.

Development of lexico-grammar resources for natural language generation (experience from AGILE project)

Kamenka Staykova, Danail Dochev

Institute of Information Technologies - Bulgarian Academy of Sciences

Acad. Bonchev st., bl 29 A, Sofia 1113, Bulgaria

{staykova, dochev}@iinf.bas.bg

Abstract. The paper discuses some problems of presentation and processing of linguistic knowledge, needed for the development of real-size Bulgarian linguistic resource to be used in a multilingual text generation system, covering software manuals sublanguage. The sublanguage volume is specified by corpus analysis. The text generation is based on the Systemic Functional Linguistics theory. A method for developing lexico-grammar resources by re-using an existing resource for another language is described and illustrated with three examples.

Keywords: Natural language generation, lexico-grammar resources, resource sharing, Systemic Functional Linguistics

1. Introduction

The paper deals with some problems of knowledge presentation and processing for the needs of automatic test generation. The discussion is focused on the presentation and processing of linguistic knowledge, needed for the development of real-size Bulgarian linguistic resource to be used in a multilingual text generation system, created under the international project AGILE [3, 5]. The project aim is to develop a generic set of tools and linguistic resources for generating CAD/CAM software instructional texts in Bulgarian, Czech and Russian. They are developed by an extensive use of the grammar development environment and multilingual sentence generator KPML (Komet-Penman MultiLingual system [2]), which theoretic base is the Systemic Functional Linguistics (SFL, [4]).

2. Corpus Analysis and Sublanguage Specification

Technical manuals within specific domains constitute a sublanguage [8]. An important property of a sublanguage is its lexical and syntactical closure. The lexical closure is determined by the domain specificity of the sublanguage, as well as by the norms of technical communication, which prefer monosemy to synonymy. The syntactic closure leads to application of small number of rigid syntactical structures.

The sublanguage specification was made on the base of corpus analysis. Because of the sublanguage limitations a small corpus, containing nine procedural texts with 1025 words and 194 coding units, was found to be sufficient for the needs of the project. The corpus processing was used to help in the determination of:

· domain model concepts, i.e. the domain ontology

· text planning processes

· lexical resources

· grammar resources.

The paper will focus further on the determination of lexico-grammar resources.

The corpus analysis, made in terms of the SFL conceptual base, leads to the following conclusions about the sublanguage used in Bulgarian software manuals:

· The great majority of the rank units are clauses and the rest are nominal groups. The prepositional groups do not occur in instructional texts of the corpus.

· The processes are exclusively of the directed-material type. Sometimes relational, mental, and not-material processes are found in the corpus.

· Finite and positive polarities predominate over non-finite and negative polarity features in this particular sublanguage.

· Most of the analysed clauses are non-modal. In the case when modality is expressed in the clause it is of the ability, inclination and obligation type.

· The mood is usually realised by an imperative clause.

· The voice is active, although a few instances of middle were counted. The passive voice was not found in instructional texts at all.

· The user is the most frequent agent, the alternative is program objects appearing as agents.

· Most of the text units are members of a complex clause. The hypotactic relation is realised mainly by a manner or purpose conjunction, although condition and temporal conjunctions occur as well. Paratactic relation is realised by the additive and alternative conjunctions.

3. Approach to Resource Development

The adopted approach for resource development was to re-use an existing large-scale English grammar as a base for the Bulgarian resource due to the following reasons:

1. lack of large-scale Bulgarian computational grammar aimed at automatic text generation;

2. need for fast prototyping;

3. re-usability of the new-build resource, i.e. natural tendency for extension beyond the immediate goal - the coverage of given sublanguage.

This approach has been shown to be effective in several previous developments ([1], [2], [7]) and avoids the necessity of building large-scale grammar from scratch. In [3] the reuse of existing English grammar for typologically different (Slavic) languages is studied across the SFL model. SFL is a functional theory of language, in which the concept of function is reflected in three metafunctions: ideational, concerning world representation; interpersonal, reflecting the role relations of speaker and hearer in a discourse; textual, representing the patterns for creation of cohesive and coherent text. The strata distinguished in SFL are lexico-grammar, semantics, and context. Linguistic description, at each stratum, has two aspects, one representing linguistic systems (paradigmatic axis), the other the structural realizations of these systems (syntagmatic axis). The paradigmatic axis is represented through system network, resembling a type hierarchy supporting multiple inheritance.

