The AGILE system!

Jiri Hana

Contents
1 Introduction
2 User’s point of view
2.1 Sampletext . . . . . . e e e e
2.2 Creating the text model . . . . . . . . ... ..
2.3 Generation . . . . . . ... e e e e e
3 General structure of the system
4 T-Box & A-Box
4.1 T-BOX . . . o e e
4.2 A-DOX . .. e e e e
5 Text and sentence planners
5.1 Text-planner . . . . . . . ..o
5.2 Sentence-planner . . . . . .. ..o Lo e e e e
6 Grammar
6.1 A Grammar in KPML . . .. .. .. 0
6.2 Grammarsin Agile . . . . . ...
6.3 Lexicon . . . . . . . e e e e
6.4 Morphology . . . . . . . . e e
6.5 Example — Cardinal Numerals . . . . . . . . .. ... oo
6.5.1 Analysis . . . . . ...
6.5.2 Implementation . . . . . . . . . ... L
7 Evaluation
7.1 Usability of the system . . . . . . . . . . ... Lo
7.2 Text quality — acceptability . . . . . . . . . ... Lo
7.3 Text quality — grammaticality . . . . . . .. .. ... oo
7.4 Linguistic coverage . . . . . . . . . . ...
8 Acknowledgement

pean Commission, Grant No. PL961104.

40

40
40
40
41

45

45
45
49

50
50
52

52
53
95
56
o7
o8
o8
99

63
63
65
65
65

66

!The work reported in this paper has been supported by the INCO-COPERNICUS Programme of the Euro-



1 Introduction

The AGILE (Automatic Generation of Instructions in Languages of Eastern Europe) system is a
tool for generating continuous instructional passages found in CAD-CAM manuals in Bulgarian,
Czech, Russian and English. The only necessary thing is to specify the content of these passages
in a language-independent content model. The system then generates various sections of the
CAD-CAM manual (user’s guide, quick reference, overview, etc.) in selected languages and
selected styles (personal or impersonal).

This paper begins with a description of the system from the user’s point of view including
the creation of a simple content model. In the next chapter the general structure of the system is
described. The following chapters discuss individual parts of the system — first the T-Box, then
the text and sentence planners, finishing with grammars, lexicons and morphological modules.
Finally, the paper presents results found during the evaluation of the system.

2 User’s point of view

In this section, we describe the system from the user’s point of view, leaving as much technical
details as possible for the following sections. First we present an example of the text aimed by
the project, then creation of a simple content model and finally the generation process and its
results are described.

2.1 Sample text

As stated before, the system is suitable for generating texts found in CAD-CAM manuals.? A
sample English text is shown in Figure 1.

The system is able to produce texts of various styles (Full Instructions, Short Instructions,
Functional Description, Overview, Table of Contents) and styles (Personal or Impersonal).

2.2 Creating the text model

The author of the texts, user of the Agile system, has to provide necessary information about
the instructions to be expressed by the generated manuals.

This information, the content model of the manual, has the form of an A-box (see section 4.2)
— a semantic description organized in Attribute Value Matrixes (AVM’s). For each described
task, it is necessary to specify its Goal and Methods for achieving it. A Method contains again
a list of tasks, which, however are simpler than the original one — the recursive decomposition
ends when the task is simple enough to leave the methods unspecified. This organization mirrors
the standard structure of describing tasks in software manuals.

The author first creates a new model and clicks the start button — a procedure with un-
specified attributes (see the screenshot in Figure 33, or the screenshot in Figure 2). Instead of
values, the slot of each attribute specifies only their types. In the Editor, obligatory attributes
have red slots.

The author first clicks the goal slot and selects draw from the menu (see Figure 4). After
that the model will have structure shown in Figure 5. Then s/he has to specify the actee
(patient) of the drawing — i.e. the line. S/he clicks the actee slot and selects the line item from
the menu.

2The system (Lexicons and Domain model) is prepared for generating AutoDesk AutoCAD manuals, however
the effort of modification for other CAD/CAM products should be minimal.

3The depicted interface is in English, however the user can select between Bulgarian, Czech, English and
Russian. All menus and dialogs, but also names, types and values of attributes appear in the selected language.
The language of the interface is not dependent on the language(s) selected for generation.



To create a multiline style

1. First open the multiline Styles dialog box using one of these methods:

e Windows: From the Object Properties toolbar or the Data menu, choose
Multiline Style.

¢ Dos and Unix: From the Data menu, choose Multiline Style
2. Choose Element Properties to add elements to the style.
3. In the Element Properties dialog box next to Offset, enter the offset of the line element.
4. Select Add to add the element.
5. Select an element.
6. Choose Color. Then select the element’s color from the Select Color dialog box.
7. Select an element.
8. Choose Linetype. Then select the element’s linetype from the Select Linetype dialog box.

9. Choose OK to save the multiline element style and exit the Element Properties dialog
box.

Figure 1: Sample text in English

Now the author has completed the specification of the goal of the task and can proceed with
specification of the methods. Each method describes one alternative way for achieving the goal
(e.g. by mouse or keyboard). In our example, there is only one method: defining its start and
end points. Therefore, the list of methods will contain only one item.

The author first clicks the methods slot — it will be filled by a list of methods (menu does
not appear, because there is nothing to select) with one method prefilled.

The author has to specify steps of the method — first step will model define its start point,
the second one will model define its end point. The important thing in this two tasks is that
the owner of the start and end points is the same line as the line in the goal of the top-level
task. Therefore instead of inserting new instances of the line concept, the author has to paste
a link to the line used in the goal of the top-level task. In the editor, the coindexed instances
have the same identifier (the funny letter + number following the name of the concept).

Finally the model will look as in Figure 6.

