
The Prague Bulletin of Mathematical Linguistics
NUMBER 93 JANUARY 2010

EDITORIAL BOARD

Special issue guest editors

Ondřej Bojar, Chris Callison-Burch, Ventsislav Zhechev, Philipp Koehn

Special issue editorial board

Ondřej Bojar, Chris Callison-Burch, Mikel L. Forcada, Philipp Koehn, David Mareček, Martin Popel,
Juan Antonio Pérez-Ortiz, Felipe Sánchez-Martínez, Francis Tyers, Ventsislav Zhechev, and

Zdeněk Žabokrtský

Editor-in-Chief

Eva Hajičová

Editorial staff

Eduard Bejček
Ondřej Bojar
Martin Popel
Pavel Schlesinger
Pavel Straňák

Editorial board

Nicoletta Calzolari, Pisa
Walther von Hahn, Hamburg
Jan Hajič, Prague
Eva Hajičová, Prague
Erhard Hinrichs, Tübingen
Aravind Joshi, Philadelphia
Jaroslav Peregrin, Prague
Patrice Pognan, Paris
Alexander Rosen, Prague
Petr Sgall, Prague
Marie Těšitelová, Prague
Hans Uszkoreit, Saarbrücken

Published twice a year by Charles University in Prague

Editorial office and subscription inquiries:
ÚFAL MFF UK, Malostranské náměstí 25, 118 00, Prague 1, Czech Republic
E-mail: pbml@ufal.mff.cuni.cz

ISBN 978-80-904175-4-0
ISSN 0032-6585

© 2010 PBML. All rights reserved.

The Prague Bulletin of Mathematical Linguistics
NUMBER 93 JANUARY 2010

CONTENTS

Editorial 5

Articles

A Productivity Test of Statistical Machine Translation Post-Editing in a
Typical Localisation Context
Mirko Plitt, François Masselot

7

Sulis: An Open Source Transfer Decoder for Deep Syntactic Statistical
Machine Translation
Yvette Graham

17

Combining Machine Translation Output with Open Source
The Carnegie Mellon Multi-Engine Machine Translation Scheme
Kenneth Heafield, Alon Lavie

27

Training Phrase-Based Machine Translation Models on the Cloud
Open Source Machine Translation Toolkit Chaski
Qin Gao, Stephan Vogel

37

Tradubi: Open-Source Social Translation for the Apertium Machine
Translation Platform
Víctor M. Sánchez-Cartagena, Juan Antonio Pérez-Ortiz

47

Adding Multi-Threaded Decoding to Moses
Barry Haddow

57

© 2010 PBML. All rights reserved.

PBML 93 JANUARY 2010

Free/Open-Source Resources in the Apertium Platform for Machine
Translation Research and Development
Francis M. Tyers, Felipe Sánchez-Martínez, Sergio Ortiz-Rojas, Mikel L. Forcada

67

Combining Content-Based and URL-Based Heuristics to Harvest Aligned
Bitexts from Multilingual Sites with Bitextor
Miquel Esplà-Gomis, Mikel L Forcada

77

Fast and Extensible Phrase Scoring for Statistical Machine Translation
Christian Hardmeier

87

ScaleMT: a Free/Open-Source Framework for Building Scalable Machine
Translation Web Services
Víctor M. Sánchez-Cartagena, Juan Antonio Pérez-Ortiz

97

Integrating Output from Specialized Modules in Machine Translation
Transliterations in Joshua
Ann Irvine, Mike Kayser, Zhifei Li, Wren Thornton, Chris Callison-Burch

107

The Machine Translation Toolpack for LoonyBin: Automated Management
of Experimental Machine Translation HyperWorkflows
Jonathan H. Clark, Jonathan Weese, Byung Gyu Ahn, Andreas Zollmann, Qin Gao,
Kenneth Heafield, Alon Lavie

117

Visualizing Data Structures in Parsing-Based Machine Translation
Jonathan Weese, Chris Callison-Burch

127

Continuous-Space Language Models for Statistical Machine Translation
Holger Schwenk

137

MANY
Open Source Machine Translation System Combination
Loïc Barrault

147

Hierarchical Phrase-Based Grammar Extraction in Joshua
Suffix Arrays and Prefix Trees
Lane Schwartz, Chris Callison-Burch

157

Instructions for Authors 167

4

The Prague Bulletin of Mathematical Linguistics
NUMBER 93 JANUARY 2010

EDITORIAL

Special Issue on Open Source Machine Translation Tools

For the second time, we are able to present a special issue on open source tools
in machine translation. As part of the Machine Translation Marathon, held on 25–30
January 2010 in Dublin, an Open Source Convention brought together a diverse group
of researchers who made practical implementations of building blocks for machine
translation systems available as open source software. This software is described in
the following papers.

Annually since 2007, the Machine Translation Marathon events have been orga-
nized by the EuroMatrix and EuroMatrixPlus projects, which are funded by the Euro-
pean Commission (Framework Programme 6 and 7). The events attract around 50–100
attendees. In its fourth installment, it consists of a winter school, research talks, and
the open source convention that is reflected in this special issue.

In part, this special issue builds on the success of the MT Marathon held in the
previous year in Prague, where a similar event attracted nine papers. This year we
received 19 submissions which were reviewed by a program committee. 16 papers
were accepted for presentation at the Marathon and publication in this special issue.

In a larger part, however, this special issue is a testament to the new world of inter-
connected research that goes beyond the confinements of individual labs, and enables
global collaboration — thanks to the technological advances of computer networks
and due to the willingness to freely share the fruits of the hard work. Researchers
in the field increasingly recognize the advantages of their methods being used (and
their work being cited), and the shared benefits of collaborative research.

Phillipp Koehn
Co-editor of the special issue
pkoehn@inf.ed.ac.uk

© 2010 PBML. All rights reserved.

The Prague Bulletin of Mathematical Linguistics
NUMBER 93 JANUARY 2010 7–16

A Productivity Test of Statistical Machine Translation
Post-Editing in a Typical Localisation Context

Mirko Plitt, François Masselot
Autodesk Development Sàrl, Neuchâtel, Switzerland

Abstract
We evaluated the productivity increase of statistical MT post-editing as compared to tra-

ditional translation in a two-day test involving twelve participants translating from English to
French, Italian, German, and Spanish. The test setup followed an empirical methodology. A
random subset of the entire new content produced in our company during a given year was
translated with statistical MT engines trained on data from the previous year. The translation
environment recorded translation and post-editing times for each sentence. The results show
a productivity increase for each participant, with significant variance across inviduals.

1. Introduction

The machine translation productivity test described in this article was conducted
in the context of the deployment of machine translation at Autodesk, a software com-
pany whose products are translated (“localised”) from English into up to twenty lan-
guages. We held this test to manage expectations as to the financial savings our com-
pany would be able to achieve thanks to machine translation.

Publicly available data on post-editing productivity of statistical machine trans-
lation in localisation is scarce (O´Brien, 2005; Takako et al., 2007; Schmidtke, 2008;
De Sutter et al., 2008; Flournoy and Duran, 2009). Furthermore, most of the data that
is available has not been acquired under controlled conditions (Krings, 2001).

Specific limitations of other post-editing productivity tests that prevented us from
using their results included:

• Unclear test objectives leading e.g. to non-representative training corpora.
• Untypical translator profiles.

© 2010 PBML. All rights reserved. Corresponding author: mirko.plitt@autodesk.com
Cite as: Mirko Plitt, François Masselot. A Productivity Test of Statistical Machine Translation Post-Editing in a
Typical Localisation Context. The Prague Bulletin of Mathematical Linguistics No. 93, 2010, pp. 7–16. ISBN
978-80-904175-4-0. doi: 10.2478/v10108-010-0010-x.

PBML 93 JANUARY 2010

• Artificial test sets (e.g. because of a close relation with the corpus1, or because
text deemed unsuitable for MT was removed);

• Absence of traditional translation benchmarks (e.g. assuming a daily through-
put of 2500 words, a common rule of thumb in the localisation industry).

• Unreliable time measurement (e.g. based on times reported by individual par-
ticipants), if any.

• Commercial bias.
The machine translation system we selected for our productivity test was the open-

source Moses system (Koehn et al., 2007), trained solely on our own data without any
factored representation.

We chose Moses for the following main reasons: (i) the language-independent na-
ture of statistical machine translation makes it easily expandable across several lan-
guages at once; (ii) as a typical translation service buyer we possess considerable
amounts of high-quality legacy translations; (iii) it would have been difficult to reach
return on investment with a commercial machine translation system.

2. Test Setup

The principal aim of our productivity test was to measure the productivity in-
crease we could expect in production at Autodesk. The actual productivity numbers
presented in this article may therefore be of limited use for other users of machine
translation. Elements of the experimental approach we took to obtain these numbers,
however, can be applied beyond our specific case. The following aspects of our ap-
proach merit particular attention:

2.1. Test Set Selection

We simulated a Moses production deployment in the most recent round of trans-
lation.2 We therefore trained engines on all our translation data up to the end of 2008.
The test set was a randomly selected subset of all the new3 content submitted for
translation in 2009.

The random selection ensured that the test set was representative in every sense,
including any phenomenon that may or may not influence MT quality and post-editing
productivity. We split the test set into “jobs”, grouped by product (to preserve some
context), and sentences were kept in their original order (if often separated by gaps).

1We believe that the practice of “cutting” a test set from a corpus presents the risk of introducing a bias
in the relation between the two.

2The majority of Autodesk products are released once per year; translation activity therefore follows
yearly cycles.

3New means, in this instance, sentences yielding translation memory matches below 75%. In a typical
localisation scenario, the use of translation memory technology leaves little room for the deployment of
MT above this threshold (Bruckner and Plitt, 2001; Carl and Hansen, 1999).

8

M. Plitt, F. Masselot Productivity Test of SMT Post-Editing for Localisation (7–16)

2.2. Post-Editing Environment

To measure translation time as precisely as possible, without relying solely on what
test participants would track and report back to us, we developed our own “work-
bench”, a post-editing environment largely inspired by the caitra environment (Koehn
and Haddow, 2009). The workbench was designed to capture keyboard and pause
times for each sentence, and was implemented in Ruby on Rails, a web application
framework that readily offered most of the functionality required.

The workbench interface (see Figure 1) presented the source and target sentences
one beneath the other. For the post-editing tasks, the target sentence field was pre-
populated with the MT proposal, to prevent test participants from translating from
scratch. The workbench recorded the edit time, the number of edit sessions and the
number of key strokes for each sentence.

Figure 1. Workbench screenshot (time recording fields were hidden from translators)

2.3. Test Participants

We chose three of our usual localisation vendors for the test. Each vendor assigned
one translator per language. We did not intervene in the translator selection as such,
and did not request candidates to present particular profiles in terms of translation
speed or quality, or post-editing experience. We did not provide our test participants
with any training but gave simple post-editing instructions.