According Halliday a system network is a theory of the language as a resource for realising meaning. A system represents a choice between possible semantic, lexico-grammatical or phonological alternatives. Systemic Functional Grammar is an approach to natural language syntax, representing grammar as network of systems. In the process of sentence generation each system, responsible for a given aspect of meaning imposes specific constraints on the form of the sentence. In such a way the generation of a sentence is a satisfaction of a set of constraints, specified by a system network during its tracing. Thus SFG approach describes grammatical structures in terms of co-satisfaction of constraints
The construction of an SFG grammar is led by three organisational principles: axiality, delicacy, and rank. Axiality expresses the relation between paradigmatic, functionally motivated features and syntagmatic structures realizing them and determines the way systems are formulated: a system has input conditions phrased in terms of grammatical features, and has as output grammatical features, which may be accompanied by realization statements connecting specific constraints on the realization of the surface form to a particular feature. Delicacy is a principle organizing a grammar in a vertical manner, according to levels of specificity. Rank expresses a generalized form of a constituency hypothesis (a sentence can be divided into clauses, clauses into groups, groups or phrases into words, and words into morphemes). . A part of the system network, presenting the highest rank (lowest delicacy) systems for the English SFG Nigel, is shown on Fig.1.

The cross-linguistic analysis in [3] leads to the following observations.

· Languages tend to show more similarities on the more abstract strata of linguistic organisation than on the less abstract ones (i.e., they express similar meanings in different grammatical terms).

· Languages tend to be similar on the paradigmatic axis and less similar in terms of syntagmatic realisation.

· Systems of low delicacy tend to be similar across languages, and systems of higher delicacy tend to be dissimilar.

· There may be different preferences in different languages concerning the grammatical rank at which a particular meaning is expressed.

Different languages may distribute functional responsibilities differently across metafunctions.

[image: image1.png]
Fig. 1. Part of the system network of the Nigel System Functional Grammar

The cross-linguistic comparison of lexico-grammar features shows that Bulgarian is closer to English than the other Slavic languages with respect to some pragmatically important for the automatic generation syntactical features (lack of cases, explicit articles etc.), so this may facilitate the re-use of English resource for some phenomena. Naturally, Bulgarian differs from English on many other lexico-grammar features as well as on its richer morphology.

The English grammar resource used as basis in the project AGILE is the Nigel grammar, mainly developed by Matthiessen on the SFL foundation [6] and extended by many people afterwards, resulting in a large-scale English computational grammar, that covers broad range of grammatical phenomena. The organization of Nigel separates specifications of syntactic structures from a description of their communicative functions. The analysis in [1] shows that the functional description varies less across languages than the syntactic description and, since the functional component of the description provides the overall organisation of the grammar, the SFL approach to language phenomena can serve as a general guideline for the grammatical description of a wide range of languages without enforcing artificial uniformity. The use and re-use of Nigel is supported by the grammar development environment and multilingual sentence generator KPML, which, like Nigel, is available free of charge.

4. Method of NewResource Development

The approach for developing of a new lexico-grammar resource by re-using an existing resource for another language was implemented by using a Method of NewResource Development, which is sketched below.

Initial information for the method:

1. BaseResource (the Nigel grammar);

2. TargetExamplesSet - set of sentences, representative for the sublanguage revealed during corpus analysis. It covers the lexico-grammar features of the sublanguage.

The method consists of two phases: Phase 1 “Constructing WorkResource” and Phase 2 “Modification of the WorkResource”.

Phase 1 “Constructing WorkResource”

Step 1. Tracing of the BaseResource with an example - sentence from the

TargetExamplesSet.
Step 2. All the systems from the BaseResource, used in the example tracing are added to the WorkResource.

Step 3. Identification of all places in the system network of inappropriate lexico-grammar choice or gaps in the BaseResource, preventing the example generation. They are added in a GrammarProblemsList with a pointer to the corresponding example sentence.

Step 4. Steps 1-3 are repeated for each sentence from the TargetExamplesSet.
At the end of Phase 1 the following information structures are available:

1. WorkResource – a subset of the BaseResource system network;

2. a list of grammar problems with test examples from the TargetExamplesSet.

Phase 2 “Modification of the WorkResource”.

Step 1. Solving a problem from the GrammarProblemsList by modifications in appropriate system networks of the WorkResource. The solution is demonstrated by proper generation of the corresponding example sentence.

Step 2. Adding the example sentence to GeneratedExamplesSet and check of the WorkResource with all the examples of this set.

Step 3. Steps 1-2 are repeated for each problem from the GrammarProblems List.

