answer sets AS operator. We consider
the definition provided in (Osorio, Navarro, and Arrazola 2002) that extends
the notion of an answer set to the whole set of propositional formulas.

Definition 1. If P ∈ Prp then AS(P) =
{
M ⊆ LP | P ∪ ¬¬M �I M

}
.1

3 Conservative Transformations

Suppose that we have a logic program P and we want to compute AS(P).
We could simplify this task if we are able to construct some other simpler
program P ′, such that the answer sets of P and P ′ are somehow related,
compute AS(P ′) and recover the answer sets of the original P . It will be
important that this “recovery” of the answer sets of P , knowing those of P ′,
can be done trough a simple and efficient method. A conservative transfor-
mation is a relation between logic programs with this kind of properties.

Definition 2. Let Sem be a semantic operator defined for a class of pro-
grams C and let P,P ′ ∈ C. We say P ′ is a conservative transformation of
P , denoted P

Sem−−−→ P ′, if LP ⊆ LP ′ and

Sem(P) =
{
M ∩ LP |M ∈ Sem(P ′)

}
.

A conservative extension, as presented in (Baral 2003), is a conservative
transformation where the programs also satisfy P ⊆ P ′. Our definition is
more general since it allows the program to be modified or “transformed”
and not only extended. As far as we know this definition is new, and so the
results presented in this section are all original.

A conservative transformation of a logic program P can, possibly, intro-
duce new atoms (those in LP ′ \LP) in order to achieve simplifications. But,
if we ignore this newly introduced atoms, we obtain exactly the answer sets
of P . We refer to this new atoms in LP ′ \ LP as the reserved atoms of the
transformation.

1The original definition uses the notation ¬M ∪¬¬M̃ , where M̃ = LP \ M , instead of
the set ¬¬M , where M = M ∪¬(LP \M). It is easy to verify that the two conditions are
equivalent since �I ¬a ↔ ¬¬¬a.

216

Juan Antonio Navarro Pérez

It is easy to verify that conservative transformations define a transitive
relation, a formal proof is included in the appendix. Much more surprising
is that arrows in the notation of conservative extensions can sometimes be
traveled backwards. If a logic program Q is a conservative extension of two
programs P and R then, under the premise that LP ⊆ LR, we can also
relate the answer sets of P and R by a conservative transformation.

Proposition 1. If P
Sem−−−→ Q, R

Sem−−−→ Q, and LP ⊆ LR then P
Sem−−−→ R.

Proof. Take M ∈ Sem(R), since R
Sem−−−→ Q there must be N ∈ Sem(Q) such

that M = N ∩ LR. But, since P
Sem−−−→ Q, we have that N ∩ LP ∈ Sem(P).

Observe, since LP ⊆ LR, that M ∩ LP = (N ∩ LR) ∩ LP = N ∩ LP . Thus
we obtain M ∩ LP ∈ Sem(P).

Now take M ∈ Sem(P), since P
Sem−−−→ Q there must be N ∈ Sem(Q) such

that M = N ∩ LP . But, since R
Sem−−−→ Q, we have that N ∩ LR ∈ Sem(R).

Observe, since LP ⊆ LR, that (N ∩ LR) ∩ LP = N ∩ LP = M . Then
N ∩ LR ∈ Sem(R) is the model such that (N ∩ LR) ∩ LP ∈ Sem(P).

The following proposition allows us to construct a very simple conserva-
tive translation for the semantic of answer sets. It can be used to extend
the language of a given program without modifying its answer sets. This
result will be used later in the proof of Theorem 3.

Proposition 2. Given a set of atoms A, let L = {a← a | a ∈ A}. For any
program P ∈ Prp, P

AS−−→ P ∪ L.

Another particular case of a conservative transformation, which is pre-
sented in the following proposition, stands that is possible to introduce new
atoms as a definition of a formula that can be expressed using the atoms
already in the program.

Proposition 3. Let P ∈ Prp. Given a formula F such that LF ⊆ LP and
an atom x /∈ LP , P

AS−−→ P ∪ {x↔ F}.

Conservative transformations may seem very effective in the context of
logic programming. But they dot not satisfy, in general, an important prop-
erty for concrete programming applications. We would expect that making
a conservative transformation of one piece of a program would also result,
“globally”, in a conservative transformation for the whole program.

This is not true for simple conservative transformations as just defined.
Consider the two programs P1 = {a← ¬b} and P2 = {a, b← b}. Accord-
ing to Definition 2, P2 is a conservative translation of P1 in the answer set
semantics since they both have AS(P1) = AS(P2) = {{a}}. However, re-
placing P1 with P2 in the larger program P = {a← ¬b, b}, to obtain the

217

Properties of Translations for Logic Programs

program P ′ = {a, b← b, b}, will break this relation. Now P has only one
answer set {b}, while P ′ has the answer set {a, b}.

In order to ensure that making local transformations of code inside logic
programs will preserve global equivalence, we introduce the notion of a
strong conservative transformation.

Definition 3. Let Sem be a semantic operator for a class of programs C.
Given two logic programs P,P ′ ∈ C, such that LP ⊆ LP ′ , we say that P ′

is a strong conservative translation of P , denoted P
Sem∗−−−−→ P ′, if for every

program Q, such that LQ ∩ (LP ′ \ LP) = ∅, P ∪Q
Sem−−−→ P ′ ∪Q.

The condition LQ ∩ (LP ′ \ LP) = ∅ states that the programs Q, used to
extend P , may not contain any of this reserved atoms of the transformation.
In an actual implementation we could ensure this condition by defining
a special set of atoms reserved for internal translations and not available
to the user for writing programs. As we may expect, strong conservative
translations also define a transitive relation.

In the particular case when L′P = LP , when there are no reserved atoms,
this relation is known as a strong equivalence between programs. This notion
was originally introduced in (Lifschitz, Pearce, and Valverde 2001) where the
authors provide a characterization of strong equivalence for augmented pro-
grams, using the answer set semantics, in terms of the logic HT equivalent to
the 3 valued logic G3. These relations between answer sets and intermediate
logics are also studied in (Navarro 2002) where the characterization of strong
equivalence is revised and extended to arbitrary propositional theories.

Theorem 1. (Lifschitz et al. 2001; Navarro 2002) Let P,P ′ ∈ Prp, such
that LP = LP ′. P

AS∗−−−→ P ′ if and only if P ≡G3 P ′.

4 Program Translations

A translation is a function Tr: C → C ′, where C and C ′ are two classes of
logic programs. Janhunen (2001) discusses important properties of program
translations, relevant to logic programming, for arbitrary semantic opera-
tors. Particular applications for the answer set semantics are also given in
(Pearce et al. 2002).

Definition 4. (Janhunen 2001; Pearce et al. 2002) Let Sem be a semantic
operator for a class of programs D, a translation Tr: C → C ′, where the
classes C,C ′ ⊆ D are closed under unions2, is said to be:

polynomial if the time required to compute Tr(P) is polynomial with re-
spect to the number of symbols in P .

2A class of programs C is closed under unions if P1, P2 ∈ C implies that P1 ∪ P2 ∈ C.

218

Juan Antonio Navarro Pérez

faithful if, for all programs P ∈ C, P
Sem−−−→ Tr(P).

strongly faithful if, for all programs P ∈ C, P
Sem∗−−−−→ Tr(P).

modular if, for all programs P1, P2 ∈ C, Tr(P1 ∪ P2) = Tr(P1) ∪ Tr(P2).

reductive if C ′ ⊆ C and Tr(P ′) = P ′ for all programs P ′ ∈ C ′.3

The property of a translation being polynomial (P) is related with the
order of complexity that an actual computer implementation of the trans-
lation should have. A faithful (F) translation can be applied to a program
preserving the semantics, while a strongly faithful (S) translation can also
be applied locally to some section of the program without altering the se-
mantics.

The last two properties deal with the form of the translation, not with
its particular semantics. If a translation is modular (M) we could split a
program into several pieces and then perform the translation piece by piece.
A reductive (R) translation maps one class of programs into some given
subclass, and the programs that are already in the subclass will not been
modified by the translation.

As a form of notation we say that a translation is PFM if it is simultane-
ously polynomial, faithful and modular. Analogously, a PSMR translation
is polynomial, strongly faithful, modular and reductive. We can drop any
of the letters from the notation if we are just interested in some properties.

Proposition 4. (Pearce et al. 2002) There is a PSM translation, for the
the semantic of answer sets, AugDis : Aug→ Dis.

Using the machinery of logic, based on Definition 1 and results like Theo-
rem 1, it is also possible to provide a translation of logic programs, containing
arbitrary propositional formulas, into augmented programs.

Definition 5. If a formula F contains a proper subformula A→ B, where
A and B contain no more implications, we say that A → B is a simple
embedded implication of the formula F . We define recursively the translation
PrpAug: Prp→ Aug for every P ∈ Prp, as follows:

(i) P contains no clause with embedded implications. Then P is already
an augmented program and PrpAug(P) = P .

(ii) P contains a clause F with some embedded implications. Take one
simple embedded implication, A→ B, from the formula F ; and take a
new atom x ∈ L\LP not already in P . Let F ′ be the formula obtained

3The definition of a modular translation we introduce here corresponds to the one given
in (Pearce et al. 2002). Janhunen (2001) presents a different definition which corresponds
to modular + reductive (when C′ ⊆ C is satisfied).

219

Properties of Translations for Logic Programs

by replacing the occurrence of A→ B in F with the new atom x, and
let P ′ be the program obtained by replacing F with F ′ in P . Also
let ∆ = {x ∧A→ B, ¬A ∨B → x, x ∨A ∨ ¬B}. We finally define
PrpAug(P) = PrpAug(P ′ ∪∆).

The recursive definition of PrpAug is well-founded since, on each recur-
sion step, the program P ′ ∪∆ has one implication less than P .

Proposition 5. The translation PrpAug: Prp→ Aug is PSMR.

Proof. The number of recursion steps required to complete the translation
is exactly the number of embedded implications in the program, therefore
the translation is polynomial. It is also clear, since PrpAug acts on one
clause at a time and does not modify programs already in the augmented
class, that the translation is modular and reductive.

To justify that the recursion step is a strong conservative transformation
observe that, from Proposition 3, P

AS−−→ P∪{x↔ (A→ B)}. The key point
is that {x↔ (A→ B)} ≡G3 ∆ and, therefore, we also have the equivalence
P ∪{x↔ (A→ B)} ≡G3 P ′∪∆. Using Theorem 1, and transitivity, we end
up with P

AS−−→ P ′ ∪∆.

Current implementations of the answer set programming paradigm res-
trict the syntax of formulas to the class of disjunctive programs where, in
particular, implication in the body is not allowed. A common work around
to this limitation was to use the intuitive equivalence (A→ B)↔ (¬A∨B).
This practice, however, caused sometimes the appearance of unexpected
models (or the miss of expected ones) when computing answer sets.

The first rule x∧A→ B in our equivalence is used to model the behavior
of the implication symbol in the head. The second rule ¬A ∨B → x comes
from the classical intuitive meaning of the implication connective. This two
rules, however, are not enough to provide the required equivalence in the
logic G3. This could possibly explain the unexpected results obtained from
the erroneous work around. The less intuitive third rule x∨A∨¬B required
was discovered, in fact, by an examination of the G3 models of the original
formula x ↔ (A → B). This points out the importance of results like
Theorem 1 that allows us to better understand the notion of answer sets,
proposing the logic G3 as a more correct guide for our intuition.

5 Properties of Translations

In the previous section we provided a translation for the class of propo-
sitional theories into the class of augmented programs and, together with
other translations (Pearce et al. 2002), it is possible to reduce them to the
class of disjunctive programs. Using any of the popular answer set finders for

220

Juan Antonio Navarro Pérez

disjunctive programs, dlv4 or smodels5, it is possible to provide an efficient
method to compute answer sets for propositional theories. The following
theorem is a direct consequence from Propositions 4 and 5.

Theorem 2. There is a translation PrpDis: Prp → Dis, which is PSM for
the semantic of answer sets.

Observe that the properties of strongly faithful and modular are some-
how related. Both notions can be interpreted in terms of a program that
has been split into several pieces. A strongly faithful translation can be
applied to one of these pieces preserving the semantics of the program. On
the other hand, a modular translation can also be applied “piece by piece”
to the program but we do have to complete the translation for each one of
the pieces. It is possible, indeed, to construct a FM translation which is not
strongly faithful.

Example 1. Let C be the class of disjunctive programs that have exactly
one atom in the head and zero or one atoms in the body. Also let C ′ be
the class of disjunctive programs that have exactly two atoms in the head
and zero or two atoms in the body. Clearly both C and C ′ are closed under
unions. For each atom a in the user language let a′ be a new reserved atom.
The translation Hide: C → C ′ is defined mapping each clause, a or a ← b,
as follows:

Hide({a}) = {a′ ∨ a′, a ∨ a← a′ ∧ a′}
Hide({a← b}) = {a′ ∨ a′ ← b′ ∧ b′, a ∨ a← a′ ∧ a′, b ∨ b← b′ ∧ b′}

It is clear, by construction, that the translation is modular. The translation
is also faithful since it rewrites the original program, with new reserved
atoms, and appending a set of rules, equivalent to a ← a′, in order to
recover answer sets in the original signature.

Consider the program P = {a← b, b} ∈ C. Both P and Hide(P) have
the same answer sets. If we apply the translation, however, just to the first
clause the program Hide({a← b}) ∪ {b} will have different semantics. The
rule a← b is now “hidden” and the existence of the fact b can not be used
anymore to infer a. The translation is not strongly faithful.

We will see, however, that there is a wide class of interesting and useful
translations where the syntactic properties of being modular and reductive
are enough to be strongly faithful. The following theorem shows how, in the
context of the answer sets semantics, this can be possible.

Theorem 3. Given two classes of logic programs C and C ′, closed under
unions and such that Dis ⊆ C ′ ⊆ C ⊆ Prp. If the translation Tr: C → C ′ is
FMR in the answer set semantics then it is also strongly faithful.

4http://www.dbai.tuwien.ac.at/proj/dlv/
5http://www.tcs.hut.fi/Software/smodels/

221

Properties of Translations for Logic Programs

Proof. Let Q ∈ Prp be a program containing no atoms from LTr(P) \LP and
let L =

{
a← a | a ∈ LTr(P)

}
, so that the signatures are LP ⊆ LTr(P) = LL.

Construct then the disjunctive program D = PrpDis(Q ∪ L) and, since
Theorem 2 states that the translation is strongly faithful, Q ∪ L

AS∗−−−→ D.
Neither P nor Tr(P) contain reserved atoms from LD \ LQ∪L. Using

the result from Proposition 2 and from the definition of strongly faithful
we obtain that P ∪ Q

AS−−→ P ∪ (Q ∪ L) AS−−→ P ∪ D and, similarly for the
translated program, Tr(P) ∪Q

AS−−→ Tr(P) ∪ (Q ∪ L) AS−−→ Tr(P) ∪D.

Now, since the translation Tr is faithful, we have P ∪D
AS−−→ Tr(P ∪D).

Also, from the modular and reductive properties, we obtain Tr(P ∪ D) =
Tr(P)∪Tr(D) = Tr(P)∪D. Thus we get P ∪Q

AS−−→ P ∪D
AS−−→ Tr(P)∪D

and, by Proposition 1, we can finally conclude P ∪Q
AS−−→ Tr(P) ∪Q.

6 Conclusions

We have presented in this paper a translation that can be used to map ar-
bitrary propositional theories into the class of simple disjunctive programs.
Moreover, the translation is strongly faithful and has good syntactical prop-
erties. Previous work, from Pearce et al. (2002), presented a similar trans-
lation but only for programs in the augmented class. Using results from
Lifschitz et al. (2001) and Osorio et al. (2003) we could show how to extend
this translation for any propositional theory.

The existence of such translation has some theoretical significance. It
shows, in particular, that the class of disjunctive programs is as expressive as
the class of propositional theories. Also an important practical consequence
of the result is that it allows the development of software tools to compute
answer sets for logic programs containing arbitrary propositional formulas.

We also exhibit how, for a wide range of program translations, the con-
ditions of being faithful, modular and reductive are sufficient to state that
the translation is also strongly faithful. The main assumption required for
this result to hold is that the translation takes programs from a class of logic
programs to some, more simple in principle, subclass.

It is important to stress out the fact that this results were obtained
through the “Logic Programming via Logic” approach initiated by Pearce
(1999) and developed later by Osorio et al. (2003). Thus showing how the
use of intermediate logics in the study of answer sets can be useful to develop
the theory and applications of answer sets. This could open a new line of
research and provide a lot of feedback between this two areas.

Acknowledgments This research is sponsored by the Mexican National
Council of Science and Technology, CONACyT (project 37837-A).

222

Juan Antonio Navarro Pérez

References

Alferes, J. J., L. M. Pereira, H. Pryzmusinska, and T. Prymusinski (2002). LUPS—
a language for updating logic programs. Artificial Intelligence 138, 87–116.

Baral, C. (2003). Knowledge Representation, reasoning and declarative problem
solving with Answer Sets. Cambridge: Cambridge University Press.

Dimopoulos, Y., B. Nebel, and J. Koehler (1997). Encoding planning problems in
non-monotonic logic programs. In Proceedings of the Fourth European Conference
on Planning, pp. 169–181. Springer-Verlag.

Eiter, T., M. Fink, G. Sabbatini, and H. Tompits (2000). On updates of logic
programs: Semantics and properties. Research Report 1843-00-08, INFSYS. A
shortened version of this paper appears in Theory and Practice of Logic Program-
ming, 2002.

Eiter, T., N. Leone, C. Mateis, G. Pfeifer, and F. Scarcello (1997, June). The ar-
chitecture of a disjunctive deductive database system. In M. Falaschi, M. Navarro,
and A. Policriti (Eds.), Proceedings Joint Conference on Declarative Programming
(APPIA-GULP-PRODE ’97), pp. 141–151.

Gelfond, M. and V. Lifschitz (1988). The stable model semantics for logic program-
ming. In R. Kowalski and K. Bowen (Eds.), 5th Conference on Logic Programming,
pp. 1070–1080. MIT Press.

Janhunen, T. (2001, September). On the effect of default negation on the expres-
siveness of disjunctive rules. In T. Eiter, W. Faber, and M. Truszczynski (Eds.),
Logic Programming and Nonmonotonic Reasoning, 6th International Conference,
Number 2173 in Lecture Notes in Computer Science, Vienna, Austria, pp. 93–106.
Springer.

Lifschitz, V., D. Pearce, and A. Valverde (2001). Strongly equivalent logic pro-
grams. ACM Transactions on Computational Logic 2, 526–541.

Lifschitz, V., L. R. Tang, and H. Turner (1999). Nested expressions in logic
programs. Annals of Mathematics and Artificial Intelligence 25, 369–389.

Lloyd, J. W. (1987). Foundations of Logic Programming (Second ed.). Berlin:
Springer.

Mendelson, E. (1987). Introduction to Mathematical Logic (Third ed.). Belmont,
CA: Wadsworth.

Navarro, J. A. (2002, August). Answer set programming through G3 logic. In
M. Nissim (Ed.), Seventh ESSLLI Student Session, European Summer School in
Logic, Language and Information, Trento, Italy.

Osorio, M., J. A. Navarro, and J. Arrazola (2001, November). Equivalence in
answer set programming. In A. Pettorossi (Ed.), Logic Based Program Synthesis
and Transformation. 11th International Workshop, LOPSTR 2001, Number 2372
in LNCS, Paphos, Cyprus, pp. 57–75. Springer.

Osorio, M., J. A. Navarro, and J. Arrazola (2002). A logical approach for A-
Prolog. In R. de Queiroz, L. C. Pereira, and E. H. Haeusler (Eds.), 9th Workshop
on Logic, Language, Information and Computation (WoLLIC), Volume 67 of Elec-
tronic Notes in Theoretical Computer Science, Rio de Janeiro, Brazil, pp. 265–275.
Elsevier Science Publishers.

223

Properties of Translations for Logic Programs

Osorio, M., J. A. Navarro, and J. Arrazola (2003). Applications of intuitionistic
logic in answer set programming. Accepted to appear at the TPLP journal.

Pearce, D. (1999). Stable inference as intuitionistic validity. Logic Program-
ming 38, 79–91.

Pearce, D., V. Sarsakov, T. Schaub, H. Tompits, and S. Woltran (2002, August). A
polynomial translation of logic programs with nested expressions into disjunctive
logic programs: Preliminary report. In P. J. Stuckey (Ed.), Logic Programming.
18th International Conference, ICLP 2002, Number 2401 in LNCS, Copenhagen,
Denmark, pp. 405–420. Springer.

Pettorossi, A. and M. Proietti (1998). Transformation of logic programs. In
C. J. H. D. M. Gabbay and J. A. Robinson (Eds.), Handbook of Logic in Artificial
Intelligence and Logic Programming, Volume 5, Chapter D, pp. 697–787. Oxford
University Press.

Sakama, C. and K. Inoue (1998). Negation as failure in the head. Journal of Logic
Programming 35(1), 39–78.

van Dalen, D. (1980). Logic and Structure (Second ed.). Berlin: Springer.

Zakharyaschev, M., F. Wolter, and A. Chagrov (2001, December). Advanced
modal logic. In D. M. Gabbay and F. Guenthner (Eds.), Handbook of Philo-
sophical Logic (Second ed.), Volume 3, pp. 83–266. Dordrecht: Kluwer Academic
Publishers.

224

Worst-case upper bounds for SAT:

automated proof

Sergey Nikolenko

St.-Petersburg State University

sergey@logic.pdmi.ras.ru

Alexander Sirotkin

St.-Petersburg State University

sirotkin@hotbox.ru

Abstract. Propositional satisfiability (SAT), an NP-hard problem, can certainly
be solved in less than 2K steps, where K denotes the number of clauses in the
input formula, for instance, with the help of DPLL-type SAT solvers. In this paper,
describing a work in progress, we deal with automated proofs of upper bounds on
the running time of DPLL-type algorithms for SAT.

For a class of algorithms working with the pure literal elimination, we prove a
previously unknown upper bound w.r.t. the number of clauses in the input formula.
We also note that the employed line of reasoning cannot lead to better results.

1 Introduction

The problem of propositional satisfiability is known to be NP-complete, and,
therefore, it is highly unlikely that a polynomial-time algorithm for SAT will
be discovered. Therefore, the need in “good” exponential-time algorithms
arose. The naive algorithm would in the general case take at least poly(N)2N

steps to find a satisfying assignment, where N is a complexity measure such
as number of variables, clauses or length of the input formula. Therefore,
it has for quite a long time been a challenging problem to prove better
and better worst-case upper bounds for various SAT solvers. The current
record holder is due to Edward A. Hirsch. He proved in [6] that his (rather
complex) algorithm works for the time 20.30897...K , where K is the number
of clauses in the input formula. We prove a weaker bound, but for a much
simpler algorithm.

One of the two main approaches to obtaining less-than-2N bounds is the
local search approach, when an algorithm starts from a random assignment

Proceedings of the Eighth ESSLLI Student Session
Balder ten Cate (editor)
Chapter 21, Copyright c© 2003, Sergey Nikolenko and Alexander Sirotkin

225

Worst-case upper bounds for SAT: automated proof

and modifies it to get closer to a satisfying assignment (for references see,
for example, [1]).

Algorithms of the other are called DPLL-type, due to the works of Davis,
Putnam, Logemann and Loveland ([3], [2]). The DPLL-type algorithms
build a tree, the so-called branching tree, whose nodes are partial assign-
ments to the variables of the input formula. On each step, a DPLL-type
algorithm first tries to simplify the input formula, employing a number of
simplification rules. Then, if the result is not obvious yet, it makes a split-
ting, that is, it chooses a literal l in the input formula, constructs two for-
mulae, one corresponding to l := true and the other to l := false, and
recursively calls itself for these two formulas. If any of the calls returns the
answer “Satisfiable”, the algorithm also returns this answer. Otherwise, it
returns “Unsatisfiable”.

During the past decade the proofs of worst-case upper bounds for DPLL-
type SAT solvers have become quite similar. The point of such proofs is to
construct the branching tree, described in Section 2, and prove that in any
possible case of the literals’ mutual arrangement in the input formula the
algorithm in question will be able to pick a literal, the splitting by which
would provide the necessary branching vector with respect to the necessary
complexity measure.

The proofs have become less elegant and more technical. Simple combi-
natorial properties of all the possible cases usually comprise the whole proof
(probably [6] is the best example of such a proof). The only “creative”
element of these proofs are the elimination rules.

In the sequel we present a successful attempt to automate the proofs of
worst-case upper bounds for DPLL-type algorithms. Attempts to prove such
bounds usually employ the Kullmann-Luckhardt’s lemma, to which Section
2 is devoted. Sections 3 describes the ideology of automating these proofs,
Section 4 provides a hard instance for this line of reasoning that matches
with the upper bound presented, and Section 5 presents a new bound proven
with the help of a computer, the complete output of whose work is presented
in the appendix.

2 Basic definitions and Kullmann-Luckhardt’s lemma

We denote by X a set of boolean variables. The negation of a variable x is
denoted by x. If U ⊆ X, then U = {x | x ∈ U}. Literals are members of the
set X ∪X. A clause is a set of literals that does not contain simultaneously
any variable together with its negation. A formula in CNF is a finite set of
clauses. A clause is called unit if it consists of one literal.

We count the number of appearances of a chosen literal in the formula.
We call l an (i, j)-literal with respect to a formula F , if F contains i appear-
ances of l and j appearances of l. We call l an (i, j+)-literal with respect to

226

Sergey Nikolenko and Alexander Sirotkin

a formula F , if F contains i appearances of l and at least j appearances of
l. A literal is called pure with respect to a formula if the formula contains
only the literal, but does not contain its negation.

An assignment is a finite subset I ⊆ X ∪ X that does not contain any
variable together with its negation. We denote by F [I] a formula that results
from F and an assignment I = {x1, x2, . . . , xn} after removing all clauses
containing the literals xi and deleting all occurrences of the literals xi from
the other clauses. An assignment I is said to satisfy the formula F , if F [I]
is the empty formula (that is, F [I] contains no clauses).

Basically, all one needs to prove worst-case upper bounds on such algo-
rithms is to solve recurrent equations. However, the job was significantly
simplified (and made available for automatization) by O. Kullmann and
H. Luckhardt. The notion of a branching tree was introduced by them in
[7]. The branching tree in our case is not binary, though the number of sons
of a node is limited to eight. We attach to each formula (each node of the
tree) a non-negative integer µ(F), which denotes the complexity of F . In
the sequel we prove an upper bound with respect to the number of clauses
in F : µ(F) = K(F).

Let us now consider a node of the branching tree (labeled with a formula
F) and denote its sons by F1, . . . , Fm. We call a branching vector of a node
an m-tuple (t1, . . . , tm), where ti = µ(F) − µ(Fi). Note that the following
makes sense only when each of the resulting formulae is “simpler” that its
predecessor, that is, when µ(F) ≥ µ(Fi).

The characteristic polynomial of a branching vector t = (t1, . . . , tm) is
defined by

ht(x) = 1 −
m∑

i=1

x−ti .

This polymonial has exactly one positive root (since it is a monotone func-
tion on (0,+∞)). Following [6], we denote this root by τ(t) = τ(t1, t2, . . . , tm)
and call it the branching number.

The branching numbers have quite a few remarkable properties. For our
purposes two of them, presented in [7], are necessary.

Lemma 1 (Kullmann and Luckhardt [7]). Let T be a branching tree,
and let its root be labeled with a formula F . Then the number of leaves in T
does not exceed (τmax,T)µ(F), where τmax,T is the largest of all the branching
numbers of the nodes of T .

Lemma 2 (Kullmann and Luckhardt [7]). Let m,k ∈ N, x1, x2, . . . , xm,
y1, y2, . . . , yk ∈ Q+. The problem whether τ(x1, . . . , xm) is not greater than
τ(y1, . . . , yk) is solvable in time polynomial of max(x1, . . . , xm, y1, . . . , yk).

These lemmata allow us to estimate the running time of a DPLL-type
algorithm. Indeed, if we know the branching number of its splitting tree

227

Worst-case upper bounds for SAT: automated proof

�

�

� � � � � � � �

� � � � �

� � � �

�

�

�

�

�

�

�

�

0

8

8
Figure 1: Branching numbers (i, j) ∈ N × N such that τ(i, j) ≥ τ(3, 4)

(τmax,T) and provided it processes each of its leaves in polynomial time,
Lemma 1 gives a worst-case upper bound on its running time as poly(µ(F))τµ(F)

max,T ,
where F is its input formula and µ an arbitrary complexity measure, strictly
decreasing with each splitting.

Besides, Lemma 2 allows the algorithm to estimate the branching num-
bers in polynomial time and choose the next literal according to the suitable
branching number.