2.3 Generation

When modeling, let’s say, a chapter in a CAD/CAM manual, it is necessary to build similar (but
most likely more complex) models for each described task — e.g. opening a drawing, creating a
drawing and saving a drawing. Once these models are completed, the system can generate the



procedure

goal action
methods  list of methods
side-effect event

Figure 2: An empty content model

[+ Model Display Window =]

File Edit Generate

Model: undef

actiot —

list of methods

e ent

Figure 3: The editor with an empty content model




I Model Display Window =] Eq

File Edit Generate
VDU EL WIIUE] :I

add
add tao
apply-property
change component
chooge

click,

cloze zoreen object
create

define

dizplay
double-click
BT
edit

end lineg

enter

enter fram

jutify

OpEn

open zcreen object
press

prirk

quit bacl

repeat steps

return b

zave

zhnap

gpecify component
ghart line

1 I gtart tool
|F|: Instance Righ zwitch mode

o

Figure 4: Filling the goal




procedure
goal

methods
side-effect

draw
actee graphical object

list of methods

event

Figure 5: The model with the filled Goal

side-effect

Figure 6: The final sample mode

_procedure
[ draw
goal actee line
[list of methods
[ method
precondition procedure
—steps
[ procedure
define
goal actee [start point ]
owner line
location data object
methods methods  list of methods
steps | side-effect  event
[ procedure
define
end point
goal actee [owner line ]
location data object
methods  list of methods
| side-effect  event
e_vent




[+ Select generation languages

— Langnames —otyle
[T Bulgarian {* Persomal
[v Czech (™ Impersonal
[ Bussian {” Persomal Indicative
[ English
— Thype —3ide affects - Full Instr. Text only
v Crmeriewr {* Explicit
[¥ Long nstructions " DImplicit
[¥ Shert Instactions
[T Fo Functional Description
[T Co Functonal Description

) | _ancel

Figure 7: The Select generation preferences dialog box

texts. Using the dialog in Figure 7 the author can specify desired languages, types* and styles
of the generated text.

The result is presented as a HI'ML text in an Internet browser. The output corresponding
to our example is displayed in Figure 8 for Czech and in Figure 9 for Bulgarian.

3 General structure of the system

The structure of the system can be found in Figure 10.

First the A-box (content model) is specified in the content model editor. Then the text plan
gets the A-box an creates a corresponding text plan, which structures the specified text. On the
basis of the text plan, the sentence planner produces sentence plans for individual sentences.
These SPLs are then passed to the grammar, which finally produces the text. The text planner,
the sentence planner and grammars are implemented in the KPML environment ([1]. T-box is
consulted by all these three modules.

4 T-Box & A-Box

4.1 T-Box

The terminology-box or T-box (see [16], [17]) specifies types of objects that can occur in the
worlds described by the Agile texts. The T-box is similar to a type system in typed programming

“The Table of contents is generated automatically, an Overview is available only for a set of tasks, not for a
single one



-3 CZECH - Microsoft Internet Explorer 10| =|

J File Edit ‘iew Favorites Tools  Help ﬁ

|« =D A BEIESE - 7|ik>
J Address I@ D:yagileFinal agile\Aboxestpaper-CZECH. html ""I E‘;?GD

Titre of generation Generation lanouages: :I
20:32:10 2205 2001 Bulgarian Czech Fussian
Generation styles: Text tyrpes: Long Instractions e—-—"
FPersonal ahort Instnactions ;I
s Dlouhe L
. Dlouhé instrukce
o Ereslend
ssetky | Kresleni usecky
o Kratke
nstrukce

o MNeprve defingte pocateéni bod

e Iri_fﬁflﬁﬂi usecky, a pak definute koncowy
nsecky bod nzecky

Kratke instrukce

Kresleni usecky

1. Definyte pocatetn bod tsecky.
2. Definyte koncovy bod Gsecly.

4 |+
|@ Done | | |@ My Computer i

Figure 8: Generated text of the sample model in Czech




3 BULGARIAN - Microsoft Internet Explorer (=]

J File Edit ‘“iew Favorites Tools  Help ﬁ

&= -= - A @EF BD-5H -3 |Links & »
J-':'-ddrESS @D:'l,.ﬂ.gileFinaI'l,agile'l,.ﬂ.hu:u:-:es'l,paper—EH_lLG.ﬂ.RIP.N.html ~| a0

Time of generation : 20:32:01  Generation languages: Bulgarian :I
22.05.2001 Czech Fussian
Text types: Long Instractions Shott

Generation styles: Personal

Insttuctions

o [lrnHH
HHCTDVEIIHH

o YepTade
Ha

HECTOVEIHH

o YepTame
Ha
NTHHHA

Kl ]

L]l |

I bJaHH HHCTPYRIIMHT

quTﬂHE Ha JJHHHH

o OTHagano gehHHHpafiTe HadanHAaTA
TOHKA Ha THHHATA B gedunHpaite
¥pafHaTa ToYKA Ha THHHATA,

Kparkn
HHCTPYKIUH

quTﬂHE Ha JJHHHH

1. HedwoupaiiTe HaganHaTa TOYKA Ha
THHHATA.

2. HebuuupaiitTe ¥padHaTa TOYKA Ha
THHHATA.

|@ Done

s M |

| | |@. My Compuker

Figure 9: Generated text of the sample model in Bulgarian



Internet Browser

Figure 10: The structure of the system

languages like C++ or Java or to a signature in HPSG. It is a set of concepts organized in a
hierarchy by the “superconcept” relation. A concept can have one or more superconcepts.
Each concept defines the attributes® of its instances — relations to other objects. Some of the
attributes are obligatory, some optional.

The Agile T-box has two parts:

e Penman Upper Model (see [2]) — general part, that specifies and classifies abstract notions
like “quality”, “process”, etc., which are linked to natural language syntax (e.g. “quality”
to the adjective, “process” to the verb).

e Domain model — specific part, that specifies the concepts for modelling CAD/CAM ap-
plications like “multiline”, “command line”, etc. The objects are classified by various
criteria (whether they can be displayed on the screen, whether they are components of
other objects, etc.). The Domain model is linked to the upper model (all domain model
concepts are transitively subconcepts of some upper model concepts). This linkage spec-
ifies constraints on their linguistic realization.