2.4. Translation Productivity Benchmark

The productivity test was divided in two phases; the first phase consisted of tra-
ditional translation without support from MT—to obtain a reference value for each
individual test participant—and only the second phase was dedicated to post-editing.
We assigned the jobs in such a way that each translator was to do at least one job in

9

PBML 93 JANUARY 2010

each of the three product domains, both in post-editing and translation. We also made
sure that participants would not translate and post-edit the same job.

2.5. Quality Assessment

Our expectation was that the quality of the post-edited translation would be equiv-
alent to traditional translation, quality being defined here according to the standard
criteria applied at Autodesk.

To verify that this expectation was met, we provided the Autodesk translation QA
team with samples of translated and post-edited text, again randomly selected, and of
reasonable size. The QA team was aware of the overall context of the productivity test
but did not know which text was the result of post-editing and which was a traditional
translation.

2.6. Test Execution

The test was scheduled to last two days. The source language was English, and
the target languages were French, Italian, German, and Spanish. Given that we had
opted for three translators per language, there were a total of twelve test participants.4
The scope of the test was defined by what we considered the minimum of meaningful
data at a reasonable cost compared to the anticipated savings potential in production.

We prepared 96 jobs, of which 75 ended up being processed, some entirely, some
only partially. The cross-product of jobs, languages, and translation types corre-
sponds to 144,648 source words processed.

A small number of sentences, 1.6%, had a duration above five minutes and up to
three hours, cumulating to a total 22% of the the time recorded, without there be-
ing any explanation such as the complexity of the source text. These sentences were
removed from the result set.

3. Test Results

3.1. Throughput

Figure 2 summarises the test results in terms of throughput. It is most interest-
ing to look at the throughput delta between translation and post-editing for a given
translator. Absolute throughputs range from 400 to 1800 words per hour.

Variance across translators was high. MT allowed all translators to work faster,
though in varying proportions: from 20% to 131%5. MT allowed translators to im-
prove their throughput on average by 74%; in other words, MT saved 43% of the
translation time.6

4One translator chose not to correct tag positions in MT proposals. This translator’s work was discarded.
5where a 100% productivity gain corresponds to doubling the throughput.
61− 1

1+0.74
= 0.43

10

M. Plitt, F. Masselot Productivity Test of SMT Post-Editing for Localisation (7–16)

20%

40%

60%

80%

100%

120%

400

600

800

1000

1200

1400

1600

1800

2000

w
o
rd
s/
h
o
u
r

Productivity gain (%)

Translation throughput

Post editing throughput

Avg translation throughput

Avg post editing throughput

Avg productivity gain (%)

0%

20%

40%

60%

80%

100%

120%

0

200

400

600

800

1000

1200

1400

1600

1800

2000

SP1 IT1 IT2 SP2 DE1 DE2 FR1 FR2 IT3 FR3 SP3

w
o
rd
s/
h
o
u
r

Translators

Productivity gain (%)

Translation throughput

Post editing throughput

Avg translation throughput

Avg post editing throughput

Avg productivity gain (%)

Figure 2. Individual productivity in words per hour (sorted by descending productivity
gain)

Figure 3 illustrates that in our test, the benefits from MT were greater for slower
than for faster translators. Fast translators presumably have a smaller margin of pro-
gression because they have already optimised their way of working.

20%

30%

40%

50%

60%

70%

80%

90%

200

400

600

800

1000

1200

1400

1600

w
o
rd
s/
h
o
u
r

Productivity increase (%)

Translation throughput

Post editing throughput

Avg translation

Avg post editing

Avg productivity gain (%)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

0

200

400

600

800

1000

1200

1400

1600

2 fastest 5 fastest 6 slowest 3 slowest

w
o
rd
s/
h
o
u
r

Productivity increase (%)

Translation throughput

Post editing throughput

Avg translation

Avg post editing

Avg productivity gain (%)

Figure 3. Fast and slow translators

3.2. Edit Distance and Post-Editing Effort

We calculated edit distances to measure the post-editing effort. We used four dif-
ferent scoring methods: Non-Edited, (sentence-level) BLEU (Papineni et al., 2002),
Word Error Rate (WER) (Hunt, 1989; McCowan et al., 2005) and Position-independent

11

PBML 93 JANUARY 2010

Error Rate (PER) (Tillmann and Ney, 2003). Non-Edited represents the ratio of sen-
tences that were left unchanged. We found that these four indicators, despite their
different computing methods, correlate relatively well.

400

600

800

1000

1200

1400

1600

1800

2000

20

30

40

50

60

70

80

w
o
rd
s
/
h
o
u
r

sc
o
re
s
(%

)

Post editing

throughput

BLEU

best 100, worst 0

Non Edited

best 1q10 worst100

WER

best 0, worst 100

PER

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0

10

20

30

40

50

60

70

80

FR1 IT3 DE1 SP2 DE2 SP3 IT1 FR3 FR2 SP1 IT2

w
o
rd
s
/
h
o
u
r

sc
o
re
s
(%

)

Post editing

throughput

BLEU

best 100, worst 0

Non Edited

best 100, worst 0

WER

best 0, worst 100

PER

best 0, worst 100

Figure 4. Post-editing throughput and edit distance (sorted by ascending BLEU score)

Figure 4 shows a comparison between post-editing throughput and edit distance.
One could intuitively expect that fast translators make fewer changes than slow trans-
lators. In our test, however, the post-editor who made the highest number of changes
was also the fastest. The graphs indicate no clear correlation between edit distance
and throughput.

3.3. Sentence Length

We also examined the relation between the time spent on sentences and the num-
ber of words they contained. Figure 5 shows linear regression for segments up to 35
words.7

Figure 6 shows the throughput in words per hour, in relation to sentence length. An
optimum throughput appears to be reached for sentences of around 25 words. Op-
tima for translation and post-editing are relatively close: around 25 words for trans-
lation and 22 words for post-editing. The shapes of the polynomial regression curves
indicate that the negative impact of very long sentences on throughput is greater for
post-editing.

The productivity gain from post-editing corresponds to the vertical distance be-
tween the lines; the optimum is situated around 22 words per sentence. 20–25 word
sentences are probably more likely to be semantically self-contained than shorter sen-
tences, thus requiring fewer context checks. The minimal time spent on the translation

7Sentences with more than 35 words were infrequent in our test set.

12

M. Plitt, F. Masselot Productivity Test of SMT Post-Editing for Localisation (7–16)

y = 2.9914x + 3.0185

y = 4.641x + 12.164

0

50

100

150

200

250

A
v
g
d
u
ra
ti
o
n
in
se
co
n
d
s

Avg post editing duration

Avg translation duration

Linear (Avg post editing

duration)

Linear (Avg translation duration)y = 2.9914x + 3.0185

y = 4.641x + 12.164

0

50

100

150

200

250

1 6 11 16 21 26 31

A
v
g
d
u
ra
ti
o
n
in
se
co
n
d
s

Sentence length in words

Avg post editing duration

Avg translation duration

Linear (Avg post editing

duration)

Linear (Avg translation duration)

Figure 5. Average duration and sentence length

0

200

400

600

800

1000

1200

1400

1600

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45

T
h
ro
u
g
h
p
u
t
in
w
o
rd
s/
h
o
u
r

Post editing

Translation

Poly. (Post editing)

Poly. (Translation)
0

200

400

600

800

1000

1200

1400

1600

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45

T
h
ro
u
g
h
p
u
t
in
w
o
rd
s/
h
o
u
r

Sentence length in words

Post editing

Translation

Poly. (Post editing)

Poly. (Translation)

Figure 6. Words per hour and sentence length

of any sentence, including the navigation within the text, plays also a proportionally
bigger role for shorter sentences.

3.4. Influence of Language and Product Domain

Average throughput of translators by language essentially reflects individual dif-
ferences. Our data does not suggest that MT is more suited for one of the four test
languages than for another. We were surprised that the productivity increase of Ger-
man translators was in line with their French, Italian, and Spanish colleagues, despite
the lower quality of the German output that we perceive ourselves.

There was no indication either that the content taken from one product was more
suitable, or less, for post-editing than content from other products.

13

PBML 93 JANUARY 2010

3.5. Keyboard Time versus Pause Time

We only recorded two types of editing time: keyboard time and pause time8. Pause
time can be assumed to include activities such as reading, thinking, and consulting
of references.

0 2 4 6 8 10

Translation

Post editing

S d d

Avg pause time

Avg keyboard time

0 2 4 6 8 10

Translation

Post editing

Seconds per word

Avg pause time

Avg keyboard time

Figure 7. Keyboard and pause time per word

Figure 7 shows that keyboard time represents 19% of the edit time for translation
and only 10% for post-editing. MT reduces keyboard time by 70% and pause time by
31%. It seems logical that a good MT proposal saves typing time, but it also saves a
third of the “thinking” time.

Keyboard and pause time variations were consistent across products, languages
and individuals.

3.6. Work Regularity

Figure 8 plots, for each job, the standard deviation of the seconds-per-word data
series recorded for each sentence. The data suggests that MT evens out the work
pace of translators. Our interpretation of this result is that the positive impact of the
presence of MT proposals is not only limited to a subset of content or to specific types
of sentences.

3.7. Quality Assessment

The Autodesk linguistic quality assurance team reviewed part of the jobs of ten of
the twelve test participants, evenly split between translation and post-editing jobs for
each language. The team rated all the jobs reviewed as either average or good, so all
would have been published as is.

The proportion of sentences for which our QA team flagged corrections is grouped
in Figure 9. To our surprise, translation jobs contained a higher number of mistakes
than post-editing jobs.

8keyboard time = sum of time intervals separating two key strokes inferior to one second; pause time =
sum of time intervals separating two key strokes superior to one second

14

M. Plitt, F. Masselot Productivity Test of SMT Post-Editing for Localisation (7–16)

4

6

8

10

12

14

16

18

20

Translation jobs

Post editing job

Avg translation

Avg post editing

0

2

4

6

8

10

12

14

16

18

20

Translation jobs

Post editing job

Avg translation

Avg post editing

Figure 8. Standard deviation of seconds per word for each job

2%

4%

6%

8%

10%

12%

14%

16%

Translation

Post editing

0%

2%

4%

6%

8%

10%

12%

14%

16%

German Italian Spanish French

Translation

Post editing

Figure 9. Percentage of sentences with translation errors

3.8. Translator Feedback

The test participants sent us ample feedback on their experience. On the whole,
their comments matched our observations and showed that the test had worked well
from their perspective too. However, some of the attempts to interpret their expe-
rience were in contradiction with our observations, such as an alleged loss of pro-
ductivity on longer sentences. There also was contradictory feedback from different
participants related to the correctness of product terminology.