Step 4. Removal of all system components, representing unused lexico-grammar features from the WorkResource.
It is possible during this phase to process also additional problems with corresponding test examples, inserted in the GrammarProblemsList in order to extend the sublanguage and the NewResource coverage.
The application of the method is illustrated below by three examples (the choices made during tracing the system with the examples are shown in bold italics).

EXAMPLE 1 “Finite in imperative-2person, plural”

The problem: In Bulgarian language the verb form in imperative is finite (in second person, plural for formal, "polite" style), while English imperative form is realised by nonfinite (stem).

Test sentence: “Въведете координатите!” /enter(imperative- 2p, pl(coordinates/

Phase 1: The following system is connected with the problem:

MOOD-TYPE (independent-clause-simplex)->

[indicative] Insert(Subject), Insert(Finite)

[imperative] Insert(Nonfinite),

 Infletify(Nonfinite,stem)

Phase 2

Step 1. Necessary modifications – to change the feature Nonfinite in Finite and to fix the verb form in second person plural. Thus the system MOOD-TYPE is modified as follows:

MOOD-TYPE (independent-clause-simplex)->

[indicative] Insert(Subject), Insert(Finite)

[imperative] Insert(Finite),

 Infletify(Finite,secondperson-form),

 Inflectify(Finite, plural-form)

In Bulgarian language an informal imperative verb form – second person singular is used also. Though it is not covered in the software manuals sublanguage, it may be included in the NewResource by means of additional system and the following modification:

MOOD-TYPE (independent-clause-simplex)->

[indicative]
Insert(Subject), Insert(Finite)

[imperative]
Insert(Finite),

Inflectify(Finite,secondperson-form)
IMPERATIVE-TYPE (imperative) ->

[polite-imperative]

Inflectify(Finite, plural-form)
[informal-imperative]
Inflectify(Finite, singular-form)

If the decision of extending the sublanguage is taken an additional test sentence has to be added: “Въведи координатите!” /enter(imperative- 2p, sing.(coordinates/

IMPERATIVE-TYPE (imperative) ->

[polite-imperative]

Inflectify(Finite, plural-form)
[informal-imperative]
Inflectify(Finite, singular-form)

Step 2. The test examples are added to the GeneratedExamplesSet and all its members are checked for generation against the modified WorkResource.

EXAMPLE 2 Aspect

The problem: Two aspect forms of the verbs are distinguished in Bulgarian language: a/ the imperfective forms emphasise the continuous, incomplete nature of the action; b/ the perfective forms refer to the action as a whole or focus on its completion.

Test examples: “Въведете координатите!” /enter (perfective, imperative- 2p, pl.(/, “Въвеждайте координатите!” /enter (imperfective, imperative- 2p, pl.(/

Phase 1: The BaseResource does not contain an analogue. The new system position is localised by the need to use as input the feature independent-clause-simplex.

Phase 2:

Step 1. Inclusion in the WorkResource of the system

ASPECT (independent-clause-simplex) ->

[perfective] Classify(Process, perfective-verb)

[imperfective] Classify(Process, imperfective-verb)

Step 2. The test examples are added to the GeneratedExamplesSet and all its members are checked for generation against the modified WorkResource. If the GeneratedExamplesSet contains complex sentences with dependent clauses, they will not obtain Aspect variations because of the chosen input of the new system independent-clause-simplex. In such case it will be necessary to return to Step 1 and appropriately change the resource until all test examples from the GeneratedExamplesSet are generated correctly.

EXAMPLE 3 Phase
The problem: To generate clauses with complex verb forms, consisting of phase verb and main verb, allowing the presentation of different phases of a process.

Test example: “Започнете да въвеждате координатите!” /begin (imperative- 2p, pl.(to enter(2p, pl.(coordinates/ (See Fig.2)
Phase 1: The following systems are connected with the problem:
PHASE (transitivity-unit) ->

[not-phase]

[phase]
 Insert(Phase), Classify(Phase, phase-verb), Insert(Phasedependent)

PHASEDEPENDENT-TYPE (phase)->

[phaseinfinitive] Inflectify(Phasedependent, stem),

Insert(Tophase), Lexify(Tophase, to),

Order(Tophase, Phasedependent)

[ingphase]
Inflectify(Phasedependent, ingparticiple)

Phase 2:

Step 1. The following analogy between the English and Bulgarian phase verb exists: the phaseinfinitive corresponds to “da-construction” in Bulgarian: Begin to enter the coordinates! <-> Започнете да въвеждате координатите!

 /begin (imperative- 2p, pl.(enter(2p, pl.(coordinates/

ingphase or ingparticiple-form may be matched with the construction with nominalization in Bulgarian: Begin enterling the coordinates! <-> Започнете въвеждането на координатите!