A fragment of the Agile T-box is given in Figure 11.

SExplicitly or by inheritance from superconcepts



Bases-Root

UM-Thing
Object
Nondecomposable-object Upper-Model
|
CAD-CAM CAD/CAM-Model
Displayed-Object Unique-Object Component-Object Labelled-Object

Configured-Object GUI-Object

Graphical-Object Data-Object

Unique-Graphical-Object Unique-Data-Object Labelled-GUI-Object
Line-object /\ /N
Line  Multi-line  Poly-line Drawing File Button Icon  Menu

Figure 11: Fragment of the Agile T-box

4.2 A-box

A structure using instances of concepts from the T-box is called A-box (Assertion-box). It is
very similar to a feature structure in HPSG.6

In Agile we use A-boxes for modeling instructional texts found in CAD/CAM manuals.
Using Agile interface to build an A-box modeling a simple instruction was described in the
section 2.2. Such an A-box has to be an instance of the concept Procedure (or set/list of
Procedures) — see Figure 12.

A procedure specifies its goal, methods (i.e. alternative ways) how to reach the goal and
side-effect of achieving the goal (e.g. displaying a message). Trivial procedures do not need to

6 A HPSG feature structure is a directed graph with labeled nodes and edges. The labels on its nodes represent
types (concepts) from the signature (T-box), the labels on its edges represent names of attributes.

However, in addition to the signature, a HPSG feature structure has also to satisfy a set of other constraints;
there is nothing like that in Agile. They are also differently used. In HPSG, feature structures are used as
universal data structures modeling both semantics and phonology of the text. For the aim of generation, you
(simply put) specify the part of the feature structure containing the semantics of the generated text. Then
all feature structures containing this fragment and satisfying the grammar are found — the input is a partially
specified feature structure, the result is a set of fully specified feature structures.

In Agile, an A-box is used only for specifying the semantics of the generated text, other levels of description
use different data structures. Therefore, when an A-box inputs the generation process, it is fully specified.



Concepts Procedure and Method informally

concept Procedure subconceptOf Instruction-Scheme
goal :: User-Action
methods®P® :: list(Method)
side-effect®P' :: User-Event

concept Method subconceptOf Instruction-Scheme
constraint®® :: Operating-System
precondition®® :: Procedure
substeps :: list(Procedure)

Real code of concepts Procedure and Method

(define-concept PROCEDURE (INSTRUCTION-SCHEME)
((GOAL :type USER-ACTION)
(METHODS :type METHOD-LIST :optional T)
(SIDE-EFFECT :type USER-EVENT :optional T)))

(define-concept METHOD* (INSTRUCTION-SCHEME)
((CONSTRAINT :type OPERATING-SYSTEM :optional T)
(PRECONDITION :type PROCEDURE :optional T)
(SUBSTEPS :type PROCEDURE-LIST)))

Figure 12: Concepts Procedure and Method

contain methods for their achievement. In fact, every nontrivial procedure has to be recursively
decomposed in such trivial ones. A procedure does not simply contain a list of steps (simpler
procedures), instead it specifies a list of methods each describing one alternative way (e.g. using
keyboard, menu or toolbar, or different methods for different operating systems).

5 Text and sentence planners

The text structuring module (TSM, see [7] or project reports [12], [8], [4] and [9] ) has two
parts: a text planner and a sentence planner.

The text planner gets an A-box (content model) as input and yields a text plan that struc-
tures the specified text. The text plan consists of text plan elements that are related to the
parts of the A-box they plan. On the basis of the text plan, the sentence planner produces
sentence plans (SPL expressions, see 6.1) for individual sentences. These SPLs are then passed
to the grammar.

5.1 Text-planner

A text plan structures the supplied A-box. It is a tree whose leaves point to individual parts
of the A-box. It also specifies discourse relations that hold between these parts. A sample text
plan is depicted in Figure 13.



IHASYL
Llllllll.
SHSHASYI-HOTILONALSHT
_ FHASYL
FHEHOTLONALSHI-ASYL S P HATTAYH-AOHAND IS

FFHAS0ANA-15d-I1 fFHEIHID-dTTdvH-I3HANDAS

EHASYL
F e HdTavH- FoHANh IS
EHSMSVI-HOILONALSHI-AIVvdvdas FERISEI A-aTTIvH- AOHANDAS

ZHEMSVI-HOILONAISHI
I
THSHOTLONALSHI-ASYL

JTHSHOIIONALSHI -MSVI - AL VIvdds

I —————O

THITITII-ASYL

dOHALHAS

ydein 2iniinns

Figure 13: A sample text plan



The sentence plan is formed by the so called text structure elements. There is a simple
mapping between these elements and the configurational concepts’ used in the content model.
The realization of text structure elements is driven by text templates. By constraining linguistic
means of realization of the text structure element, they determine the style of the corresponding
text.

For example the heading has various form in various languages:

En: To draw a polyline. (1)

Bg: Chertaene na  polilinija (2)
Drawing-Nominal of Polyline-Indef

Cz: Kreslent krivky (3)

Drawing-Nominal Polyline-Gen

Ru: Shtoby  narisovat’ poliliniju (4)
in-order draw-Inf  Polyline-Acc

Therefore the text template for Bulgarian and Czech has to specify that the heading will be
realized as a nominal group, whereas the English and Russian ones will require the use of the
infinitive construction. Text templates also constrain the layout by specifying HTML tags (e.g.
heading or numbered list).

The text planner may also impose other constraints specified by the user of the system —
for example whether the side effects of actions are realized or not.

In addition to the described structure consisting of text structure elements, it also dis-
tinguishes some discourse relation. Used discourse relations are motivated by the Rhetorical
Structure Theory (RST, see [14]). These relations are part of the used Upper Model. Examples
of such a relation are Manner or Purpose.

Along with a text plan the text planner also builds a discourse model (see [11] or [10]). This
discourse model is used by the sentence planner to determine whether an item was mentioned
in the preceding context and should therefore be contextually bound, or whether it should be
contextually nonbound.