4. Conclusion

Our test showed that the post-editing of statistical machine translation, when trained
and used on Autodesk data, allows translators to substantially increase their produc-
tivity. Autodesk has since deployed Moses in production. The empirical methodol-
ogy followed in the test setup and described in this article can be applied to other
real-world evaluations of post-editing productivity.

15

PBML 93 JANUARY 2010

Bibliography

Bruckner, Christine and Mirko Plitt. Evaluating the operational benefit of using machine trans-
lation output as translation memory input. In MT Summit VIII, MT evaluation: who did what
to whom (Fourth ISLE workshop), pages 61–65, Santiago de Compostela, Spain, 2001.

Carl, Michael and Silvia Hansen. Linking translation memories with example-based machine
translation. In Machine Tranlation Summit VII, pages 617–624, Singapore, Singapore, 1999.

De Sutter, Nathalie, Marie-Laure Poëte, and Joeri Van de Walle. Machine translation produc-
tivity evaluation report. Unpublished report on the evaluation of two commercial MT sys-
tems conducted for Autodesk, April 2008.

Flournoy, Raymond and Christine Duran. Machine translation and document localization at
adobe: From pilot to production. In MT Summit XII: proceedings of the twelfth Machine Trans-
lation Summit, Ottawa, Ontario, Canada, August 2009.

Hunt, Melvyn J. Figures of merit for assessing connected-word recognisers. In SIOA-1989,
volume 2, pages 127–131, 1989.

Koehn, Philipp and Barry Haddow. Interactive Assistance to Human Translators using Statis-
tical Machine Translation Methods. In MT Summit XII, 2009.

Koehn, Philipp, Hieu Hoang, Alexandra Birch, Chris Callison-Burch, Marcello Federico, Nicola
Bertoldi, Brooke Cowan, Wade Shen, Christine Moran, Richard Zens, Chris Dyer, Ondrej
Bojar, Alexandra Constantin, and Evan Herbst. Moses: Open source toolkit for statistical
machine translation. In ACL Companion Volume. Proc. of the Demo and Poster Sessions, pages
177–180, Prague, Czech Republic, June 2007. Association for Computational Linguistics.

Krings, Hans Peter. Repairing texts: empirical investigations of machine translation post-editing pro-
cesses. Kent State University Press, Kent, Ohio, USA, 2001.

McCowan, Iain, Darren Moore, John Dines, Daniel Gatica-Perez, Mike Flynn, Pierre Wellner,
and Hervé Bourlard. On the use of information retrieval measures for speech recognition
evaluation. Technical report, Idiap Research Institute, Martigny, Switzerland, March 2005.

O´Brien, Sharon. Methodologies for measuring the correlations between post-editing effort
and machine translatability. Machine Translation, 19(1):37–58, March 2005.

Papineni, Kishore, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic
evaluation of machine translation. In Proc. of ACL, pages 311–318, Philadelphia, Pennsylva-
nia, USA, July 2002. Association for Computational Linguistics.

Schmidtke, Dag. Microsoft office localization: use of language and transla-
tion technology. 2008. URL http://www.tm-europe.org/files/resources/
TM-Europe2008-Dag-Schmidtke-Microsoft.pdf.

Takako, Aikawa, Lee Schwartz, Ronit King, Mo Corston-Oliver, and Carmen Lozano. Impact
of controlled language on translation quality and post-editing in a statistical machine trans-
lation environment. In Proceedings of the MT Summit XI, Copenhange, Denmark, October
2007.

Tillmann, Christoph and Hermann Ney. Word reordering and a dynamic programming beam
search algorithm for statistical machine translation. Comput. Linguist., 29(1):97–133, 2003.

16

http://www.tm-europe.org/files/resources/TM-Europe2008-Dag-Schmidtke-Microsoft.pdf
http://www.tm-europe.org/files/resources/TM-Europe2008-Dag-Schmidtke-Microsoft.pdf

The Prague Bulletin of Mathematical Linguistics
NUMBER 93 JANUARY 2010 17–26

Sulis: An Open Source Transfer Decoder for Deep Syntactic
Statistical Machine Translation

Yvette Graham
National Centre for Language Technology, Dublin City University, Ireland

Abstract
In this paper, we describe an open source transfer decoder for Deep Syntactic Transfer-Based

Statistical Machine Translation. Transfer decoding involves the application of transfer rules to a
SL structure. The N-best TL structures are found via a beam search of TL hypothesis structures
which are ranked via a log-linear combination of feature scores, such as translation model and
dependency-based language model.

1. Introduction

Deep Syntactic Transfer-Based Statistical Machine Translation (SMT) applies stan-
dard methods of Phrase-Based SMT (PB-SMT) (Koehn et al., 2003) to transfer between
deep syntactic structures. For example, both Riezler and Maxwell (2006) and Bojar
and Hajič (2008) use beam search decoding and a log-linear model to combine fea-
ture scores when transferring from source language (SL) deep syntactic structure to
target language (TL) deep syntactic structure. Each uses different statistical mod-
els for transfer, however. Bojar and Hajič (2008) use the Synchronous Tree Substitu-
tion Grammar formalism, in which the probability of attaching pairs of dependency
treelets into aligned pairs of frontiers given frontier state labels is used as a main fea-
ture function, as well as a bigram dependency-based language model. Riezler and
Maxwell (2006), on the other hand, use a translation model computed from rela-
tive frequencies of automatically induced transfer rules and a trigram dependency-
based language model. Riezler and Maxwell (2006) diverge somewhat from PB-SMT,
however, by only applying the language model after decoding on the n-best decoder

© 2010 PBML. All rights reserved. Corresponding author: ygraham@computing.dcu.ie
Cite as: Yvette Graham. Sulis: An Open Source Transfer Decoder for Deep Syntactic Statistical Machine Trans-
lation. The Prague Bulletin of Mathematical Linguistics No. 93, 2010, pp. 17–26. ISBN 978-80-904175-4-0.
doi: 10.2478/v10108-010-0005-7.

PBML 93 JANUARY 2010

output.1 In this paper, we describe the Sulis transfer decoder that, like Riezler and
Maxwell (2006), uses a translation model computed from relative frequencies of au-
tomatically induced transfer rules, but for language modeling, like Bojar and Ha-
jič (2008), we use a dependency-based language model during transfer decoding to
help decide the n-best TL structures. In addition, we increase the dependency-based
language model from a bigram model, as in Bojar and Hajič (2008), to a trigram model.

Sulis forms part of a larger system consisting of several resources, most of which
are open source and all of which are at least available to the research community:
XLE (Kaplan et al., 2002) for parsing and generation, Giza++ (Och et al., 2000) and
Moses (Koehn and Hoang, 2007) for automatic word alignment, RIA (Graham and
van Genabith, 2009) for automatic transfer rule induction, Ariadne and SRILM (Stol-
cke, 2002) for dependency-based language modeling and ZMERT (Zaidan, 2009) for
Minimum Error Rate Training (Och, 2003) (MERT). Graham et al. (2009) contains the
most recently published evaluation of Sulis.

2. Deep Syntactic Transfer-Based SMT

Deep Syntactic Transfer-Based SMT is composed of three parts, (i) parsing to deep
syntactic structure, (ii) transfer from SL structure to TL structure and (iii) generation
of TL sentence. Step (ii) involves a statistical search for the n-best TL deep syntactic
structures by means of a transfer decoder that constructs TL structures by applying
transfer rules to the SL structure. Transfer rules are similar to phrases in PB-SMT: a bi-
text corpus is firstly word-aligned before all rules consistent with the word-alignment
are extracted. They differ from SMT phrases, however, in their structure: they are
in the form of dependency graphs with missing arguments replaced by variables as
opposed to linear sequences of words. As in PB-SMT, for each SL input structure
their exists a large number of possible TL output structures. We use beam search to
manage the large search space. TL hypotheses are ranked using a log-linear model to
combine several feature scores, such as dependency-based language model and trans-
lation model. MERT is carried out on a development set to optimize the weights used
to combine feature scores.

2.1. Decoding

2.2. Translation Model

As in PB-SMT, a Transfer-Based SMT translation model can be defined as a com-
bination of several feature functions combined using a log-linear model:

p(e|f) = exp

n∑
i=1

λihi(e, f)

1Through personal communication with John Maxwell.

18

Y. Graham Sulis Transfer-Based SMT Decoder (17–26)

2.2.1. Transfer Rule Probabilities

In PB-SMT the translation of an input sentence into an output sentence is mod-
eled by breaking down the translation of the sentence into the translation of a set of
phrases. Similarly, for Transfer-Based SMT, the transfer of the SL structure f into a TL
structure e can be broken down into the transfer of a set of rules {f̄, ē}:

p(f̄I
1|ēI

1) =

I∏
i=1

ϕ(f̄i|ēi)

We compute all rules from the training corpus and estimate the translation probability
distribution by relative frequency of the rules:

ϕ(f̄, ē) =
count(ē, f̄)∑
f̄i

count(ē, f̄i)

This is carried out in both the source-to-target and target-to-source directions.

2.2.2. Lexical Weighting

In PB-SMT, lexical weighting is used as a back-off since it provides richer statis-
tics and more reliable probability estimates. Adapting this feature to deep syntax
is straightforward. In PB-SMT the lexical translation probability of a phrase pair is
calculated based on the alignment between the words in the phrase pair. For deep
syntactic transfer, we simply calculate the same probability via the alignment of lexi-
cal items in the LHS and RHS of a transfer rule. The lexical translation probability of
a RHS, ē, given the LHS, f̄ and alignment a, is estimated as follows:

lex(ē|f̄, a) =

length(ē)∏
i=1

1

|{j|(i, j) ∈ a}|

∑
∀(i,j)∈a

w(ei|fj)

We use lexical weighting in both language directions.

2.2.3. Transfer Rule Application

Decoding takes a single SL structure as input and involves a statistical search for
the n-best TL structures. The current decoding algorithm works by creating TL so-
lutions via a top-down application of transfer rules to the SL structure beginning at
the root.2 When the LHS of a rule unifies with the SL structure, the RHS produces
a portion of TL structure. Figure 1 shows an example application of three rules to
the dependency structure for the German sentence Die Katze schläft gern ‘The cat likes
to sleep’ shown in Figure 1(a). Figure 1(b) shows the first transfer rule applied to
the root node of the SL structure producing the TL structure portion shown in Figure
1(c). Transfer rule variables map arguments in the SL structure to the desired position

2In future work, we plan to extend the decoder by allowing rule application starting at any node in the
SL structure.