3 Programming issues

The main idea of the program was to introduce in it the notion of an unknown
literal. The program actually looks at a rather small piece of formula, just
big enough to hold all the occurrences of several literals. The rest of the
literals is supposed unknown; they are not subject to elimination rules.

The program receives as input the target branching number τ . First of
all, let us note that if a formula contains an (i, j)-literal such that τ(i, j) ≤ τ ,
making a split on this literal would achieve the purpose of the current step.
Therefore, it is possible to reduce the possibilities for positive and negative
occurrences of the literals to a certain finite subset of Z × Z, depending on
the target branching number (see an example on Fig. ??).

Then the program initializes a literal and marks all other literals as
unknown (if the first considered literal is an (i, j)-literal, then there would
be i + j clauses in the formula after its initialization – the rest are unknown
and therefore irrelevant for reducing). After initializing, it tries to reduce
the resulting formula using the current rules. If succeeded, it means that

228

Sergey Nikolenko and Alexander Sirotkin

this formula cannot be obtained as an input for the splitting and, therefore,
we may proceed to other cases.

Then the program tries to find an acceptable split, that is, literals
l1, . . . , lk such that the corresponding branching number is less than τ . If
succeeded, it goes on through all the remaining possibilities of the literals’
mutual arrangement. If it does not succeed, it initializes another literal and
tries to split or reduce the resulting formula, looking for the target branching
number.

4 Lower bounds for this type of reasoning

Of course, this kind of reasoning has its limitations. We present here an
example of a formula that is very simple for any solver by itself. However,
it constitutes an unavoidable obstacle for the line of reasoning based on
Kullmann-Luckhardt’s lemma.

Consider the following formula:

G(x1, x2, x3) = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3).

Note that in the terms of Kullmann-Luckhardt’s lemma, whichever literal
we split on first, we produce a (1, 3)-split (that is, one clause is eliminated
when xi is set to false and all three clauses disappear when xi := true).
The second splitting (we have to consider it only in one case, since in the
other the whole formula disappears) would inevitably reduce the formula to
an empty one.

Now let us consider the formula

F (x1, . . . , xn) = G(x1, x2, x3) ∧ G(x4, x5, x6) ∧ . . . ∧ G(xn−2, xn−1, xn).

Due to the symmetry of the formula and the independence of subformulas
with three variables, we can rearrange the splittings made by the pure literals
elimination algorithm in any suitable order (provided we preserve the order
of every pair of splittings made in any independent subformula). Let us
rearrange them in such a way that splittings made by variables occuring in
each subformula appear one after another. Then it is easy to see that every
sequence of two splittings result in a branching vector with a branching
number of τ(3, 3, 3) = 1.442250

Note that the formula itself is remarkably simple, because the majority
of all the assignments are satisfiable, and it may not be considered a hard
instance for any SAT solver. However, the line of reasoning along which the
automated search is going would inevitably fail at this point.

229

Worst-case upper bounds for SAT: automated proof

5 Proof of the 1.442250 . . .K = 20.528321...K upper bound

We present here the formal proof of a previously unknown upper bound
for the same solver, working with pure literals elimination only. We begin
with several lemmata. Throughout this section we denote by F the formula
in the current node of the branching tree and fix the number of clauses as
the complexity measure. The bound in question is obtained as τ(3, 3, 3) =
1.442250

Lemma 3. If F contains a (1+, 4+)-literal or a (2+, 2+)-literal, then its
branching number is greater than the necessary bound.

Proof. Straightforward calculations.

Note that the unit clause rule is an intrinsic property of nearly all DPLL-
type algorithms.

Lemma 4. If the input formula F contains a unit clause C = {xi}, then
splitting by the literal xi produces a branching vector of at least (1,K), where
K is the number of clauses in F .

Proof. F [xi] contains an empty clause and is obviously unsatisfiable. There-
fore, one of the branches is a leaf of the branching tree.

Therefore, for every formula F with the number of clauses K ≥ 4, a unit
clause immediately provides us with the necessary bound, since τ(3, 3, 3) >
τ(1, 4).

Lemma 5. If F does not contain unit clauses, does not contain pure literals
and contains a (1, 3)-literal, then it is possible to pick a single literal l such
that τ(K(F)−K(F [l]red),K(F)−K(F [l]red) ≥ τ(3, 3, 3), where Fred denotes
the result of applying the pure literals rule to F .

Proof. We denote by a the (1, 3)-literal and by b the second literal appearing
in the clause with a. By assumption, b is a (1+, 1+)-literal. Consider
splitting by b. K(F) − K(F [b]red) ≥ 1 and K(F) − K(F [b]red) ≥ 4, because
in F [b]red all clauses containing a disappear, since a becomes a pure literal.
Therefore, the necessary bound is obtained as τ(1, 4).

Lemma 6. If F does not contain unit clauses, does not contain pure literals
and does not contain (1+, 3+)-literals or (2+, 2+)-literals, then it is possi-
ble to pick two literals l1, l2 in F such that τ(K(F) − K(F [l1]red),K(F) −
K(F [l1, l2])red,K(F) − K(F [l1, l2])red) ≥ τ(3, 3, 3) or a single literal l such
that τ(K(F)−K(F [l]red),K(F)−K(F [l]red) ≥ τ(3, 3, 3), where Fred denotes
the result of applying the pure literals rule to F .

Proof. The automated proof of this statement is too long to be published
here. It is available from [11]. The notations and output format are ex-
plained there as well.

230

Sergey Nikolenko and Alexander Sirotkin

All of the above, after applying Lemmata 1 and 2, proves the following.

Theorem 1. The described DPLL-type algorithm with pure literals elimi-
nation as the only simplification rule gives the correct answer in the time
not exceeding poly(K)20.64743...K , where K is the number of clauses in the
input formula.

6 Further work

One direction for further work in this field is obvious: we will implement
other elimination rules and obtain better bounds. Other known elimina-
tion rules include elimination by resolution, unit clause elimination, blocked
clauses elimination and the black-and-white literals rule (for an example
where all of them are used, see [6]). It would be also interesting to try to
prove bounds w.r.t. other complexity measures, the most interesting being
the number of variables. We are currently working on it, and on this way
we expect some new results and, possibly, records.

Another direction is to extend these methods to other NP-complete prob-
lems. There exist algorithms for other problems that employ similar split-
ting methods and bounds on which also have been achieved with the help of
Kullmann-Luckhardt’s lemma. An example of such algorithms for MAX-2-
SAT and MAX-CUT can be found in [5], and the current record holder for
MAX-CUT ([4]) also uses such techniques.

And, last but not least, it has been an equally challenging problem to
obtain exponential lower bounds for such algorithms. Previous attempts
usually employed graph-theoretical techniques ([9],[10],[8]). The automated
search for upper bounds may yield explicit formulae that are hard for DPLL-
type algorithms: after all, it does not succeed every time, and analysis of its
output when a bound cannot be proven might turn out to be very useful.
For example, this output may provide the so-called “bottleneck cases”, i.e.
explicit formulae where the algorithm performs with complexity close to its
proven worst-case upper bound.

Acknowledgements

The authors would like to express gratitude to Edward A. Hirsch, who posed
the problem and supervised our work.

References

[1] E.Y. Dantsin, E.A. Hirsch, S.V. Ivanov, M.A. Vsemirnov. Algorithms for
SAT and upper bounds on their complexity (in Russian: Algoritmy dlja
propozitsional’noj vypolnimosti i verhnie otsenki ih slozhnosti). Zapiski nauch-
nyh seminarov POMI, 277:14-46, 2001. English version appears in Elec-

231

Worst-case upper bounds for SAT: automated proof

tronic Colloquium on Computational Complexity, Technical Report 01-012,
ftp://ftp.eccc.uni-trier.de/pub/eccc/reports/2001/TR01-012/Paper.ps

[2] M. Davis, G. Logemann, D. Loveland. A machine program for theorem-
proving. Communications of the ACM 5(7) (1962), 394-397.

[3] M. Davis, H. Putnam. A computing procedure for quantification theory. Jour-
nal of the ACM 7(3) (1960), 201-215.

[4] S. Fedin, A. Kulikov. A 2|E|/4-time algorithm for MAX-CUT. Zapiski nauch-
nyh seminarov POMI, 293:129-138, 2002.

[5] J. Gramm, E.A. Hirsch, R. Niedermeier, P. Rossmanith. New worst-case upper
bounds for MAX-2-SAT with application to MAX-CUT. Electronic Colloquium
on Computational Complexity, Report No. 37(2000).

[6] E.A. Hirsch. New worst-case upper bounds for SAT. Journal of Automated
Reasoning, 24:397-420, 2000.

[7] O. Kullmann, H. Luckhardt. Algorithms for SAT/TAUT decision based on
various measures. Informatics and Computation, 1998.

[8] S.I. Nikolenko. Hard satisfiable instances for DPLL-type algorithms. Zapiski
nauchnyh seminarov POMI, 293:139-148, 2002.

[9] G.S. Tseitin. On the complexity of derivation in propositional calculus. Stud-
ies in Constructive Mathematics and Matematical Logic, Part II. Consultants
Bureau, New York – London, 1968, 115-125.

[10] A. Urquhart. Hard Examples for Resolution. The Bulletin of Symbolic Logic,
vol. 1, num. 4, Dec. 1995.

[11] http://logic.pdmi.ras.ru/˜sergey/

232

233

A Logic Approach to Supporting
Collaboration in Learning Environments

M. MAGDALENA ORTIZ DE LA FUENTE
Universidad de las Américas – Puebla. Mexico
is103378@mail.udlap.mx

ABSTRACT. We introduce a new application of extended disjunctive logic programs in
the area of CSCL environments. A logic representation of the learner model is proposed
as a set of beliefs that an agent holds about the interests and capabilities of its user.
Based on these beliefs, the agent assures awareness and assists the collaboration among
the learners in the community. It is an application of ASP, a formalism for non-
monotonic reasoning, which has proved to be suitable since it allows simple and clear
modeling and the behavior of the system is appropriate. Here we present the main
aspects of the formalized model and some general properties of it.

1 Introduction

Due to the need of adding certain features to traditional logic programming

(two types of negation, disjunction in the head of rules) many researchers have
focused on the development of new semantics that support these extensions [12,
16, 29, 31]. Result of this effort is the Stable Models Semantics introduced in the
late 80s by Gelfond and Lifschitz [17], also known as Answer Sets Programming
(ASP). It is an alternative logic programming paradigm for disjunctive deductive
databases (function free logic programs that allow the use of negation in the
body of rules and disjunctions in the heads). Unlike most of the other semantics
for extended logic programs (Well Founded Semantics [31], Perfect Models [29],
etc.) the stable models semantics does not restrict logic programs to a single
intended model, but they allow the existence of sets of various intended models
(stable models or answer sets) [22]. ASP is now widely accepted as one of the
best semantics for non-monotonic reasoning and disjunctive deductive databases.

With all these new semantics, we are able to develop more adequate reasoning
models for applications in many fields. In the areas of computer assisted learning
and tutoring systems, logic programming has been widely used, usually for
knowledge representation [7, 9]. However, the development of logic-based
applications for collaboration in learning communities is very scarce. In this
paper, we address the problem from the perspective of ASP. There is some work
on learner modeling for collaborative learning environments based on

Proceedings of the Eighth ESSLLI Student Session.
Balder ten Cate (editor)
Chapter 22, Copyright © 2003, M. Magdalena Ortiz de la Fuente

A Logic Approach to Supporting Collaboration in Learning Environments

234

probabilistic approaches, which provided good results [26]. In our previous work
[23], we proposed ASP as a suitable basis for learner modeling in Computer
Supported Collaborative Learning (CSCL) environments. Now we use ASP to
model how the agents in this kind of learning environments can effectively
support collaboration in the community according to their learner models.

In agent based CSCL environments [4, 5, 6, 30], the agents hold a set of
beliefs about the learners, which they use to infer the best learning and
collaboration opportunities for them within the community. These beliefs are
usually incomplete or insufficient, and thus sometimes, when there is a lack of
evidence, we need to reach non-monotonic conclusions. That’s why we find that
Answer Set Programming (ASP) is an appropriate logical framework [16].
Another reason to prefer ASP above other programming paradigms, is that in this
context, there is usually not such thing as a single “right answer”. We only want
to suggest the learner possible learning tasks and workgroups. The multiple
models given by the ASP semantics fit perfectly this need, since they allow us to
have more than one adequate proposal for the learner [22].

Since we are using extended programs with two types of negation (classical
negation and default negation), we can deal with different levels of reliability
without needing a wider truth value lattice. Having both negations proved very
useful for our purpose, since it makes modeling natural and direct, allowing us to
weaken rules by the normally construct [16]. For more on negation see [18, 21].
There are also extensions of ASP that give us useful additional features like
strong and weak constraints and the possibility of dealing with preferences [8,
12]. As we will discuss later, this can also be enriching since it allows more
natural and accurate modeling.

The organization of the paper is as follows: First, in section 2, we present
some preliminary concepts, focusing on CSCL. Sections 3 and 4 give an
overview of the system, presenting the formalization of the domain and the
learner model. In Section 5 we explain how the agents can promote collaboration
based on a reasoning model formalized in ASP. Finally our conclusions and
perspectives for future work are given in section 6.

2 Preliminaries

Computer Supported Collaborative Learning (CSCL) environments consist on

the establishment of learner groups where the users learn as they collaborate in
common tasks [6]. In a CSCL environment, learning is a collaborative process
that is made possible with the active participation and the interaction among its
members, who share and construct knowledge [5]. For the learning process in
this kind of environments, collaboration is the most relevant issue [4]. In agent-
based CSCL environments, each learner interacts with an agent that holds a set of
beliefs about him/her known as Learner Model (LM) [30]. The agent uses its

M. Magdalena Ortiz de la Fuente

235

own learner model and the beliefs of the other agents in the community to reach
decisions that will give its learner the best collaboration and learning
opportunities within the community. Our work consists of a logic formalization
of this learner model and the way it can be used to promote better collaboration.

In our approach, we consider that the knowledge repository is possessed by
the learners, instead of stored in the system. However, it is necessary that the
agents are able to identify certain relations between the domain elements in order
to understand its learner’s development. For this reason, our model includes a
representation schema for the knowledge domain. We also present a
formalization of the learner model (agent’s beliefs), based on the approach
presented in [23]. According to these domain and learner models, we are going to
propose a way in which the agents can help the learners establish an adequate
learning plan and configure workgroups.

We suppose that the reader is familiar with the main aspects of logic
programming as well as with the essential features of ASP. For a deeper reading
or unexplained concepts see [16, 17, 21, 24]. Here we will refer more to the
features of ASP that make it a suitable formalism for the application that we are
modeling. For most of the formal details, we will simply refer to the literature on
the subject. Throughout this paper, we are going to use the standard A-Prolog
[16] notation, with slight differences that will be pointed out.

3 Domain

In a CSCL environment, the learning process implies the learners’

participation in solving common tasks. In our approach, the tasks are related to
one or more areas of interest (topics). To every task, there is a set of situations.
Note that theses situations1 are understood as small parts of a task where a
particular knowledge element can be applied. We also relate support material to
different situations and tasks which we call learning resources. Based on the
approach of Goldstein [19], we are going to represent the relations between the
knowledge elements in a genetic graph. This is a way of representing knowledge
which consists of individual knowledge elements connected by genetic relations,
which are specification/generalization, refinement/simplification and analogy.
Based on this definition of the domain, we formalize it as follows:

D = < DM, GG > is the pair representing the domain, where DM is the domain
map and GG the genetic graph.

1 The term situation is taken from the theory of situated cognition [10], and is not related
with situation calculus or action languages in the context of ASP.

A Logic Approach to Supporting Collaboration in Learning Environments

236

The domain map DM is represented as a 5-tuple: DM = < A, T, S, R, K, Rel >,
being A, T, S, R and K the sets of areas, tasks, situations, resources and
knowledge elements respectively. In the set Rel there are three types of relations:
• similarity relations between areas:

similar ⊆ A x A
• association relations between tasks and areas, situations and tasks,

resources and situations or resources and tasks:
associated1 ⊆ T x A associated3 ⊆ S x T associated2 ⊆ R x S associated4 ⊆ R x T
When we use the term associated we refer to any of these four.
• applicability relations between knowledge elements and situations:

applicable ⊆ K x S
The genetic graph GG is the pair GG = < K, Rk >; where K is the set of
knowledge elements and Rk ⊆ K x K is the set of genetic relations between
them.

For example, in our German grammar domain, we represent different tasks
where the users have to write a conversation applying different grammar rules
(knowledge elements). Here we present a part of this domain, including only one
area and two tasks. For the moment, we leave out the associated learning
resources. The DM would be as follows:

A = { a1:[Services] } T = { t1:[Eating in a restaurant], t2: [Shopping in the market] }

S = { s1:[Request an article], s2:[Ask about the availability of an article],

s3:[Ask the price of an article], s4:[Request the bill] }

K = { k1:[request_obj+bitte], k2:[request_möchte/hätte (+gern) + obj],
 k3:[request_(bill)+bitte], k4:[question_verb], k5:[question_QW], …}

Both task are related to the only area we are dealing with. Situations s1, s2 and

s4 are related to task t1, and situations s1, s2 and s3 are related to t2. The
knowledge elements k1 and k2 can be applied in situations s1 and s4, while k3 can
only be applied in situation s4, and so on. This way the applicability relations are
defined for all elements in K x S. In the genetic graph, k1 holds a refinement
relation with k2, as k3 does with k4. At the same time, k2 holds an specification
relation with k4. The inverse relation from refinement is simplification, and from
specification is generalization. There are also analogy relations, which are
symmetric, as between k4 and k5 for example.

To represent our domain as an ASP program, we use the following predicates.

area/1
task/1
situation/1

resource/1
knowledgeElement/1

similar/2
associated/2
applicable/2

M. Magdalena Ortiz de la Fuente

237

analogy/2
generalization/2

refinement/2
simplification/2

specification/2
geneticRelation/2

As an example, here we present a part of our German grammar example
already coded in DLV2, an implementation of ASP [20]. The complete program,
as well as a full description of the example, is available online3.

task(restaurant).
situation(req_art).
knowledgeElement(request_bitte).
knowledgeElement(request_moechtehaette).
refinement(request_bitte, request_moechtehaette).
associated(req_art, restaurant).
applicable(request_bitte, req_art).
analogy(X, Y) :- analogy(Y, X).
simplification(X, Y) :- refinement(Y, X).
generalization(X, Y) :- specification(Y, X).
geneticRelation(X , Y) :- analogy(X, Y).
geneticRelation(X , Y) :- refinement(X, Y).

4 Learner model

A Learner Model (LM) is a particular case of an user model consisting of a

set of beliefs about the learner’s interests and capabilities [6, 30]. The LM is what
the agent believes about its learner. All the decisions made by the agent
concerning the learner’s learning proposal, configuration of groups, etc. are
based on the beliefs contained in the LM.

The beliefs in the LM are represented by instances of the predicates
interested/2 and capable/2. For example, the LM of learner would be defined by
facts like the following:
interested (learner, a). learner is interested in the (area/task/situation/resource) a.
capable (learner b). learner is capable of applying correctly knowledge element b.

This type of facts are called basic beliefs. However, they are often not enough
to allow the agent to find the best learning opportunities for its learner. On the
basis of its basic beliefs, the agent can derive more beliefs about him/her.

First of all, there are two derived capability relations that can be expressed
through the following rules:
• a learner is capable of handling a situation correctly, when he/she is capable

of apply a suitable knowledge element.
capable(Learner, Situation) ←

applicable(KnowElem, Situation), capable(Learner, KnowElem)
• a learner is capable of fulfilling a task, when he/she is capable of handling all

the situations associated to the task.
capable(Learner, Task) ←

(∀Situation: associated(Situation, Task)→ capable(Learner, Situation))

2 http://www.dbai.tuwien.ac.at/proj/dlv/
3 http://mailweb.udlap.mx/~is103378/tesis

A Logic Approach to Supporting Collaboration in Learning Environments

238

Note that we use universal quantifiers for abbreviation reasons, as well as
implication the body of rules. They do not belong to the strict ASP syntax,
however rules of the form r←∀ x: (p(x)→q(x)) are used due to their usefulness
in the modeling process. Certain intuitions are clearly and naturally expressed
through this construction. Theses rules can be expressed in ASP through simple
transformations. The quantifier can expressed in terms of conjunctions of
elements (the Herbrand universe is finite), and the implication can be re-written
in terms of negation and disjunction, as we would do in classical logic. This
alternative can be questioned in ASP, but it is possible under certain
considerations. For a deeper reading on the subject, go to [24, 25, 28].

4.1 Belief derivation rules

There are many ways in which an agent can derive beliefs about its learner.

We propose a set of rules that allow the agent to do this derivation on the basis of
its basic beliefs, the structure of the domain and the beliefs of other agents. We
call them Belief Derivation Rules. The extension and improvement of these rules
is an open area of research, as we mentioned in [23], where we also suggest some
approaches that we believe could suitable for this purpose. Here we present some
of the rules that we have been working with. They are believed to de adequate in
most cases, however, they can be adapted to suit the needs of different learning
communities.

4.1.1 Structural derivation of interests

According to the structural relations between the domain elements, the agent
can infer new beliefs about the learner. For example, when the agent believes that
a learner is interested in an area, it will also believe that he/she is normally
interested in similar areas. Associated domain elements will be treated in a
similar way.

interested(Learner, Area1) ←

similar(Area1, Area2),
interested(Learner, Area1) ,
not ~interested(Learner, Area2)

interested(Learner, Element2) ←

associated(Element1,Element2),
interested(Learner, Element1) ,
not ~interested(Learner, Element2)

4.1.2 Social derivation of interests
The agent can also suppose that the user could or should be interested in

certain resources because they are very popular in the community, or because

M. Magdalena Ortiz de la Fuente

239

they appear frequently related to other users with similar interests. The agent will
believe, for example, that an user is normally interested in the domain elements
(areas, tasks, situations, resources) that are a part of the interests of all the people
in his workgroup.

interested(Learner, Element) ←

(∀ Learner1: (Learner1≠Learner,
taskgroup(Learner, Task),
taskgroup(Learner1, Task)) →
interested(Learner1, Element)),
not ~interested(Learner, Element)

4.1.3 Derivation of capabilities
Finally, the following rules are an example of the ones we have used for

deriving beliefs about the capabilities of the learner.

capable(Learner, KnowElem2) ←

 simplification(KnowElem1, KnowElem2),
capable(Learner, KnowElem1),
not ~capable(Learner, KnowElem2)

capable(Learner, Ke1) ←

(∀Ke: specialization(Ke1,Ke) → capable(Learner, Ke)),
 not ~capable(Learner, Ke1)

 The set of all basic beliefs and all derived beliefs are the agent’s learner
model. We will use the term InterestsLearner to name the set of all the domain
elements (areas / tasks / situations / resources) that the agent believes that
Learner is interested in. On the other hand, Interests~

Learner will contain all
elements that the agent believes Learner is not interested in. Analogously, we
define CapabilitiesLearner and Capabilities~

Learner as the corresponding sets of
knowledge elements.

For example, according to the domain example presented in section 3, the
basic beliefs of the of a learner named John, could be coded as follows:

interested(john, market).
interested(john, request_article).
capable (john, request_bitte).
capable(john, request_moechtehaette).

In this case, since John is capable of applying the knowledge element
k4:[request_moechtehaette], which is applicable in situation s4:[Request the bill],
the agent will believe that John is also capable of handling s4. In this way, the
agent will derive John’s learner model, which will be the answer sets of the logic
program that contains the basic beliefs of the agent as well as the belief
derivation rules.

A Logic Approach to Supporting Collaboration in Learning Environments

240

5 Supporting collaboration

As mentioned above, collaboration is the key issue in CSCL environments.

The agents are going to support it by assuring the social and concept awareness
[4] of all the learners in the community, carrying out two main tasks:

a) Proposing the learner an appropriate set of tasks in order to help him/her
to establish a learning plan.

b) Assisting group configuration according to the interests and capabilities
of the members of the community.

5.1 Learning proposal

In this section, we explain briefly how the agent can propose the learner the tasks
that it considers appropriate for him/her, so that the learner can maintain his/her
own learning plan. We are going to do it based on the proposal of Ayala and
Yano [6], which is inspired on the theory of social learning [32] and consists on
the creation of zones of proximal development. A more detailed description of
this approach and of our formalization of it are available in [6, 23]. We will call
the rules presented in this section Learning Proposal Rules.

5.1.1 Knowledge frontier (KF)
We define the Knowledge Frontier of a learner as the set of knowledge elements
that the agent does not believe to be in the learner’s capabilities, and which are
related via genetic relation to those knowledge elements that the agent believes
that he/she is already capable of applying. Under ASP, we can define the
knowledge frontier through the following rule:

memberOfKF(Learner, KnowElem2) ←
geneticRelation (KnowElem1, KnowElem2),
capable(Learner, KnowElem1) ,
not capable(Learner, KnowElem2)

5.1.2 Zone of proximal development (ZPD)
The ZPD is the set of knowledge elements that are in the learners KF and that
have already been internalized by other mebers of the community. They are the
knowledge elements that are believed to have the best opportunities of being
internalized by collaborating in the community. We can derive the learner’s ZPD
in ASP with the following rule:

memeberOfZPD(KnowElem) ←

memberOfKF(Learner, KnowElem),
capable(Learner1, KnowElem),
Learner1 ≠ Learner

M. Magdalena Ortiz de la Fuente

241

5.1.3 Learning Proposal (LP)
The LP will be the set of tasks where the knowledge elements in the learner’s
ZPD are applied and that are related to the learners’ interests. These are the tasks
that the agent will propose to the learner. This can be expressed in ASP through
the following rule:

memberOfLP(Learner, Task) ←
memberOfZPD(Learner, KnowElem),
applicable(KnowElem, Situation),
associated(Situation, Task),
interested(Learner, Task)

5.1.4 Establishment of a learning plan

We will call P the logic program which contains the learner model (basic
beliefs and belief derivation rules) as well as the learning proposal rules. The
semantics of P under ASP are a set of stable models (answer sets). We will refer
to this set as S(P)={s1(P), s2(P), …, sn(P)}. All the answer sets s1(P), s2(P), …
give us valid learning proposals for the learner, which the agent will propose to
him/her. In the presence of multiple models, we can sort the possible proposals in
meta-language. Further considerations about this issue were presented in [23].
For the time being, we present only one simple criteria that allows us to select
those tasks that the agent believes are more likely to be appropriate for the leaner
when we have multiple learning proposals,

For this purpose, we define the first choice and second choice of LP. During
the interaction with the learner, the agent proposes those tasks that are part of the
learning proposal in every answer set (cautious entailment [16]) as a first choice
for the students learning plan. In case that the learner request more tasks, or does
not accept the firsts one proposed, the agent proposes the second choice, which
includes those tasks that are part of the learning proposal in only some of the
answer sets (brave entailment [16]).

5.2 Group proposal

Assisting the configuration of groups is the next relevant task for the agent. All
the groups are formed for an specific task on which the group members will work
together. To define a group, we need the following conditions:

1. There must be more than one member.
2. The task must be a part of the learning plan of all members

With this two conditions, we can make a task group. However, it would also be
desirable to fulfill some additional conditions:

3. All the learners in the community should have a group.
4. Every member can make an effective contribution in the task (apply a

knowledge element of which he/she is already capable).

A Logic Approach to Supporting Collaboration in Learning Environments

242

5. For every situation in the task, there is a member of the group that is
capable of applying a suitable knowledge element.

Conditions 1 and 2 can be expressed in ASP through the following rule:

groupProposal(Learner,Task) ←
 memberOfLp(Learner,Task),
 memberOfLp(Learner1,Task),
 Learner ≠ Learner1

However, it would be good if conditions 3, 4 and 5 could also be satisfied.
This can be easily solved using an extension of Disjunctive Datalog enhanced
with weak constraints [12, 13]. The traditional (integrity) constraints :-α must
always be satisfied (α must be false). Weak constraints, on the other side, are
only satisfied if possible. They are usually written :~α and the semantics of
programs with this type of constraints give the best models of a program, i.e., the
answer sets where the true instances of α are minimized. Weak constraints are a
very useful extension for representing common sense reasoning. They allow us to
enhance our model by rules similar to the following one:
:~ groupProposal (Learner, Task), not capableOfAssociatedSituation(Learner, Task).

 capableOfAssociatedSituation(Learner, Task) ←

associated(Situation, Task),capable(Learner, Situation).

In the full model more of these constraints are given. They are implemented
using different priority levels and weight, an useful feature of DLV.