 /begin (imperative- 2p, pl.(entering (nominalization noun(coordinates/.

In English the Phasedependent verb form in phaseinfinitive construction is stem, while in Bulgarian the Phasedependent verb form in “da-construction” agrees with the Phase verb on person and number: Begin to enter the coordinates! <-> Започнете да въвеждате координатите! /begin (imperative- 2p, pl.(fill (2p, pl.(coordinates/

Therefore the following modifications are made:

PHASE (transitivity-unit) ->

[not-phase]

[phase]
Insert(Phase), Classify(Phase, phase-verb), Insert(Phasedependent)

PHASEDEPENDENT-TYPE (phase)->

[da-phase-construction]

Insert(Daphase),Lexify(Daphase, da),

Order(Daphase, Phasedependent),

Agreement(Phase, Phasedependent, number-form),

Agreement(Phase, Phasedependent, person-form)
[phase-nominalization]

Inflectify(Phasedependent,nominalization-noun)

A possible sublanguage extension is to add a phase construction with nominalisation (Започнете въвеждането на координатите! /begin (imperative- 2p, pl.(filling (nominalization noun(coordinates/) . For this the corresponding target example has to be included in the TargetExamplesSet and the method is repeated from Phase 1 with the new example, which would need additional systems from the BaseResource and additional problems in the GrammarProblemsList.

Step 2: The test example “Започнете да въвеждате координатите!” is added to the GeneratedExamplesSet and all its members are checked for generation against the modified WorkResource.

[image: image2.png]
Fig. 2. Screenshot of the generated Example 3 sentence with 'da' - construction

The screenshots on Fig 2. and Fig.3 show the generated sentences from Example 3 (with 'da' - construction' and nominalisation) together with the collected during the system network tracing grammatical features, constraining the generated structure.

[image: image3.png]
Fig. 3. Screenshot of the generated Example 3 sentence with nominalisation

5. Conclusions

An intermediate version of the Bulgarian lexico-grammar resource, developed up to now, covers exclusively procedural texts from the sublanguage of software manuals. It contains 110 new or modified systems, which is about 20% of the whole resource. The on-going work on further development of this resource is oriented towards presentation also of descriptive texts, concerning text planning and lexico-grammar problems like support of modal clauses, different types of clause aggregation in complex sentences etc.

Acknowledgements

The authors thank all the members of the AGILE team and especially John Bateman, Anthony Hartley, Donia Scott, Ivana Kruijff-Korbayova and Sergey Sharoff. The work reported in this paper has been supported by the EC INCO-COPERNICUS Programme, Grant No. PL961104.

References

1. Bateman J.A., Matthiessen C.M.I.M., Nanri K, Zeng L. -The re-use of linguistic resources across languages in multilingual generation components. Proc. of IJCAI’91, Sydney, Australia, Vol. 2, pp. 966—971. Morgan Kaufmann Publishers.

2. Bateman J.A. - Enabling technology for multilingual natural language generation: the KPML development environment. Journal of Natural Language Engineering, Vol. 3(1997) No1, pp.15--55.

3. Bateman J, E. Tech, G-J. Kruijff, Iv Kruijff-Korbayova, S, Sharoff, H. Skoumalova - Resource for Multilingual Text Generation in Three Slavic Languages. Proc. of LREC'2000 (in print).

4. Halliday M.A.K. - An Introduction to Functional Grammar. Edward Arnold, London, 1985.

5. Kruijff G-J, Iv Kruijff-Korbayova, E. Teich, J. Bateman, H. Skoumalova, S. Sharoff, T. Hartley, K. Staykova, J. Hana - Multilinguality in a Text Generation System for Three Slavic Languages. Proc. of COLING'2000 (in print).

6. Mann W,. Matthiessen C.M.I.M.. - A demonstration of the Nigel text generation computer program. In Benson J.D, W. S. Greaves, (Eds), Systemic Perspectives on Discourse, Vol. 1. Ablex, Norwood, N.J., 1985.

7. Rayner M., Carter D., Bouillon P. - Adapting the Core Language Engine to French and Spanish. In: Proceedings of NLP-IA-96, Moncton, New Brunswick, 1996.

8. Sager, J.S. - Language Engineering and Translation: Consequences of Automation. Brandstetter Verlag, Wiesbaden, Germany, 1993.

_1023979313.doc
[image: image1.png]

_1023979822.doc
[image: image1.png]

_1023973019.doc
[image: image1.png]