19

PBML 93 JANUARY 2010

Figure 1. Example top-down application of transfer rules

when creating a TL solution. For example, variable X0 in Figure 1(b) maps the subject
of schlafen to the subject of like in the TL structure labeled with id number 1 shown in
Figure 1(c). Next Katze in the SL structure is translated (Figures 1(d) and 1(e)), before
finally die is translated (Figures 1(f) and 1(g)).

2.2.4. Beam Search

Partial translations (or translation hypotheses) are constructed by applying trans-
fer rules to the SL structure. While TL translations are constructed, beam search man-
ages the large search space by ranking translation hypotheses and pruning the search
by dropping lower scoring hypotheses. A number of stacks are used to organize trans-
lation hypotheses into groups of comparable hypotheses, according to the portion of
SL structure that has already been translated to produce each hypothesis, i.e. hypothe-
sis stack N stores TL translation hypotheses with N nodes covered in the SL structure.
For example, Figure 2(a) shows the hypothesis stacks for decoding the dependency
structure of Die Katze schläft gern containing 4 nodes and therefore requiring stacks
1-4 for decoding, each stack storing translation hypotheses for solutions covering one
to four nodes, respectively.

Transfer rules are indexed by root node so that they can be retrieved quickly to
translate SL structure nodes. For example, in Figure 2(a) the rules rooted at node
Katze are stored together. Since rules are applied top-down to the SL structure (see

20

Y. Graham Sulis Transfer-Based SMT Decoder (17–26)

1 2 3 4

schlafen

Katze gern

die

subj adj

det

0:

1: 3:

2:

schlafen

katze

die

gern

sle
ep

sn
oo

ze
do

ze ...

ca
t
kit

ten pe
t
lio

n ...

lik
e,

sle
ep ...

the
the

setha
t a ...

lik
e
lov

e
wan

ts

wish
es

...

doze

subj adj

0:

1: 3:

1 2 3 4

schlafen

katze

die

gern

sle
ep

sn
oo

ze
do

ze ...

ca
t
kit

ten pe
t
lio

n ...

lik
e,

sle
ep ...

the
the

setha
t a ...

lik
e
lov

e
wan

ts

wish
es ...

1 2 3 4

schlafen

katze

die

gern

sle
ep

sn
oo

ze
do

ze ...

ca
t
kit

ten pe
t
lio

n ...

lik
e,

sle
ep ...

the
the

setha
t a ...

lik
e
lov

e
wan

ts

wish
es

...

doze

lion
subj adj

det

0:

1:

2: the

like3:

1 2 3 4

schlafen

katze

die

gern

sle
ep

sn
oo

ze
do

ze ...

ca
t
kit

ten pe
t
lio

n ...

lik
e,

sle
ep ...

the
the

setha
t a ...

lik
e
lov

e
wan

ts

wish
es ...

SL Structure

schlafen

Katze gern

die

subj adj

det

0:

1: 3:

2:

SL Structure TL Structure

1 2 3 4

Hypothesis Stacks

schlafen

katze

die

gern

sle
ep

sn
oo

ze
do

ze ...

ca
t
kit

ten pe
t
lio

n ...

lik
e,

sle
ep ...

the
the

setha
t a ...

lik
e
lov

e
wan

ts

wish
es ...

schlafen

Katze gern

die

subj adj

det

0:

1: 3:

2:

SL Structure TL Structure

1 2 3 4

schlafen

katze

die

gern

sle
ep

sn
oo

ze
do

ze ...

ca
t
kit

ten pe
t
lio

n ...

lik
e,

sle
ep
...

the
the

setha
t a ...

lik
e
lov

e
wan

ts

wish
es ...

a d

b e

c f

Hypothesis Stacks Hypothesis Stacks

Hypothesis Stacks

Hypothesis Stacks

Hypothesis Stacks

Figure 2. Beam Search Decoding of Example German Deep Syntactic Structure

21

PBML 93 JANUARY 2010

Section 2.2.3) rules beginning at the root node of the SL structure are first used to
construct hypotheses. For example, in Figure 2(b) the rule that translates the root
node of the SL structure schlafen as doze is first used to construct a hypothesis and
since it covers one SL node it is stored in hypothesis stack 1. Figure 2(c) shows the
next three hypotheses that are constructed: snooze, sleep and like sleep. Hypotheses
are ordered within each stack according to their score, high-to-low from bottom-to-
top. We currently use histogram pruning. When a stack becomes full, lower scoring
solutions are pruned by being popped off the top of the stack.

For efficiency, each partial translation is only stored once in memory even though
it may be part of several different future hypotheses. For example, hypothesis stack 2
in Figure 2(d) contains four translations constructed by expanding hypothesis doze by
four different rules, each translating the word Katze into a different TL word. These
new hypotheses are represented by a reference to the most recently applied transfer
rule (rules translating Katze) and a reference back to the previous hypothesis.

Figure 2(e) shows an example of how per single completed translation, the struc-
ture for the lion likes to doze, is represented in the hypothesis stacks and Figure 2(f)
shows all hypotheses represented when the decoder has completed translating a sin-
gle SL input structure. The n-best translated structures can be retrieved from the final
stack.

2.2.5. Efficient Dependency-Based Language Modeling

Although the search space is limited by beam search, during decoding large num-
bers of TL hypothesis structures need to be ranked. At each expansion of a transla-
tion hypothesis (via joining of an existing hypothesis with a transfer rule) a language
model score for the newly created hypothesis needs to be calculated. Since this is
carried out very many times per single decoding run, it is vital that the method of
calculating this score is highly efficient.

In our system, we pre-compute a dependency-based language model score for each
transfer rule prior to beam search. This score is calculated only once for each rule even
though a single rule may be part of several translation hypotheses. Then during de-
coding, when a translation hypothesis is expanded by adding a new rule, the new
hypothesis score can be calculated quickly by combining the score of the old hypoth-
esis, the rule score and a score calculated based on the probabilities of n-grams where
the old hypothesis and rule join together. The probability of a TL hypothesis, hn, that
was produced by combining hypothesis hn−1 and rule r can be calculated as follows:

hyp_score(hn) = hyp_score(hn−1) ∗ join_score(hn−1, r) ∗ rule_score(r)
Since hyp_score(hn−1) and rule_score(r) are already computed, only join_score(hn−1, r)
needs to be computed to compute hyp_score(hn).

Figure 3 shows how the language model scores are efficiently calculated when
decoding the dependency structure for the German sentence Die Werbung spiegelt die
Vielfalt der britischen Universität wider ‘The advertisement reflects the diversity of the

22

Y. Graham Sulis Transfer-Based SMT Decoder (17–26)

Figure 3. Efficient Dependency-based Language Modeling
23

PBML 93 JANUARY 2010

British university’. We begin with the German dependency structure graph shown
in Figure 3(a) with nodes labeled by id numbers. Figure 3(b) shows the initial empty
translation hypothesis that has probability 1.

Figures 3(c), 3(f) and 3(i) show example transfer rules that can be applied to the
German dependency structure. Dependency-based language model scores are pre-
computed for each rule by identifying all trigrams within the RHS structure and cal-
culating the product of their individual probabilities; we call this the rule_score (see
Figure 3(d) for RuleA, Figure 3(g) for RuleB and Figure 3(j) for RuleC). In addition, for
each rule, n-grams located at the RHS root node and frontier nodes are recorded. For
example, RuleB in Figure 3(g) has a single root node bigram advertisement the located
at node 2, and RuleA in Figure 3(d) has two frontier bigrams < s >, reflect and diver-
sity, of located at nodes 2 and 6, respectively. This information is used to calculate the
score of joining a rule and a hypothesis.

Figure 3(e) shows the translation hypothesis established by applying RuleA to the
German structure. The language model score for the structure is computed by com-
bining the score of the previous hypothesis (since this is the first rule for this hypothe-
sis, the previous hypothesis is the empty hypothesis and is therefore 1), the join score
(since we are joining the rule with the empty hypothesis this score is also 1) and the
rule score of RuleA (see Figure 3(d)).

Figure 3(h) shows the translation hypothesis created by expanding Hypothesis1

by RuleB. Since this expansion involved adding a rule at node 2 in the TL structure,
the joining trigrams are derived by creating lists of words via all possible combinations
of the frontier bigrams belonging to Hypothesis1 labeled 2 and the root bigrams of
RuleB, also labeled 2 (see root n-grams in Figure 3(g)). For this example, this results
in a single word sequence <s >reflect advertisement the which forms two trigrams <s >-
reflect-advertisement and reflect-advertisement-the. The score for Hypothesis2 is then
calculated by combining the hypothesis score for Hypothesis1, this join score and
the precomputed rule score for RuleB.

3. Using Sulis Decoder

3.1. Input Format

To use Sulis, go to http://www.computing.dcu.ie/˜ygraham/software.html and follow in-
structions. The input to the decoder is a text file containing transfer rules and infor-
mation for computing feature scores. Figure 4 shows an example rule entry for the
decoder. The first two lines in Figure 4 gives the id number of the SL structure, 0, and
the id number of the node in the SL structure where this rule is applied, also 0. The
subsequent lines of the file are used for dependency-based language modeling and
are paths of lexical items associated with nodes in the TL structure beginning at the
frontier nodes back to the root node of the rule. For example, the rule in Figure 4 has
three frontier nodes labeled 1, 7 and 12, and therefore the file contains three paths

24

Y. Graham Sulis Transfer-Based SMT Decoder (17–26)

rule: 0
start: 0
1 agree 0 <s> -1
7 agree 0 <s> -1
12 agree 0 <s> -1
cf(1,eq(attr(var(0),'COMP'),var(12)))
cf(1,eq(attr(var(0),'PASSIVE'),-))
cf(1,eq(attr(var(0),'SUBJ'),var(1)))
cf(1,eq(attr(var(0),'PRED'),semform(agree,_17367,[var(1),var(12)],[])))
cf(1,eq(attr(var(0),'TENSE'),pres))
cf(1,eq(attr(var(0),'ADJUNCT'),var(6)))
cf(1,in_set(var(7),var(6)))
lhs_vars: 0
num_rhs: 1
str: 8.204571144249204
tsr: 8.519636252843213
stl: 7.730179751898788
tsl: 8.799261640333976

Figure 4. Example Rule Entry of Input File: rule translating German structure word
meinen as agree.

from each of these nodes back to the root.3 Next is the RHS of the rule.4 Following
that, is a list of SL nodes covered by the LHS of the rule. In the example in Figure 4 a
single node, labeled 0 is covered by the rule. In addition, the number of TL lexicalized
nodes produced by the rule is given. Finally, the source-to-target and target-to-source
relative frequencies are given in the form of positive log probabilities, as well as the
source-to-target and target-to-source lexical weights, also as positive log probabilities.