6 Conclusions

Applying and implementing the theoretical results obtained has always been a

challenge for the Logic Programming community. Here we have tried to do it in
a different type of application. ASP turned out to be well suitable, since it allows
easy and natural modeling, and model behaves as expected. Collaborative
learning is a suitable field for applications of disjunctive programming, since it
deals naturally with changing beliefs and incomplete information. Some
examples have already been implemented in DLV with satisfactory results.

We are currently working on dynamic issues of the model using well known
semantics for updating knowledge bases under the ASP framework, like
Dynamic Logic Programming [2, 3] and Update Programs [14, 15]. There are
still many research projects in the framework of ASP that can lead to interesting
extensions of the model [1, 8, 11, 27].

Aknowledgements: This project was partially supported by CONACYT, Mexico. Projects: 37837-
A and W8056.

M. Magdalena Ortiz de la Fuente

243

References

[1] Acosta, J. C., Arrazola, J. and Osorio M.. Making belief revision with LUPS. In Juan

Humberto Sossa Azuela and Gustavo Arroyo Figueroa, editors, XI International Conference
on Computing, PO Box 75-476 Col. Nueva Industrial Vallejo 07738, México, D.F., November
2002. CICIPN.

[2] Alferes, J. J.; Pereira, L. M.; Przymusinska, H. and Przymusinski, T. C. LUPS - a language for
updating logic programs. Artificial Intelligence 138(1-2), 2002.

[3] Alferes J. J.; Leite J. A.; Pereira L. M.; Przymusinska H., and Przymusinski, T. Dynamic logic
programming. In A. Cohn and L. Schubert, editors, KR'98. Morgan Kaufmann, 1998.
http://citeseer.nj.nec.com/article/alferes98dynamic.html

[4] Ayala, G. Towards Lifelong Learning Environments: agents supporting the collaborative
construction of knowledge in virtual communities, Computer Support for Collaborative
Learning CSCL2003, Bergen, Norway, June (aceptado).

[5] Ayala, G. Intelligent Agents Supporting the Social Construction of Knowledge in a Lifelong
Learning Enviroment, Proceedings of the International Workshop on New Technologies for
Collaborative Learning NTCL 2000, November, Hyogo, Japan, 79-88, 2000.

[6] Ayala, G. and Yano, Y. Learner Models for Supporting Awareness and Collaboration in a
CSCL Environment. Intelligent Tutoring Systems, Claude Frasson, Gilles Gauthier and Alan
Lesgold (Eds.), Lecture Notes in Computer Science 1086, Springer Verlag 1996, pp: 158-167.

[7] Baral, C. and Gelfond, M. Logic Programming and Knowledge Representation. Journal of
Logic Programming 19, 20: 1994. pp. 73-148.

[8] Brewka, G. and Eiter, T. Preferred answer sets for extended logic programs. Artificial
Intelligence, 109(1-2):297-356, 1999.

[9] Brna, P. Logic Programming in Education: a Perspective on the State of the Art. 1994.
http://citeseer.nj.nec.com/brna94logic.html

[10] Brown, J. S., Collins, A. and Duguid, P. Situated cognition and the culture of learning.
Education Researcher 18 (1) 32 - 42. 1989.

[11] Buccafurri, F.; Faber, W. and Leone, N. Disjunctive logic programs with inheritance. In D.
De Schreye, editor, ICLP'99. MIT Press, 1999.
http://citeseer.nj.nec.com/buccafurri99disjunctive.html

[12] Buccafurri, F.; Leone, N. and Rullo, P. Adding Weak Constraints to Disjunctive Datalog. In
Proceedings of the 1997 Joint Conference on Declarative Programming APPIA-GULP-
PRODE'97, Grado, Italy, June 1997.

[13] Dix, J. Semantics of Logic Programs: Their Intuitions and Formal Properties. An Overview. In
Andre Fuhrmann and Hans Rott, editors, Logic, Action and Information -- Essays on Logic in
Philosophy and Artificial Intelligence, pages 241--327. DeGruyter, 1995

[14] Eiter, T.; Fink, M.; Sabbatini, G. and Tompits, H. On Updates of Logic Programs: Semantics
and Properties, 2002

[15] Eiter, T.; Fink, M.; Sabbatini, G. and Tompits, Hans. An Update Front-End for Extended
Logic Programs. Logic Programming and Non.Monotonic Reasoning. LPNMR 2001: 397-401

[16] Gelfond, M. Representing Knowledge in A-Prolog, volume 2408 of Computational Logic:
Logic Programming and Beyond, Essays in Honour of Robert A. Kowalski, Part II, pages 413-
451. Springer-Verlag, Berlin, 2002.

[17] Gelfond, M. and Lifschitz, V.. The stable model semantics for logic programming. In R.
Kowalski and K. Bowen, editors, Logic Programming: Proc. of the Fifth Int'l Conf. and
Symp., pages 1070-1080, 1988.

[18] Gelfond, M. and Lifschitz, V., Classical Negation in Logic Programs and Disjunctive
Databases, New Generation Computing 9(3,4):365--385 (1991).
http://citeseer.nj.nec.com/gelfond91classical.html

[19] Goldstein, I. P. The genetic graph: A representation for the evolution of procedural
knowledge. International Journal of Man-Machine Studies, 11, pp. 51-77. 1979.

[20] Leone, N.; Pfeifer, G.; Faber, W.; Calimeri, F.; Dell'Armi, T.; Eiter, T.; Gottlob, G.; Ianni, G.;
Ielpa, G.; Koch, C.; Perri, S. and Polleres, A. The DLV System. In Giovambattista Ianni and
Sergio Flesca, editors, Proceedings of the 8th European Conference on Artificial Intelligence
(JELIA), number 2424 in Lecture Notes in Computer Science, September 2002.

A Logic Approach to Supporting Collaboration in Learning Environments

244

[21] Lifschitz, V. Foundations of logic programming. in Principles of Knowledge Representation,
CSLI Publications, 1996, pp. 69-127.

[22] Marek, W. and Truszczynski, M. Stable models and an alternative logic programming
paradigm. In The Logic Programming Paradigm: a 25-Year Perspective, pages 375-398.
Springer-Verlag, 1999. http://citeseer.nj.nec.com/article/marek99stable.html

[23] Ortiz M., Ayala G. and Osorio M. Formalizing the Learner model for CSCL Enviroments,
Fourth Mexican International Conference in Computer Science. (ENC' 03) Tlaxcala, Mexico,
September 2003 (accepted).

[24] Osorio, M.; Navarro, J. A. ; Arrazola, J. Applications of Intuitionistic Logic in Answer Set
Programming. Journal of Theory and Practice of Logic Programming (Accepted in 2003).

[25] Osorio, M. Navarro, J. A., Arrazola J. A logical approach to A-Prolog . Electronic notes in
theoretical computer science, 67. Elsevier Science. 2002.
http://www.elsevier.nl/locate/entcs/volume67.html

[26] Paredes, R. G. and Ayala, G. An user model server for the personalization of digital services
and collections, proceedings of the XII Congreso Internacional de Ingeniería Electrónica,
Comunicaciones y Computadoras, IEEE Puebla y UDLA, Acapulco, Mexico, pp.84- 88. 2002

[27] Pearce, D., Sarsakov V., Schaub, T.; Tompits, H. and Woltran, S.: A Polynomial Translation
of Logic Programs with Nested Expressions into Disjunctive Logic Programs: Preliminary
Report. ICLP 2002: 405-420

[28] Pearce, D. From Here to There: Stable Negation in Logic Programming. In D. Gabbay and H.
Wansing, editors, What is Negation? Kluwer, 1999.

[29] Przymusinski, T. On the declarative semantics of deductive databases and logic programs. In
J. Minker, editor, Foundations of Deductive Databases and Logic Programming, pages 193-
216. Morgan Kaufmann, San Mateo, CA., 1988.

[30] Self, J. The role of learner models in learning environments. Transactions of the Institute of
Electronics, Information and Communication Engineers, E77-D(1), 1994. pp.
http://citeseer.nj.nec.com/self94role.html

[31] Van Gelder, A.; Ross, K. and Schlipf, J. The well-founded semantics for general logic
programs. Journal of ACM, 38(3):620-650, 1991.

[32] Vygotsky, L. Mind in Society: The development of higher psychological processes. M.Cole,
V. John-Steiner, S. Scribner & E. Souberman, Eds. Cambridge MA: Harvard University
Press. 1978

LTL Hierarchies and Model Checking

Radek Pelánek
Department of Computer Science, Faculty of Informatics

Masaryk University Brno, Czech Republic

xpelanek@fi.muni.cz

Abstract. We propose a new hierarchy of LTL formulas based on alternations
of Until and Release operators and show that it is more relevant to model checking
then previously studied hierarchies. Moreover, we study practically used formulas
and conclude that in most cases it is possible to use specialized algorithms which
are more efficient then general algorithm for LTL model checking.

1 Introduction

Linear Temporal Logic (LTL) is a popular formalism used in formal verifica-
tion, particularly in model checking. Despite the high theoretical complexity
bound, LTL model checking is well-known to be PSPACE-complete, LTL is
successfully used in practice.

This contrast led Demri and Schonoebelen [6] to ask: ”What makes
LTL model checking feasible in practice?”. They tried to answer this ques-
tion by the study of natural hierarchies of LTL formulas and complexity of
model checking of their restricted classes. Unfortunately, they found that
the PSPACE lower bound hold even for classes at the bottom of the hierar-
chies.

Notwithstanding this negative result, LTL hierarchies are a very active
research area [27, 15, 25, 11, 21]. However, the recent works address mainly
expressivity problems. In this work we overview most hierarchies studied in
the literature with the following question in mind: ”Have these hierarchies
any relation to model checking?” We find out that most of the previously
studied hierarchies do not have much connection to model checking.

Our main contribution is the introduction of a new hierarchy of LTL
formulas based on the alternation depth of Until and Release operators. We
provide the relation of this hierarchy with previously studied safety-progress
hierarchy [22, 4] and show that it is possible to use more efficient algorithms
for verification of formulas from lower classes of the Until/Release hierarchy.

Proceedings of the Eighth ESSLLI Student Session
Balder ten Cate (editor)
Chapter 23, Copyright c© 2003, Radek Pelánek

245

Thus we claim that this hierarchy is more relevant to model checking than
the previously studied hierarchies.

Finally, we study practically used formulas from ”Specification Patterns
System” [7]. We find out that many practically used formulas lie in the
lower classes of the Until/Release hierarchy.

Due to the space limitations we do not go into technical details and
provide only general overview of our research.

2 Preliminaries

Linear Temporal Logic. The set of LTL formulas is defined inductively start-
ing from a countable set AP of atomic propositions, Boolean operators, and
the temporal operators X (Next) and U (Until):

Ψ := a | ¬Ψ | Ψ ∨ Ψ | Ψ ∧ Ψ | XΨ | Ψ UΨ

LTL formulas are interpreted in the standard way [9] on infinite words over
the alphabet 2AP . We adopt standard abbreviations R, F, G for temporal op-
erators Release (α Rβ ≡ ¬(¬α U¬β)), Future (Fα ≡ trueUα), and Globally
(Gα ≡ false Rα) respectively.
Automata. A Büchi automaton is a tuple A = 〈Σ, Q, q0, δ, F 〉, where Σ
is a finite alphabet, Q is a finite set of states, q0 ∈ Q is an initial state,
δ : Q×Σ → 2Q is a nondeterministic transition function, and F ⊆ Q is a set
of accepting states. We differentiate general, weak, and terminal automata
according to the following restrictions posed on their transition functions:

- general : none restriction

- weak : there exists a partition of the set Q into components Qi and an
ordering ≤ on these sets, such that for each q ∈ Qi, p ∈ Qj, if ∃a ∈
Σ : q ∈ δ(p, a) then Qi ≤ Qj. Moreover for each Qi, Qi ∩ F = ∅ or
Qi ⊆ F .

- terminal : for each q ∈ F, a ∈ Σ it holds δ(q, a)
= ∅ and δ(q, a) ⊆ F .

Terminal and weak automata are jointly called specialized automata.
Model Checking. The LTL model checking problem is to decide for a given
system S and an LTL formula ϕ whether S |= ϕ, i.e. whether each run of
S satisfy ϕ. The standard approach to LTL model checking is to construct
an automaton A¬ϕ which accepts exactly words which are not models of ϕ
and then test the product automaton S ×A¬ϕ for non-emptiness.

3 LTL Hierarchies

The most classical classes of LTL formulas are obtained by restricting the
use of temporal operators. Following the usual notation ([9, 24]) we let

246

LTL
���

� ���
��

PSPACE-complete

L(U)
���

�
L(F, X)

���
�� ���

�� �������������������������������

�������������������������������
L(F)

���
���

L(X)

���
���

coNP-complete

L() LOGSPACE

Figure 1: Inclusions which relate basic classes of LTL formulas into a hier-
archy and complexity of their model checking.

L(H1,H2, . . .) denote the class of LTL for which only the temporal operators
H1,H2, . . . are allowed. In this way we obtain six basic classes (see Fig. 1)
– the classes obtained by combinations of other operators (such as R, G)
coincide with one of these classes. Unfortunately, the complexity of model
checking problem is very high even for restricted classes of the logic [24].

Practically important is the class L(U). This class is closed under stut-
tering (i.e. it is insensitive to the number of successive occurrences of a letter
in a word). Stutter-invariance enables to use efficient state space reduction
techniques such as the partial order reduction or transition compression [17].

The hierarchy in Fig. 1 can be made more finer by constraining the
maximum nesting depth of one or more operators. For example, we use
the notation L(U2, X) to denote the class of LTL with the use of modality
U restricted to maximum nesting depth 2 and with the unrestricted use of
modality X. Researchers have studied several hierarchies based on the notion
of the nesting depth, mainly L(X, F, Um), L(X, Um), L(Xn, U), L(Xn, Um) [15,
11].

The work concerning these hierarchies is interested mainly with expres-
sivity results: the strictness of hierarchies, characterization of languages in
particular classes, decidability of membership in a given class, and connec-
tions to other formalisms (automata, semigroups, first order logic). The
relations with model checking are sparse. Demri and Schnoebelen [6] have
shown that the model checking problem is PSPACE-complete even for very
restricted class such as L(U2).

LTL can be extended with past operators like Since and Previous. The
use of past operators do not add expressive power – classes that use past
operators coincide with some of the pure-future classes. The advantage of
using past operators is that the formulas can be exponentially more succinct
than their pure-future counterparts [20] while the complexity of the model
checking remains the same [23].

Another class is the consequence of a dispute concerning relative merits

247

of linear and branching time logics (Vardi [26] gives a good overview). This
dispute led to the study of relations among these logics [16] and to the search
for properties expressible in both linear and branching time formalisms.
The important class of this type is is the LTLdet class [21] – properties
expressible in both LTL and ACTL. Model checking for this class can be
solved in polynomial time.

Several other (more exotic) classes have been proposed. Dams suggested
class based on a flat Until [5] – flat Until ϕ1Ufϕ2 allows only propositional
formula to appear in ϕ1. However, the complexity of model checking re-
mains the same for the flat class [6]. Another classes are for example these
restricting the use of future operators in the scope of past operators [25, 23],
or the number of atomic proposition [6]. None of these classes enable more
efficient model checking.

Finally, we mention the membership problem. The problem is to decide,
whether for a given formula ϕ and an LTL class C there is a formula ϕ′ such
that ϕ ≡ ϕ′ and ϕ′ ∈ C. This problem is known to be decidable for most
classes [27, 11, 15], but the complexity of the problem is usually very high
(typically PSPACE-complete).

4 Until/Release Alternating Hierarchy

In this section we propose a new hierarchy of LTL formulas. This hierarchy
is based on the alternation rather than the nesting of operators. We show
the connection of the new hierarchy with previously studied safety-progress
hierarchy and with model checking. Due to the space restrictions we state
only main results without proofs.

Let us define hierarchies ΣLTL
i and ΠLTL

i which reflect alternations of
Until and Release operators in formulas. We use the Σ/Π notation since the
way the hierarchy is defined strongly resembles the quantifier alternation
hierarchy of first-order logic formulas or fixpoints alternation hierarchy of
µ-calculus formulas [10].

Definition 1

The class ΣLTL
0 = ΠLTL

0 is the least set containing all atomic propositions
and closed under the application of boolean and Next operators.

The class ΣLTL
i+1 is the least set containing ΠLTL

i and closed under the ap-
plication of conjunction, disjunction, Next and Until operators.

The class ΠLTL
i+1 is the least set containing ΣLTL

i and closed under the ap-
plication of conjunction, disjunction, Next and Release operators.

The class BLTLi is the boolean closure of ΣLTL
i and ΠLTL

i ,

248

Reactivity
BLTL2

���
���

���
���

General aut.

Recurrence
ΠLTL

2

���
���

Persistence
ΣLTL

2

���
���

Weak aut.

Obligation
BLTL1

���
���

���
���

��

�
	

�
�

�
�
�
�
� � � � � � � � � � � � � � � � � � ! "

Safety
ΠLTL

1

Guarantee
ΣLTL

1
Terminal aut.

#
�
$ � � % � & � ' � � � (

� � �) � � � � * � � � � +

Figure 2: Safety-progress hierarchy, Until/Release hierarchy, and the corre-
sponding types of Büchi automata

It shows up that our new hierarchy strongly relates to the safety-progress
hierarchy defined by Manna and Pnueli [22, 4]. This is a classification of
properties into a hierarchy consisting of six classes: guarantee, safety, obli-
gation, persistence, recurrence, and reactivity. Inclusions, which relate the
classes into a hierarchy, are depicted in Fig. 2. This hierarchy extends the
safety-liveness characterization of ω-languages [18] and the Landweber hier-
archy [19]. The classes of the hierarchy can be characterized through four
views: a language-theoretic view, a topological view, a temporal logic view,
and an automata view [22]. The fact that the hierarchy can be defined in
many different ways shows the robustness of this hierarchy. Chang, Manna,
and Pnueli have shown that the safety-progress hierarchy can be exploited
for more efficient theorem proving [4]. We show that it can be used for
better model checking as well.

The safety-progress hierarchy is practically orthogonal to the hierar-
chy from Fig. 1. The only remarkable relation to classes mentioned in the
previous section is that LTLdet ⊆ Recurrence. The relation with the Un-
til/Release hierarchy is given by the following theorem:

Theorem 1 A language that is specifiable by LTL is a guarantee (safety,
obligation, persistence, recurrence, reactivity respectively) language if and
only if it is specifiable by a formula from the class ΣLTL

1 (ΠLTL
1 ,BLTL1 ,

ΣLTL
2 ,ΠLTL

2 ,BLTL2 respectively) (see Fig. 2).

Proof. [Sketch] The proof is based on the syntactic characterization of safety-
progress classes by Chang, Manna, and Pnueli [4]. Using syntactic identi-

249

ties we are able to transform their characterization into the corresponding
ΣLTL/ΠLTL characterization.

As a consequence of the relation with safety-progress hierarchy we ob-
tain the following, quite surprising fact (note that the previously mentioned
hierarchies of first-order and µ-calculus formulas are infinite):

Theorem 2 Both ΣLTL
i and ΠLTL

i hierarchies semantically collapse – every
LTL specifiable formula is specifiable by a BLTL2 formula.

The complexity of model checking is still PSPACE-complete even for
lower classes of the hierarchy. Nevertheless, it is possible to employ this
hierarchy for model checking. Formulas from lower classes of the hierarchy
can be translated into specialized automata and the non-emptiness check
for the product automaton can be performed more efficiently.

Theorem 3 For every ΣLTL
1 (ΣLTL

2) formula ϕ one can construct a termi-
nal (weak) automaton accepting the language defined by ϕ.

Proof. [Sketch] The basic idea of the construction is the same as for classical
algorithm for transformation of LTL formula into automaton [13]. States
of the automaton are sets of subformulas of the formula ϕ. The transition
function is constructed in such a way that the following invariant is valid: if
the automaton is in a state S then the remaining suffix of the word should
satisfy all formulas in S. The main difference is in the way the acceptance
condition is defined. For ΣLTL

1 and ΣLTL
2 formulas the acceptance condition

can be simplified thanks to the special structure of alternation of Until and
Release operators in the formula.

The non-emptiness of general automata is usually checked by nested
depth-first search with explicit representation of the state space [14] or by
nested fixpoint computation with quadratic number of symbolic steps with
symbolic representation [12]. The non-emptiness of weak automata can be
solved by single depth-first search [8] or by simple fixpoint computation
with linear number of steps [2] respectively. The non-emptiness of terminal
automata can be solved by classical reachability.

With the symbolic representation there is even asymptotic difference be-
tween the non-emptiness algorithms for general and specialized automata.
All explicit algorithms have the same complexity, but the use of special-
ized algorithms still brings several benefits. Time and space optimiza-
tion, “Guided search” heuristics [8], and the partial order reduction [14]
can be employed more directly for specialized algorithms. Algorithms for
specialized automata can be performed in distributed environment more
easily [3]. Many of these benefits have been already demonstrated experi-
mentally [2, 8, 3].

250

Since for ΣLTL
1 and ΣLTL

2 formulas we can use more efficient algorithms
then for general formulas, the membership problem for these classes is of par-
ticular interest. This problem is decidable. Unfortunately, as for previously
considered classes, the complexity of the problem is very high (the direct
decision procedure goes via deterministic Streett automata and is doubly
exponential). However, as we will see in the next section, practically used
formulas are very short (thus it is feasible to perform expensive algorithms
for them) and many of them even lie in ΣLTL

1 and ΣLTL
2 classes.

5 Practically Used Formulas

In order to find in which LTL classes practically used formulas lie, we have
studied properties from the ”Specification Patterns System” [7]. This system
is a collection of the most often used model checking properties. The system
provides properties in several different formalisms, LTL being one of them,
together with their frequency (i.e. how often they are used) of each of them.
We have observed following characteristics of these properties:

• The next operator is not used in these patterns, i.e. practically used
properties are stutter-invariant.

• The most often used formulas are very short (three or less temporal
operators).

• The nesting depth of until operator is in most cases one or two. The
nesting depth is greater than three only in very rare cases.

• Most properties are either from safety class (41%) or from recurrence
class (54%). This means that in most cases the resulting automaton
is specialized1.

The last observation is supported by Kupferman and Vardi [16] who
claim that: ”... most of the LTL formulas ψ used in practice are such that
A¬ψ is a 1-weak automaton” (1-weak automata are strict subclass of weak
automata).

6 Conclusions and Future Work

The worst case complexity is not much useful with respect to the practi-
cal model checking. In practice, the computational complexity caused by
LTL formula is ”shadowed” by the size of a verified system. Thus it is im-
portant to use algorithms efficient with respect to a system. We conclude

1Please remember that in the verification process the negation of the formula is trans-
lated into an automaton. Therefore recurrence and safety formulas are translated into
weak and terminal automata respectively.

251

that important classes of LTL are these which enable the use of such effi-
cient algorithms — stutter-invariant class L(U), which enable partial order
reduction, and newly identified classes ΣLTL

1 (safety properties) and ΣLTL
2

(recurrence properties), which enable the use of specialized algorithms for
non-emptiness check.

Our intended future works is to try to find out some new connections
among other hierarchies and model checking. Particularly, we would like to
study the connections with bounded model checking [1].

Acknowledgment

I thank Ivana Černá, my supervisor, for many valuable discussions and Jan
Strejček for reading a draft of the paper.
The work on this paper has been partially supported by GA ČR grant
number 201/03/0509.

References

[1] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic model checking with-
out BDDs. In W. R. Cleaveland, editor, Proc. Tools and Algorithms for the
Construction and Analysis of Systems, volume 1579 of LNCS, pages 193–207.
Springer, 1999.

[2] R. Bloem, K. Ravi, and F. Somenzi. Efficient decision procedures for model
checking of linear time logic properties. In Proc. Computer Aided Verification,
volume 1633 of LNCS, pages 222–235. Springer, 1999.

[3] I. Černá and R. Pelánek. Distributed explicit fair cycle detection. In Proc.
SPIN workshop, number 2648 in LNCS. Springer, 2003.

[4] E. Y. Chang, Z. Manna, and A. Pnueli. Characterization of temporal property
classes. In Proc. Automata, Languages and Programming, volume 623 of LNCS,
pages 474–486. Springer, 1992.

[5] D.R. Dams. Flat fragments of CTL and CTL∗: Separating the expressive and
distinguishing powers. Logic Journal of the IGPL, 7(1):55–78, 1999.

[6] S. Demri and Ph. Schnoebelen. The complexity of propositional linear tem-
poral logics in simple cases (extended abstract). In Proc. 15th Ann. Symp.
Theoretical Aspects of Computer Science, volume 1373, pages 61–72. Springer,
1998.

[7] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Property specification patterns
for finite-state verification. In Proc. Workshop on Formal Methods in Software
Practice, pages 7–15. ACM Press, 1998.

[8] S. Edelkamp, A. L. Lafuente, and S. Leue. Directed explicit model checking
with HSF-SPIN. In Proc. SPIN workshop, volume 2057 of LNCS, pages 57–79.
Springer, 2001.

252

[9] E. A. Emerson. Temporal and modal logic. In J. Van Leeuwen, editor, Hand-
book of Theoretical Computer Science: Volume B, Formal Models and Seman-
tics, pages 995–1072. North-Holland Publishing Company, 1990.

[10] E. A. Emerson and C. L. Lei. Efficient model checking in fragments of the
propositional mu-calculus. In Proc. IEEE Symposium on Logic in Comuter
Science, pages 267 – 278. Computer Society Press, 1986.

[11] K. Etessami and T. Wilke. An Until hierarchy for temporal logic. In Proc.
IEEE Symposium on Logic in Computer Science, pages 108–117. Computer
Society Press, 1996.

[12] K. Fisler, R. Fraer, G. Kamhi Y. Vardi, and Z. Yang. Is there a best symbolic
cycle-detection algorithm? In Proc. Tools and Algorithms for Construction and
Analysis of Systems, volume 2031 of LNCS, pages 420–434. Springer, 2001.

[13] R. Gerth, D. Peled, M. Y. Vardi, and P. Wolper. Simple on-the-fly automatic
verification of linear temporal logic. In Proc. Protocol Specification Testing
and Verification, pages 3–18. Chapman & Hall, 1995.

[14] G. J. Holzmann, D. Peled, and M. Yannakakis. On nested depth first search.
In Proc. SPIN Workshop, pages 23–32. American Mathematical Society, 1996.

[15] A. Kučera and J. Strejček. The stuttering principle revisited: On the expres-
siveness of nested X and U operators in the logic LTL. In Proc. Computer
Science Logic, volume 2471 of LNCS, pages 276–291. Springer, 2002.

[16] O. Kupferman and M. Y. Vardi. Relating linear and branching model checking.
In Proc. Programming Concepts and Method, pages 304–326. Chapman & Hall,
1998.

[17] R. P. Kurshan, V. Levin, and H. Yenigun. Compressing transitions for model
checking. In Computer Aided Verification (CAV’02), volume 2404 of LNCS,
pages 569–581, 2002.

[18] L. Lamport. Proving correctness of multiprocess programs. IEEE Transactions
Software Engineering, (3):125–143, 1977.

[19] L. H. Landweber. Decision problems for omega-automata. Mathematical Sys-
tems Theory, 3(4):376–384, 1969.

[20] F. Laroussinie, N. Markey, and Ph. Schnoebelen. Temporal logic with for-
gettable past. In Proc. Logic in Computer Science (LICS). IEEE Computer
Society, 2002.

[21] M. Maidl. The common fragment of CTL and LTL. In Proc. 41th Annual
Symposium on Foundations of Computer Science, pages 643–652, 2000.

[22] Z. Manna and A. Pnueli. A hierarchy of temporal properties. In Proc. ACM
Symposium on Principles of Distributed Computing, pages 377–410. ACM
Press, 1990.

[23] N. Markey. Past is for free: on the complexity of verifying linear temporal
properties with past. In Proc. EXPRESS, volume 68. Elsevier, 2002.

[24] A. P. Sistla and E. M. Clarke. The complexity of propositional linear temporal
logics. Journal of the ACM (JACM), 32(3):733–749, 1985.

253

[25] D. Therien and T. Wilke. Nesting Until and Since in linear temporal logic. In
Proc. Symposium on Theoretical Aspects of Computer Science, volume 2285 of
LNCS, pages 455–464. Springer, 2002.

[26] M. Y. Vardi. Branching vs. linear time: Final showdown. In Proc. Tools and
Algorithms for Construction and Analysis of Systems, volume 2031 of LNCS,
pages 1–22. Springer, 2001.

[27] T. Wilke. Classifying discrete temporal properties. In Symposium on Theoret-
ical Aspects of Computer Science, pages 32–46, 1999.