5.2 Sentence-planner

The sentence planner receives a tree-like text plan with small pieces of the A-box in its leaves.
Each of these pieces of the A-box essentially corresponds to a clause. The sentence planner first
translates these pieces of the A-box into SPL expressions, each specifying a clauses and than
aggregates them into bigger SPLs, each specifying a sentence. When deciding whether and how
to combine clauses into sentences, the sentence planner is driven by relations imposed by the
text planner (discourse relations, coordination, sequences). For an example of a non-aggregated
an aggregated text, see Figure 14.

The created SPL’s also contain constrains determining their contextually appropriate infor-
mation structure. This reflects the discourse relations between clauses and the discourse model
built by the text plan. The generated sentence reflects these constraints by word order and by
referring expressions (pronouns and articles).

6 Grammar

The grammars of the Agile system are implemented in the KPML enviroment ([1]). Each
grammar gets a set of SPLs from the sentence planner and yields corresponding sentences. In

"This means a procedure and a method and lists of them — see 4.2.



To save a document under a different name
1. Select the Save As command from the File menu.
2. Enter the file name in the File name box.

3. Click the OK button.

To save a document under a different name, select the Save command from the File menu, enter
the file name in the File name box, and click the OK button.

Figure 14: Aggregation example

this section we first describe some general issues of the KPML grammars, then mention some
of the Agile specifics. After that, we discuss lexicons and morphology modules. The section
closes with a simple case study (implementation of a quantified nominal groups).

6.1 A Grammar in KPML

A KPML grammar gets an SPL expression (see Figure 15 or Figures 19, as input and yields a
syntactic structure as output (see Figure 20). Usually only the list of terminals of this structure
is considered as output.

A grammar in the KPML system is organized in a network. The syntactic tree of the
generated sentence is recursively built by successive traversals through it — for each® inserted
nonterminal one traversal through the grammar is performed.

The network is a set of systems which are for organization reasons grouped into regions.
We will now describe structure of systems on a sample system — see Figure 16. For the rest of
this paper we use a simpler informal notation for describing grammar systems® — see Figure 17.
This system asks SPL if polite or personal addressing should be used, and inflectifies the verb
appropriately.

Each system has a unique name (Indicative-Politeness-Type). The string Addressee-
-Subject in input conditions means that the system Indicative-Politeness-Type is entered
after passing the grammatical feature (see the next paragraph) Addressee-Subject, present in
another system (Indicative-Interactant-Subject). The input conditions can be more com-
plicated — features can be connected by conjunction and disjunction (negation is not available).
For example the input condition (NumerativableCases and More-Than-Four) in the system
Numerative means that the system is entered only if during the traversal of the grammar both
features NumerativableCases and More-Than-Four are passed. During each traversal of the
grammar every system is entered at most once depending on its input conditions.

Every system contains at least one grammatical feature (Polite-Indicative, Personal-
-Indicative). If there is more than one feature, KPML has to decide which one is entered.
There are two main ways how to do it:

1. Run the chooser belonging to the system

81f not conflated with another one — see the conflate operator below
®The Name of the chooser is omitted because there is a convention that it is simply the name of the system
affixed by “-chooser”



2.

(EXAMPLE

:NAME SAMPLE-1

:GENERATEDTFORM "Uzivatel nakresli dvé dseCky."
: TARGETFORM "Uzivatel nakresli dvé uselky."
:GLOSS (

(:ENGLISH "The user draws two lines.")
(:LIT "user-IS3 draw-S3 two-FP4 line-FP4") )
:LOGICALFORM
(S / DM: :DRAW
:ACTOR
(AR / DM: :USER
:CONTEXTUAL-BOUNDNESS YES
:IDENTIFIABILITY-Q DM: :IDENTIFIABLE)
:ACTEE
(AE / DM::LINE
:QUANTITY 2
:CONTEXTUAL-BOUNDNESS NO))
:SET-NAME SAMPLES

Figure 15: A sample SPL

Preselect specific features during the traverse through the grammar when the parent of
the current node was generated. In such a case the preselection has higher priority over
the chooser.

Simply put, a chooser is a decision tree with names of features in its leaves and inquiries
in the non-terminal nodes. Inquiries can contain any Lisp code and are used to consult T-Box,

SPL,

lexicon, etc. The inquiries can also modify the syntactic structure — for example: find an

appropriate lexical entry for a terminal node.
A feature can contain various operators that are used to constrain the generated tree:

insert Node — inserts new node Node under the current node
conflate Node; Nodes — conflates (coindexes) two nodes (daughters of the current node)

preselect Node Feature — when generating Node, the grammatical Feature will be entered

inflectify Node Form — Forms are collected for Node and are available to the morphol-
ogy afterwards (see 6.4)

classify Node LexicalFeature — restricts lexical realization of Node to the lexicon items
having LericalFeature among it’s features (see 6.3)

out-classify Node LezicalFeature — opposite to classify

lexify Node Lemma — Node will be lexically realized as Lemma (used especially for
functional word — prepositions, conjunctions, etc.)



(SYSTEM
:NAME Indicative-Politeness-Type
:INPUTS Addressee-Subject
: 0UTPUTS
(
(0.5 Polite-Indicative
(INFLECTIFY Finite Number-Pl-Form))
(0.5 Personal-Indicative
(INFLECTIFY Finite Number-Sg-Form))
)
:CHOOSER Indicative-Politeness-Type-Chooser
:REGION Mood

Figure 16: System Addressee-Subject

Indicative-Politeness-Type (Addressee-Subject)
[Polite-Indicative]
Inflectify Finite Number-Pl1-Form
[Personal-Indicative]
Inflectify Finite Number-Sg-Form

Figure 17: System Addressee-Subject in the informal notation

e ordering operators — various operators used to order daughters of the current node

The presented operators (esp. preselect) allow information to be passed only in the top-
down direction. Moreover, for example, for the subject-verb agreement in Czech it is necessary
to pass information about the gender from the subject to the finite verb — its parent. However,
when it is possible to restrict the verb, the gender of the subject is not known, because the pass
through the grammar for subject did not occur, therefore the subject was not lexicalized and
the (grammatical) gender of the subject cannot be determined. When the subject is lexicalized
and the gender can be inspected, it is impossible to restrict the verb.