In addition to the rules for each structure, the decoder takes in a weights file for
combining feature scores. The file should be in the format of Zaidan (2009) Z-MERT
tool. For language modeling, the tool expects a dependency-based language model
in ARPA format. To compute such a model, Ariadne open source tool in conjunction
with the SRILM toolkit (Stolcke, 2002) can be used.

3.2. Output Format

The decoder outputs the n-best TL structures in the form of the union of the RHS
equations of transfer rules used to construct it, as well as a list of feature scores and
the total combined score.5

3Each lexical item in the path is labeled with its node id number, which is used to verify that no single
trigram is counted more than once.

4In Figure 4, this is in the form of LFG F-structure Prolog equations, but can in fact be in any format, as
it is not interpreted by the program code, but simply remains as a string of characters to be output if this
rule forms part of a solution.

5These scores are needed for MERT.

25

PBML 93 JANUARY 2010

4. Conclusion

In this paper, we present an open source transfer decoder for Deep Syntactic Transfer-
Based SMT. The decoder applies standard methods of PB-SMT to deep syntactic trans-
fer.

Bibliography

Bojar, Ondřej and Jan Hajič. Phrase-Based and Deep Syntactic English-to-Czech Statistical
Machine Translation. In Proceedings of the third Workshop on Statistical Machine Translation,
Columbus, Ohio, June 2008.

Graham, Yvette and Josef van Genabith. An open source rule induction tool for transfer-based
smt. The Prague Bulletin of Mathematical Linguistics Special Issue: Open Source Tools for Machine
Translation, pages 37–46, 2009.

Graham, Yvette, Josef van Genabith, and Anton Bryl. F-structure transfer-based statistical ma-
chine translation. In Proceedings of Lexical Functional Grammar Conference 2009, Cambridge,
July 2009.

Kaplan, Ronald M., Tracy H. King, and John T. Maxwell. Adapting existing grammars: the XLE
experience. In Proceedings of COLING 2002, Taipei, Taiwan, 2002.

Koehn, Philipp and Hieu Hoang. Factored Translation Models. In Proceedings of the 2007 Joint
Conference on Empirical Methods in Natural Language Processing and Computational Natural Lan-
guage Learning, page 868–876, Prague, June 2007.

Koehn, Philip, Franz Josef Och, and Daniel Marcu. Statistical phrase-based translation. In
Proceedings of HLT-NAACL 2003, pages 48–54, Edmonton, Alberta, 2003.

Och, Franz Josef. Minimum error rate training in statistical machine translation. In Proceed-
ings of the 41st Annual Meeting of the Association for Computational Linguistics, pages 160–167,
Sapporo, Japan, 2003.

Och, Franz Josef, Christoph Tillmann, and Hermann Ney. Improved alignment models for
statistical machine translation. In Proceedings of the 1999 Conference on Empirical Methods in
Natural Language Processsing (EMNLP 99, pages 20–28, College Park, MD, 2000.

Riezler, Stefan and John Maxwell. Grammatical Machine Translation. In Proceedings of HLT-
ACL, pages 248–255, New York, 2006.

Stolcke, Andreas. Srilm - an extensible language modeling toolkit. In Proceedings of the Interna-
tional Conference on Spoken Language Processing, Denver, Colorado, September 2002.

Zaidan, Omar. Z-mert: A fully configurable open source tool for minimum error rate training
of machine translation systems. pages 79–88, 2009.

26

The Prague Bulletin of Mathematical Linguistics
NUMBER 93 JANUARY 2010 27–36

Combining Machine Translation Output with Open Source
The Carnegie Mellon Multi-Engine Machine Translation Scheme

Kenneth Heafield, Alon Lavie
Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15213

Abstract
The Carnegie Mellon multi-engine machine translation software merges output from sev-

eral machine translation systems into a single improved translation. This improvement is sig-
nificant: in the recent NIST MT09 evaluation, the combined Arabic-English output scored 5.22
BLEU points higher than the best individual system. Concurrent with this paper, we release
the source code behind this result consisting of a recombining beam search decoder, the com-
bination search space and features, and several accessories. Here we describe how the released
software works and its use.

1. Introduction

Research in machine translation has led to many different translation systems, each
with strengths and weaknesses. System combination exploits these differences to ob-
tain improved output. Many approaches to system combination exist; here we discuss
an improved version of (Heafield et al., 2009) that, unlike most other approaches, syn-
thesizes new word orderings. Since September 2008, the code we release has been
completely rewritten in multithreaded C++ that produces 2.9 combined translations
per second. Along with the core system combination code, we also release language
modeling and evaluation tools of use to the machine translation community. All of
these are available for download at http://kheafield.com/code/mt/.

The scheme has several parts. Hypotheses are aligned in pairs using the publicly
available METEOR (Banerjee and Lavie, 2005) aligner. A search space (Heafield et al.,
2009) is defined on top of these alignments. Beam search is used to make this search
tractable. Recombination increases efficiency and diversity by packing hypotheses

© 2010 PBML. All rights reserved. Corresponding author: heafield@cs.cmu.edu
Cite as: Kenneth Heafield, Alon Lavie. Combining Machine Translation Output with Open Source: The Carnegie
Mellon Multi-Engine Machine Translation Scheme. The Prague Bulletin of Mathematical Linguistics No. 93,
2010, pp. 27–36. ISBN 978-80-904175-4-0. doi: 10.2478/v10108-010-0008-4.

PBML 93 JANUARY 2010

that extend in the same way. Hypotheses are scored using a linear model that com-
bines a battery of features detailed in Section 3. Model weights are tuned using Z-
MERT (Zaidan, 2009).

The remainder of this paper is organized as follows. Section 2 surveys other system
combination techniques. In Section 3 we describe the components of the system with
reference to code while Section 4 shows how to run the system. Section 5 summarizes
results in recent evaluations and Section 6 concludes.

2. Related Work

Confusion networks (Rosti et al., 2008; Karakos et al., 2008) are a popular form of
system combination. This approach combines k-best output from multiple systems. A
single k-best list entry is selected as the backbone, which determines word order. The
backbone may be selected greedily using some agreement metric or jointly with the
full decoding problem (Leusch et al., 2009). Once the backbone is selected, every other
k-best entry is aligned to the backbone using exact matches and position information.
Translation Edit Rate (Snover et al., 2006) is commonly used for this purpose, with the
substitution operation corresponding to alignment. This alignment is still incomplete;
unaligned words are aligned to the empty word, corresponding to the deletion (if
in the backbone) or insertion (if in a different sentence) operations of TER. Within
each alignment, entries vote on word substitution, including with the empty word.
Selection of the backbone and word substitution are the only options considered by
confusion networks.

The next type of system combination jointly resolves word order and lexical choice.
In our approach, we permit the backbone to switch as often as each word. Closely
related work (He and Toutanova, 2009) uses a reordering model like Moses (Koehn
et al., 2007) to determine word order. While they resolve ambiguous position-based
alignments jointly with decoding, we use METEOR to greedily resolve ambiguities re-
sulting from knowledge-based alignments. Since these approaches allow many new
word orders, both employ features to control word order by counting n-gram agree-
ment between the system outputs and candidate combination. We use jointly tun-
able n-gram and system weights for these features; other work uses tunable system
weights for at most unigrams (Zhao and He, 2009).

3. Components

3.1. Alignment

Rather than align to a single backbone, we treat single best outputs from each sys-
tem symmetrically. All pairs are aligned using METEOR. It identifies, in decreasing
order of priority:

1. Case-insensitive exact matches

28

K. Heafield, A. Lavie Combining MT Output with Open Source (27–36)

2. Snowball (Porter, 2001) stem matches
3. Shared WordNet (Fellbaum, 1998) synonyms
4. Unigram paraphrases from the TERp (Snover et al., 2008) database

By contrast, confusion networks typically stop with exact matches and use position-
based techniques to generate additional alignments. We eschew position-based meth-
ods since they can align content words with function words, leading to dropped con-
tent not noticed by BLEU (Karakos, 2009). In fact, we replaced the position-based
artificial alignments of (Heafield et al., 2009) with the paraphrase database, finding
similar performance. The MEMT/Alignmentdirectory contains a Java class that calls the
publicly available METEOR code to perform pairwise alignments. Since METEOR in-
cludes the WordNet database and a tool to extract the paraphrases, neither WordNet
nor TERp is required.

3.2. Search Space

The search space is defined on top of the aligned sentences. A hypothesis starts
with the first word of some sentence. It can continue to follow that sentence, or can
switch to following a different sentence after any word. What results is a hypothesis
that weaves together parts of several system outputs. In doing so, we must ensure
that pieces cover the sentence without duplication and are fluent across switches.
Duplication is prevented by ensuring that a hypothesis contains at most one word
from each group of aligned words. A hypothesis may only switch to the first unused
word from another output, thereby ensuring that the hypothesis covers the entire
sentence. However, this can sometimes be too conservative, so a heuristic permits
skipping over words in some cases (Heafield et al., 2009). That paper introduced two
choices of heuristic and a radius parameter; here we use the length heuristic with ra-
dius 5. Code for the search space appears in the MEMT/Strategy directory. We use
features to reward fluency.

3.3. Features

Since the search space so easily switches between sentences, maintaining fluency
is crucial. A number of features are used for scoring partial and complete hypotheses:
Length The hypothesis length, as in Moses (Koehn et al., 2007). This compensates for

the linear impact of length on other features.
Language Model Log probability from a Suffix Array (Zhang and Vogel, 2006) or an

ARPA format language model. These appear in the lm directory with a simple
common interface. We avoid direct dependence on the SRI (Stolcke, 2002) toolkit
by providing our own equivalent implementation of inference.

Backoff Average n-gram length found in the language model. This provides limited
tunable control over backoff behavior.

Match For each small n and each system, the number of n-gram matches between
the hypothesis and system.

29

PBML 93 JANUARY 2010

Each feature class has a directory under MEMT/Feature. Features have a common in-
terface designed to make adding additional features easy. All features are combined
in a linear model, which is equivalent to a log-linear model with each feature expo-
nentiated. Model weights, especially for the match features, are heavily dependent on
the underlying systems. We therefore provide scripts in MEMT/scripts/zmert to tune
weights using Z-MERT (Zaidan, 2009). With 20 or more features, the optimization
part of each iteration typically takes longer than does decoding.

3.4. Beam Search

Since the search space is exponential in the sentence length, we use beam search
with recombination. The beam contains a configurable number of hypotheses of equal
length; we typically keep 500 hypotheses. In order to increase beam diversity and
speed decoding, we recombine hypotheses that will extend in the same way and score
proportionally. Hypotheses to recombine are detected by hashing the search space
state, feature state, and hypothesis history up to a length requested by the features.
Recombined hypotheses are packed into a single hypothesis that maintains pointers
to the packed hypotheses. At the end of the sentence, these packed hypotheses com-
prise a lattice where each node is labeled with the maximum-score path back to the
beginning of the sentence. This enables efficient k-best extraction. The beam search
decoder is factored into MEMT/Decoder. It only knows about the search space and fea-
tures via template arguments and, therefore, may be independently useful for other
left-to-right beam search problems.