254

Model Checking Epistemic Properties of

Interpreted Systems

Franco Raimondi
Department of Computer Science - King’s College

Strand, London WC2R 2LS

franco@dcs.kcl.ac.uk

Abstract. Multi-agent systems are often taken as a paradigm in the specification
of complex systems because of their ability to abstract away from implementation
details. Different kinds of modal logics have been used to model agents’ knowl-
edge/beliefs/desires and their evolution with time. In this paper we investigate
how model checking techniques can be applied to some problems of verification in
multi-agent systems. We present results achieved in the verification of static epis-
temic properties of two examples encoded in the formalism of Interpreted Systems:
the bit transmission problem and the protocol of the dining cryptographers.

1 Introduction
Rational agents in computer science [28] can be seen as the abstraction
of any piece of hardware or software enjoying autonomy, social ability, re-
activity, and pro-activity. The use of multi-agent systems (MAS) in the
design of complex systems, where implementations details are unnecessary
or unknown [17], has been proven an appealing and successful paradigm: ex-
amples include information retrieval using software agents, online auctions,
protocols for communication, etc.

In the past twenty years, various logical theories have been developed to
formalise knowledge, beliefs, desires, intentions and other intentional atti-
tudes (in the sense of [9]) of MAS. Such logics include Cohen and Levesque’s
theory of intention [8], Rao and Georgeff BDI architecture [21], Wooldridge’s
Logic for Rational Agents (LORA, [26]), and Interpreted Systems by Fagin,
Halpern, Moses and Vardi [10].

Comparatively, less effort has been put in the verification of MAS. As
suggested in [11], model checking techniques can be applied in the verifica-
tion of MAS. Various results along these lines have been achieved recently
by Benerecetti, Wooldrige, Bordini, van der Meyden and others [1, 14, 23,
27, 2, 22, 13, 19]. In this paper we employ Interpreted Systems [10] to spec-
ify MAS because they provide a computationally grounded theory of agency.

Proceedings of the Eighth ESSLLI Student Session
Balder ten Cate (editor)
Chapter 24, Copyright c© 2003, Franco Raimondi

255

Model Checking Epistemic Properties of Interpreted Systems

The notion of computationally grounded theory of agency was introduced by
M. Wooldridge in [25] to denote a theory that can be interpreted in terms
of some concrete computational model.

By means of two well-known examples from the AI arena (the bit trans-
mission problem [10] and the protocol of the dining cryptographers [5]), we
present different methodologies that can be employed in the verification of
epistemic, temporal and deontic operators in Interpreted Systems.

The rest of the paper is organised as follows: in the next section we in-
troduce the formalism of Interpreted Systems and model checking. Section 3
presents the main results in model checking “static” formulae. We conclude
in Section 4 by suggesting future development and by comparing our work
to the state of the art in this field.

2 Preliminaries
Due to space considerations, we refer to [10, 15] for details on Interpreted
Systems extended with deontic operators. Model checking is explored fully
in [7].

2.1 Interpreted Systems

Consider n agents in a system and n non-empty sets L1, . . . , Ln of local
states, one for every agent of the system. Elements of Li will be denoted by
l1, l

′
1, l2, l

′
2, For every agent of the system there is a set Acti of actions

that the agent can perform. Actions are not executed randomly, but follow-
ing particular specifications called protocols. A protocol Pi for agent i is a
function from the set Li of local states to a non-empty set of actions Acti

Pi : Li → 2Acti .

A system of global states for n agents S is a non-empty subset of the cartesian
product L1 × . . .×Ln. A global state g of a system S is a tuple of the form
g = (l1, . . . , ln). li(g) denotes the local state of agent i in global state g.

The evolution of the system can be modelled by means of a transition
function π from global states and joint actions to global states:

π : S × Act → S

where Act = Act1 × . . . × Actn is the set of joint actions for the system.
This defines temporal flows on the set of global states. A run r is a function
from time to global states: r : N → S. Hence, a run is a sequence of
global states obtained by applying the function π to global states and joint
actions. Notice that, in the definition of π, all the local states are updated
synchronously at each temporal step.

Given a set of propositional variables P , an Interpreted System of global
states is a pair IS = (S, h) where S is a system of global states and

256

Franco Raimondi

h : S → 2P is an interpretation function; intuitively, h returns the proposi-
tional variables true in a global state. Interpreted systems can then be used
to model time and knowledge. The logic CTLK (Computation Tree Logic
of Knowledge [13]) is an extensions of CTL to include epistemic operators.
For instance, epistemic modalities Ki (one for each agent) are interpreted
as follows:

(IS , g) |= Ki ϕ if for all g′ li(g) = li(g′)
implies (IS , g′) |= ϕ.

(intuitively, Ki ϕ captures the idea that agent i knows ϕ, i.e. ϕ holds in
every state that i considers possible).

The notion of interpreted systems can be extended to incorporate the
idea of correct functioning behaviour of some or all of the components [16].
Given n agents and n non-empty sets G1, . . . , Gn, a deontic system of global
states is any system of global states defined on L1 ⊇ G1, . . . , Ln ⊇ Gn. Gi

is called the set of green states for agent i. The complement of Gi with
respect to Li, denoted with Ri, is called the set of red states for agent i.
Deontic systems of global states are used to interpret other modalities on
top of CTLK, such as the following one:

(IS , g) |= Oi ϕ if for all g′ we have that li(g′) ∈ Gi implies
(IS , g′) |= ϕ.

Oi ϕ is used to represent that ϕ holds in all (global) states in which agent i
is functioning correctly. Another concept of particular interest is the knowl-
edge that an agent i has on the assumption that the system (the environment,
agent j, group of agents X) is functioning correctly. We employ the (dou-
bly relativised) modal operator K̂j

i for this notion, which is interpreted as
follows:

(IS , g) |= K̂j
i ϕ if for all g′ such that li(g) = li(g′) and

lj(g′) ∈ Gj we have that (IS , g′) |= ϕ.

The resulting logic for modalities Ki is S5n; this models agents with com-
plete introspection capabilities and veridical knowledge. Completeness re-
sults can be shown for the Oi as well (see [15]).

2.2 Model Checking and SMV

Given a program P and a property that can be represented as a logical
formula ϕ in some (temporal) logic, model checking techniques allow for
the automatic verification of whether or not a model MP , representing the
program P , satisfies the formula ϕ.

In the last two decades there have been great advances in the effective-
ness of this approach thanks to sophisticated data manipulation techniques.
Techniques based on Binary Decision Diagrams (BDDs, [3]) have been used

257

Model Checking Epistemic Properties of Interpreted Systems

to develop model checkers that are able to check large number of states [4].
Alternative approaches using automata have also been developed [24].

Software tools originated from these lines of research. SPIN (see [12])
exploits automata theory and related algorithms, while SMV [18] uses BDDs
to represent states and transitions. In this paper we will use NuSMV, a novel
implementation of SMV [6].

By means of these softwares a large number of systems ranging from
communication protocols to hardware components have been verified. These
are not agent systems, but standard distributed processes.

3 Static model checking of Interpreted Systems
In this section we present a methodology to check epistemic formulae ex-
pressing properties of an Interpreted System. We are interested in the ver-
ification of formulae involving epistemic modalities only, and we do not
consider temporal operators in the formulae we want to check. We call this
methodology static model checking.

Given an Interpreted System IS , it is possible to build an SMV program
PIS such that the set of states in the temporal model generated by PIS has
a one-to-one correspondence with global states of the Interpreted System.
The SMV program is constructed as follows1:

1. We declare a variable for each agent, where the values of local states
are stored.

2. We declare an array of actions for each agent. Intuitively, this array
contains the actions “enabled” in a local state, with respect to the
protocol for each agent.

3. Actions are synchronised with local states, for each agent and in each
state.

4. The conditions for the evolution of the SMV model are obtained from
the evolution function of the Interpreted System.

5. Propositions are defined using the function h of the Interpreted Sys-
tem.

The translation into SMV is manual when deontic operators have to be
checked, as in Section 3.1. In Section 3.2 the SMV code is generated au-
tomatically. In both cases, there is a one-to-one correspondence between
global states of the Interpreted System and SMV states.

NuSMV provides an operator to compute the set of “reachable states”;
this set is needed to build epistemic and deontic relations between states to
evaluate formulae involving epistemic and deontic operators. Specifically,
we have built a parser that takes the set of reachable states as input and
produces a model with epistemic and deontic relations in the format of
Akka, a Kripke model editor2. We chose to use Akka because the Kripke

1The methodology presented here is a revised version of the one in [14].
2http://turing.wins.uva.nl/∼lhendrik/

258

Franco Raimondi

Akka checkerInterpreted System NuSMV code Parser

Set of reachable states

Figure 1: The methodology for static model checking.

model can be provided via a simple text file. Moreover, Akka allows for
the verification of multiple modalities. Unfortunately, the representation of
states in Akka is not symbolic, but in most cases the set of reachable states
is orders of magnitude smaller than the full cartesian product of local states,
and reachable states are computed symbolically by NuSMV.

The overall methodology is summarised in Fig. 1. In our examples,
the translation into SMV code, the computation of reachable states with
NuSMV, and the parsing of NuSMV output required less than one second
on a 1GHz PC with 256MBytes of RAM.

3.1 Example: the bit transmission problem with faults

The bit-transmission problem [10] involves two agents, a sender S, and
a receiver R, communicating over a faulty communication channel. The
channel may drop messages but will not flip the value of a bit being sent.
S wants to communicate some information—the value of a bit for the sake
of the example—to R. One protocol for achieving this is as follows. S
immediately starts sending the bit to R, and continues to do so until it
receives an acknowledgement from R. R does nothing until it receives the
bit; from then on it sends acknowledgements of receipt to S. S stops sending
the bit to R when it receives an acknowledgement. Note that R will continue
sending acknowledgements even after S has received its acknowledgement.
Intuitively S will know for sure that the bit has been received by R when
it gets an acknowledgement from R. R, on the other hand, will never be
able to know whether its acknowledgement has been received since S does
not answer the acknowledgement. Using the methodology suggested we can
check mechanically that the protocol above guarantees that when sender
receives the acknowledgement it then knows (in the information-theoretic
sense defined in Section 2) that the receiver knows the value of the bit
(see [14]). We exemplify the methodology with a slightly more complicated
scenario: we assume that the receiver R may send acknowledgements even
when it is not supposed to. We define the following local states for S and
R: LS = GS = {0, 1, (0, ack), (1, ack)}, RS = ∅.

GR = {0, 1, ε}, RR = {(0, f), (1, f), (ε, f)}, LR = GR ∪ RR.

The local states for S represent the value of the bit S is attempting to
transmit (0 or 1), and whether or not S has received an acknowledgement
from R ((0, ack) or (1, ack)). For R, the local states 0 and 1 represent the

259

Model Checking Epistemic Properties of Interpreted Systems

value of the received bit; ε is a circumstance under which no bit has been
received yet; the last three faulty states correspond the fact that R sent a
“faulty” acknowledgement. The faulty line can be modelled using another
agent. We report here the protocol of the receiver as an example:

PR(ε) = λ,

PR(0) = PR(1) = sendack
PR((0, f)) = PR((1, f)) = PR((ε, f)) = {sendack , λ}

Due to space constraints we cannot report here the full definition of all the
parameters (actions, protocols and evolution function), but these can be
found in [14] and in the NuSMV code available online at
http://www.dcs.kcl.ac.uk/pg/franco/is/btpfaults2.smv.

After translating the Interpreted System into SMV language, we can
obtain the set of reachable states running NuSMV; then, with Akka, it is
possible to check that none of the epistemic formulae that were true for
the basic case (no faults) hold in this version of the protocol. However, a
particular form of knowledge still holds. Intuitively if S could make the
assumption of R’s correct functioning behaviour, then, upon receipt of an
acknowledgement, it would make sense for it to assume that R does know
the value of the bit; this is exactly the meaning of K̂R

S . And indeed, using
Akka we are able to check the validity of the following formulae in the model,
formalising the ideas expressed above3.

IS |= recack → K̂R
S (KR (bit = 0) ∨ KR (bit = 1))

IS |= recack ∧ (bit = 0) → K̂R
S KR (bit = 0)

3.2 Example: the protocol of the dining cryptographers

The methodology presented in the previous section can be improved: we
can specify an Interpreted System using XML and generate the SMV code
mechanically using a Java translator [19]. This improved methodology is
illustrated in Fig. 2. We did not include deontic operators in the Java
translator and in the XML specification, but nevertheless we have been able
to check a well-known example, the protocol of the dining cryptographers.
The general aim of the protocol is to allow an untraceable broadcasting
of messages in multi-agent systems, and is originally introduced with the
following example:

“Three cryptographers are sitting down to dinner at their favourite three-
star restaurant. Their waiter informs them that arrangements have been
made with the maitre d’hotel for the bill to be paid anonymously. One of
the cryptographers might be paying for the dinner, or it might have been
NSA (U.S. National Security Agency). The three cryptographers respect
each other’s right to make an anonymous payment, but they wonder if NSA

3The interpretation for the atoms can be found in [14].

260

Franco Raimondi

Specify interpreted system

Translate specification into NuSMV program

Model check epistemic formulae

Build an epistemic model

Use NuSMV to compute reachable states

XML editor

Parser

Akka

NuSMV

Software toolsProcedures

Java compiler

Figure 2: An improved methodology for static model checking.

is paying. They resolve their uncertainty fairly by carrying out the following
protocol: Each cryptographer flips an unbiased coin behind his menu, between
him and the cryptographer on his right, so that only the two of them can see
the outcome. Each cryptographer then states aloud whether the two coins he
can see – the one he flipped and the one his left-hand neighbour flipped – fell
on the same side or on different sides. If one of the cryptographers is the
payer, he states the opposite of what he sees. An odd number of differences
uttered at the table indicates that a cryptographer is paying; an even number
indicates that NSA is paying (assuming that the dinner was paid for only
once). Yet if a cryptographer is paying, neither of the other two learns
anything from the utterances about which cryptographer it is.”[5]

As with the example of the bit transmission problem, we can model the
protocol with Interpreted Systems. We introduce three agents Ci, i = 1, 2, 3,
to model the three cryptographers, and one agent E for the Environment.
By running the Java translator, NuSMV, and Akka, we can formally check
that the following propositions hold in the Interpreted System of the dining
cryptographers (details can be found in [19]):

IS |= odd → (¬paid1 → (KC1(paid2 ∨ paid3)
∧

¬KC1(paid2) ∧ ¬KC1(paid2))))

IS |= even → KC1(¬paid1 ∧ ¬paid2 ∧ ¬paid3)

These two formulae confirm the correctness of the statement: if the first
cryptographer did not pay for the dinner and there is an odd number of
differences in the utterances, then the first cryptographer knows that either
the second or the third cryptographer paid for the dinner; moreover, in
this case, the first cryptographer does not know which one of the remaining
cryptographers is the payer. Conversely, if the number of differences in the

261

Model Checking Epistemic Properties of Interpreted Systems

utterances is odd, then the first cryptographer knows that nobody paid for
the dinner.

4 Conclusions
In this paper we have presented results on model checking knowledge in
multi-agent systems with two examples. Though the methodology applies to
“static” formulae only, we think that these results are particularly interesting
because we have been able to model check knowledge in a system that has
a clear correspondence with computational states of agents, and is logically
complete.

We have explored the issue of verification in MAS. Recently, different
works have tackled this subject. In [27], M. Wooldridge et al. present the
MABLE language for the specification of MAS. Modalities are modelled as
nested data structures, in the spirit of [1]. Bordini et al [2] use a modified
version of the AgentSpeak(L) language [20] to specify agents and to exploit
existing model checkers.

The works of van der Meyden and Shilov [22], and van der Meyden
and Su [23], are probably more related to this paper. They consider the
verification of a particular class of Interpreted Systems, namely the class
of synchronous distributed systems with perfect recall. An algorithm for
model checking is introduced in the first paper, but the algorithm is not
implemented and specification is not considered. In [23] verification is
limited to a specific class of temporal specifications.

We have obtained preliminary results in the verification of a richer lan-
guage involving temporal operators and epistemic operators, along different
extensions of the methodology presented here. In parallel, we are currently
investigating theoretical aspects of the K̂j

i operator, extending the work
of [15].

References

[1] M. Benerecetti, F. Giunchiglia, and L. Serafini. Model checking multiagent
systems. Journal of Logic and Computation, 8(3):401–423, June 1998.

[2] R. H. Bordini, M. Fisher, C. Pardavila, and M. Wooldridge. Model checking
agentspeak. In Proceedings of the Second International Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS’03), July 2003.

[3] R. E. Bryant. Graph-based algorithms for boolean function manipulation.
IEEE Transaction on Computers, pages 677–691, Aug. 1986.

[4] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang. Sym-
bolic model checking: 1020 states and beyond. Information and Computation,
98(2):142–170, June 1992.

[5] D. Chaum. The dining cryptographers problem: Unconditional sender and
recipient untraceability. Journal of Cryptology, 1:65–75, 1988.

262

Franco Raimondi

[6] A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri. NuSMV: A new sym-
bolic model verifier. In N. Halbwachs and D. Peled, editors, Computer Aided
Verification, volume 1633 of Lecture Notes in Computer Science, pages 495–??,
1999.

[7] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. The MIT
Press, Cambridge, Massachusetts, 1999.

[8] P. R. Cohen and H. J. Levesque. Intention is choice with commitment. Arti-
ficial Intelligence, AI, 42(2–3):213–261, Mar. 1990.

[9] D. C. Dennett. The intentional stance. The MIT Press, Massachusetts, 1987.
388 pages, 1987.

[10] R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi. Reasoning about Knowl-
edge. The MIT Press, Cambridge, Massachusetts, 1995.

[11] J. Halpern and M. Vardi. Model checking vs. theorem proving: a manifesto,
pages 151–176. Artificial Intelligence and Mathematical Theory of Computa-
tion. Academic Press, Inc, 1991.

[12] G. J. Holzmann. The model checker spin. IEEE transaction on software
engineering, 23(5), May 1997.

[13] A. Lomuscio and W. Penczek. Bounded model checking for interpreted sys-
tems. Technical report, Institute of Computer Science of the Polish Academy
of Sciences, 2002.

[14] A. Lomuscio, F. Raimondi, and M. Sergot. Towards model checking interpreted
systems. In Proceedings of MoChArt, Lyon, France, August 2002.

[15] A. Lomuscio and M. Sergot. Investigations in grounded semantics for multi-
agent systems specifications via deontic logic. Technical report, Imperial Col-
lege, London, UK, 2000.

[16] A. Lomuscio and M. Sergot. On multi-agent systems specification via deontic
logic. In J.-J. Meyer, editor, Proceedings of ATAL 2001. Springer Verlag, July
2001. To Appear.

[17] J. McCarthy. Ascribing mental qualities to machines. In M. Ringle, editor,
Philosophical Perspectives in Artificial Intelligence. Harvester Press, 1979.

[18] K. McMillan. Symbolic model checking: An approach to the state explosion
problem. Kluwer Academic Publishers, 1993.

[19] F. Raimondi and A. Lomuscio. A tool for specification and verification of
epistemic and temporal properties of multi-agent system. Submitted, 2003.

[20] A. S. Rao. AgentSpeak(L): BDI agents speak out in a logical computable
language. Lecture Notes in Computer Science, 1038:42–??, 1996.

[21] A. S. Rao and M. P. Georgeff. Modeling rational agents within a BDI-
architecture. In J. Allen, R. Fikes, and E. Sandewall, editors, Proceedings of
the 2nd International Conference on Principles of Knowledge Representation
and Reasoning, pages 473–484. Morgan Kaufmann Publishers, Apr. 1991.

263

Model Checking Epistemic Properties of Interpreted Systems

[22] R. van der Meyden and N. V. Shilov. Model checking knowledge and time
in systems with perfect recall. FSTTCS: Foundations of Software Technology
and Theoretical Computer Science, 19, 1999.

[23] R. van der Meyden and K. Su. Symbolic model checking the knowledge of the
dining cryptographers. Submitted, 2002.

[24] M. Y. Vardi and P. Wolper. An automata-theoretic approach to automatic
program verification. In Symposium on Logic in Computer Science (LICS’86),
pages 332–345, Washington, D.C., USA, June 1986. IEEE Computer Society
Press.

[25] M. Wooldridge. Computationally grounded theories of agency. In E. Dur-
fee, editor, Proceedings of the Fourth International Conference on Multi-Agent
Systems (ICMAS 2000). IEEE Press, July 2000.

[26] M. Wooldridge. Reasoning about rational agents. MIT Press, July 2000.

[27] M. Wooldridge, M. Fisher, M.-P. Huget, and S. Parsons. Model checking multi-
agent systems with MABLE. In M. Gini, T. Ishida, C. Castelfranchi, and W. L.
Johnson, editors, Proceedings of the First International Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS’02), pages 952–959.
ACM Press, July 2002.

[28] M. Wooldridge and N. Jennings. Intelligent agents: Theory and practice.
Knowledge Engineering Review, 10(2), 1995.

264

A Formal Representation of Korean

Temporal Marker dongan

Hyunjung Son
EHESS Paris,

hyunjung son@hotmail.com

Abstract. This paper has two objectives. The first is to account for the semantic
functions of Korean temporal marker dongan in comparison with English marker
for. The second objective is to represent these functions in terms of type theory,
which allows us to establish semantic representations in a coherent and explicit
way.

1 Introduction

Comparing cross-lingual semantics contributes to the understanding of the
nature of linguistic meaning in two different ways; first, it discovers and
verifies the principles representing the universal phenomena across natural
languages, and second, it provides evidence to support the claim of language
specificity. In this paper, we attempt to describe the semantic characteris-
tics of Korean temporal marker dongan, in comparison to English temporal
marker for. The formal representation of the observed temporal properties
is based on type theory of Andrews (1986), Hindley et al.(1986) and Renaud
(1996).

2 Semantic Representation

Our semantic representation of temporal marker dongan is based on the
following assumptions. First, we regard the event described by a sentence as
a primitive entity like individuals and denote it by a variable ‘e’ in line with
Davidson (1967). Second, we assume that the linguistic time is ordered,
discrete, infinite and consisting of instants corresponding to the natural
numbers. Thus, the linguistic time can be expressed with one of these
three notions: instant, extended interval and duration. Instants are unitary
constituents of linguistic time and noted by a quintuplet of natural numbers
[x1,x2,x3,x4,x5] of which x1 stands for year, x2 for month, x3 for day, x4 for
hour and x5 for minute.

Proceedings of the Eighth ESSLLI Student Session
Balder ten Cate (editor)
Chapter 25, Copyright c© 2003, Hyunjung Son

265

A Formal Representation of Korean Temporal Marker dongan

(ex) at 3 o’clock on April 5th, 2003: instant [2003,4,5,3,0]

An extended interval is a set of consecutive instants determined by a
beginning instant and an ending instant.

(ex) on April 5th, 2003: interval [[2003,4,5,0,0], [2003,4,5,23,59]]

Duration refers to a temporal distance between two distinct instants.

(ex) for 5 years: duration [5, , , ,]

For the purpose of temporal description of a sentential event, we defined
the following types and functional terms on the basis of type theory. The
symbol λ stands for abstraction and • stands for application.

2.1 Definitions of Types

◦ i : type symbol denoting the type of individuals

◦ p : type symbol denoting the type of propositions

◦ e : type symbol denoting the type of events

◦ ent : type symbol denoting the type of natural numbers

◦ inst : type symbol denoting the type of instants

◦ inter : type symbol denoting the type of extended intervals

◦ dur : type symbol denoting the type of durations

Type symbols may be omitted when no ambiguity is introduced.

2.2 Definitions of Functional Terms

◦ (λe. moment•e): e→inst

Applying this function to any argument of type e, we obtain the mo-
ment of e of type inst.

◦ (λe. interv•e): e→inter

Applying this function to any argument of type e, we obtain the in-
terval of e of type inter.

◦ (λx. beginning•x): e→inst / (λx. ending•x): e→inst

Applying these functions to any argument x of type e, we obtain the
beginning/ending instant of x of type inst.

266

Hyunjung Son

◦ (λx. duration•x): e→dur

Applying this function to any argument x of type e, we obtain the
duration of x of type dur.

◦ (λx. beg•x): inter→inst / (λx. end•x): inter→inst

Applying this function to any argument x of type inter, we obtain the
beginning/ending instant of x of type inst. By definition, beg•[A,B]
= A and end•[A,B] = B

◦ (λx. length•x): inter→dur

Applying this function to any argument x of type inter, we obtain the
length of x of type dur. By definition, length•[A,B]= |B-A|

◦ (λxλy. x <�t� y): inst→inst→p

It denotes that x of type inst is anterior to y of the same type. When
no ambiguity is introduced, � t � will be omitted.

◦ (λxλy. x =�t� y): inst→inst→p

It denotes that x and y of type inst are simultaneous.

◦ (λxλy. x ≤�t� y): inst→inst→p

It denotes that λxλy. (x <�t� y ∨ x =�t� y).

◦ (λxλy. x ∈�t� y): inst→inter→p

It denotes that x of type inst is a member of y of type inter. By
definition, λxλy. (beg•y ≤�t� x ≤�t� end•y)

◦ (λxλy. x ⊂�t� y): inter→inter→p

It denotes that x of type inter is included by y of the same type. By
definition, λxλy. (beg•y < beg•x ∧ end•x < end•y).

◦ (λxλy. x =�t� y): inter→inter→p

x and y of type inter are simultaneous. By definition, λxλy. (beg•x=beg•y
∧ end•x=end•y).

◦ (λxλy. x ⊆�t� y): inter→inter→p

It denotes that λxλy. (beg•y ≤�t� beg•x ∧ end•x ≤�t� end•y).

3 Semantic Description of dongan-Adverbials

It is generally assumed that Korean tense or aspect is signaled by the infix
placed between the infinitive and the terminal suffix in VP.

267

A Formal Representation of Korean Temporal Marker dongan

(1) hanshigan dongan kwanghoe bihaenggiga naratta1

an hour/dongan/of Kwangho/airplane-NOM/fly-PA-DEC
Kwangho’s airplane flew for an hour.

The VP of this example ‘naratta’ comprises infinitive ‘na-’, tense/aspect
marker ‘-at-’ and declarative suffix ‘-ta’. As for the infix ‘-at-’, there has been
controversy over the semantic roles that it plays, since it brings about several
time interpretation possibilities such as simple past, completion, resultant
state and progressiveness2. This multiple ambiguity can be remedied by
time adverbials which contribute to specifying the sentential event in time.

The temporal marker dongan has been considered as equivalent to the
English marker for, as it constructs a durative time adverbial3 with a NP.
For example, (1) is represented as:

(sr 1) ∃e∃x airplane•x ∧ of•x•kwangho ∧ fly•e•x ∧
ending•e<pt speech4 ∧ duration•e=(1 hour)

Thus, the time adverbials with dongan have been used for aspectual clas-
sifications of Korean verbs on the basis of the ideas of Vendler (1967) and
Dowty (1979)5. However, the analysis of three thousand sentences extended
by a dongan-adverbial6 shows a different result. First, dongan allows five
distinct types of syntactic structures other than durative NP to construct
time adverbials. Moreover, not all these adverbials give rise to the durative
meaning, as illustrated by the following examples:

◦ Interval Noun + dongan:

(2) kyôul banghak dongan nanun shine daehae saenggak’agi
chijak’aetta
winter vacation/dongan/I-TOP/about God/think/begin-PA-
DEC
During the winter vacation, I began to think about God.

which meaning is:
1We used the McCune-Reischauer system to transcribe the Korean data. The following

abbreviations are used for glossing grammatical morphemes:
ACC: accusative, AS: attributive suffix, CIRCUM: circumstantial, CL: classifier, CON:

connective, DEC: declarative, DUR: durative, INT: interrogative, LOC: locative, NOM:
nominative, NS: nominal suffix, PA: past, TOP:topic.

2See Lee, H. (1993), Lee, Ch. (1987) and Lee, J.-R. (1982) for more detailed discussion.
3Kim (1981), Lee, Ch (1982).
4Reichenbach (1966).
5Jo (2000), Jung (1984) and Lee, J.-R. (1982).
6The sentences are from Yonsei malmunchi corpus built by Yonsei Center for Linguistic

Information.

268

Hyunjung Son

(sr 2) ∃I∃e winter vacation•I ∧ interval•I ∧ begin•e•(λe1λy.
think about•e1•god•y)•speaker ∧ moment•e<pt speech ∧
moment•e∈I

That is, the moment of the punctual event is identified as an instant belong-
ing to the extended interval indicated by the dongan-adverbial.

◦ Interval NP + durative NP + dongan:

(3) shiwol han dal dongan nalssiga choatta
October/one month/dongan/the weather-NOM/be nice-PA-
DEC
For the month of October, the weather was nice.