Therefore during the development of the project an additional agreement operator was
implemented. Using this operator it is possible to connect a finite verb with its subject and to
ensure that necessary inflection of the verb occurs when the subject enters specified grammatical
features.

6.2 Grammars in Agile

We needed grammars for all the three target languages (plus English). As a basis we used a
large scale English grammar (Nigel: see [13]). The modifications of this grammar were driven by
priorities determined by a corpus-based contrastive analysis of original texts in target languages
performed in the early stage of the project.

For each phenomenon determined by the corpus analysis (transitivity, agreement, word-
order, quatification, etc.), we did:

1. Evaluation of the current state of the grammar



2. Grammar specification — at least covering the corpus, but as general as possible
3. Grammar implementation for one language
4. Adaptation to other languages

The multilinguality of the resources has been one of the main goals of the process, taking
advantage of the similarities between the typologically similar languages. This approach sig-
nificantly increased the time of development. We expected to find many common parts in the
grammars of the three Slavic languages, but were surprised by the amount of features shared
between them and the English one.

6.3 Lexicon

SPL formula contains a specification of concepts. Language resources contain a list of lexical
items for each concept. If there is more than one lexical item, grammar can impose further
constraints to select between them.

That is very useful, because the morphological modules (see section 6.4) contain derived
words as single entries. Thus aspectual pairs, deverbative nouns and deverbative adjectives are
listed separately. For example, in the Czech grammar, the concept DM::draw is annotated with
four lexical items: the perfective verb (nakreslit), the imperfective verb (kreslit), the perfective
deverbative noun (nakresleni) and the imperfective deverbative noun (kresleni). If the grammar
claims a noun and imperfective aspect, ‘kresleni’ is used, if it wants a verb and imperfective
aspect, ‘kreslit’ is used.

This is ensured by the following:

1. The cadcam-dm-LEX-annotations-cz.annot file, the file linking domain concepts to Czech
lexical items, includes:'0:

(annotate-concept DM::draw :lex-items
(:Czech kreslit nakreslit kresleni2 nakresleni2))

2. In the lexicon there are, inter alia, the following four lexical items:

(LEXICAL-ITEM
:NAME nakresleni?2
:SPELLING "nakresleni"
:FEATURES (noun common-noun nominalization-noun
countable neuter perfective)

(LEXICAL-ITEM
:NAME nakreslit
:SPELLING "nakreslit"
:FEATURES (verb do-verb effective-verb disposal-verb
transitive perfective)

0Because internally some components of the system require ASCII letters we used the so called Ruslan
notation: 2 means the accent aigu, 3 means the hacek (inverted circumflex): a2 = 4, ¢3 = ¢.



(LEXICAL-ITEM
:NAME kresleni?2
:SPELLING "kresleni"
:FEATURES (noun nominalization-noun common-noun
countable neuter imperfective)

(LEXICAL-ITEM
:NAME kreslit
:SPELLING "kreslit"
:FEATURES (verb do-verb effective-verb disposal-verb
transitive imperfective)

3. The system responsible for selecting aspect:

Aspect (Independent-Clause And (Not-Conation Or Infinitive-Conation))
[Perfectivel
Classify Process Perfective
[Imperfectivel
Classify Process Imperfective

4. The systems responsible for nominalization or verb.

6.4 Morphology

Bulgarian, Czech and Russian are languages with a relatively rich morphology (especially the
latter two). To reuse existing resources, all three languages employ an external morphological
module. We will describe the Czech module and mention briefly the Bulgarian and Russian
ones afterwards.

As a core for the Czech morphological module, we have used morphological generator written
by Jan Haji¢ ([3]). It has a very large morphological database containing more than 800k of
lemmas producing more than 15M of word forms. For convenience and copyright reasons, we
used a smaller database containing only words occurring in the generated texts. However,
technically it is possible to use the big database just by replacing one single file.

Parts of the morphological module are lisp interface and two dlls. A scheme of the interaction
of the parts is shown in Figure 18.

The morphgen.lisp module contains two parts:

e Mapping of the AGILE morphological features to the so-called positional tag. Positional
tag is a string of 15 characters where each character corresponds to one morphological
category (the unused categories are substituted by ‘~’). The function goes through the
list of morphological features obtained from the KPML system (added by the inflectify
operator — see 6.1) and tests one morphological category after another. If the value for the
category is present in the list, the corresponding position in the tag is set to corresponding
value, otherwise it is set to ‘—'.

e Interface to the C functions in morph.dll: for this purpose the Harlequin fli (Foreign
language interface) library is used.



KPML morph.dll
lemma C
+
morphgen pos. tag interface . generator
LISP -
form

pos. tag compact tag

l ! \

tagTransl.dll Morph. DB
C++

Figure 18: Czech Morphological module

The module morph.dll encapsulates the morphological generator. It receives the request
from the morphgen module consisting of a lemma (base form) and a positional tag. It asks the
tagTranslation.dll module to translate the positional tag to the so-called compact tag and then
sends a lemma and a compact tag to the generator, which returns the generated form. If the
form is not returned by the generator, the tagTranslation.dll is asked for a less specific tag and
tries it once again'!

The Bulgarian grammar reused an existing morphological module written in Object Pascal.
The interface at the KPML side is a modification of the Czech one. The Russian grammar
reuses existing module written in Lisp.

6.5 Example — Cardinal Numerals
6.5.1 Analysis

There are several anomalies in the declension of counted objects following a numeral in Czech
and Russian.

In Czech, when the numeral is above four and the whole group should be in nominative or
accusative, only numeral is in that case but the counted object is in genitive. The other cases
are regular.

Dua body zmazely.

Two-INom points-IPINom disappeared-IP13.