4. Running Combination

4.1. Requirements

We assume a UNIX environment with a C++ compiler, Java, and Python. Scripts
are provided in install/ to install Boost, Boost Jam, ICU, and Ruby without requiring
root access. Compiling consists of running bjam release in the MEMT directory. See
the README file for more information.

A separate tuning set is required to learn parameter weights. This should be held
out from system training or tuning data. We recommend reserving at least 400 seg-
ments for this purpose. A language model is also required; many use the SRILM
toolkit (Stolcke, 2002) to produce ARPA files for this purpose. It should be tokenized
the same way as the system outputs. A tokenizer is not provided; one can be down-
loaded from http://www.statmt.org/wmt09/scripts.tgz (Callison-Burch et al., 2009).

4.2. Alignment

The MEMT/Alignment/MatcherMEMT.java class uses the METEOR API to infer align-
ments. It should be compiled by running MEMT/Alignment/compile.sh. This script

30

K. Heafield, A. Lavie Combining MT Output with Open Source (27–36)

will also download and install METEOR if necessary. Tokenized system outputs
should be placed in text files with one segment per line. Running alignment is straight-
forward:
$ MEMT/Alignment/match.sh system1.txt system2.txt system3.txt >matched

4.3. Optional Language Model Filtering

Optionally, an ARPA language model can be filtered to the sentences being com-
bined. The filter checks that an n-gram’s vocabulary is a subset of some segment’s
vocabulary. This is much more strict than testing against the entire set’s vocabulary,
where words in an n-gram could be spread across several segments. The reduction in
size can be dramatic: filtering a 19 GB ARPA file for the NIST MT09 Informal System
Combination task produced a 1.4 GB ARPA file. Since the server will load this model
into RAM, filtering greatly decreases hardware requirements. The command to filter
to any number of matched files, including those with different sets of systems, is:
$ cat matched1 matched2 matched3 |MEMT/dist/FilterLM in.arpa out.arpa
The filter is fast: it keeps only the vocabularies in memory and takes about 12 min-
utes to filter a 19 GB model. This language model filter is also available as a separate
package that reads one segment vocabulary per line. While phrase table expansion
reduces effectiveness for statistical machine translation systems, we were still able to
reduce model size by 36% by filtering to 1797 segments. It can also produce segment-
level language model files if desired.

4.4. Decoding Server

The actual decoding algorithm runs inside a server process that accepts TCP con-
nections. This avoids reloading the language model, which typically takes longer than
performing thousands of combinations. The server is launched by specifying the lan-
guage model and port:
$ MEMT/scripts/server.sh --lm.type ngram --lm.file lm.arpa --port 2000
When loading the language model has finished, it will print “Accepting Connections.”
Except for the language model and some threading options, configuration is sent by
clients. Multiple connections with different configurations work properly. The pro-
tocol is highly compressible plain text, especially for k-best lists, so we advise using
compressed SSH tunneling if the connection between client and server is slow.

4.5. Configuration

Most of the configuration options are set by clients of the decoding server. Fig-
ure 1 shows a configuration file without feature weights, which are added by tuning.
Important hyperparameters to tweak are:
horizon The suboption radius controls how long words linger as described in Sec-

tion 3.2. The method of distance measurement can be length or nearby alignment,

31

PBML 93 JANUARY 2010

as described in (Heafield et al., 2009). Generally, a larger window works best in
the presence of significant reordering. We recommend starting with length and
a radius of 5.

verbatim Match features are called verbatim in the code. Two instances are pro-
vided; work on more flexible feature instantiation is planned. The idea behind
two instances is that one does lexical voting using exact matches while the other
uses all alignments to handle support and word order issues. The mask option
controls which alignment types will count, including the implicit self align-
ment of words and boundary markers. The maximum match length to consider
is also a key parameter. The individual option determines the maximum match
length reported individually for each system. This may lead to too many fea-
tures, so longer n-gram match counts can be presented on a collective basis
by summing counts across systems.

ouptut.nbest Size of n-best output requested.
length_normalize This determines if feature values are divided by length, excepting

of course the length feature itself. When disabled, the length feature otherwise
acts to subtract the impact of length from other features. Empirically, we find
turning off length normalization makes the output score slightly higher and
output 1-2% longer.

Authoritative documentation of all options is printed when the server is run without
an argument:
$ MEMT/scripts/server.sh

4.6. Tuning

Tuning requires a directory with three files: decoder_config_base containing the
configuration file from Section 4.5, dev.matched containing the aligned tuning sen-
tences from Section 4.2, and dev.reference containing the references (one per line).
Multiple references for the same segment appear on consecutive lines. Assuming
these files are in work_dir and the decoding server is running on port 2000, the com-
mand line is:
$ MEMT/scripts/zmert/run.rb 2000 work_dir
If the server is running on another machine, it may be specified as host:port. This
will run Z-MERT to tune the system and produce the file work_dir/decoder_config
with tuned weights. It also decodes the tuning set with this configuration, placing
output in work_dir/output.1best. Finally, it scores this tuning output against the
provided reference, placing results in work_dir/output.1best.scores.

4.7. Decoding and Evaluation

Test data is decoded using the tuned configuration file and test matched file:
$ MEMT/scripts/simple_decode.rb 2000 decoder_config matched output

32

K. Heafield, A. Lavie Combining MT Output with Open Source (27–36)

output.nbest = 300
beam_size = 500
length_normalize = false

#Remove words more than 5 behind as measured by length.
horizon.method = length
horizon.radius = 5

#Count exact matches up to length 2 for each system.
score.verbatim0.mask = "self exact boundary"
score.verbatim0.individual = 2
score.verbatim0.collective = 2
#Count non-paraphrase matches up to length 2 for each system.
#For length 3 and 4, sum the match counts across systems.
score.verbatim1.mask = "self exact boundary snowball_stem wn_synonymy"
score.verbatim1.individual = 2
score.verbatim1.collective = 4

Figure 1. Sample configuration file before tuning weights.

which creates output.1best with one segment per line and output.nbest in Moses
(Koehn et al., 2007) format.

We provide a script that scores translations with BLEU (Papineni et al., 2002) from
mteval-13a.pl (Peterson et al., 2009), NIST (Doddington, 2003), TER 0.7.25 (Snover
et al., 2006), METEOR 1.0 (Banerjee and Lavie, 2005), unigram precision and recall,
and length ratio. The following command generates the file output.1best.scores
containing these respective scores:
$ Utilities/scoring/score.rb --hyp-tok output.1best --refs-laced ref
Running with --print-header will show column headers. Running without argu-
ments provides the full list of options. This script is also available for download as a
separate package.

5. Results

The 2009 Workshop on Machine Translation (WMT) (Callison-Burch et al., 2009)
and NIST Open MT evaluations (Peterson et al., 2009) both added tracks specifically
to evaluate system combination. We participated in both and now present updated
unofficial results in Table 1. Gains on NIST data are surprisingly large–but not unex-
pected given the results from the evaluation (Peterson et al., 2009). Gains on WMT
data depend mostly on the gap between Google and other systems; with a large gap,
the effectiveness of system combination is minimal.

33

PBML 93 JANUARY 2010

Source System BLEU TER METEOR

NIST Arabic combo 58.55 36.86 70.76
top single 51.88 40.54 67.74

NIST Urdu combo 34.72 55.46 53.37
top single 32.88 56.20 52.24

WMT Czech combo 21.98 60.48 46.63
top single 21.18 59.57 46.91

WMT French combo 31.56 52.48 54.30
top single 31.14 51.36 54.91

WMT German combo 23.88 58.29 48.69
top single 21.31 60.78 56.82

WMT Hungarian combo 13.84 71.89 36.70
top single 12.75 68.35 35.43

WMT Spanish combo 28.79 53.63 53.51
top single 28.69 53.38 54.20

Table 1. Unofficial post-evaluation scores on test data from past system combination
tasks with the top system by BLEU shown in italics for comparison. The NIST MT09
Arabic-English scores are on unsequestered segments only. For 2009 Workshop on

Machine Translation results, the language model is constrained; there was no
constrained track for MT09 informal system combination. BLEU is uncased (and
therefore not the official NIST MT09 metric), TER is version 0.7.25, and METEOR is

version 1.0 with hter parameters.

6. Conclusion

We have released the source code to our system combination scheme. It shows
significant improvement on some translation tasks, particularly those with systems
close in performance. The software is ready to be downloaded, installed, and run. We
hope to receive patches from users. In addition to the core system combination code,
the language model filter and evaluation script are available as separate packages of
general use to the community.

Acknowledgments

Funding for this work was provided by the DARPA GALE program and a Na-
tional Science Foundation Graduate Research Fellowship. NIST serves to coordinate
the NIST Open MT evaluations in order to support machine translation research and
to help advance the state-of-the-art in machine translation technologies. NIST Open
MT evaluations are not viewed as a competition, as such results reported by NIST are
not to be construed, or represented, as endorsements of any participant’s system, or as

34

K. Heafield, A. Lavie Combining MT Output with Open Source (27–36)

official findings on the part of NIST or the U.S. Government. Informal System Com-
bination was an informal, diagnostic MT09 task, offered after the official evaluation
period.

Bibliography

Banerjee, Satanjeev and Alon Lavie. METEOR: An automatic metric for MT evaluation with
improved correlation with human judgments. In Proceedings ACL Workshop on Intrinsic and
Extrinsic Evaluation Measures for Machine Translation and/or Summarization, pages 65–72, 2005.

Callison-Burch, Chris, Philipp Koehn, Christof Monz, and Josh Schroeder. Findings of the
2009 Workshop on Statistical Machine Translation. In Proceedings of the Fourth Workshop
on Statistical Machine Translation, pages 1–28, Athens, Greece, March 2009. Association for
Computational Linguistics. URL http://www.aclweb.org/anthology/W/W09/W09-0401.

Doddington, George. Automatic Evaluation of Machine Translation Quality Using N-gram
Co-Occurrence Statistics. In Proceedings of Human Language Technology Conference, 2003.

Fellbaum, Christiane. WordNet: An Electronic Lexical Database. MIT Press, 1998. ISBN 978-0-
262-06197-1.

He, Xiaodong and Kristina Toutanova. Joint optimization for machine translation system com-
bination. In EMNLP, August 2009.