(sr 3) ∃e∃I nice•e•weather ∧ I=(October) ∧ length•I=(1 month)
∧ beginning•e<pt speech ∧ I⊆interv•e

It states that the event described by the nuclear sentence7 can be extended
beyond the interval denoted by the dongan-adverbial. Thus, it is difficult,
in this case, to assign the maximal length to the event.

◦ Deictic/anaphoric determiner + durative NP + dongan:

(4) chônun i han dal dongan haengbok’aessôyô
I-TOP/this/one month/dongan /be happy-PA-DEC
(For the interval of) Last month, I was happy.

(sr 4) ∃e∃I happy•e•speaker ∧ I=rech interv•pt speech•year•18

∧ length•I=[0,1,0,0,0] ∧ beginning•e<pt speech ∧ I⊆interv•e

Here again, the interval denoted by the time adverbial is included by the
interval of the event.

◦ Attributive clause + dongan:

7We call the semantically and syntactically independent sentences without modifiers
such as time adverbials ‘nuclear sentence’.

8This function returns a relevant interval consulting the point of speech. It is defined
in Prolog as follows:

rech interv(I,J,K,R) :-
I==pt speech, !, rech int(J,K,R).

rech interv(I,J,K,R) :-
I==pt ref, rech int ref(J,K,R).

rech int(year,[X, , , ,],R):-
time([A,M, , ,]),
A1 is A-X,
R = [[A1,M, , ,],[A,M, , ,]].

269

A Formal Representation of Korean Temporal Marker dongan

(5) kunyôga bôsu chôngrujangul hanghae kônnun dongan
nuni naerigi shijakhaetta
she-NOM/to the bus station/walk-AS/dongan/snow-NOM/fall-
NS/begin-PA-DEC
While she walked to the bus station, the snow began to fall.

(sr 5) ∃x∃e1∃e2 bus station•x ∧ walk•e1•she ∧ to•e1•x ∧
beginning•e1<pt speech ∧ begin•e2•(λe. fall•e•snow) ∧
moment•e2<pt speech ∧ moment•e2 ∈ interv•e1

The dongan-adverbial of (5) correlates two different events; the time of the
event described in the main clause (e2) is determined in reference to that
of the event indicated by the attributive clause (e1); the moment of (e2) is
identified as an instant belonging to the interval of (e1).

◦ Attributive clause + durative NP + dongan:

(6) naega chibul biun du chu dongan madange haebarakiga
mani charatta
I-NOM/home-ACC/ be out-AS/ two week/ dongan/ front
yard-LOC/ sunflower-NOM/a lot/grow up-AP-DEC
For the two weeks when I was out home, the sunflower in the
garden has grown up a lot.

(sr 6) ∃e1∃x∃e2 be out•e1•home•speaker ∧ duration•e1=(2 weeks)
∧ ending•e1<pt speech ∧ sunflower•x ∧ of•front yard•x ∧
grow up•e2•x ∧ beginning•e2<pt speech ∧ interv•e1⊆interv•e2

Similarly, the event time of the main clause (e2) and that of the attributive
clause (e1) are temporally related. The only difference with the former case
consists in the fact that in this case, (e2) is always expressed by an extended
interval and therefore can not be a punctual event9

In conclusion, the temporal marker dongan gives rise not only to the
durative meaning but also the inclusive meaning, whereas for triggers only
the durative meaning.

The second difference between dongan-adverbials and English for -adverbials
is that only the dongan-adverbials are compatible with quantified sentences

9Moens and Steedman (1988) introduced the notion of contingency in addition to the
temporality in order to account for the infelicity of the following sentence linked by when.

*When my car broke down, the sun set.

On the other hand, dongan seems to be less influenced by contingency as it is hard to
establish any causality or enablement relation between the events linked by dongan in (5)
and (6). The only relevant extra-linguistic knowledge is whether the related events can
happen together in reality.

270

Hyunjung Son

and the for -adverbials are not. This property of the English adverbials has
been formalized by Krifka (1989)10.

(7) i kongjangun ilnyôn dongan kyôu han daeui ch’arul man-
durôtta
this/factory-TOP/a year/dongan/only/one/CL-of/car-ACC/make-
PA-DEC
This factory made only one car in a year.

(sr 7) ∃I interval•I ∧ duration•I=[1,0,0,0,0] ∧ | λx. car•x ∧ ∃e
construct•e•x•this factory ∧ ending•e<pt speech ∧ interv•e⊆I|
= 1

The third difference is that dongan-adverbials denote not merely the
duration of the event but also the duration of the state resulting from the
event.

(8) haru dongan shiwidaega shichôngul dulrôssatta
one day/dongan/demonstrators-NOM/the city hall-ACC/surround-
PA-DEC
The demonstrators surrounded the city hall for one day.

(sr 8) ∃x∃e demonstrator•x ∧ surround•e•city hall•x ∧
ending•e<pt speech ∧ ending•(resultant state•e)<pt speech ∧
duration•(resultant state•e)=(1 day)

Note that in this case, it is the state of the city hall’s being surrounded by
the demonstrators (A), and not the process of surrounding the city hall (B)
that lasted one day.

�

�
�

�
� ��

A

B

1 day

Fourth, unlike the for -adverbials, dongan-adverbials are compatible with
some telic events.

(9) han shigan dongan nariga kangul gônnôtta11

one hour/dongan/Nari-NOM/the river-ATT/cross-PA-DEC
For an hour, Nari has been crossing the river .

10The cases that the event is bounded by a quantification modifier are excluded by the
wellformedness condition denoted by ‘/’.

for one hour
λP ∀e [P(e) ∧ h′(e)=1/QMODE(P,λPλe[P(e)∧ h′(e)=1)]

11This example is taken from Kim (1981).

271

A Formal Representation of Korean Temporal Marker dongan

Crossing the river is an action having a terminative point. When associ-
ated to such an action, the dongan-adverbial indicates its duration, without
telling whether its terminative point is reached of not. In (9), we do know
that Nari has been crossing the river for one hour, but we don’t know
whether she has arrived at the other side of the river at last, which would
be verified by the following possibilities of entailment:

(9′) han shigan dongan nariga kangul gônnôtta. kuraesô mach’imnae
kang kônnôp’yône daatta
one hour/dongan/Nari-NOM/the river-ATT/cross-PA-DEC//and
/at last/the river/the other side-LOC/reach-PA-DEC
For an hour, Nari bas been crossing the river. And at last she
reached the other side of the river12.

(9′′) han shigan dongan nariga kangul gônnôtta. kuraedo kangi
nômu nôlbôsô ajik kang kônnôp’yône datji mohaetta
one hour/dongan/Nari-NOM/the river-ATT/cross-PA-DEC//however/the
river-NOM/too/ wide-CON/yet/the river/the other side-LOC/reach/can
not-PA-DEC
For an hour, Nari has been crossing the river. However the river
was too wide, so she has not yet reached the other side of the
river.

Thus, the interpretation of (9) is represented as follows:

(sr 9) ∃e∃x the river•x ∧ cross•e•x•nari ∧
Fcpt=λt. distance•t•x ∧ Fcpt•(beginning•e)=φ ∧
Fcpt•(ending•e)=<width•x ∧ ending•e<pt speech ∧
duration•e=(1 hour)

Fcpt is a function measuring the distance of the river that Nari has crossed.
At the beginning of the event, the distance is zero (Fcpt•(beginning•e)=φ)
whereas at the end, the distance can be either equal or less than the width
of the river (Fcpt•(ending•e)=<width•x). In fact, this function serves to
represent the telicity of the event13.

Fifth, applied to the sentence denoting a set of different events, called
multi-occurrent sentence14, the adverbial with dongan determines the dis-
tributional nature of the element events.

12The Korean verb gônnôda encompasses the meanings of ‘to cross’, and ‘to be crossing’
in English. That’s why the sentences containing this verb are compatible with durative
adverbials as well as telic adverbials. In fact, there are many other Korean verbs that
denote both the telic aspect and the durative aspect of the action.

13See Renaud (2002b) for a more formal definition of this measuring function.
14Renaud (2002a).

272

Hyunjung Son

(10) shimnyôn dongan yunsôkun mon badaesô kogijabirul haetta
10 years/dongan/Yunsôk-TOP/far ocean-LOC/fishing-ACC/do-
PA-DEC
For ten years, Yunsôk fished far in the ocean.

That is, the ten years is the maximal length of the interval in which Yunsôk ’s
fishing has been repeated in a consistent way15.

�

��

��

interval of reference (intref)

10 years

• •• • •• • • •• • •• • • • •

This interpretation is represented as follows 16 :

(sr 10) λD. ∃P equi-partition•D•P•intref ∧
∃I I=(λJ. P•J ∧ ∃e fish•e•yunsôk ∧ in•e•the far ocean ∧
ending•e<pt speech ∧ interv•e⊆J) ∧
∃M (max•(λN. N⊆(∪•I) ∧ [inferior•(∪•N), superior•(∪•N)] ∩
intref = ∪•N)•M ∧ duration•M = (10 years))

where the function equi-partition•D•P•L denotes that the element events
occurred regularly during the period.

But when the sentence is modified by quantification, the time adver-
bial no longer imposes the distributional constraint and merely signals the
temporal scope of the quantification.

(10′) shimnyôn dongan yunsôkun mon badaesô se bôn kogi-
jabirul haetta
10 years/dongan/Yunsôk-TOP/far ocean-LOC/three times/fishing-
ACC/do-PA-DEC
For ten years, Yunsôk fished three times far in the ocean.

(sr 10′) ∃I interv•I ∧ duration•I=[10,0,0,0,0] ∧ | λe. fish•e•yunsôk
∧ in•e•the far ocean ∧ ending•e<pt speech ∧ interval•e⊆I|=3

Finally, the facts that we observed concerning the temporal adverbials
with dongan can be summarized as follows:

15The occurrences of Yunsôk ’s fishing are noted by ‘•’ in the figure.
16Renaud (2002a) defines the functions used in this formula as :

equi-partition•D•P•N ≡ (N=(∪ • P) ∧ | P |>2 ∧
∀K1 K2 ((P•K1 ∧ P•K2 ∧ K1�=K2)→ (duration•K1=duration•K2=D ∧ K1∩K2=φ)))
∪ •R ≡ λx. ∃R (R•P ∧ P•x) [A, B] ≡ an interval with the limits A and B
max•E•M ≡ (E•M ∧ ¬∃N(M⊂N ∧ E•N))

273

A Formal Representation of Korean Temporal Marker dongan

1. The semantic and syntactic properties of the phrase accompanying the
temporal marker play an important role to locate the sentential event
in time.

2. To establish the correct temporal interpretation of a sentence, it is cru-
cial to distinguish the mono-occurrent reading from the multi-occurrent
reading. The multi-occurrent nature is very often signaled by bare plu-
rals in nominal phrases, adverb like ch’arero meaning ‘in turn’, and
quantification modifiers.

3. dongan-adverbials don’t exclusively belong to one of the categories
of time adverbials proposed by Vlach (1993)17. They raise durative
meaning (ex.1,3,4,8), inclusive meaning (ex. 2,5,6) as well as durative
and frequency meaning (ex.10).

4. The quantification negates the frequency meaning brought by the don-
gan-adverbials and gets them to indicate the temporal scope of this
semantic operation (ex.10′).

5. The information relevant to the time interpretation is scattered over
the whole sentence; not only in VP but also in other sentence con-
stituents such as time adverbials, quantification modifiers and deter-
miners in NP. Therefore, the temporal interpretation of a sentence
should be constructed in a compositional way18.

6. In the same reason, the aspectual value should be attributed to the
sentence and not to the VP.

4 Conclusion

In this paper, we formalized the semantic properties of Korean time ad-
verbials with dongan, in comparison with English adverbials with for. In
doing so, we showed that the temporal meanings triggered by dongan are
not always the same as those by for. We also presented some semantic prop-
erties that could be relevant to the description of temporal markers of other
natural languages as well. We will, in the future, investigate the semantic
aspects of Korean telic marker mane using the same method.

References

[1] Andrews, P.B., An Introduction to Mathematical Logic and Type Theory, Or-
lando: Academic Press Inc, 1986.
17Vlach (1993) proposed four categories of time adverbials: punctual, durative, inclusive

and frequency.
18On the basis of G Grammar proposed by Renaud (1996), we built a Korean parser in

Prolog, which compositionally constructs the semantic representations of Korean sentences
extended by dongan-adverbials or oe-adverbials. See Son (2002, 2003) for more details.

274

Hyunjung Son

[2] Davidson, D., The logical Form of Action Sentences, in Essays on Actions and
Events, Oxford: Clarendon Press, 1967 [1980].

[3] Dowty, D.R., Word Meaning and Montague Grammar, Dordrecht: Reidel, 1979.

[4] Hindley, J. and Seldin, J.P., Introduction to Combinators and λ-Calculus, Cam-
bridge: Cambridge Univ. Press, 1986.

[5] Jo, M.-J., A Study on the Aspect of Korean (in Korean), Yonsei Univ. Disser-
tation, 2000.

[6] Jung, M., “Classification of Korean Verbs with Aspectual Properties” (in Ko-
rean), Study of Grammar 5 (1984), Seoul: Society of Korean Grammar.

[7] Kim, S.-D., “Aspect of Korean”(in Korean), Aesan Hakbo 1 (1981): 25-70,
Seoul: Aesan Hakhoe.

[8] Krifka, M., “Nominal Reference, Temporal Constitution and Quantification in
Event”, in Bartsch, R. et al.(eds.), Dordrecht: Foris Publications, 1989.

[9] Moens, M. and Steedman, M., “Temporal Ontology and Temporal Reference”,
Computational Linguistics 14 (1988): 15-28.

[10] Lee, Ch., “Aspects of Aspect in Korean”, Language 7 (1982): 570-582, Seoul:
Korean Linguistic Society.

[11] Lee, H. S., “Tense or aspect : The speaker’s communicative goals and con-
cerns as determinant, with reference to the Anterior -ôss- in Korean”, Journal
of Pragmatics 20 (1993): 327-358.

[12] Lee, J.-R., “A Study of Aspectual Forms of Modern Korean”(in Korean), Ko-
rean Linguistic Research 51 (1982), Seoul: Society of Korean Studies.

[13] Reichenbach, H., The Elements of Symbolic Logic, New York: The Free Press,
1966.

[14] Renaud, F., Sémantique du temps et lambda-calculus, Paris: puf, 1996.

[15] Renaud, F., “Durativité et negation”, ms, 2002a.

[16] Renaud, F., “Télicité et quantification”, ms, 2002b.

[17] Son, H., “Formal Description of � NP+OE � with Lambda-Calculus and
Unification Mechanism”(in Korean), Annual Meeting of Korean Society for Lan-
guage and Information (2002), 77-86.

[18] Son, H., “A Computational Treatment of Korean Temporal Markers, OE and
DONGAN ”, submitted to Student Research Workshop of ACL (2003).

[19] Vendler, Z., Linguistics in Philosophy, Ithaca: Cornell Univ. Press, 1967.

[20] Vlach, F., 1993, “Temporal Adverbials, Tense and the Perfect”, Linguistics
and Philosophy 16 (1989), 231-283.

275

277

Scalar Implicatures: Exhaustivity and Gricean
Reasoning

BENJAMIN SPECTOR
Laboratoire de Linguistique Formelle - Paris VII / Institut Jean-Nicod
benjamin.spector@normalesup.org

ABSTRACT. This paper shows that both scalar implicatures and exhaustification of answers can

be understood as the outcome of a pragmatic reasoning based on gricean maxims. I offer a
formalization of the gricean reasoning that solves the problems (cf. Chierchia 2001) faced by
standard neo-gricean accounts. I further show that positive and non-positive answers pattern very
differently, in a way that can be predicted by stating carefully, for a given question-answer pair,
what counts as an "alternative answer" - this notion plays the same role as that of “scalar
alternative” in previous approaches.

I. Imperfections of Standard Neo-gricean Accounts
According to neo-gricean accounts, scalar implicatures are computed as

follows: given a sentence S containing a scalar term t, S is to be compared to all
sentences which can be obtained from S by replacing t with a term belonging to
t’s scale. For any such scalar alternative S’ such that S’ asymmetrically entails S,
the hearer infers that S’ is not part of the speaker’s beliefs. (hereafter, rule R1;
this derives the so-called epistemic implicatures). The underlying principle
motivating this inference is Grice’s first maxim of Quantity. Assuming further
that the speaker is maximally informed, the hearer infers that S’ is in fact false
according to the speaker (hereafter, rule R2).

(1) A or B (2) A and B
Suppose the speaker utters a sentence of the form of (1). Its unique scalar

alternative is (2). Since (2) is logically stronger than (1), (2) is not part of the
speaker’s belief. Moreover, if the speaker is maximally informed, (2) is false, so
that or in (1) is interpreted as exclusive, even though its literal linguistic meaning
is that of inclusive disjunction.

Whatever the merits of this approach (in particular, the fact that it predicts that
the exclusive reading of or should disappear in monotone decreasing contexts,
due to the reversal of entailment patterns), it has been shown to be inaccurate in
many cases, especially when a scalar term is interpreted under the scope of some
operators. For instance, Chierchia (2001) points out that the neo-gricean
procedure yields too weak results for a sentence like (3):

(3) Each of the students read Othello or King Lear

Proceedings of the Eighth ESSLLI Student Session.
Balder ten Cate (editor)
Chapter 26, Copyright © 2003, Benjamin Spector

Scalar Implicatures: Exhaustivity and Gricean Reasoning

 278

(3) (sometimes) implicates (4)1:
(4) Each of the students read Othello or King Lear and not both.
The neo-gricean account predicts a much weaker implicature, namely (5):
(5) It is not the case that each of the students read Othello and King Lear.
Another problem is that the neo-gricean account can also lead to too strong

predictions. Take a sentence of the following form: (6) (A or B) or C
Salar alternatives of (6):
a. (A and B) or C b. (A or B) and C c. (A and B) and C
All these alternatives are stronger than (6), so that (6) should implicate that

they are all false (by rule R2). In particular, a. should be false, in which case C is.
But (6) certainly does not implicate that C is false. Let me call this problem,
which is actually very general, that of unwanted negations. If, on the other hand,
we find a way of blocking this inference, we remain unable to predict that (6)
normally implicates that only one of the three disjuncts is true.

I. 1 Chierchia’s localist solution
Chierchia (2001) presents a solution based on a recursive interpretation

function which computes “strengthened meanings” in tandem with the
interpretation function that computes “literal meanings”. For him, scalar
implicatures are simply an additional dimension of meaning, and the link
between scalar implicatures and general principles of conversational rationality
becomes less clear, even though some basic aspects of the neo-gricean
approaches are retained.

Hereafter, I will defend a “globalist” approach to scalar implicatures, in the
sense that it relies on the natural hypothesis that pragmatic processes operate at
least at the sentential level.

I. 2. Sauerland (2001)
Sauerland (2001) modifies the neo-gricean procedure by changing what

counts as a scalar alternative for a given sentence. If a certain sentence S is of the
form "P or Q", then P and Q count as alternative sentences, and so do P and Q's
own scalar alternatives. But this move, as such, can only lead to a strengthening
of what the ‘standard’ account derives, i.e. cannot remove the unwanted
negations. Sauerland shows that this problem can be solved if one adopts more
plausible inference rules. His proposal is quite similar to mine in this respect2.

I. 3. Is exhaustification the solution ?
Van Rooy (2002) proposes to derive scalar implicatures from the fact that, if a

certain question Q is under discussion and a certain sentence S is given as an
answer to Q, S is generally interpreted as "exhaustive".

1 In section III.3.3, I account for the fact that this inference is not systematic.
2 I am grateful to an anonymous reviewer for pointing out a version of

Sauerland’s paper that is more recent than the one I had read and bears more
similarity to my own proposal.

Benjamin Spector

 279

The exhaustivity operator (Groenendijk & Stokhof 1984) operates on answers
of the form 'GQ P', where GQ stands for a generalized quantifier and P for a
predicate. The question under discussion is understood as "for which objects is P
true of these objects ?".

The exhaustivity (exh) operator works as follows3:
[[exh (GQ P)]] = 1 iff [[P]] ∈ (Min [[GQ]]), where (Min [[GQ]]) is the set that

includes only the minimal members of [[GQ]] , i.e:
Min [[GQ]] = {x  x ∈ [[GQ]] and there is no x' in [[GQ]] such that x' ⊂ x}
(⊂ = “is a proper subset of”)
Example:
 (7) a. Among John, Mary and Peter, who came?
 b. John or Mary came
[[John or Mary]] = {{J, M, P}, {J, M}, {J, P}, {J}, {M, P}, {M}}
(Min [[John or Mary]]) = {{J}, {M}}
[[exh (John or Mary came)]] = 1 iff [[came]] ∈ {{J}, {M}} i.e. iff only John

came or only Mary came.
Van Rooy shows that when exhaustification is applied to monotone increasing

contexts, it can solve some of Chierchia's puzzles.
I. 4. When exactly do we exhaustify answers ?
However, if exhaustification is applied to a sentence 'GQ P' where GQ is

decreasing, exhaustification as defined above leads to unrealistic implicatures:
"less than two chemists came" should implicate that nobody came! So Van Rooy
uses a second exhaustivity operator (exh’) in these cases, following Stechow &
Zimmermann (1984):

[[exh' (GQ P)]] = 1 iff [[P]] ∈ (Max [[GQ]]), where (Max [[GQ]]) is the set that
includes only the maximal members of [[GQ]]

There are several problems with this account.
First, the second rule of exhaustification makes wrong predictions:
(8) a. Among the chemists and the philosophers, who came?
 b. Less than two of the chemists
Exhaustification leads to b':
b' . Exactly one chemist and all the philosophers came.
But b. does not seem to implicate b'; b. actually does indeed suggest that some

chemist came, but does not implicate anything regarding non-chemists. It rather
suggests that the speaker does not know much about them.

Second, these two rules are unable to account for cases where the speaker
combines increasing and decreasing quantifiers, thus creating a non-monotone
GQ, as in (9)b:

(9) a. Among the chemists, the philosophers and the linguists, who came?

3 I reformulate Groenendijk & Stockhof’s exhaustivity operator in more

simple terms, but the difference is immaterial.

Scalar Implicatures: Exhaustivity and Gricean Reasoning

 280

 b. Less than two chemists but one philosopher came
If we apply the first exhaustivity operator, what we get is that b. implicates

that no chemist and no linguist came, while exactly one philosopher came.
If we apply the second exhaustivity operator, what we get is that exactly one

chemist, all the philosophers and all the linguists came.
None of these predictions is in fact borne out. Rather, it seems that (9)

implicates that at least one chemist came, exactly one philosopher came, and that
the speaker does not know much about linguists.

I. 5. Goal of this paper: deriving exhaustivity
In the next sections, I show that both scalar implicatures and exhaustification

of answers can be understood as the outcome of a pragmatic reasoning that is
based on the gricean maxims. I will first offer a precise formalization of the
gricean reasoning, meant to replace the two rules R1 and R2. I will then show
that it is possible to predict the facts reviewed above by defining carefully what
counts as an "alternative answer" for a given answer to a certain question under
discussion.

II. Formalizing the gricean reasoning
I now assume that a certain sentence A is uttered as an answer to a (maybe

implicit) question Q, and I adopt a partition semantics for questions
(Groenendijk & Stockhof 1984): Q induces an equivalence relation RQ, over the
set of worlds.

Notation:
- w RQ w’ w and w’ belongs to the same « cell»
- RQ (v) = {w  w RQ v} (= the set of worlds equivalent to v, or v’s cell)
- α (w) α is true in w (alternatively: w ∈ α)
- α ⊆ β α is a subset of β; α entails β
- α ⊂ β α is a proper subset of β; α asymmetrically entails β
The proposition α expressed by A is supposed to meet the condition of strong

relevance.
Def 1 (strong relevance): A proposition α (= set of worlds) is strongly

relevant with respect to a question Q if
a) ∃ w, (RQ(w) ∩ α) = Ø (i.e.: α excludes at least one cell)
and
b) ∀w, (α(w) ↔ (RQ(w) ⊆ á)) (α does not distinguish between

two worlds that belong to the same cell, i.e. provides no irrelevant information)
The speaker’s information state is modeled as a set of worlds, i.e. a

proposition. As an agent believes a lot of things that are irrelevant in the context
of a given question, it is useful to define what counts as the relevant information
contained in a certain information state:

Benjamin Spector

 281

Def 2 (relevant information): Let i be an information state and Q a question.
Then we define i relativized to Q, written as i/Q, as follows:

 i/Q = {w ∃ w', (w' RQ w and w'∈ i)} (= ∪w∈ i RQ(w)).
The gricean reasoning is based on the idea that α (the proposition given as an

answer) must be compared to a certain set of alternative propositions4 which the
speaker could have chosen instead of α. This alternative set, call it S, must
contain α itself, and be such that all its members are relevant5. The hearer's task
when interpreting the speaker's utterance is to address the following question:
given that the speaker has preferred α to all the other members of S, what does
this entail regarding his information state i0? First, the speaker must believe α to
be true (Grice’s maxim of quality), i.e. i0 must entail α. Second, α must be
optimal in the sense that there must be no more informative proposition in S
entailed by the speaker’s beliefs (Grice’s maxim of quantity), i.e. there must be
no proposition α’ such that i0 entails α’ and α’ asymmetrically entails α. Put
differently, i0 must belong to the following set I(S,α,Q):

Def 3: I(S,α,Q) = {i i ⊆ α and ∀ α' (α' ∈ S and i ⊆ α’) → ¬ (α' ⊂ α)}
So if a certain proposition β is entailed by no member of I(S,α,Q), the hearer

can conclude that β is not part of the speaker’s belief. This reasoning plays the
role of rule R1. It is immediately predicted that if the speaker utters a sentence P
of the form “A or B” and if the propositions expressed by A and by B belong to
the alternative set S, as I will assume (so does Sauerland (2001)), then the
speaker cannot know A to be either true or false: if A were true, then A would
have been a better answer than P; if A were false, B would be true (since P is),
and B would have been a better answer than P6. Now, let the hearer assume that
the speaker is as informed as possible given the answer he made. This means that
his information state i0 is maximal in I(S,α,Q) in the following sense: there is no
i’ in I(S,α,Q) such that i’ (relativized to Q) asymmetrically entails i0 (relativized
to Q). In other words, i0 belongs to Max(S,α,Q), defined as follows:

Def 4: Max(S,α,Q)={ii ∈ I(S,α,Q) and∀i' (i'∈I(S,α,Q))→ ¬ (i'/Q⊂ i/Q)}
From this the hearer can conclude that if a proposition β is entailed by all the

members of Max(S,α,Q), then β is believed by the speaker. This reasoning plays
the role of R2, but is not equivalent to it: there is no way of deriving an
“unwanted negation”. In the case of a disjunctive statement in which the
disjuncts are logically independent, the disjuncts and their negations are entailed
by no member of I(S,α,Q), as shown above, so that they cannot be entailed by
any member of Max(S,α,Q) either, since Max(S,α,Q) is included in I(S,α,Q).

4 As my formulation makes clear, I am now adopting the simplifying view

that what the hearer compares are propositions.
5 The exact definition of alternative sets is the topic of section III.
6 Assuming that A and B are logically independent.

Scalar Implicatures: Exhaustivity and Gricean Reasoning

 282

From now on, whenever it clear what the question under discussion is, and
considering that the content of an alternative set only depends on the question
under discussion and the sentence uttered, I will simply write I(α) and Max(α)
instead of I(S,α,Q) and Max(S,α,Q). S(α) will denote the alternative set of α.

III. Alternative sets and Exhaustification
III. 1. An example
Let P be of the form ‘(A or B) or C’, where A, B and C are logically

independent. Assume that (1) is uttered in a context in which A, B and C’s truth-
values are what is relevant i.e. as an answer to a question Q amounting to “Which
sentence(s) are true among A, B, and C?”

For any information state i, the relevant part of i in this context (i.e i/Q)
belongs to the boolean closure of {A,B,C}. So we will loose nothing if we view
information states as sets of valuations of {A, B, C}, i.e. as propositions of the
propositional language based on {A,B,C}, where any such proposition actually
stands for a class of propositions that are all equivalent when relativized to Q. Let
S(P) (the alternative set of P) be the closure under union and intersection of
{A,B,C} 7 . Intuitively, S(P) is the set of positive answers to Q:
S(P)={A,B,C,A∨B,A∧B,A∨C,A∧C,B∨C,B∧C,(A∨B)∨C,(A∧B)∨C,A∨(B∧C)...}
Assume i0 = ((A∨B)∨C))∧(¬(A∧B) ∧ (¬(A∧C)∧¬(B∧C))). Then i0 ∈ I(P), since
P is the only – and therefore best - proposition in S(P) entailed by i0

8; i0 can also
be described as the set of the three following valuations:

 A B C
W1 T F F
W2 F T F
W3 F F T
I now show that Max (P) = {i0}, e.g. that i0 entails all the members of I(P).