‘Two points disappeared.’ (5)
Pét bodi zmizelo.

Five-Nom points-IP1Gen disappeared-NSg3.

" This is necessary because the generator sometimes uses underspecified tags but the tags from Agile Czech
grammar are fully specified. For example for the past tense form “délala” (done) the generator uses a tag
with the meaning it is either feminine singular or neuter plural (compact tag VRQXA corresponding to posi-
tional tag VpQW---XR-AA---, but our grammar uses for “délala” two distinctive tags. (VpFS---XR-AA--- or
VpNP---XR-AA---, 3rd position is gender — Q = {F, N }, 4th is number - W = {S, P})



‘Five points disappeared.’ (6)

For complex numerals higher than four but with the last component one — four, there are
two possibilities:

Dvacet dva bod zmizelo.
Twenty-Nom two-INom points-IP1Gen disappeared-NSg3.

Dvacet dva body zmazely.
Twenty-Nom two-INom points-IP1Gen disappeared-NSg3.

‘Twenty two points disappeared.’ (7)

There are other irregular points in this subject, however they are not important for the
Agile project; for more information see [6].

In Russian, the distinction above-four versus below-five and nominative-accusative versus
other cases is also important. If the nominal group is in nominative or accusative the counted
object is in genitive; if the numeral (or the last part in a complex numeral) is two, three or
four, the counted object is in singular, otherwise it is in plural. In other cases the behavior is
regular. Similarly to Czech, there are other exceptions (animate vs. inanimate) that are not
important for the Agile project. To summarize:

if (nominal group in nominative or accusative)
counted object in genitive;
if (last part of the numeral is 2, 3 or 4)
counted object in singular,

else
counted object in plural.
else

normal behaviour
Dve tochki 1zchezls.
Two-FNom points-FSgGen disappeared-PI3.
‘Two points disappeared.’ (8)
Pjat’ tochek 1zchezlo.

Five-Nom points-FP1Gen disappeared-NSg3.
‘Five points disappeared.’ (9)

6.5.2 Implementation

For space reasons we describe only the implementation for Czech. The implementation for
Russian is analogous (see [19])

Before implementing these phenomena, the system inflectifying Thing for case has the fol-
lowing form:

Thing-Case (Nominal-Group)
[Thing-Case-Nom] inflectify Thing Case-Nom-Form
[Thing-Case-Gen] inflectify Thing Case-Gen-Form
[Thing-Case-Dat] inflectify Thing Case-Dat-Form
[Thing-Case-Acc] inflectify Thing Case-Acc-Form



[Thing-Case-Voc] inflectify Thing Case-Voc-Form
[Thing-Case-Loc] inflectify Thing Case-Loc-Form
[Thing-Case-Ins] inflectify Thing Case-Ins-Form

Selection between features is driven by preselection from higher rank (e.g. by inspecting the
valency frame of the verb). There can be statement preselect Subject Thing-Case-Nom.

However, in some cases we want a different behavior. The inflection for nominative and
genitive will occur only if nothing special happens (there is no numeral higher that 5). This
will be ensured by three groups of systems:

1. System determining wish of the higher rank (Thing-Case)
2. Systems determining if special conditions occur

3. Systems performing real inflection using previous systems as input
First, the system determining wish of the higher rank:

Thing-Case (Nominal-Group)
[Thing-Case-PreNom]
[Thing-Case-PreGen]
[Thing-Case-PreDat]
[Thing-Case-PreAcc]
[Thing-Case-PreVoc]
[Thing-Case-PreLoc]
[Thing-Case-PrelIns]

The system is similar to the previous version of the system Thing-Case, but it has a different
names of features and the inflection was removed. The higher rank has to use use preselections
with Thing-Case-PreNom, etc. instead Thing-Case-Nom, etc. Idea behind the names of the
features Thing-Case-PreNom/Gen/...:

1. It will be nominative/genitive/.. ., if nothing special happens (Currently, changes can
happen only for nominative and accusative).

2. Tt is not the only way how realize this case (Currently only for genitive).

Now we come to the second group — to the systems determining if genitive should be used
instead of nominative or accusative.

To simplify input conditions in the rest of the systems we merge the features Thing-Case-
-PreNom and Thing-Case-PreAcc into the feature NumerativableCases:

NumerativableCases (Thing-Case-PreNom or Thing-Case-PreAcc)
[NumerativableCases]
The following system determines if the Thing is numerified:

Numerified-Numerativable-Fork (NumerativableCases)
[Numerified-Numerativable]
[Not-Numerified-Numerativablel]



The chooser selecting between two features uses the existing inquiry Quantification-Q,
which looks into the SPL and determines whether Thing has quantity ascription.

(CHOOSER
:NAME Numerified-Numerativable-Fork-Chooser
:DEFINITION ((ASK (Quantification-Q Thing)
(NonQuantified (CHOOSE Numerified-Numerativable))
(Quantified (CHOOSE Not-Numerified-Numerativable))))

If the object is numerified, the following system will determine if the number is higher than
4:

More-Than-Four-Fork (Numerified-Numerativable)
[More-Than-Four]
[Not-More-Than-Four]

The system uses the following chooser, inquiry and inquiry implementation:

(CHOOSER
:NAME More-Than-Four-Fork-Chooser
:DEFINITION ((ASK (More-Than-Four-Fork-Q ONUS)
(More-Than-Four (CHOOSE More-Than-Four))
(Not-More-Than-Four (CHOOSE Not-More-Than-Four))))

)
(ASKOPERATOR
:NAME More-Than-Four-Fork-Q
:DOMAIN KB
:PARAMETERS (Item)
:ENGLISH (G
:OPERATORCODE KPML: :Cz-More-Than-Four-Q-Code
:PARAMETERASSOCIATIONTYPES (Concept)
:ANSWERSET (Not-More-Than-Four More-Than-Four)
)

(defun cz-More-Than-Four-Q-Code (item)
"Is greater than 47"
(LET
((N (FETCH-SUBC-FEATURE ’Quantity item)))
(IF (Numberp N)
(IF (> N 4) ’More-Than-Four ’Not-More-Than-Four)
’Not-More-Than-Four



Line ((N (FETCH-SUBC-FEATURE ’QUANTITY ITEM))) gets the argument of :quantity in
the SPL and stores it into the variable N; if it is greater than 4, More-Than-Four is returned
(therefore inquiry returns More-Than-Four, therefore the chooser chooses feature More-Than-
-Four), otherwise Not-More-Than-Four is returned (therefore inquiry returns Not-More-Than-
-Four, therefore the chooser chooses feature Not-More-Than-Four).