Heafield, Kenneth, Greg Hanneman, and Alon Lavie. Machine translation system combination
with flexible word ordering. In Proceedings of the Fourth Workshop on Statistical Machine Trans-
lation, pages 56–60, Athens, Greece, March 2009. Association for Computational Linguistics.
URL http://www.aclweb.org/anthology/W/W09/W09-0408.

Karakos, Damianos. The JHU system combination scheme. In NIST Open Machine Translation
Evaluation Workshop, Ottawa, Canada, September 2009.

Karakos, Damianos, Jason Eisner, Sanjeev Khudanpur, and Markus Dreyer. Machine transla-
tion system combination using ITG-based alignments. In Proceedings ACL-08: HLT, Short
Papers (Companion Volume), pages 81–84, 2008.

Koehn, Philipp, Hieu Hoang, Alexandra Birch, Chris Callison-Burch, Marcello Federico, Nicola
Bertoldi, Brooke Cowan, Wade Shen, Christine Moran, Richard Zens, Chris Dyer, Ondrej
Bojar, Alexandra Constantin, and Evan Herbst. Moses: Open source toolkit for statistical
machine translation. In Annual Meeting of the Association for Computational Linguistics (ACL),
Prague, Czech Republic, June 2007.

Leusch, Gregor, Saša Hasan, Saab Mansour, Matthias Huck, and Hermann Ney. RWTH’s sys-
tem combination for the NIST 2009 MT ISC evaluation. In NIST Open Machine Translation
Evaluation Workshop, Ottawa, Canada, September 2009.

Papineni, Kishore, Salim Roukos, Todd Ward, and Wei-Jing Zhu. BLEU: a method for automatic
evaluation of machine translation. In Proceedings of 40th Annual Meeting of the Association for
Computational Linguistics (ACL), pages 311–318, Philadelphia, PA, July 2002.

Peterson, Kay, Mark Przybocki, and Sébastien Bronsart. NIST 2009 open
machine translation evaluation (MT09) official release of results, 2009.
http://www.itl.nist.gov/iad/mig/tests/mt/2009/.

35

http://www.aclweb.org/anthology/W/W09/W09-0401
http://www.aclweb.org/anthology/W/W09/W09-0408

PBML 93 JANUARY 2010

Porter, Martin. Snowball: A language for stemming algorithms, 2001.
http://snowball.tartarus.org/texts/introduction.html.

Rosti, Antti-Veikko I., Bing Zhang, Spyros Matsoukas, and Richard Schwartz. Incremental hy-
pothesis alignment for building confusion networks with application to machine translation
system combination. In Proceedings Third Workshop on Statistical Machine Translation, pages
183–186, 2008.

Snover, Matthew, Bonnie Dorr, Richard Schwartz, Linnea Micciulla, and John Makhoul. A
study of translation edit rate with targeted human annotation. In Proceedings Seventh Con-
ference of the Association for Machine Translation in the Americas, pages 223–231, Cambridge,
MA, August 2006.

Snover, Matthew, Nitin Madnani, Bonnie Dorr, and Richard Schwartz. TERp system descrip-
tion. In Proceedings NIST Metrics MATR 2008, 2008.

Stolcke, Andreas. SRILM - an extensible language modeling toolkit. In Proc. ICSLP, pages
901–904, 2002.

Zaidan, Omar. Z-MERT: A fully configurable open source tool for minimum error rate training
of machine translation systems. Prague Bulletin of Mathematical Linguistics, 91:79–88, 2009.

Zhang, Ying and Stephan Vogel. Suffix array and its applications in empirical natural language
processing. Technical Report CMU-LTI-06-010, Language Technologies Institute, School of
Computer Science, Carnegie Mellon University, Pittsburgh, PA, December 2006.

Zhao, Yong and Xiaodong He. Using n-gram based features for machine translation system
combination. In Proceedings NAACL-HLT, May 2009.

36

The Prague Bulletin of Mathematical Linguistics
NUMBER 93 JANUARY 2010 37–46

Training Phrase-Based Machine Translation Models on the Cloud
Open Source Machine Translation Toolkit Chaski

Qin Gao, Stephan Vogel
InterACT Lab, Language Technologies Institute, Carnegie Mellon University, 407 S. Craig Street, Pittsburgh, PA 15213,

United States

Abstract
In this paper we present an opensource machine translation toolkit Chaski which is ca-

pable of training phrase-based machine translation models on Hadoop clusters. The toolkit
provides a full training pipeline including distributed word alignment, word clustering and
phrase extraction. The toolkit also provides an extended error-tolerance mechanism over stan-
dard Hadoop error-tolerance framework. The paper will describe the underlying methodology
and the design of the system, together with instructions of how to run the system on Hadoop
clusters.

1. Introduction

Statistical machine translation relies heavily on data. As the amount of data be-
come larger, the time spent on model training becomes longer. On large scale tasks
such as GALE, which scales up to 10 million sentence pairs and more than 300 million
words, training on a single machine with GIZA++ (Och and Ney, 2003) and Moses
(Koehn et al., 2007) can take more than one week. By applying multi-thread tech-
nology to GIZA++, significant speedup can be achieved when multi-core computers
are used. However, even with the latest Multi-thread GIZA++ (MGIZA++) (Gao and
Vogel, 2008), training a large scale system still requires 5 to 8 days.

A typical phrase-based machine translation training pipeline consists of three ma-
jor steps: preparing the corpus, word alignment and phrase extraction/scoring. Among
these steps, the most time-consuming ones are word alignment and phrase extrac-
tion/scoring. Different stages requires different kinds of resources. Take the Moses
toolkit as an example. The first step, data preprocessing for word alignment, typi-

© 2010 PBML. All rights reserved. Corresponding author: qing@cs.cmu.edu
Cite as: Qin Gao, Stephan Vogel. Training Phrase-Based Machine Translation Models on the Cloud: Open
Source Machine Translation Toolkit Chaski. The Prague Bulletin of Mathematical Linguistics No. 93, 2010,
pp. 37–46. ISBN 978-80-904175-4-0. doi: 10.2478/v10108-010-0004-8.

PBML 93 JANUARY 2010

cally takes 2 to 3 hours, and most of the time is consumed by word clustering, which
scales linearly to vocabulary size and quadratic to number of classes1. The next step,
word alignment, can be split into two stages, the first is generating co-occurrence table
which contains all possible word pairs which appear in the corpus, and the second is
training IBM models and outputting alignments. The co-occurrence table generation
task consumes a large amount of memory. In our profile, running it on a ten mil-
lion sentence Chinese-English corpus consumed 20GB memory, which may already
be a problem for most commodity machines. Again, when training IBM models with
GIZA++, the memory usage is essentially smaller but the CPU time becomes the dom-
inant factor. After the alignment is generated, phrase extraction and scoring suffers
from a different problem, the I/O bottleneck. When running on large data, phrase ex-
traction requires writing individual phrases onto disk, and later, during scoring stage
the phrases will be sorted two times on source or target phrase so as to estimate fea-
ture values of each phrase pair. If the size of extracted phrase pairs fits into memory,
then internal sorting can be used, however the size of uncompressed phrase pairs can
easily grow to 100 GB, as a consequence the sort program needs to write and read
temporary files which also adds to the burden of disk I/O. It is the reason why phrase
extraction, being a relatively simple process, takes also more than two days to finish
on a the Chinese-English corpus described above.

With the rapid development of computer clusters, the computational resource is
considered abundant. Among the different parallel frameworks, MapReduce is at-
tracting more and more attention (Dean and Ghemawat, 2008). In this framework,
two functions, Mapper and Reducer are defined. The Mapper processes raw input
and outputs intermediate key-value pairs. The key-value pairs are then sorted and
all pairs with the same key will be fed into a reducer instance. With the opensource
Hadoop system2, one can easily set up an error-tolerant cluster with commodity com-
puters, and commercial services such as Amazon EC2 make it even easier to access
large Hadoop clusters at small cost. There has been some work on porting machine
translation tools to Hadoop: Dyer et al (Dyer et al., 2008) implemented distributed
training for IBM 1 and HMM word alignment models based on Hadoop; Venugopal
et al (Venugopal and Zollmann, 2009) built an end-to-end syntactic augmented ma-
chine translation system on Hadoop. However, there is still no complete toolkit that
can handle the whole phrase-based machine translation training pipeline on clusters.
In this work we provide a software package toolkit, which ports the whole machine
translation training pipeline onto Hadoop clusters, including:

1. Distributed word clustering, as the preprocessing step for word alignment.
2. Distributed word alignment, for training IBM model 1 to 4 and HMM model.
3. Distributed phrase extraction, to extract phrases and score phrase pairs on the

cluster.

1In Moses, the default number of classes are 50.
2Apache Hadoop, http://hadoop.apache.org/

38

Q. Gao, S. Vogel PBMT Training on the Cloud (37–46)

Word Clustering
Preprocessing for
Word Alignment

Word Alignment Phrase Extraction Scoring Phrases

Corpus Preprocess
(mkcls, step 1)

Symmetrized Align-
ment (step 3)

Chaksi Pipeline

Moses Pipeline

Distributed
Word clustering

Distributed
Word alignment

Distributed
Phrase extraction

Figure 1. Components in Chaski toolkit and its counter parts in Moses pipeline. The
dashed boxes are outputs in Moses pipeline, dashed arrows mean you can take Moses

output of the component in Moses and continue training using Chaski.

The final output of the system is a Moses-compatible phrase table and lexicalized
reordering model.

In order to handle the training efficiently and reliably on the cluster, the toolkit also
takes into account the problem of error-tolerance. MapReduce frameworks such as
Hadoop provide primitive error/exception handling mechanism by simply re-running
failed jobs. In practice this mechanism does not work well for complex NLP tasks,
because exceptions are not necessarily caused by “unexpected” hardware/software
problems that can be fixed by restarting. For this kind of exceptions special actions
need to be taken so as to recover the training process. In the Chaski system we imple-
mented a cascaded fail-safe mechanism that can apply pre-defined recovery actions
to ensure successful training with minimal manual intervention.

In section 2 we will introduce the methodology and implementation of each com-
ponent in the toolkit. Section 3 provides a brief tutorial of how to setup and run the
toolkit. Section 4 presents experimental results on run time and translation, and sec-
tion 5 concludes the paper.

2. System implementation

The Chaski toolkit consists of three major components, distributed word cluster-
ing, distributed word alignment and distributed phrase extraction. Figure 1 shows the
pipeline of the system. At the boundaries of each stage, the toolkit is compatible with
Moses file formats. In other words, each of the components can be replaced by Moses
counter parts. The dashed arrows in Figure 1 demonstrate alternative pipelines. In
the remaining part of the section we will first introduce distributed world alignment,
then phrase extraction and scoring and finally the cascaded fail-safe mechanism. For
distributed word clustering, we re-implemented the algorithm proposed by (Uszkor-
eit and Brants, 2008), and we refer interested readers to that paper.