Suppose i1 is an information state that is not entailed by i0 and that belongs to I(P).
There is then an element of i0 that does not belong to i1. Suppose W1 does not
belong to i1. Then i1 entails P’: P’ = ¬(A∧(¬B∧¬C)) = ¬A∨(B∨C)

But i1 belongs to I(P), and therefore entails P. Hence i1 also entails P’’:
P’’ = ((A∨B)∨C))∧(¬A∨(B∨C)) = (B∨C)
But P’’, which belongs to S(P), would have been a better answer than P in

information state i1, so that i1 does not belong to I(P), contrary to the hypothesis.

7 As the reader will have noticed, I treat sentences both as sentences of the

object-language and as names (in the meta-language) of propositions, i.e. names
of sets of worlds, in which case conjunction and disjunction are understood as
intersection and union.

8 I do not give the proof here, due to lack of space.

Benjamin Spector

 283

Things are similar if W2 or W3 does not belong to i1 (by symmetry). Hence
Max(P) = {i0}, and P implicates i0.

This proof can be generalized to all formulas whose only logical operators are
disjunctions.

III. 2. Background concepts
As shown in section I. 4, answers lead to different kinds of implicatures,

especially regarding exhausitivity, depending on whether they are, intuitively
speaking, positive or negative. But this cannot make sense so far, as I have not
said precisely what it is for an answer to be “positive”. This is the goal of the
present section.

I now assume that questions are all equivalent to something like:
Q: “For which x is P(x) true?”, where x is of any semantic type, and P is a

certain predicate (simple or complex) that can be built in a natural language. I
further assume that the domain of quantification is fixed and finite, and known to
all participants. Thus any relevant answer to Q can be translated into the
following propositional language LQ: let (ci)0< i < n+1 be an enumeration of names
for each of the individuals of the domain. Then LQ is the propositional language
with disjunction and conjunction as its only binary connectors and based on the
atomic sentences (Pi)0< i < n+1, where Pi translates P(ci).

Now, relevant answers to Q can be seen as sets of valuations of (Pi) 0< i < n+1.
And the relevant part of any information state can also be seen as a set of
valuations. So we can assimilate information states to sets of valuations, without
loosing anything.

Definitions:
1. Literal: a literal is an atomic sentence or the negation of an atomic

sentence. A literal is positive if it is an atomic sentence, negative otherwise
2. Sentence P favours literal L: a sentence or a proposition P favours a

literal L iff there is a valuation V such that V(P) = V(L) = 1 and V-L(P) = 0,
where V-L is defined as the valuation which is identical to V except for the value
it assigns to L.

3. Sentence P essentially mentions literal L: A sentence P essentially
mentions a literal L iff L occurs without a negation preceding it in every P'
equivalent to P and such that the scope of all negations occurring in P' is an
atomic sentence.

4. positive sentence/positive proposition: a sentence or a proposition is
positive (resp. negative) iff it favours at least one positive (resp. negative) literal
and no negative (resp. positive) literal.

We can then prove the following theorems (Egré, Gliozzi & Spector):
Theorem 1: For any sentence P and any literal L, P favours L iff P

essentially mentions L

Scalar Implicatures: Exhaustivity and Gricean Reasoning

 284

Theorem 2: A sentence P is positive (resp. negative) iff P is equivalent to
a sentence which belongs to the closure of positive (resp. negative) literals
under conjunction and disjunction

Corollary: A sentence P is positive iff it is equivalent to a sentence P'
which contains no negation.

We therefore have two characterizations of positive answers: an answer is
positive if it is equivalent to a sentence which contains no negation, or,
equivalently, if it favors at least one positive literal and no negative literal. This
equivalence will prove helpful.

III. 3. The case of positive propositions: predicting exhaustification
The alternative set of any positive proposition is defined as the set of all

positive propositions9.
III. 3.1. An Example
Consider the following dialogue:
(10) – Among John, Peter, Mary and Sue, who will come?
 - Well, John will come, or Peter and Mary will come
I translate the answer into a propositional language containing four atomic

sentences A, B, C and D:
P = A∨(B∧C)
P quite clearly implicates Q : Q = (A∧¬B∧¬C∧¬D)∨(B∧C ∧¬A ∧¬D) i.e.

“either only John will come, or only Peter and Mary will”, which is exactly what
exhaustification in Groenendijk & Stokhof’s sense would yield.

What I will now prove is that Max(P) = {Q}, from which it indeed follows
that P implicates Q.

First, I show that Q ∈ I(P), i.e. P is an optimal answer in S(P) in information
state Q. Suppose the speaker’s information state is Q. Q can be represented as the
following set of valuations, where a valuation is itself represented the set of
atomic sentences that this valuation makes true: Q = {{A},{B, C}}.

By hypothesis, the speaker has to choose a proposition that belongs to the
alternative set. This proposition must be entailed by Q and be such that there is
no better proposition in the alternative set. Let Q’ be a positive sentence entailed
by Q. Necessarily the valuation represented by {A} is in Q’. But then, the
valuation {A,B} must be in Q’ too: if {A,B} were not in Q’, indeed, ¬B would
be favoured by Q’, since there would be a valuation v making ¬B true in Q’
(namely v = {A}) and such that the valuation v’ identical to v except over B
(v’={A, B}) would not be in Q’; so Q’ would favour a negative literal and not be
positive, contrary to the hypothesis. By the same reasoning, {A,C}, {A,D}

9 It should be clear that the alternative set is dependent on the question under
discussion, since “positivity” is defined in terms of the propositional language
derived from the question under discussion via the translation procedure defined
above.

Benjamin Spector

 285

{A,B,C}, {A,B,D}, {A,C,D} and {A,B,C,D} must belong to Q’, and so does
{B,C,D} (since {B,C} is in Q and therefore in Q’). So any positive proposition
entailed by Q must include the following proposition, i.e. be entailed by it:

{{A}, {A,B}, {A,C},{A,D}, {A,B,C},{A,B,D}, {A,C,D},{A,B,C,D}, {B,C},
{B,C,D}} (= P)

But this set, which turns out to represent P, is a positive proposition which
is entailed by Q and which entails all other positive propositions that are entailed
by Q (as I have just shown). So P is the strongest positive proposition entailed by
Q, i.e. Q ∈ I(P) (recall that I(P) is the set of all information states which make P
an optimal answer among positive answers).

Second, I show that Max(P) = {Q}. This amounts to proving that Q entails all
the members of I(P). Assume there is an information state i which belongs to I(P)
and is not entailed by Q. Since i is not entailed by Q, then either {A} or {B, C}
does not belong to i. Suppose {A} does not belong to i. On the other hand, i
belongs to I(P) and therefore entails P. From which it follows that i entails P-{A},
i.e. i is included in the following set of valuations:

P - {A} = {{A,B}, {A,C}, {A,D}, {A,B,C}, {A,B,D}, {A,C,D}, {A,B,C,D},
{B,C}, {B,C,D}}. But this set is itself a positive proposition, since it can be
checked that P-{A} favours no negative proposition. In fact, P-{A} can be
written as: (A∧(B∨C∨D))∨(B∧C). So i entails a positive proposition that is
stronger than P, namely P-{A}, which contradicts the hypothesis that i belongs to
I(P). Things work similarly if {B,C} does not belong to i. Therefore there is no
such i. From which it follows that Q entails all the members of I(P). Q.E.D

III. 3. 2. Predicting exhaustification
In the general case, positive answers are predicted to be interpreted as

exhaustive.
Definitions:
1. Exhaustification:
Let P be any non-negative proposition, then the function Exhaust is defined as

follows:
Exhaust(P) = {V  V∈ P and there is no valuation V' in P such that V' ⊂ V}
This operator is the propositional counterpart of Groenendijk & Stockhof’s

exhaustivity operator.
2. Positive extension of a proposition P: for any non negative proposition P,

there is a unique positive proposition Q such that P entails Q and Q entails all the
other positive propositions that P entails (i.e. Q is the strongest positive
proposition that P entails). This can be shown by using the same reasoning as
in the previous section: namely, you get Q by adding to P all the valuations that
are needed in order not to favour any negative literal. The result of this operation
I call the Positive Extension of P, or Pos (P).

Scalar Implicatures: Exhaustivity and Gricean Reasoning

 286

For any P, Pos(P) = {V  there is a valuation V' in P such that V' ⊆ V} (recall
that a valuation is seen as a set of atomic sentences)

Facts: for any non negative proposition P,
1. If P is positive, Pos(P) = P
2. Exhaust (P) ⊆ P
3. Exhaust (P) = Exhaust (Pos (P))
4. Pos (Exhaust (P)) = Pos (P)
From these facts, I prove the following theorem:
Theorem: if P is a positive proposition, then Max(P) = {Exhaust(P)}, and

therefore P implicates Exhaust(P).
Proof: let P be a positive proposition. Suppose i ∈ I(P), i.e. i is such that a

speaker who is in information state i would choose P among the set of positive
sentences. Then P must be the strongest positive proposition that i entails, e.g.
P = Pos(i) and I(P) = {iPos(i)=P}. Since Pos(Exhaust(P))=Pos(P)=P,
Exhaust(P) ∈ I(P). Let i1 be a member of I(P) such that Exhaust(P) does not
entail i1. Then there is a valuation V1 in Exhaust(P) which does not belong to i1.

Therefore V1 does not belong to Exhaust(i1), and Exhaust(P) ≠ Exhaust(i1). But
Exhaust(i1)=Exhaust(Pos(i1))=Exhaust (P), which is contradictory. Hence there is
no such i1 and Exhaust(P) entails all the members of I(P), from which it follows
that: Max(P) = {Exhaust(P)}. Q.E.D

III. 3. 3. Pair-list questions
Consider sentence (3) again (“Each of the students read Othello or

King Lear”). If (3) is understood as an answer to a pair-list question like “Which
students read which plays by Shakespeare?”, exhaustification predicts an
exclusive reading for or. Note that the translation of a certain natural language
sentence into a sentence of propositional logic will yield different results for
different underlying questions (see section III. 2.). In the case of the above pair-
list question, but not in other cases, atomic sentences represent elementary
answers of the type ‘x read y’, and (3) will be translated as something like (3’):

(3’) (A∨B)∧(C∨D) ∧(E∨F)∧……… ∧(G∨H)
Exhaustification of (3’) yields the desired result (exclusive reading for all the

disjunctions). This context-dependency explains why judgments are not uniform.
III. 4. Non-positive propositions
We have seen in I. 4. that negative answers are not exhaustified, but

nevertheless trigger some implicatures. This is straightforwardly predicted if the
alternative set of a negative proposition P consists in the closure under
disjunction and conjunction of all the literals that P favours. The asymmetry
between negative and positive answers then boils down to the fact that positive
answers are compared to all positive answers, while negative answers are
compared only to a proper subset of the negative answers.

Regarding answers that are neither positive nor negative, the data are quite
complex, and judgments are not very robust. A good strategy is to look at the

Benjamin Spector

 287

clearest cases, find which principles could account for them and then let these
principles decide for the other cases:

(11) a. Among Peter, Mary and Jack, who came ?
 b. Peter, but not Mary
>> No exhaustivity effect: we infer nothing regarding Jack
(12) a. Among the philosophers, the linguists and the chemists, who came?
 b. Between two and five linguists
>> Exhaustivity effect : we infer that no chemist and no philosopher came.
One difference between (11) and (12) is that, even though both are neither

positive nor negative, (12) is quasi-positive in the following sense:
Def 1: A proposition P strongly favours a literal L if P favours L and P does

not favour the negation of L
Def 2: A proposition P is quasi-positive if P does not strongly favour any

negative literal.
If we want to predict that only quasi-positive sentences lead to

exhaustification, we may adopt the two following rules, which cover all the cases:
If P is quasi-positive, P's alternative set consists in the union of the set of

positive propositions and {P} itself.
If P is not quasi-positive, then P's alternative set consists in the closure

under union and intersection of all the literals that P favours.
These rules make the following predictions (assuming the question under

discussion is the same as in (12)):
 (13) Between two and five linguists and no philosopher came.
>> no exhaustivity effect: nothing should be implicated regarding linguists
 (14) Between two and five linguists and three philosophers came
>>Exhaustivity effect: suggests no linguist came
(15) Three philosophers but less than two chemists came
>>No-exhaustivity effect: nothing should be inferred regarding linguists.
Though judgments are not so clear, an informal inquiry seems to indicate that

most people have the expected intuitions. More work needs to be done in order to
understand what is really going on here10.

Conclusion
I have offered a precise formalization of the gricean reasoning that underlies

scalar implicatures, and exhaustification of answers. I have shown that the facts
regarding exhaustification can be directly derived from the gricean reasoning11.

10 I do not give the proof that my two rules achieve the results I claim they do,
due to lack of space.

11 As an anonymous reviewer noticed, I have not addressed all the cases that
Chierchia pointed out as problematic for the standard neo-gricean procedure.
Once again, limitation of space prevents me from doing so. Let me mention that a

Scalar Implicatures: Exhaustivity and Gricean Reasoning

 288

The only stipulations that were needed concern the rules according to which
alternative sets are built. Yet the original notion of "scalar alternatives" is also
stipulative. It remains to be seen whether the role played by polarity (namely, the
distinction between positive and non-positive answers) can be derived in a more
principled way. I suspect that introducing a notion of utility in our model of
information processing, as Nilsenova & Van Rooy (2002) do in order to account
for the pragmatic effects of polar questions, could help explain why "positive"
and "negative" answers pattern asymmetrically. Another topic that must be
investigated is the following one: a sentence like "John will come or John and
Mary will" expresses the same proposition as "John will come", but is not
interpreted in the same way. This shows the limitations of any procedure that
only takes into account the literal semantic values of sentences, and not their
actual phonological and syntactic form. I will explore some possible solutions to
this problem.

Finally, let me point out that while the procedure I have defined is context-
dependent (since implicature computation depends on what the question under
discussion is), it is possible to devise a very similar procedure that would not be
context-dependent. These two procedures, taken together, can provide us with an
analytic tool for investigating to what extent scalar implicatures are generalized
rather than extremely sensitive to context.

Selected references
Chierchia, G., 2001, "Scalar Implicatures, polarity phenomena, and the

syntax/pragmatics interface", University of Milan, Ms.
Egré, P., Gliozzi, V. & Spector, B., “Mentioning, Involving and Favouring”,

Ms., IJN, forthcoming.
Groenendijk, J. & Stokhof, M., 1984, Studies in the Semantics of Questions

and the Pragmatics of Answers, PhD Thesis, University of Amsterdam
Nilsenova, M. & Van Rooy, R., 2002, “No’s no good alternatives”, Stuttgart

Workshop on Information Structure, Ms.
Sauerland, U., 2001, "Scalar Implicatures in Complex Sentences”, university

of Tübingen, Ms.
Van Rooy, R., 2002, "Relevance Implicatures", ILLC, Amsterdam, Ms.
Stechow, A. von & Zimmermann T. E., 1984, “term answers and contextual

change”, Linguistics, 22, 3-40
Zeevat, H., 1994, “Questions and Exhaustivity in update Semantics”, in Bunt

& al., Proceedings of the International Workshop in Computational Semantics,
Institute for Language technology and Artificial Intelligence, Tilburg.

more sophisticated version of my proposal is able to predict the phenomenon of
conditional strengthening (inference from“if A, then B”to“B if and only if A”).

289

Formalization of Morphosyntactic Features of
flective language as exemplified by Croatian

TOMISLAV STÒJANOV
Faculty of Philosophy, Zagreb
tstojan@ffzg.hr

ABSTRACT. The article is about a morphosyntactic model of Croatian language with

which help the formal processing is being approached. It presents grammatical basis of
the project ‘Machine Understanding of Croatian Language’ (MZT-RH-130440) in tagger
developing for Croatian language which is based on morphologic generator included in
Microsoft Word’s Spelling Checker (Silić, 1996). Besides the researches on the removal
of ambiguity in formal processing of natural languages, based in the first place on
qualitative (grammatical) criteria, classes of morphosyntactic units obtained by formal
analysis can also serve as a theoretical approach to the typology of word classes.

There are 15 classes of lexical units in Croatian language, divided according to 31
morphosyntactic features of 9 formal categories.

The work is divided in two parts: the first one contains a summary of formal features,
their structure and methodology applied for the division into classes of units or parts of
speech. The second part provides a concise explanation of each unit class, and points out
problematic situations with the modes applied for their solving.

It is emphasized that (i) the introduction of the full morphosyntactic constraints in the
classification of units into classes and types is possible, (ii) formal procession of natural
language could use features that traditional linguistics does not find descriptive, (iii) due
to the morphosyntactic predetermination of syntax, parsing should start from the
morphosyntactic features seen as the minimal units, (iv) every formal analysis which
takes into consideration the grammatical categorial features is marked by
language-specific approach.

1 Introduction

In morphosyntactic and syntactic sentence analysis, the acceptance of

methodology that will by its results be able to satisfy the functional coherence,
mathematical explicitness and computational efficiency is being demanded of
contemporary linguistic science more than ever. 1 Satisfying these aspirations
caused a splitting into ‘traditional’ and ‘formal’ linguistics.

1 “Fulfilling these requirements will take hard, systematic, goal-oriented work, but it will
be worth the effort.” Hausser (1999: 3)

Proceedings of the Eighth ESSLLI Student Session.
Balder ten Cate (editor)
Chapter 27, Copyright © 2003, Tomislav Stòjanov

The Formalization of Morphosyntactic Features of Flective Language

290

Applying the exact principles, grammar had to be redefined in order to solve
the same questions that were occupying the first antique grammarians – parts of
speech. Plato, Aristotle and Stoics were the first grammarians who considered the
language as the logical form of Logos [Gr. λόγος] that was resulted in
parts-of-speech dividing. (cf. Dionizije Tračanin [Dionysius the Thrax], 1995)

Computational linguistics demands as prerequisite condition well-defined
grammatical units, which is a particular problem because many linguistic terms are
not only polysemantic and imprecise, but also non-exact and non-empirical.

It is paradoxical to talk about computational linguistics without previously
defined unit of natural language – word (word form, morphosyntactic word
[Spencer 1991:45; Trask 1999:343], morphosyntactic unit, morphosyntacteme).2

The initial presumption is that it is possible to create a consistent model that
will in the first place use morphosyntactic and syntactic features in parsing, and
that will also tend towards descriptive adequacy of describing a specific language.

2 Survey of formal features

2.1 Formal features in relation to the traditional ones

Formal processing requires complete defining of values for each lexical unit by

its category features. Categorial features can be:
a) morphosyntactic (besides syntactic and other grammatical features that are not

an issue of interest here), and
b) formal.

Regarding terminology, it is worth mentioning that formal linguistics use the

terms feature and value for terms category and feature used by traditional
linguistics. Thus the feature [NUMBER] has the values [SINGULAR] and
[PLURAL], unlike traditional nomenclature in which number category is divided
into features of singular and plural.

Formal features and values are written in capital letters and in angle brackets, in
order to be distinguished from morphosyntactic categories and features.

Corbett (2000:4) says the following regarding these terminological differences:
“In many theoretical frameworks number, like comparable categories such as

2 After numerous explained theories and approaches, Spencer (1991: 453) at the end of his
book as the answer to the question “Where’s morphology?” concludes: “I conclude this
discussion with a rephrasing of this question, which will serve as the background to my
own answer to it. At various times I’ve suggested that one of the key unresolved questions
in morphology is ‘what is a word?”.
According to his suggestion, we could assume that every method unfailingly implies
theory about minimal units, and that grammarians, before their elaborating, should answer
to the basic question: what are, and which are the minimal units of their approach?

Tomislav Stòjanov

291

gender, case and person, is treated as a ‘feature’. This feature is said to have certain
‘values’ (for number, these include singular and plural, and we have already come
across others too). (...) An alternative terminology has number as a ‘category’ and
singular as a ‘property’ or ‘feature’ (...). We retain ‘category of number’ as a wider
term, to include all manifestation of number, including number words (...), as
opposed to the category of gender, tense and so on.”
Corbett does not state that terminological difference is determined by the different
methodology.

The difference between certain formal and morphosyntactic feature (gender,

for instance) is in the following:
1. formal gender can have three features: [+GENDER], [–GENDER],

[±GENDER], while morphosyntactic gender can have only one;
2. formal gender has values ([MASCULINE], [FEMININE], [NEUTER]) and

valency, while morphosyntactic gender has features (masculine, feminine,
neuter);

3. formal gender is expressed in capital letters and in angle brackets, while
morphosyntactic gender in small letters without brackets.

2.2 Structure of the formal features

Formal feature is made of two pieces of information: (i) valency and (ii) title of

the feature or value, and it is written as [xTITLE] where x represents valency or
valency feature, and TITLE the name of valency feature or valency value.
There are four possible ways to annotate formal feature:

[FEATURE], e.g. [NUMBER];
[xFEATURE], e.g. [–NUMBER];
[VALUE], e.g. [SINGULAR];
[xVALUE], e.g. [–SINGULAR].

Valency feature is the common name for univalent, bivalent, polyvalent and

extravalent features.
Bivalent features have opposite, binary, or-or value. They have a label [+] or 2v.

These are, for instance, affirmation category (affirmative and negative) and
number (singular and plural): bivalent feature [+NUMBER] has the values
[+SINGULAR] [+PLURAL].

Graphically representing, bivalent feature [+NUMBER] means (1):

Bivalency indicates that unit can have any one of the two values in the feature.

+SINGULAR
+PLURAL

The Formalization of Morphosyntactic Features of Flective Language

292

Univalent features have only one of the values (e.g. nominal gender in ‘kuća’
[Eng. ‘house’] has feminine gender exclusively, without the possibility of
masculine and neuter alteration). They have a label [–] or 1v. For instance,
univalent feature [–GENDER] has the values [–MASCULINE] [–FEMININE]
[–NEUTER].

Univalent feature [–GENDER] means:

 or or

Univalency indicates that, out of all values in the feature, unit can have only

one.

Polyvalent features have more than two values – e.g., case category that has

seven features (seven cases in Croatian). They have a label [+] or Pv. For instance,
polyvalent feature [+CASE] has the values [+NOMINATIVE] [+GENITIVE]
[+DATIVE], etc.

Polyvalent feature [+CASE] means:

Polyvalency indicates that unit can have any value in the feature.

Extravalent features have an unspecified valency – they indicate the presence

of the features only at a part of units of a certain class or non-existence of the
features in case of all units. For instance, only two verbs in third person in present
tense can have gender feature, i.e. only the verb ‘biti’ (Eng. ‘to be’) and ‘htjeti’
(Eng. ‘to want’) has the emphasis category. They have a label [±] or Ev:
extravalent feature [±EMPHASIS] has the values [±EMPHATIC]
[±NONEMPHATIC]. Information on which unit contains an extravalent feature,
and which one does not is to be found in the lexicon.

Extravalent feature [±EMPHASIS] means:

 or

Extravalency indicates that only certain lexical units in the class have the value

stated in the feature.

2.3 Valency

+NOMINATIVE
+GENITIVE
+DATIVE
+ …

+EMPHATIC
+NONEMPHATIC

–EMPHATIC
–NONEMPHATIC

+MASC.
–FEMIN.
–NEUTER

–MASC.
+FEMIN.
–NEUTER

–MASC.
–FEMIN.
+NEUTER

Tomislav Stòjanov

293

Mark [+] of some feature indicates that all lexical units of a certain type or class
have all the values of that feature well-formed (for instance, nouns have [+CASE]
because they are declined by all cases).

Mark [–] of some feature indicates that all lexical units of a certain type or class
have not all the values of that feature well-formed, i.e. they have only one value of
that feature well-formed. For instance, number nouns ‘dvojica’ (Eng. ‘two of
them’), ‘trojica’ (Eng. ‘three of them’) in [NUMBER] have only plural but not
singular form. So, they have value [–NUMBER], or in fact [–PLURAL]).

Mark [±] of some feature indicates that just some lexical units of a certain type
or class have the values of that feature well-formed, i.e. not all lexical units of a
certain type or class have the values of that feature well-formed.

We can also say like this:
[+] means that each unit in a class has all values;
[–] means that a) each unit has just one value;
 b) not each unit has all values;
[±] means that a) some units have certain feature;
 b) not all units have certain feature.

2.4 From formal features to word classes

Although it does not seem so at the first sight, implementation of formal feature

has been justified by the optimum argument of computational system. It says that it
is minimal, and thus more optimal, to place units into common classes without
repeating the same formal features.

If we classify verbs ‘napišem’ (Eng. ‘I write’), ‘napišeš’ (Eng. ‘you write’) and
‘napišu’ (Eng. ‘they write’) according to their morphosyntactic features, we can
talk about three classes,
(i) [PRESENT] [FIRST] [SINGULAR];
(ii) [PRESENT] [SECOND] [SINGULAR];
(iii) [PRESENT] [THIRD] [PLURAL],

where ‘napišem’ belongs to the first class, ‘napišeš’ to the second one, and
‘napišu’ to the third class.

More economical system would start from the fact that words are derived and
that they have their basic (conjugational or declinational) form. This way we
would place the whole paradigm into one formal class. The basic form ‘napišem’3
and all its derived present units would thus belong to the class (iv).

3 The basic form of ‘napišem’ (Eng. ‘I write’), ‘napišeš’ (Eng. ‘you write’), ‘napiše’ (Eng.
he/she/it writes’), ‘napišemo’ (Eng. ‘we write’), ‘napišete’ (Eng. ‘you write’), ‘napišemo
(Eng. ‘they write’) is not ‘napisati’ (Eng. ‘to write’), but ‘napišem’ (Eng. ‘I write’) – due to
relatively often discrepancies of the infinitive and present stem, e.g. ‘biti-budem’ (Eng. ‘to
be-I will be’), ‘žeti-žanjem’ (Eng. ‘to harvest-I harvest’), etc.

The Formalization of Morphosyntactic Features of Flective Language

294

(iv) [PRESENT] [+PERSON] [+NUMBER] [±GENDER]

If every (derived) unit would have its own class, classification form system

would get significantly compound and complicated (in case of nouns we would get
fourteen instead one class, cf. Appendix 2).

For instance, instead [+CASE] [+NUMBER] [NEUTER] for noun ‘more’ (Eng.
‘sea’), we would have (v):

(v) [NOMINATIVE] [SINGULAR] [NEUTER], ‘more’

[GENITIVE] [SINGULAR] [NEUTER], ‘mora’
[DATIVE] [SINGULAR] [NEUTER], ‘moru’
[ACCUSATIVE] [SINGULAR] [NEUTER], ‘more’, etc.

 (…)

It is assumed that language generalization (without the loss of accuracy and

purpose) represents the nature of formal processing of natural languages in better
fashion than thoroughly performed formalization that would start from each
lexical unit individually. Non-connection of lexical units into paradigms might
turn out as a flaw in later analyses. Systematization might turn out useful for future
lexicographical, morphological, discursive and other researches.

Placing of verb forms in one class is analogous to the understanding that all
case forms of a certain unit belong to the same class.

Unlike non-paradigmatic approach, by acceptance of the assumption that there
are basic and derived forms, meaning that morphology actively takes part in
computational system, instead of fourteen noun classes we get only one: [+CASE]
[+NUMBER] [–GENDER]. This way we also get a more economic formal system.

The optimum of computational system relates to the number of introduced
formal classes, or in fact the level to which formalization can be raised in relation
to its purpose.

Formal system represented in this paper indicates the acceptance of
morphology as a part of computational system, and the starting from (linguistic)
categorial features in that processing.

So, conjugation begins from the first person singular, and not from the infinitive, similarly
to declination that begins from its first, nominative form.
Present thus belongs to the separate class than infinitive and ‘glagolni prilog’ (Eng.
‘present and past verbal adverb’, kind of participle) does. See Appendix 1.

Tomislav Stòjanov

295

3 Morphosyntactic features in Croatian

3.1 Analysis of pronouns

In traditional definition, pronouns were divided into nominal and adjectival

pronouns. Nominal pronouns are personal (‘ja’, ‘ti’, ‘on’, itd.) [Eng. ‘I’, ‘you’, ‘he’,
etc.], reflexive (‘se/sebe’) [Eng. ‘myself, yourself, itself, etc.’], part of
interrogative and relative pronouns (‘tko’, ‘što’) [Eng. ‘who’, ‘what’] and part of
indefinite pronouns (all compound ones with ‘tko’, ‘što’).