The following two systems partition numerativable cases into two paths:

1. Numerative — numerative case (genitive) will be used

2. Not-Numerative — proposed case will be normally used

Numerative (NumerativableCases and More-Than-Four)
[Numerative]

Not-Numerative (NumerativableCases and
(Not-Numerified-Numerativable or Not-More-Than-Four))
[Not-Numerative]

Finally we have to implement the inflection. We have all the information we need and thus
we can simply inflectify depending on input conditions:

Thing-Case-Nom (Thing-Case-PreNOM and Not-Numerative)
[Thing-Case-Nom] inflectify Thing Case-Nom-Form

Thing-Case-Gen (Thing-Case-PreGen or Numerative)
[Thing-Case-Gen] inflectify Thing Case-Gen-Form

Thing-Case-Acc (Thing-Case-PreAcc and Not-Numerative)
[Thing-Case-Acc] inflectify Thing Case-Acc-Form

For unproblematic cases the the systems are simple:
Thing-Case-(C) (Thing-Case-Pre(C))

[Thing-Case-(C)] inflectify Thing Case-(C)-Form
where (C) € {Dat, Voc, Loc, Ins}

With having all this systems implemented, the grammar for the sentence plan depicted in
Figure 19 yields the structure in Figure 20.



(EXAMPLE
:NAME Quant-Q-3
:set—-name Quant

:generatedform  "UrZete sedm bodu."
: TARGETFORM "Urcete sedm bodu."
:GLOSS
(:ENGLISH "Specify 7 points."
:LIT "Specify-P2 7-XX4 points-FP2.")
:LOGICALFORM

(S / DM: :SPECIFY
:SPEECHACT IMPERATIVE
:ACTEE (P / DM::POINT :QUANTITY 7 )

Figure 19: SPL for the sentence in Figure 20

7 Evaluation

During the project we performed a rigid evaluation of the system in two steps:
e Evaluation of intermediate prototype in 1999 (see [18])
e Evaluation of the final prototype in September 2000 (see [5])

The evaluation of the intermediate prototype served especially as a feedback for us, to find
the weakest points of the system to be able to focus on them in the second phase of the project.
In the following paragraphs we focus mainly on the evaluation of the final prototype — it was
more elaborate and rigid.

Evaluation addressed the following points:

e System usability — by IT specialists (programmers, students, professors)
o Text quality
— Acceptability — by professional translators/writers of technical texts
— Grammaticality — by linguists
e Linguistic coverage

We now describe each part of the evaluation in more detail.

7.1 Usability of the system

Usability evaluation was performed in parallel at all sites. The evaluators were IT specialists
(six at each site), some of them having experience from intermediate prototype evaluation.
The evaluation consisted of two main stages:

1. Training of AGILE concepts and in the use of the system. Conceptual Tutorial and
Training Manual (describing creation of a sample content model step by step) were used.



M Generated 5 tructure _ O] x|

Structure Graph  Color selection

SEMTEMNCE =
ﬂ
WOICES {naminal-group
LEXERBS thing-case-preacc}
FROCESSY DIRECTCOMPLEMENT/
FINITE SoAL
{do-verb FAEDILINA
effective-verh
disposal-verb
perfective
{number-pl-form
imperative-form
person-second-farm}
_'_'_,_,_,—o—'—"
uréete fcardinalguantityl  THING
temperer-gender-i  {outclassify-propernoun
temperar-case-acc}  noun COmmon-noun
MUMERATINVE countable}
{gender-i-form
case-gen-form
noun
nurnber-pl-form}
o
TEMPERER bodd
{genderi-farm
case-acc-form}
—_—
sedm
1| | »

N

|L: Selection expreszsion; B: Stuctural conzstraintz inspection memL.

Urcéete sedm bodui.
Specify seven-Acc points-Gen.
‘Specify seven points.’

Figure 20: Accusative with numeral above 4



2. Evaluation proper — each evaluator received five tasks — to edit or create simple or complex
models; each task had its time limit. Each evaluator used the system in his/her native
language. To test multilinguality, one model was started at one site, than sent to another
site, and finished there.

The resulting models were compared to the ideal model and all errors were precisely classified
and statistically processed. In general, the structure of the models was correct. Most of the
errors can be classified as “typos”. However, in some cases evaluators wrongly created multiple
instances of a concept instead of multiple pointers to a single instance (which is important for
topic-focus articulation and anaphoric reference).

The system interface was judged by evaluators as sufficient to create all desired models,
but slow, non-standard and lacking many (especially time-saving) functions common in other
development environments. Evaluators especially pointed out that intuitively small changes in
existing models are too complicated to realize.

7.2 Text quality — acceptability

The group of evaluators consisted of native speakers experienced in writing or translating soft-
ware manuals (six persons at each side). They were told that the texts were produced by
a (human) translator. A four-point rating scale was used: Excellent, Good, Poor, Terrible.
Evaluators also compared the Full Instructions with texts from real manuals (without knowing
which one is which).

Functional Descriptions, Full Instructions and Quick References were rated Excellent to
Good, while Overviews, were rated Good to Poor. The very encouraging message for the
AGILE team was that often (especially in Czech) the generated Full Instructions text was
rated better than the original manuals. In Czech, quality was rated as the same in 35% of
cases, the manual was better in 24% and the generated text in 41%.

7.3 Text quality — grammaticality

For each of the three languages, we obtained judgments from two linguists (native speakers).
They received all of the running-text types (Overviews, Full Instructions, Quick Reference texts
and Functional Descriptions). For Bulgarian and Russian, the text types were available in two
styles: Personal and Impersonal. For Czech, three styles were available: Personal Indicative
(stiskneme), Personal Explicit (stisknéte) and Impersonal Explicit (stiskne se). For all three
languages and styles, the texts were generated from the same Model Set.

The evaluators did not find any grammatical errors, but word order issues. However, even
these errors were considered to be of stylistic rather than syntactic nature.

7.4 Linguistic coverage

During the development of the system, we employed a method that was both instance-oriented
and system-oriented. The primary goal was coverage of the sub-language of CAD-CAM manu-
als. However, we tried to be as general as possible. The system covers all the target text and
large part of instructional passages in (software) manuals (Of course disregarding the lexicon
and concepts). The most restricting component of the system are the configurational concepts
of the T-box. The grammars are able to generate a much larger set of expressions than the
Agile A-box is able to specify.



8

Acknowledgement

I would like to thank the whole AGILE team, especially Hana Skoumalova, Ivana Kruijff-
Korbayova, Geert-Jan Kruijff, and John Bateman.

References

[1]

3]

[8]

[9]

John A. Bateman, KPML Development

Environment, GMD-Studien 304, GMD
Forschungszentrum, Informationstechnik
GmBH, , 1996.

John A. Bateman, R. Kasper, J. Moore, and
R. Whitney, A general organization of knowl-
edge for natural language processing: the Pen-
man Upper Model, Tech. report, USC/ISI, |,
1990.

Jan Haji¢ and Barbora Hladka, Probabilistic
and rule-based tagger of an inflective language
— a comparison, Proceedings of ANLP’97,
1997, pp. 111-118.

Tony Hartley, Ivana Kruijff-Korbayovd, Geert-
Jan Kruijff Danail Dochev, Ivan Hadjiiliev,
and Lena Sokolova, Text structuring specifica-
tion for the final prototype, Tech. report, ITRI,
University of Brighton, United Kingdom, Jan-
uary 2000.

Tony Hartley, Donia Scott, Ivana Kruijff-
Korbayova, Serge Sharoff, Lena Sokolova,
Danail Dochev, Kamenka Staykova, Martin
Cmejrek, Jiff Hana, and Elke Teich, Evalua-
tion of the final prototype, Tech. report, ITRI,
University of Brighton, United Kingdom, Oc-
tober 2000.

Petr Karlik, Marek Nekula, and Zdenka
Rusinova, Priruéni mluvnice céestiny, Nakla-
datelstvi Lidové Noviny, Praha, 1997.

Geert-Jan  Kruijff and Ivana Kruijff-
Korbayova, Text structuring in a multilingual

system for generation of instructions, In
Matousek et al. [15], pp. 89-94.

Geert-Jan Kruijff, Ivana Kruijff-Korbayova,
and John Bateman, The text structuring mod-
ule for the intermediate prototype, Tech. re-
port, ITRI, University of Brighton, United
Kingdom, July 1999.

Geert-Jan M. Kruijff, Ivana Kruijff-
Korbayova, Serge Sharoff, Ivan Hadjiiliev,
Lena Sokolova, and Michael Boldasov, Flexible
text structuring for the final prototype, Tech.
report, ITRI, University of Brighton, United
Kingdom, June 2000.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

Ivana Kruijff-Korbayova, John Bateman, and
Geert-Jan M. Kruijff, Generation of contextu-
ally appropriate word order, Information Shar-
ing (Kees van Deemter and Rodger Kibble,
eds.), Lecture Notes, CSLI, in prep.

Ivana Kruijff-Korbayova and Geert-Jan Krui-
jft, Handling word order in a multilingual sys-
tem for generation of instructions, In Ma-
tousek et al. [15], pp. 83—88.

Ivana Kruijff-Korbayovd, Geert-Jan Kruijff,
John Bateman, Danail Dochev, Nevena Gro-
mova, Tony Hartley, Elke Teich, Serge Sharoff,
Lena Sokolova, and Kamenka Staykova, Spec-
ification of elaborated text structures, Tech.
report, ITRI, University of Brighton, United
Kingdom, April 1999.

W. C. Mann and C. M. I. M. Mathiesen,
Demonstration of the Nigel text generation
computer program, Systemic Perspectives on
Discourse (J. D. Benson and W. S. Greaves,
eds.), vol. 1, 1985, pp. 50-83.

William C. Mann and Susan A. Thompson,
Rhetorical structure theory: Toward a func-
tional theory of text organization, Text 8
(1987), no. 3, 243-281.

Viéclav Matousek, Pavel Mautner, Jana
Ocelikova, and Petr Sojka (eds.), Proceedings
of the Conference on Text, Speech and Dia-
logue (TSD’99), Maridinské Ldzné, Czech Re-
public, Springer-Verlag, 1999.

Richard Power, Preliminary model of the
CAD/CAM domain., Tech. report, ITRI, Uni-
versity of Brighton, United Kingdom, June
1998.

, Final model of the CAD/CAM do-
main., Tech. report, ITRI, University of
Brighton, United Kingdom, July 1999.

Serge Sharoff, Donia Scott, Tony Hart-
ley, Danail Dochev, Jiti Hana, Martin
Cmejrek, Geert-Jan Kruijff, and Ivana Kruijff-
Korbayova, Fuvaluation of the intermediate
prototype, Tech. report, ITRI, University of
Brighton, United Kingdom, April 2000.



[19] Serge Sharoff, Lena Sokolova, Danail Dochev,
Ivana Kruijff-Korbayova, Jiti Hana, Geert-
Jan Kruijff, Kamenka Staykova, Elke Teich,
and John Bateman, Formal specification of
full grammar models and implementation of
tactical generation resources for all three lan-
guages in a final prototype, Tech. report, ITRI,
University of Brighton, United Kingdom, July
2000.