Adjectival pronouns are all other pronouns: reflexive-possessive,
demonstrative, possessive, interrogative and relative (except ‘tko’, ‘što’), and
indefinite pronouns (all except those formed of ‘tko’, ‘što’). (cf. 3.4)

In Gramatičkom tezaurusu (‘Grammar Thezaurus’, Batnožić & Ranilović &
Silić, 1996) morphosyntactic criteria of gender category has caused division of
these groups into two completely individual word groups. Adjectival pronouns are
thus considered as adjectives because they have the same formal morphosyntactic
features as adjectives: polyvalent case, number and gender. Nominal adjectives are
placed as ‘real’ pronouns because they do not have polyvalent gender feature.

According to what is left from them, pronouns can be added the following
formal features and divided into four classes (vi): reflexive pronoun has [+CASE],
[–SINGULAR] [±EMPHASIS], interrogative and relative have [+CASE],
[–SINGULAR] indefinite [+CASE] [–SINGULAR], first and second person of
personal pronouns have [+CASE], [–NUMBER], [–PERSON], [±EMPHASIS],
and third person personal pronouns have [+CASE], [+NUMBER], [–GENDER],
[–PERSON], [±EMPHASIS].

(vi) 1C [+CASE] [–SINGULAR]
 (interrogative, relative and indefinite pronouns)
 2C [+CASE] [–SINGULAR] [±EMPHASIS]
 (reflexive pronoun)
 3C [+CASE] [–NUMBER] [–PERSON] [±EMPHASIS]
 (first and second person of personal pronouns)
 4C [+CASE] [+NUMBER] [–GENDER] [–PERSON] [±EMPHASIS]
 (third person of personal pronouns is included)

3.2 Analysis of numbers

Numbers are traditionally divided into nominal, adjectival and adverbial

numbers depending on the fact whether they can or cannot be changed, and if they
can be changed do they have nominal or adjectival declinable paradigm (nominal
and adjectival numbers in contrast to adverbial ones)?

The Formalization of Morphosyntactic Features of Flective Language

296

The difference between nominal and adjectival paradigm is in gender category:
nominal numbers have univalent [–GENDER] (e.g. ‘dva’, ‘oba’, ‘dvije’, ‘petero’)
[Eng. ‘two’-nom.pl., ‘both of them’-nom.pl.m., ‘two of them’-nom.pl.f., ‘five of
them’-nom.sg.n.]), and adjective ones polyvalent feature of gender [+GENDER]
(e.g. ‘dvoji/dvoja/dvoje’ [Eng. ‘two’-nom.pl.m./f./n.), ‘prvi/prva/prvo’, [Eng.
‘first’-nom.sg.m./f./n.], etc.).

Since adverbial numbers do not have morphosyntactic categories, they are
excluded from numbers, so that only nominal and adjectival numbers are
considered as numeral type.

Therefore, numbers have two classes: [+CASE], [–NUMBER] [–GENDER]
(so called nominal numbers, first class numbers, or 1C numbers) and 2C [+CASE]
[–NUMBER] [+GENDER] or adjectival numbers.

3.3 Analysis of nouns

Nouns are also various in their formal features. There are nouns (i) that have

only singular (singularia tantum) – e.g., personal names like ‘Ilija’, ‘Ines’,
‘Marko’, nouns like ‘tele’, ‘prase’ (Eng. ‘calf’, ‘piglet’), or nouns (ii) that have
only plural (pluralia tantum) – e.g., ‘gaće’, ‘grablje’, ‘ljestve’, ‘naočale’, etc. (Eng.
‘underpants’, ‘rake’, ‘ladder’, ‘glasses’), and (iii) numeral nouns like ‘dvojica’,
‘trojica’ (Eng. ‘two of them’-nom.pl.n., ‘three of them’-nom.pl.n.).

[–NUMBER] is common to all of them.
Indeclinable nouns belong to the separate class (female name ‘Ines’, for

instance).
Thus, nouns are formally divided into three classes: the first one with features

[+CASE], [+NUMBER], [–GENDER] (first class nouns or 1C nouns), the second
one with [+CASE], [–NUMBER], [–GENDER] (second class nouns or 2C nouns),
and the third one with [–NOMINATIVE] [–SINGULAR] [–GENDER] (third
class nouns or 3C nouns).

3.4 Analysis of adjectives

Adjectives are divided into four classes; they all have common features of case,

number and gender.
Except the indeclinable adjectives (e.g. ‘braun’ [Eng. ‘brown’]), all other

adjectives have difference only in comparison and aspect.
At division of adjectives into formal classes the difference between traditional

and computational linguistics is what is the most noticeable. It is most visible in
differentiation of form and meaning of adjectival aspect category (definite and
indefinite aspect). As contrary to the expectations, formal approach determines

Tomislav Stòjanov

297

adjectival aspect as a semantic category and in dealing with it acts accordingly4,
because it was not possible to establish formal classes by observing forms. Besides,
adjectives do not have different paradigms for aspect category for all their forms –
they differ in only five masculine singular cases and in three neuter singular cases,
whereas all feminine forms are equalized. Compromise was impossible since the
observation of relation between form and meaning did not bring us to the
conclusion – for instance, adjectives with definite form, e.g. ‘dalmatinski’ [Eng.
‘Dalmatian’-nom.m.sg.], ‘šivaći’ [Eng. ‘sewing’-nom.m.sg.] can be both definite
and indefinite in their meanings, whereas indefinite ‘sinov’ [Eng. son’s-nom.m.sg.]
is definite in meaning.

Abolishing of adjectival aspect as a formal category would not solve the
problem. Therefore, the following methodology was applied: definiteness and
indefiniteness are viewed as semantically determined categories that have their
own forms but cannot change them (in such a way that is a case of gender in
adjectives, for instance). Determining which adjective is definite, and which one
indefinite was done indirectly with the help of comparison category, like in Silić’
Grammar Thesaurus. Semantic analysis of Croatian language indeed prove that
only indefinite adjectives can have comparison category (since only quality is
compared, and not substance), whereby a conclusion that all comparable
adjectives are indefinite can be drawn.

It is also worth emphasizing that established formal classes could not
encompass an example of superlative in definite use5, which is explained by
semantic transformation of higher order, like even clearer example of possessive
(definite) adjectives (‘majčino mlijeko’ [Eng. mother’s milk] or ‘Ivanov auto’
[Eng. Ivan’s car]) that can be indefinite only with a special explanation of the
context.

All comparable adjectives that are therefore indefinite go into the first class. All

incomparable (definite) and possessive adjectives go into the second class. The
third class encompasses all pronominal adjectives: possessive pronominal
adjectives (e.g., ‘moj’, ‘tvoj’ [Eng. ‘my’, ‘your’]), possessive-reflexive
pronominal adjective ‘svoj’ [Eng. one’s own], interrogative and relative
pronominal adjectives (e.g., ‘tko’, ‘čiji’ [Eng. ‘which one’, ‘whose’]),
demonstrative pronominal adjectives (e.g., ‘taj’ [Eng. ‘that one’]), and indefinite
pronominal adjectives (e.g., ‘ikoji’ [Eng. ‘any one’]).
Their formal features are:
1C [+CASE] [+NUMBER] [+GENDER] [+COMPARISON] [–INDEFINITE]

4 Unlike traditional grammars that place the form on the first place although the issue of
aspect is in fact completely a semantic one.
5 ‘najpametniji neka odu’ (koji? a ne kakvi?)
the smartest-nom.m. let-particle leave-3.pl.pres. (which? not what like?)
‘the smartest ones may leave’ (who may leave? not what like may leave?)

The Formalization of Morphosyntactic Features of Flective Language

298

2C [+CASE] [+NUMBER] [+GENDER] [–POSITIVE] [–DEFINITE]
3C [+CASE] [+NUMBER] [+GENDER]
4C [–NOMINATIVE] [–SINGULAR] [–GENDER]

1C pronoun,
2C pronoun

[+CASE]

[–SINGULAR]

1C, 2C, 3C
adjectives

[+CASE]

[+NUMBER]
[+GENDER]

1C noun,
4C pronoun

[+CASE]

[+NUMBER]
[–GENDER]

2C noun,
1C number

[+CASE]

[–NUMBER]
[–GENDER]

2C number

[+CASE]
[–NUMBER]
[+GENDER]

3C noun
4C adjective

[–NOMINATIVE]

[–SINGULAR]
[–GENDER]

3C pronoun

[+CASE]
[–NUMBER]

Illustration 1. Scheme of nominal features according to case, number and gender categories

3.5 Analysis of verbs

Verbs are, unlike other words with morphosyntactic categorial features,

significantly various according to the much greater number of derived forms and it
is therefore difficult to talk about some clearly noticeable formal classes like in
case of nouns for instance. The criteria by which only two classes have been
defined (depending on conjugation of verb forms) is found on the connecting spot
of formal grammatical accuracy, optimal computational system and units listed in
Silić’ Grammar Thesaurus.

Thus verbs have six morphosyntactic categories: finiteness, infiniteness, person,
number, gender and emphasis.

Finiteness category presupposes all general (tense/mood/participle) inherent
features that can be added to individual verb lexical unit in Croatian language:
present, aorist, imperfect, imperative, verb adjective I (active participle) and verb
adjective II (passive participle).

Since compound tenses and moods do not derive from an individual verb but
are conditioned by a connection, they are not found under morphosyntax but are
regarded as syntactic or relational-motivated categories.

Out of all categories of finiteness only verb adjectives can change by gender.6
The feature of emphasis is found only in ‘auxiliary’ verbs ‘biti’ [Eng. ‘to be’]7 and
‘htjeti’ [Eng. ‘to want’]8.

6 radio/radila/radilo; viđen/viđena/viđeno
worked-present part.3.m.sg./f/n; seen-past part.3.m.sg/f/n
he/she/it worked; he/she/it is seen
7 sam/jesam
am-pres.1.sg.nonemphatic/emphatic
I am
8 ću/hoću
want-pres.1.sg.nonemphatic/emphatic
I want

Tomislav Stòjanov

299

Infinitive, verb adverb I (present) (e.g., ‘kopajući’ [Eng. ‘digging’]) and verb
adverb II (past) (e.g., ‘kopavši’ [Eng. ‘having dug’]) go into conjugatable verb
class.
1C v. [–FINITENESS] [+PERSON] [+NUMBER] [±GENDER] [±EMPHASIS];
2C verbs [–INFINITENESS].

4 Conclusion

Formal morphosyntactic analysis deals with the formalization of

morphosyntactic features of Croatian language. The aim of this paper is to work on
the frame for description of morphosyntax, i.e. inflective morphology, for the
needs of tagging and parsing.9

Unlike the traditional approach where description significantly included
semantic component, here morphosyntactic valencies have been used for
grammatical and conceptual-forming categorial features in defining of lexical
units.10

Thus instead of classical definition, adjectives are here defined as well-formed
lexical units that have categories of case (Pv), gender (Pv), number (2v),
comparison (ø/1v/Pv) and aspect (ø/1v).

Formally speaking, there are no nouns, numbers, pronouns, adjectives and
verbs in morphosyntax, but formal features that define classes. However, although
the criteria for division of types and classes is of formal nature, we still use the
marks from traditional terminology (nouns, verbs, etc.; Van Valin, 2000: 13)
which directs us to the need for further studying of syntactic as well as semantic
categorial features.

This is the basis on which it was spotted that basic division of changeable and
non-changeable forms should be replaced by division of units with and without
morphosyntactic categories. Lexical units without morphosyntactic features have
to be able to be determined with the help of syntactic categorial features.

In Croatian language, inflective forms are divided into 5 types and 16 classes.
Morphosyntactic analysis of Croatian language encompasses 46 features in 10
morphosyntactic categories

9 For more on computational application of inflective morphology see Daille, Fabre &
Sebillot (2002: 210-234)
10 “In traditional grammar, lexical categories are given notional definitions, i.e. they are
characterized in terms of their semantic content. For example, ‘noun’ is defined as ‘the
name are of a person, place or thing’, ‘verb’ is defined as an ‘action word’, and ‘adjective’
is defined as a ‘word expressing a property or attribute’. In modern linguistics, however,
they are defined morphosyntactically in terms of their grammatical properties.”, Van Valin,
Jr (2000: 6)

The Formalization of Morphosyntactic Features of Flective Language

300

Appendix 1 Division of formal morphosyntactic
features11

1. feature [TYPE] has values [1C NOUN], [2C NOUN], [3C NOUN], [1C

ADJECTIVE], [2C ADJECTIVE], [3C ADJECTIVE], [4C ADJECTIVE],
[1C PRONOUN], [2C PRONOUN], [3C PRONOUN], [4C PRONOUN],
[1C VERB], [2C VERB], [1C NUMBER], [2C NUMBER]

2. feature [GENDER] has values [MASCULINE], [FEMININE], [NEUTER]
3. feature [NUMBER] has values [SINGULAR], [PLURAL]
4. feature [CASE] has values [NOMINATIVE], [GENITIVE], [DATIVE],

[ACCUSATIVE], [VOCATIVE], [LOCATIVE], [INSTRUMENTAL]
5. feature [PERSON] has values [FIRST], [SECOND], [THIRD]
6. feature [FINITENESS] has values [PRESENT], [IMPERFECT], [AORIST],

[IMPERATIVE], [VERB ADJECTIVE I], [VERB ADJECTIVE II]
7. feature [INFINITENESS] has values [INFINITIVE], [VERB ADVERB I],

[VERB ADVERB II]
8. adjective feature [ASPECT] has values [DEFINITE], [INDEFINITE]
9. feature [EMPHASIS] has values [EMPHATIC], [NONEMPHATIC]
10. feature [COMPARISON] has values [POSITIVE], [COMPARATIVE],

[SUPERLATIVE]

Appendix 2 Survey of formal morphosyntactic
features of lexical units

1. nouns

1C [+CASE] [+NUMBER] [–GENDER]
2C [+CASE] [–NUMBER] [–GENDER]
3C [–NOMINATIVE] [–SINGULAR] [–GENDER]

2. verbs
1C [–FINITENESS] [+PERSON] [+NUMBER] [±GENDER] [±EMPHASIS]
2C [–INFINITENESS]

3. adjectives
1C [+CASE] [+NUMBER] [+GENDER] [+COMPARISON] [–INDEFIN.]
2C [+CASE] [+NUMBER] [+GENDER] [–POSITIVE] [–DEFINITE]

11 It is hard to translate the system of so-called Croatian participles. We could explain it
literally as verb adjectives and verb adverbs. Verb Adjective I is the ‘glagolni pridjev
radni’ or ‘active participle’ – e.g. ‘radio’, ‘kopao’, in English ‘worked’, ‘digged’. Verb
Adjective II is the ‘glagolni pridjev trpni’ or ‘passive participle’ – e.g. ‘ubijen’, ‘viđen’, in
English ‘killed’, ‘seen’. Verb Adverb I is the ‘glagolni prilog sadašnji’ or present participle

Tomislav Stòjanov

301

3C [+CASE] [+NUMBER] [+GENDER]
4C [–NOMINATIVE] [–SINGULAR] [–GENDER]

4. pronouns
1C [+CASE] [–SINGULAR]
2C [+CASE] [–SINGULAR] [±EMPHASIS]
3C [+CASE] [–NUMBER] [–PERSON] [±EMPHASIS]
4C [+CASE] [+NUMBER] [–GENDER] [–PERSON] [±EMPHASIS]

5. numbers
1C [+CASE] [–NUMBER] [–GENDER]
2C [+CASE] [–NUMBER] [+GENDER]

References

Batnožić & Ranilović & Silić (1996) Hrvatski računalni pravopis, MH, SYS,

Zagreb
Corbet (2000) Number, Cambridge
Daille, Fabre & Sébillot (2002) Applications of Computational Morphology. In

Many Morphologies, ed. Paul Boucher, 210-234, Somerville, MA: Cascadilla
Press

Dionizije Tračanin [Dionysius the Thrax] (1995) Gramatičko umijeće, edition and
translation by Dubravko Škiljan, biblioteka Latina et graeca, book XXXVIII,
Zagreb

Franks (1995) Parameters of Slavic Morphosyntax, Oxford
Hausser (1999) Foundations of Computational Linguistics, Man-Machine

Communication in Natural Language, Springer
Silić (1996), cf. Batnožić & Ranilović & Silić
Silić (2001) Hrvatski jezik 2, udžbenik za II. razred gimnazije, ŠK, Zagreb
Spencer (1991) Morphological Theory, An Introduction to Word Structure in

Generative Grammar, Blackwell
Tadić (1994) Računalna obrada morfologije hrvatskoga književnog jezika,

unpublished Ph.D. thesis, Zagreb
Trask (1999) Key Concepts in Language and Linguistics, Routledge
Van Valin, Jr (2001) An introduction to Syntax, Cambridge

Key words: natural language processing, computational linguistics, flective

languages, Croatian language, morphosyntax, formal features, valency features,
morphosyntactic features, word classes, tagging.

– e.g. ‘kopajući’, ‘radeći’, in English ‘digging’, ‘working’. Verb Adverb II is the ‘glagolni
prilog prošli’ – e.g. ‘kopavši’, ‘radivši’, in English ‘having dug’, ‘having worked’.

302

In Search of Theme and Rheme Pitch

Accents in Estonian

Maarika Traat
The University of Edinburgh

M.Traat@ed.ac.uk

Abstract. It has been proposed that certain pitch accents in English always
go with theme, while others always accompany rheme (Steedman 2000a), where
theme and rheme are defined in terms of contextual ”alternative sets”. The goal of
the present pilot study was exploring whether any regularities of this sort could be
found in the Estonian language, which being a ”free word-order” language, differs
considerably from English. On the basis of the data studied the shapes of the
theme and rheme pitch accents in Estonian do not seem to be remarkably different,
but the rheme accents always reach a higher maximum pitch than the theme pitch
accents in the same sentence.

1 Introduction

The present paper was motivated by the claim ((Steedman 2000a), (Steed-
man 2000b), (Steedman 2002)) that in the English language certain pitch
accents always accompany theme, while others always go with rheme. The
above raised the question whether anything of the kind could be detected
in the Estonian language.

The present paper analyses several prosodically annotated Estonian ex-
amples from information structural point of view, the principal goal being
finding out whether there are any regularities regarding the use of pitch
accents in connection with theme and rheme linguistic material.

Very little work has been done on both Estonian intonation and the infor-
mation structure of Estonian sentences. Nobody has explored the possible
connection between the pitch accents used and the information structure of
the sentence.

Word order in Estonian being considerably freer than that in English,
there is a good chance that some effects in meaning achieved by means of in-
tonation in English may be achieved by variation in word order in Estonian.
The above claim is supported by (Asu 2002) analysis of Estonian questions
according to which the intonation of the questions which use very straight-
forward morpho-syntactic marking does not differ from that of statements,

Proceedings of the Eighth ESSLLI Student Session
Balder ten Cate (editor)
Chapter 28, Copyright c© 2003, Maarika Traat

303

In Search of Theme and Rheme Pitch Accents in Estonian

while the intonation of the morpho-syntactically unmarked ones does.

1.1 Motivations behind the study of intonation

The study of intonation is interesting firstly from cognitive point of view, be-
cause the findings shed light to how people process and present information.
Secondly, the knowledge about intonation is important in speech technology
— both speech recognition and synthesis applications benefit from it. In
speech recognition intonation can make available additional information to
be retrieved from the spoken text; in speech synthesis knowing how people
use intonation helps to make the speech output more natural, and also, even
more importantly, helps to convey the intended meaning.

2 About the ”meaning” of intonation

It turns out that people use intonation in a systematic way. The intonation
contour used depends on the context and on the intended meaning of the
utterance. The same string of words uttered with a different intonation
contour can be appropriate in certain contexts while not in others. The
following example illustrates the point (the words carrying the main pitch
accent of the sentence are printed in capital letters):

(1) Q: Who taught Alexander the Great?
A1: ARISTOTLE taught Alexander the Great.
A2: *Aristotle taught ALEXANDER THE GREAT.
A3: *Aristotle TAUGHT Alexander the Great.

Even though the three answer candidates to the question in the above
example contain exactly the same string of words, only the first answer is
appropriate. The second and third answer candidate, even though convey-
ing the same propositional meaning, are not appropriate answers to the
question above. But each of them would be an appropriate answer to a
different question. Thus, intonation seems to carry some kind of ”pragmatic
meaning”.

2.1 The relationship between information structure and in-
tonation

Information structure refers to the way information is packaged in an ut-
terance. There are several proposals about the constituents of information
structure. According to (Vallduv́ı and Engdahl 1996) in spite of the big
variety of proposed constituent names, there are two main bipartite infor-
mational articulations:

304

Maarika Traat

• ground/focus division

• topic/comment division

(Vallduv́ı 1992) defines a tripartite hierarchical articulation, according to
which a sentence is composed of focus and ground, the latter being further
divided into link and tail.

The present paper uses Steedman’s (Steedman 2000a) theme/rheme, an
instance of ground/focus division according to (Vallduv́ı and Engdahl 1996),
to describe the information structure. The terms theme and rheme have
previously been used in (Mathesius 1929), (Firbas 1964), (Firbas 1966),
(Halliday 1967), (Halliday 1970).

The theme is a known, expected, or noninformative part of the sentence.
It is the link that is presupposed to the preceding discourse, or as Halliday
put it ”the peg on which the message is to hang” and the element in which
”the speaker announces his intentions” (Halliday 1970). The remaining part
of the utterance is what moves the discourse onward — the rheme — a
newsy, informative, or dominant part of the sentence. The following example
illustrates the notions of theme (th) and rheme (rh).

(2) Q1: Who taught Alexander the Great?
A1: (ARISTOTLE)rh (taught Alexander the Great.)th

(3) Q2: Who did Aristotle teach?
A2: (Aristotle taught)th (ALEXANDER THE GREAT.)rh

Intonation appears to be closely related to the information structure.
As proposed in (Steedman 2000a), (Steedman 2000b), (Steedman 2002) the
specific pitch accent or the subset of the pitch accents that can be used
in a certain position in an utterance is determined by the ”themeness” or
”rhemeness” of the part of the utterance.

Besides the choice of intonation contour, information structure can also
play an important role in determining the appropriate word order, especially
in free word order languages.

3 Some comments on related research

The works most directly related to the present study are (Steedman 2000a),
(Steedman 2000b), (Steedman 2002), where Steedman discusses his compo-
sitional approach to the information structural meaning of intonation. He
establishes there being two principal types of intonational tunes - theme
tunes and rheme tunes. According to him the most common intonation
pattern for a marked theme1 is L+H* LH% and the most common tune for

1Themes can be divided into marked themes and unmarked themes. The intonation of
an unmarked theme is ambiguous as far as information structure is concerned, and it does

305

In Search of Theme and Rheme Pitch Accents in Estonian

the rheme is H* LL%2. He also proposes that the choice of pitch accents
used conveys whether the theme/rheme is mutually agreed or not, and the
boundary tones indicate whether the speaker or the hearer is ”responsible
for” the corresponding information unit.

A practical implementation of Steedman’s information structural theory
in a speech generation application was provided by Prevost (Prevost 1995).
Prevost also examines the issue of contrastive stress, and how it influences
the choice of the word to carry the principal pitch accent in an intonational
phrase. He develops an algorithm for making this choice using alternative
set semantics.

Similarly to Steedman, Pierrehumbert and Hirschberg (Pierrehumbert
and Hirschberg 1990) pursue a compositional approach towards the meaning
of intonation. In addition they claim that:

/- - -/ a speaker (S) chooses a particular tune to convey a particu-
lar relationship between an utterance, currently perceived beliefs of a
hearer (H), and anticipated contributions of subsequent utterances.

As for the study of the intonation of Estonian language not much has
been done. Asu ((Asu 2001),(Asu 2002)) has been working out the inven-
tory of Estonian pitch accents using the approach of autosegmental-metrical
theory. But nobody has examined the relationship between intonation and
information structure.

4 A quick quide to the Estonian language

The Estonian language belongs to the Finnic branch of the Finno-Ugric lan-
guage family. It is characterised by a relatively free word order, a rather
elaborate declinational and conjugational system — nouns, adjectives, pro-
nouns, numerals have as many as fourteen cases, the verbs are used in four
different tenses, and the ending of the verb depends on the tense, person and
number. The stems of words tend to change in declination and conjugation.
Estonian has no prepositions, but there are several postpositions. Estonian
uses no articles and no gender. Word stress is always on the first syllable,
except in the case of some relatively recent loan words. Another peculiar-
ity of the Estonian language is that it makes lexical distinctions based on
quantity - the meaning of the word depends on the length of the vowel in
its stressed syllable. The vowel can have three different lengths: short, long,
very long.

(4) koli (short)
junk(nom.sing.)

kooli (long)
school(gen.sing.)

kooli (very long)
school(part.sing.)

not contrast with any previous theme. A marked theme is ”marked” by one of the specific
theme intonational tunes, and stands in contrast with a theme from previous discourse.
See (Steedman 2000a).

2This notation is taken from autosegmental-metrical theory (Pierrehumbert 1980).

306

Maarika Traat

vala (short)
pour(2ndpers.sing.imperative)

vaala (long)
whale(gen.sing.)

vaala (very long)
whale(part.sing.)

Word order in Estonian being considerably freer than that in English,
there is a good chance that some effects in meaning achieved by means
of intonation in English may be achieved by variation in word order in
Estonian.

5 Experiment

When studying intonation two approaches are possible:

• to make subjects read handcrafted examples,
• to analyse spontaneous speech data.

The positive side of the first approach is that it allows the experimenter
to have control over her data; spontaneous speech data is difficult to han-
dle because of its enormous variety and complexity. However, the in-lab
approach also has downsides - the subjects are put into an artificial envi-
ronment, and the sentences to be read are set in artificial context. This can
shed doubt to the naturalness of the results.

For the present preliminary study of the Estonian theme and rheme pitch
accents the approach using handcrafted examples was chosen. The main
reason for the choice was the desire to be able to draw conclusions from
the study of a limited amount of controlled data. Altogether 80 examples
read by a single speaker were studied. In order to put the sentences of the
experiment into context, they were presented as answers to questions. Both
marked (a clearly distinguishable change in pitch in intonation contour) and
unmarked themes were viewed. The examples contained both utterances
with theme at the sentence initial position, and those with rheme preceding
theme. Also as in Estonian both SVO and OVS word orders are possible,
examples with both word orders were studied.

The shape of the intonation contour on the stressed syllable of the word
carrying the pitch accent depends on the quantity of the vowel in the syllable.
Therefore, to be able to draw any sound conclusions, great care was taken
about having words with the same stressed syllable vowel length in theme
and rheme positions in the examples.

The following two examples illustrate the kinds of examples that were
used in the study.

(5) Q: Mina
Inom

müün
sell

maasikaid.
strawberriesacc.

Aga
But

kes
whonom

vaarikaid
raspberriesacc

müüb?
sells?

I sell strawberries. But who sells raspberries?

A1: (Vaarikaid
Raspberriesacc

müüb)th

sells
(Maarika.)rh

Maarikanom.
(OVS)

307

In Search of Theme and Rheme Pitch Accents in Estonian

(Maarika)rh (sells raspberries.)th

A2: (Maarika)rh

Maarikanom

(müüb
sells

vaarikaid.)th

raspberriesacc.
(SVO)

(Maarika)rh (sells raspberries.)th

A3: (Maarika.)rh

Maarikanom.
(S)

(Maarika does.)rh

(6) Q: Mina
Inom

müün
sell

maasikaid.
strawberriesacc.

Aga
But

mida
whatacc

Maarika
Maarikanom

müüb?
sells?

I sell strawberries. But what does Maarika sell?

A1: (Maarika
Maarikanom

müüb)th

sells
(vaarikaid.)rh

raspberriesacc.
(SVO)

(Maarika sells)th (raspberries.)rh

A2:* (Vaarikaid)rh

Raspberriesnom

(müüb
sells

Maarika.)th

Maarikaacc.
(OVS)

A3: (Vaarikaid.)rh

Raspberriesacc.
(O)

(Raspberries.)rh

The examples studied seem to indicate that in Estonian an object cannot
be placed sentence initially if it is a rheme (see 6:A2). However, an answer
to a question containing just a rheme fragment (it is the only element in the
answer, hence it is initial) is perfectly acceptable (see 6:A3).

6 Intonation contours and results

Figures (1)–(3) along with Examples (7)–(9) illustrate some of the examples
analysed. All these examples contain a marked theme — the stressed syllable
of the ”marked” word is accompanied by a rise in the intonation contour.
However, in Figure 2 the pitch rise on theme is much smaller than in the
other two figures presented. Since the tendency was the same whenever a
marked theme followed a rheme, it is probable that this rise in pitch may
have been caused by a concious effort made by the subject to always produce
marked themes as well as unmarked ones, and in reality a marked theme
can never follow the rheme (supported by the native speaker’s intuition
of the author). In order to mark the theme with intonation, it may be
necessary that it be placed also syntactically in a more prominent position,
i.e. sentence initially.

(7) (Meie
(Our

MAArika
Maarikanom

müüb)th

sells)th
(magusaid
(sweet

VAArikaid)rh.
raspberriesacc)rh.

308

Maarika Traat

Figure 1: Illustration to Example 7

Figure 2: Illustration to Example 8

(8) (Meie
(Our

MAArika
Maarikanom

müüb)rh

sells)rh
(magusaid
(sweet

VAArikaid)th.
raspberriesacc)th.

Figure 3: Illustration to Example 9

(9) (Magusaid
(Sweet

VAArikaid)th

raspberriesacc)th
(müüb
(sells

meie
our

MAArika)rh.
Maarikanom)rh.

Visually, the only remarkable persistent difference between the theme
and rheme pitch accents seemed to be the relative frequency of the maxi-
mum pitch. However, the picture was somewhat obscured by intra-speaker

309

In Search of Theme and Rheme Pitch Accents in Estonian

variability. In order to discover any other systematic differences, if present,
besides the difference in pitch, between the theme and rheme pitch accents,
we carried out several measurements. Some of the features we measured
were: the accented syllable duration in theme and rheme, the relative time
when the maximum pitch was reached, and the beginning, maximum, mini-
mum and final frequency of pitch on the main accented syllable in the theme
and the rheme part of the utterance.

The measurements confirmed the visual observation that the principal
significant systematic difference between theme and rheme pitch accents was
their relative maximum frequency. Also the pitch at the beginning of the
accented syllable was higher in the case of rheme than theme. Tables 1
and 2 illustrate the average beginning and maximum pitch of the accented
syllable for themes and rhemes.

THEME beginning pitch max pitch
marked theme followed by rheme 237.17 276.40
unmarked theme followed by rheme 220.76 226.78
rheme followed by marked theme 190.84 213.15
rheme followed by unmarked theme 198.52 200.83

Table 1. Average beginning and maximum pitch for theme

RHEME beginning pitch max pitch
marked theme followed by rheme 261.24 333.56
unmarked theme followed by rheme 272.47 329.80
rheme followed by marked theme 264.81 324.12
rheme followed by unmarked theme 282.63 324.19
single rheme 260.30 286.40

Table 2. Average beginning and maximum pitch for rheme

The difference between the maximum frequency of theme and rheme
pitch accents clearly serves the purpose of contrasting these two parts of
the utterance with each other. The rheme has to be always more prominent
than the theme. Since in the case when a question is answered using only the
rheme, there is no confusion about which part is rheme and which theme,
there is no need to use extremely high pitch. The maximum pitch in the
single rheme answers was on average about 40 Hz lower than that in the
rhemes of full sentence utterances. This observation could make us expect
to encounter a lower maximum rheme accent pitch also in the case the theme
in the utterance is unmarked, but the results of our study do not confirm
this anticipation.

310

Maarika Traat

7 Conclusions and future work

According to the results of the present study theme and rheme pitch accents
in Estonian:

• do not (need to) have a different shape. However, it is not excluded
that there might be some pitch accents not encountered in the present
study exclusively reserved for use on theme or rheme.

• differ in terms of the relative frequency of their beginning and maxi-
mum pitch.

Another observation of the present study was that it is likely that a
sentence final theme cannot be marked by a pitch accent.

As for future work, an analysis of a corpus of spontaneous Estonian
speech would be necessary to find all the naturally occurring intonation
contours used with theme and rheme. Also the interpersonal similarities
and differences in the use of intonation by different Estonian speakers need
to be examined — thus the future experiments need to include more sub-
jects, preferably unaware of the goal of the research. There has been some
skepticism about whether the context setting provided by the questions in
the examples used in the present study was enough to cause the subjects
elicit truly contrastive marked themes, therefore different ways of setting
sentences into context need to be explored. Other features besides the ones
studied in the present study need to be measured — for example, the slope
for theme and rheme intonation contours. The future study using a greater
amount of more varied data, it would be possible to present a reliable sta-
tistical analysis. Last but not least, the interplay between word order and
intonation remained out of the scope of the present paper, but there is no
doubt that this is an important issue in the case of the Estonian language
— therefore this problem also needs to be explored in the future.

References

Asu, E. L. (2001). An autosegmental-metrical analysis of estonian intonation:
preliminary results. In Proceedings of the Ninth International Congress for Finno-
Ugric Studies, Tartu, Estonia.

Asu, E. L. (2002). Downtrends in different types of question in estonian. In
Proceedings of the Speech Prosody 2002 Conference, 11-13 April 2002, Aix-en-
Provence, pp. 143–146. Laboratoire Parole et Langage.

Firbas, J. (1964). On defining the theme in functional sentence analysis. Travaux
Linguistiques de Prague 1, 267–280.

Firbas, J. (1966). Non-thematic subjects in contemporary english. Travaux Lin-
guistiques de Prague 2, 229–236.

Halliday, M. (1967). Notes on transitivity and theme in english, part ii. Journal
of Linguistics 3, 199–244.

311

In Search of Theme and Rheme Pitch Accents in Estonian

Halliday, M. (1970). Language structure and language function. In J. Lyons (Ed.),
New Horizons in Linguistics, pp. 140–165. Harmondsworth: Penguin.

Mathesius, V. (1929). Functional lingusitics. In J. Vachek (Ed.), Praguiana: Some
Basic and Less Well-known Aspects of the Prague Linguistics School, pp. 121–142.
Amsterdam: John Benjamins, 1983.

Pierrehumbert, J. (1980). The Phonology and Phonetics of English Intonation.
Ph. D. thesis, Massachusetts Institute of Technology. Published 1988 by Indiana
University Linguistics Club, Bloomington, IN.

Pierrehumbert, J. and J. Hirschberg (1990). The meaning of intonational contours
in the interpretation of discourse. In P. Cohen, J. Morgan, and M. Pollack (Eds.),
Intentions in Communication, pp. 271–312. Cambridge, MA: MIT Press.

Prevost, S. A. (1995). A Semantics of Contrast and Information Structure for
Specifying Intonation in Spoken Language Generation. Ph. D. thesis, University
of Pennsylvania.

Steedman, M. (2000a, July). Information structure and the syntax-phonology
interface. Linguistic Inquiry 31.

Steedman, M. (2000b). The Syntactic Process. Cambridge, Massachusetts: The
MIT Press.

Steedman, M. (2002, June). Information structural semantics of english intona-
tion. Draft.

Vallduv́ı, E. (1992). The informational component. New York: Garland.

Vallduv́ı, E. and E. Engdahl (1996). The linguistic realization of information
packaging. Linguistics 34, 459–519.

312

Formal Representation of Property

Grammars

Tristan VanRullen
Laboratoire Parole et Langage, CNRS - Université de Provence, Aix-en-Provence - France

tristan.vanrullen@lpl.univ-aix.fr

Marie-Laure Guénot
Laboratoire Parole et Langage, CNRS - Université de Provence, Aix-en-Provence - France

marie-laure.guenot@lpl.univ-aix.fr

Emmanuel Bellengier
LPL, CNRS - Université de Provence, Aix-en-Provence - France, and Semantia, ADER-PACA

emmanuel.bellengier@lpl.univ-aix.fr

Abstract. A problem for the development of constraint-based formalisms con-
cerns (i) the maintainability of the grammars (ii) the modification of the programs
according to this maintenance operations. We propose a solution to these dif-
ficulties by formally describing the global behaviour of the constraint satisfaction
process and by expressing mathematically the locale functioning of each constraint.
The proposed solution allows modifying the grammar without modifying the code
of the program.

1 Introduction

In this paper, we propose a formal representation of a constraint-based for-
malism called Property Grammars (presented in [Bla01]). This formalism
is totally based on constraints (also called properties): they represent all
linguistic information, which allows parsing to be only conceived as a con-
straint satisfaction problem. The aim of this article is to show that we
can provide a sufficiently well-defined logical representation of the formal-
ism. This logical representation permits to modify the grammar without
modifying programs.

We first present the role of properties in the Property Grammars formal-
ism (hereafter PG). Then we describe and build the logical representation of
PG. Finally we show a set of properties defined in the ground of a currently
developed French grammar.

Proceedings of the Eighth ESSLLI Student Session
Balder ten Cate (editor)
Chapter 29, Copyright c© 2003, VanRullen, Guénot and Bellengier

313

Formal Representation of Property Grammars

2 Constraint-based formalisms

Almost all linguistic formalism make use of the notion of constraint1 which
indicates, in its broadest meaning, a property, relying two or more objects,
that has to be satisfied. Constraints are extremely useful (and then ex-
tremely usual), both to describe linguistic information, and to control its
parsing process. Nevertheless, the room given to these constraints may dif-
fer substantially from one approach to another: in certain cases they only
form an auxiliary mechanism, though in other ones the entire theory revolves
around them.

In this section, after having explained the reasons why a totally constraint-
based approach is so valuable for natural language representation and pro-
cessing, we will illustrate some of the problems it states through the case of
current linguistic formalisms and indicate how the PG formalism allows to
resolve some of these problems.

2.1 The role of constraints in current linguistic theories

From an implementation point of view, constraints present several restric-
tions of use. More precisely, if parsing can easily be considered as a con-
straint satisfaction problem, it is obviously much more complicated to con-
cretely implement this idea. Most of contemporary approaches claim to
really implement their parsing algorithm as a constraint satisfaction prob-
lem. Their way to represent it is (roughly) to specify a set of variables, their
domain and a constraint system; the satisfaction mechanism consists then
in constantly verifying the consistency of this system. Although, the main
outcoming problem comes from the specification of the constraint variables,
that usually defines high-level structures and/or partially constructed ob-
jects, and thus prohibits an immediate access to their values. More precisely,
one can distinguish sequential methods on the one hand, which makes use of
rules systems and constructs separately different representation levels (like
in [PS93]), and incremental methods on the other hand, in which parsing
is considered as a parallel process (like in HPSG: see [PS94]). In the for-
mer, one has to select, among the convergent (well-formed) derivations, the
optimal one; in this approach, constraint satisfaction is necessary but not
sufficient to evaluate grammaticality. In the latter, typically a constraint-
based one, one has to replace the set of rules by an interactive constraint
system (see [Pol96]), which allows a more direct connection between the
grammar theory and its implementation.

1For example, see [SW99] concerning HPSG, [PS93] or [AL97] concerning Optimality
Theory, and [DT99] or [Mar98] concerning Constraint Dependency Grammars.

314

VanRullen, Guénot and Bellengier

2.2 The role of constraints in Property Grammars

Actually, we think that the implementation problem we have just pointed
out comes from the incompatibility of classical generative interpretations
with a totally constraint-based approach. We put forward in this paper a
parsing framework, based upon PG, allowing to handle this difficulty by
maintaining scrupulously a direct connection between linguistic theory and
computational interpretation (cf. [JL99]). Thus, similar concepts are used
both in a linguistic and in a computational outlook, which avoids developing
multiple ad hoc (and therefore limited) parsing solutions. Moreover, this
constraint satisfaction perspective allows to handle incomplete data, and
therefrom to conceive, at last, a unique robust parser so as to deal with
unrestricted texts, being able to treat, at least partially, any kind of input.

In PG, constraints play both roles to represent information, and to con-
stitute the centre of the parsing process. Moreover, building a local structure
is not necessary for the verification of the constraint system. Finally, this ap-
proach relies on the notion of characterization1(in place of grammaticality),
which allows the verification of properties on any kind of input (including
non-grammatical ones).

In this model, all information concerning relations between categories
is represented by means of a set of (unordered) constraints. Basically, we
currently use the following set of properties for the description of a large-
scale grammar for French (under development): requirement (cooccurrence
between categories or sets of categories), exclusion (cooccurrence restric-
tions between categories or sets of categories), linearity (linear precedence
constraints), dependency (lexical or semantic relations), obligation (a list
of possible heads of a category2), and uniqueness (one category cannot oc-
cur twice). These properties are introduced in the table 1. Every property
contains some clauses that express relations between the mentioned cate-
gories or sets of categories. The parsing result (i.e. the characterization) is
composed of two lists: the first one (P+) contains the satisfied clauses, the
second one (P−) contains the violated clauses.

Each property has got its own satisfaction mechanism. The following
enumeration of each property’s satisfaction mechanism is the basis for the
developments driven in the next section. Properties express constraints over
the input (during the parsing process) by means of logical hybrid clauses
where variables are terms referencing the tokens with optional feature pat-
terns waiting to match the tokens’ features. In the following descriptions,
an available term defines a term matching up a token and its features. More
information about these notions can be read in the next section.

In this section, we have shown the handling of constraint satisfaction in
current constraint-based formalisms, and in Property Grammars. We will

1A characterization is the state of the constraint system at the end of the parse.
2Possible heads of a category can also be handled by the dependency properties.

315

Formal Representation of Property Grammars

see in details below how the difficulties we have seen can be solved with PG.

Property Semantics of the Property’s clauses Sample clauses

Requirement
term1 ⇒ term2

if term1 is not available then
the clause is not available;

else
if term2 is not available then

put the clause in Pi− (violated);
else

put the clause in Pi+ (satisfied);
end if

end if

For the category “Adj”
(adjective or adjectival phrase):

Adj ⇒ Adj or Adv or Coord ∗

(i.e. in an adjectival phrase, an adjective
requires the presence of another adjective
or an adverb, or a coordonner)

*: Such a clause is not a tautology because
left and right “Adj” are two different variables

Exclusion
term1 �= term2

if term1 is not available then
the clause is not available;

else
if term2 is available then

put the clause in Pi− (violated);
else

put the clause in Pi+ (satisfied);
end if

end if

For the category “Adj”
(adjective or adjectival phrase):

Coord �= Adv or Vparticiple

(i.e. in an adjectival phrase, a coordonner
cannot co-occur with an adverb
or a participle verb)

Linearity
term1 � term2

if term1 is not available or term2 is not
available then

the clause is not available;
else

if term1.rank ≥ term2.rank then
put the clause in Pi− (violated);

else
put the clause in Pi+ (satisfied);

end if
end if

For the category “NP” (noun phrase)

Det or Num � Noun or Adj or Adv

(i.e. in a noun phrase, a determiner or a
numeral must occur before a noun, an
adjective or an adverb)

Dependency
term1 ≈ term2

if term1 is not available or term2 is not
available then

the clause is not available;
else

if term1.feature �= term2.feature
then

put the clause in Pi− (violated);
else

put the clause in Pi+ (satisfied);
end if

end if

For the category “NP” (noun phrase):

Noun{gender} ≈ Det{gender}
Noun{number} ≈ Det{number}

(i.e. in a noun phrase, a noun and a
determiner must agree in gender and
number)

Table 1: Formal description of the properties’ satisfaction mechanism

3 Logical and mathematical background

3.1 Parsing with constraints

Before exploring the main point of this section, an overview of former works
on parsing with PG should demonstrate the advantages of retrieving a logi-
cal frame in their mechanisms. Parsers programmed in the paradigm of PG
have in fact been built with different goals and for different uses: some to
permit speech synthesis (see [BH01]), others to parse large corpora or to
extract rich information (see [BGV03]), and some to test the PG formalism
and to compare it with other ones (see [BV02]). We can distinguish them
in terms of determinism, deepness, dynamism, as well as in terms of pro-
gramming language, heuristics and complexity. This is the way we usually
compare parsers. In the current consideration, the only comparison will be

316

VanRullen, Guénot and Bellengier

done in terms of genericity. From shallow parsers to deep ones, many make
use of logico-mathematical fundaments and each program offers its own in-
terpretation (see for different examples [BM01] and [BBV02]). With CHR
or PROLOG rules, with graphs, trees or tables, heuristics are intimately
linked to data structures and generally to the formalism’s implicit semantic
fundings.

The observation of how the already built parsers deal with constraints
and with the evolution of the formalism itself allows to catalogue their sim-
ilarities and principles. Such an inventory can lead to find neither general
nor universal rules, but a formal system of constraint mechanisms, homo-
morphic with other potential systems. The following points characterize the
parsing processes with PG, whatever the program and its heuristics:

• Parsers use bottom-up, tree walking strategies with a pattern matching
step for constraint satisfaction.

• It is possible to enumerate different kinds of patterns to match:

– constants, such as feature values, to recognize in the inputs,

– variables referencing linguistic tokens,

– variables referencing tokens’ features (even domains of these fea-
tures),

– second order typed calculus functions expressing relations and
constraints over patterns.

• Several common points in the mechanism of the properties allowing a
generalization of their writing.

Writing a generic parser based on these points can now be imagined.
This is what we explain hereafter.

3.2 Computational perspective

Many constraints interfere simultaneously for the choice of the grammar’s
constraints representation. The problematic governing these constraints
should be given in epistemological terms (so that a large overview of re-
lations between linguistic models and theories is kept), as in mathematical
terms (by choosing a model, totally representative of its set of objects with-
out implicit knowledge, and canonical for the treatments it allows). As
shown on figure 1, different representations of a grammar lead to different
outputs, which can differ in their organisation, but which should contain the
same (or similar) information. Choosing one kind of representation is thus
a procedure driven by a need of genericity.

Another question in the choice of a representation is given by the com-
putational perspective: a program that would have to be changed (partially

317

Formal Representation of Property Grammars

or totally) anytime the grammar changes, would be too heavy to maintain
and to develop. That is why between different kinds of representations, for
a given grammar, we have to choose the simplest and the one that avoids
ad hoc programming.

The convergence point for these requirements can only pass through a
logical and mathematical consideration:

• Firstly to describe the global behaviour of constraint satisfaction in the
chosen formalism, by giving the set of mathematical objects needed
for this description. This will be directly used to program the specific
tools able to deal with the grammar.

• Secondly to express the local functioning of each kind of clause to be
satisfied. This part consists in writing the constraints by using the ob-
jects of the same mathematical set as hereupon. In the computational
perspective, this task will lead to write a separate file containing the
mathematical description of each kind of constraint to be satisfied.

Figure 1: Need of genericity for grammar representations and of similarity
between outputs of a given treatment

4 Building a constraint description

4.1 Levels of logic and hybrid constraint systems

Constraints in PG are not hierarchical, but are organized like sets of clauses.
Each set of clauses is called a property. All clauses of all properties have
similar characteristics even if their behaviour is different, that is why it will
be possible to enumerate and define a set of attributes necessary for all
properties. All clauses belonging to a property have the same satisfaction
procedure, which can be expressed using the second order logic and typed
calculus.

As clauses are expressed according to an input and make reference to cat-
egories of the grammar, we must define the grammar and the input before

318

VanRullen, Guénot and Bellengier

expressing the clauses, which can be done in an extended Backus-Naur Form.

- Grammar G ::=
[[set C of Categories],
[set D of property definitions]]

Let card(C) be the cardinality of C, let ci (i∈ [0. . . card(C)]) be the ith

category of C,

- Category ci ::=
[name of the category (label),
[set of Properties Pci],
[set Mci of features]]

Grammatical categories can be lexical categories (like noun, verb, etc.)
as well as syntagmatic categories (NP , V P , PP , . . .). The sets of features
are not described here, because their importance is minimal for the logical
representation of properties. An input for the grammar is a vector of het-
erogeneous information, supposed to describe enough each parsed token:

- Input Ir ::=
[a word (label),
r (rank order, position in the sentence)∈ [0. . .∞[,
a disambiguated category cr belonging to C,
[a set Mcr of features]]

Each property given for each category in the grammar is a set of prop-
erty clauses (called clauses because of their satisfying procedure, but we can
define them as truth functions over hybrid second order arguments). We can
separate the enumeration of the clauses of a property from the definition of
a property’s behaviour (which does not depend on the category).

- Property Pc ::=
[Name of the property (label),
[a set Kpc of clauses]]

A given clause kpc in a given property p of a given category c can be
defined like a set of terms:

- Clause kpc ::=
[ordered set T of ap terms]]
(ap, the arity of a clause is defined hereunder)

- Term t ::=
[Reference or Logical expression]

319

Formal Representation of Property Grammars

- Reference ρ ::=
[Name of the referenced category (label)∈ C,
[a pattern of features Mρ (optional)]]

- Logical Expression E ::=
[Logical operator O,
[a set of term (its cardinality agrees with O’s arity)]]

A property definition furnishes the symbol (name) of its clauses (e.g.
the symbol for a clause of linearity is �) and describes the context of their
satisfiability with a mathematical expression. The cardinality of the set of
clauses can be fixed or variable, and an order relation between the clauses
of a property may have to be observed (see table 1).

With the definitions given here, we can now write the main definition (for
this article), dealing with the goal of mathematical and logical genericity.
- Property definition dp ::=

[Name of the property (label),
Symbol for its clauses (label),
(ap (arity of the clauses)∈ (0, 1, 2 . . .) (finite integer),
Expression of satisfiability Ep for the clauses,
cardinality of the set of clauses (fixed or not) ∈ (0, 1, 2 . . .∞),
a boolean Ordered ∈ (true, false)]

The expression Ep describes how a clause can be satisfied in a property
p by using second order logic and typed calculus (see below). Consider-
ing a grammar description as a preliminary for a parsing process, we can
define some characteristics of the references and the logical expressions, in
accordance with a supposed input characteristics:

Definition 1. availability of a reference: A reference has to be inter-
preted as a variable declaration; a variable has a name and refers to an
existing category of the grammar. It can also be sub-defined by describing
a pattern of features referring to the category’s set of potential lexical or
semantic features. During the parse, an input will be presented to each
variable referring to it. If the input features match the variable pattern, the
reference is then declared available.

Definition 2. availability of a logical expression: A logical expression
is available when all of its terms are available.

Notation:
Let t1, t2, ti, . . . tap be the terms of a clause in Kp verifying i ∈ [1. . . ap].

Definition 3. availability of a term: We define a truth value ωi (avail-
ability of a term i) which is true when the term ti, is available and false
when not available (a term can be a logical expression or a single reference).

320

VanRullen, Guénot and Bellengier

Definition 4. availability of a clause: According to the semantics of
each property p, the availability of a clause kp is a logical expression Ω of
the ap truth values (ω1, ω2, ωi, . . . , ωap) such as Ω(ω1, ω2, ωi, . . . , ωap) ⊃
(kp is available).

Definition 5. satisfiability of a clause: A clause can be evaluated as
satisfied or not when and only when it is available. An available clause is
satisfied if its terms verify a given condition over its terms Ψ(t1, t2, ti, . . . ,
tap). Because a term consists in a reference or in a logical expression based
on references, all available information in these references can be used in
the expression of the condition Ψ, like the rank of the ith token or even a
function of potential values or features of the inputs.

We now can write the definition of an expression of satisfiability:
- Expression of satisfiability Ep ::=

[Truth function of availability Ω(ω1, ω2, ωi, . . . , ωap),
Condition of satisfiability Ψ(t1, t2, ti, . . . , tap)]

4.2 Definition of some properties

Requirement

name = “Requirement”
symbol of clauses = ’⇒’
arity of clauses = 2

Satisfiability of clauses =
availability = ω1 ∧ ω2
satisfiability = ’true’

cardinality = ∞,
ordered = false

Exclusion

name = “Exclusion”
symbol of clauses = ’�=’
arity of clauses = 2

Satisfiability of clauses =
availability = ω1 ∧ ¬ω2
satisfiability = ’true’

cardinality = ∞,
ordered = false

Linearity

name = “Linearity”
symbol of clauses = ’�’
arity of clauses = 2

Satisfiability of clauses =
availability = ω1 ∧ ω2
satisfiability = t1.rank < t2.rank

cardinality = ∞,
ordered = false

Dependency

name = “Dependency”
symbol of clauses = ’≈’
arity of clauses = 2

Satisfiability of clauses =
availability = ω1 ∧ ω2
satisfiability = t1.feature < t2.feature

cardinality = ∞,
ordered = false

Table 2: Formal description of properties with the introduced notations

321

Formal Representation of Property Grammars

The table 2 expresses the semantics of properties in the grammar, corre-
sponding to the table 1. It presents the advantage of being extensible. With
the introduced notions, it will be possible to describe semantic or prosodic
phenomena without building new parsers. With the fundaments described
here, the pattern matching step still has to be defined in a compatible formu-
lation, which will be possible by designing data structures like graphs where
nodes and edges carry dynamic semantic objects. In this direction, several
computational paradigms propose realizable solutions, like classical CSPs,
parallel processing, reactive machine and hybrid models or graph walking.
Our current work is based on the third one. It should lead to a deep parser
with variable granularity (see [BBV02] and [OCC+00]).

5 Conclusion

Constraints offer several advantages, both for linguistics and computational
reasons. We have seen that a Property Grammar representation can express
constraints directly over categories and use constraints at any level of the
parsing process.

We have shown that a well defined logical representation of the proper-
ties allows the modification of the grammar without any modification of the
program (in a parsing strategy). Property Grammars seem to be a satisfying
tool for the representation of linguistics information and for a computational
implementation. The perspective of working with hybrid constraints within
the formalism added to the possibility of relaxing violated constraints with-
out giving up the parsing process will be decisive in the future of symbolic
parsing paradigm.

322

VanRullen, Guénot and Bellengier

References

[AL97] Diana Archangeli and Douglass Terence Langendoen, Optimality theory,
Blackwell, 1997.

[BBV02] Jean-Marie Balfourier, Philippe Blache, and Tristan VanRullen, From
shallow to deep parsing using constraint satisfaction, Proceedings of
the 27th International Conference on Computational Linguistics (COL-
ING’02), 2002, pp. 36–42.

[BGV03] Philippe Blache, Marie-Laure Guénot, and Tristan VanRullen, Corpus-
based grammar development, Proceedings of Corpus Linguistics 2003,
2003, pp. 124–131.

[BH01] Philippe Blache and Daniel Hirst, Aligning prosody and syntax in prop-
erty grammars, Proceedings of EuroSpeech 2001, 2001.

[Bla01] Philippe Blache, Les grammaires de propriétés : des contraintes pour le
traitement automatique des langues naturelles, Hermès Science, 2001.

[BM01] Philippe Blache and Franz Morawietz, A non-generative constraint-
based formalism, Travaux Interdisciplinaires du Laboratoire Parole et
Langage d’Aix-en-Provence 19 (2001), 11–26.

[BV02] Philippe Blache and Tristan VanRullen, An evaluation of different shal-
low parsing techniques, Proceedings of LREC-2002, 2002.

[DT99] Denys Duchier and Stefan Thater, Parsing with tree descriptions: a
constraint-based approach, Proceedings of Sixth International Work-
shop on Natural Language Understanding and Logic Program-
ming(NLULP’99), 1999.

[JL99] David Johnson and Shalom Lappin, Local constraints vs. economy,
CSLI, 1999.

[Mar98] Hiroshi Maruyama, Structural disambiguation with constraint propaga-
tion, COLINGACL’98, 1998.

[OCC+00] Stephan Oepen, Ulrich Callmeier, Ann Copestake, Dan Flickinger, and
Robin Malouf, Scalable grammar software for computational linguists,
Proceedings of the 38th Annual Meeting of the Association for Compu-
tational Linguistics (ACL’00), 2000.

[Pol96] Karl Pollard, The nature of constraint-based grammar, Proceedings of
the 10th Pacific Asia Conference on Language, Information and Com-
putation (PACLING’96), 1996.

[PS93] Alan Prince and Peter Smolensky, Optimality theory: Constraint inter-
action in generative grammar, Rutgers University Centre for Cognitive
Science, 1993.

[PS94] Karl Pollard and Ivan Sag, Head-driven phrase structure grammars,
CSLI, Chicago University Press, 1994.

[SW99] Ivan Sag and Tom Wasow, Syntactic theory. a formal introduction,
CSLI, 1999.

323

	Title and preface
	1. John Beavers and Andrew Koontz-Garboden
	2. Henrik Bjorklund and Sven Sandberg
	3. Ondrej Bojar
	4. Jerome Cardot
	5. Rui Pedro Chaves
	6. Willem Conradie
	7. Benoit Crabbe
	8. Fabio Del Prete
	9. Anca Dinu and Liviu P. Dinu
	10. Judit Gervain
	11. Joost J. Joosten
	12. Jan Kluka
	13. Gisela Krommes
	Introduction
	The Logic LSS
	Decidability of LSS
	Complexity
	Conclusions and Future Work
	References

	14. Wouter Kuijper and Jorge Petrucio Viana
	15. Florin Manea
	16. Helene Manuelian
	17. Alessandro Mazzei
	18. Ryan T. McDonald
	19. Boris Mitavskiy
	20. Juan Antonio Navarro Perez
	21. Sergey Nikolenko and Alexander Sirotkin
	22. M. Magdalena Ortiz de la Fuente
	23. Radek Pelanek
	24. Franco Raimondi
	25. Hyunjung Son
	26. Benjamin Spector
	27. Tomislav Stojanov
	28. Maarika Traat
	29. Tristan VanRullen, Marie-Laure Guenot and Emmanuel Bellengier