39

PBML 93 JANUARY 2010

2.1. Distributed word alignment

GIZA++ is a widely used word alignment tool. It uses EM algorithm to estimate
parameters for IBM models (Brown et al., 1993) and HMM model (Vogel et al., 1996).
Given a sentence pair (fJ

1, eI
1), where fJ

1 and eI
1 are source and target sentence with J

and I words respectively, an alignment a on the sentence pair is defined as:

a ⊆ AJ
I = {(j, i) : j = 1, · · · , J; i ∈ [0, I]} (1)

in case that i = 0 in a link (j, i) ∈ a, it represents that the source word j aligns to an
empty target word e0. In IBM models, the translation probability is defined as the
summation of the probabilities of all possible alignments between the sentence pair:

P(fJ
1 |e

I
1) =

∑
a⊆AJ

I

P(fJ
1 , a|e

I
1) (2)

and IBM models consists of several parametric forms of P(fJ
1|eI

1) = pθ(fJ
1, aJ

1|eI
1). The

parameters θ can be estimated by maximum likelihood estimation on training corpus
with EM algorithm. The optimal alignment under the current parameter set θ̂ is called
Viterbi alignment, as defined in 3, and a large number of state-of-the-art translation
systems utilize the Viterbi alignment for phrase or rule extraction.

â
J
1 = arg max

a
J

1

pθ̂(fJ
1 , a

J
1 |e

J
1) (3)

The algorithm in GIZA++ is an iterative process, and each iteration can be divided
into two steps, E-step and M-step. During E-step, the current parameter set θ̂ is used to
estimate posteriors of all possible alignments (or a set of n-best alignments for model
3,4 and 5) of all sentence pairs in the training corpus. Then on M-step the posterior of
events are summed up and normalized to produce a new parameter set. E-step, which
scales linearly to number of sentence pairs, can be time consuming when the size of
corpus is large. However, because each sentence pair can be processed independently,
it is easy to be parallelized. M-step is relatively fast, however, the step is easily becom-
ing I/O bound in distributed environments if large number of posteriors need to be
transferred. In our previous work (Gao and Vogel, 2008), we implemented a multi-
thread version of GIZA++ called MGIZA++, and a distributed version, PGIZA++.
While MGIZA++ achieved significant speed-up, PGIZA++ suffers from I/O bottle-
neck in practice. In the new implementation presented in the paper, Hadoop File
System (HDFS) is used to collect counts and re-distribute models, and the normal-
ization is implemented as MapReduce tasks, the distributed nature of HDFS greatly
improved the efficiency of count collection and re-normalization.

In addition to the I/O bottleneck, when moving towards distributed word align-
ment, the memory limitation is also a blockage. Hadoop clusters usually limit the
memory every process can use, but certain models such as lexical translation model

40

Q. Gao, S. Vogel PBMT Training on the Cloud (37–46)

p(fj|ei), is usually too large if no filtering is done. The size of the table is proportional
to the source and target vocabulary, hence related to the sizes of chunks of the training
corpus. Therefore it is important to estimate the memory footprint and dynamically
adjust the sizes of chunks.

The distributed word alignment in Chaski works as follows. First the input corpus
is split into chunks. The sizes are dynamically determined by the number of distinct
word pairs, which is proportional to the memory footprint. After the chunks are gen-
erated, a number of tasks will be started, each handles the E-step of one chunk. The
counts are written directly onto HDFS from individual tasks, and the M-step MapRe-
duce tasks are started after all E-step tasks finish. Different M-step MapReduce tasks
are implemented for different models with similar ideas that all the counts appear-
ing in the denominator of the normalization formulae will be processed by a same
reducer. For example, the counts of lexical translation probability p(fj|ei) is a triplet
t = (fj, ei, c(fj|ei)), and the normalization formula is p̂(fj|ei) =

∑
f=fj,e=ei

c(fj|ei)∑
f=fj

c(fj|ei) .
Therefore we define fj as the key in Mapper output, so (fj, e, c(fj|ei)),∀e will go to
one reducer, and the reducer has enough information to perform normalization. Af-
ter normalization is done, the new model will be written to HDFS and the E-step tasks
of next iteration will fetch the model and filter it according to the chunk’s vocabulary.

2.2. Distributed phrase extraction

Phrase extraction takes the symmetrized word alignments as input and extracts
phrases base on pre-defined heuristics. After phrase pairs are extracted, features
are assigned to phrase pairs in the scoring phase. Commonly used features include
phrase translation probabilities and lexical translation probabilities. Assume a phrase
pair (Ei, Fj), where E = e1, · · · , eK, F = f1, · · · , fL, e1..K and f1..L are words in source/
target languages. For phrase translation probabilities, which include two features
(source-to-target and target-to-source), the features are defined as:

PTs→t(Ei, Fj) =
#(Ei, Fj)

#(Ei)
(4)

PTt→s(Ei, Fj) =
#(Ei, Fj)

#(Fj)
(5)

where #(Ei, Fj) is the count of occurrences of the phrase pair in the corpus, #(Ei), #(Fj)
are counts of occurrences of source or target phrase in the corpus respectively.

For lexical translation probabilities, which is also bi-directional, we have the defi-
nition:

LTs→t(Ei, Fj) =

K∏
k=1

(
δ|A(ek)|

|A(ek)|

∏
fl∈A(ek)

p(fl |ek) + (1−δ|A(ek)|)p(0|ek)

)
(6)

LTt→s(Ei, Fj) =

L∏
l=1

(
δ|A(fl)|

|A(fl)|

∏
ek∈A(fl)

p(ek |fl) + (1−δ|A(fl)|)p(0|fl)

)
(7)

41

PBML 93 JANUARY 2010

where A(ek) is target word that has alignment with ek, and p(0|ek) is the probability
of ek aligned to empty word (not aligned) and δ(|A(ek)|) = 0 if A(ek) is empty.

Generally the features can be classified into three categories according to how it
can be calculated. For PTs→t, we need all the phrase pairs with a same source phrase,
which requires sorting on source phrases, for PTt→s, reversely we need phrase pairs
be sorted on target side phrases. Finally the lexical weights can be calculated individ-
ually for each phrase pair. Therefore, to get all the four features we need to sort the
whole phrase table twice, which can be done in two MapReduce tasks. As shown in
Figure 2, the first mapper performs phrase extraction, and output the target phrases
as keys, source phrases as values. The MapReduce framework automatically sorts the
output on target phrases, and the reducer, which has all the phrase pairs of the same
target phrase, can calculate PTt→s(Ei, Fj). To make the output compact, we do not
store all instance of a same phrase pairs, instead we store the phrase pairs with the
number of occurrences of the phrase pair. The second mapper works on the output
of the first step, the only operation it performs is switching the keys to source phrase,
and output both the target phrase pair and the count of the phrase pair. Again the
MapReduce framework will sort the output by source phrases, and the reducer can
estimate PTs→t(Ei, Fj). The lexical translation probabilities can be estimated in either
reducer, but in implementation we put it on the second reducer. In addition, lexical-
ized reordering table can be generated within the pipeline, the reordering features are
similar to lexical translation probabilities, and is estimated in the second reducer.

2.3. Error-tolerance mechanism

Error-tolerance is an essential part of distributed computing. Hadoop already pro-
vides primitive error-tolerance mechanism which is able to re-run failed tasks. How-
ever, in many cases, the errors cannot be recovered only by restarting on the same
configuration, in such cases the mechanism does not help.

To handle this, we developed a special error tolerance mechanism in Chaski. If
error happens, a sequence of actions will be taken to recover the pipeline. The actions
will be taken in a cascaded way, first the system will try to re-run tasks on failed data
chunks and if it fails for a given number of times, then it will try to reduce the chunk
sizes for word alignment or enable disk-based cache for phrase extraction. Finally, if
specified by user, the system will try to ignore a certain number of chunks, or stop
the pipeline. After user fixed the problem, the pipeline can be resumed from where it
stops. This is especially useful for the word alignment step, so that users do not need
to restart from beginning.

3. Usage of the software

The toolkit is released under two separated packages, a Java package for Chaski
and a C++ package for MGIZA++. Standalone Chaski is capable of distributed word

42

Q. Gao, S. Vogel PBMT Training on the Cloud (37–46)

Phrase

Extraction

Symmetrized

Alignments

Phrase

Extraction

Phrase

Extraction

.

.

.

Score T->S

PT Feature

Score T->S

PT Feature

Dummy

Mapper

.

.

.

Dummy

Mapper

Dummy

Mapper
Score S->T

PT Feature

and Lexicon

Features

Score S->T

PT Feature

and Lexicon

Features

Phrase

Table

Phrase Extraction/Scoring Pipeline

Mapper ISplit Corpus Sort on Target Reducer I Sort on Source Reducer II

Figure 2. The flowchart of phrase extraction tasks, the dashed arrows represent
sorting operations performed by MapReduce framework.

clustering, to perform word alignment MGIZA++ is required. As illustrated in Fig-
ure 1, there are multiple alternative pipelines. Chaski can perform full training from
raw input data or only perform phrase extraction with the symmetrized alignments
generated elsewhere.

After installation of both packages, we need to define two environment variables:
$QMT_HOME=<directory where MGIZA++ is installed>
$CHASKI_HOME=<directory where Chaski is installed>

3.1. Pipeline 1: perform full training

The input of the pipeline is the source and target corpus file. Optionally the user
can specify the word cluster files and ignore the word clustering step. In addition to
the corpus files, the user also need to specify a root directory on HDFS where the user
has full priviliges, and we denote is as $ROOT.

Chaski uses commandline interface and a configure file to get parameters, and
supporting scripts are provided to make configuration and training easy. To train the
model user need to follow the following three steps: 1) generate the config file, 2)
modify the config file if necessary, 3), run the training script. To generate the config
file for full training, just run:

$CHASKI_HOME/scripts/setup-chaski-full SOURCE-CORPUS \
TARGET-CORPUS $ROOT > chaski.config

and a config file chaski.config will be generated in current directory and then the
user can fine-tune the parameters. After the parameter file is ready, the user can call
the training script to start training:

$CHASKI_HOME/scripts/train-full chaski.config [first-step] [last-step]

There are two optional options first-step and last-step which can be used to re-
sume training or bypass certain steps. The final output will be stored on HDFS:

$ROOT/moses-phrase : Phrase table in Moses format
$ROOT/moses-reorder : lexicalized reordering in Moses format

43

PBML 93 JANUARY 2010

$ROOT/extract : Extracted phrases
$ROOT/lexicon : The lexicon tables in Moses format
$ROOT/training/S2T/Align : GIZA alignment directory, source-to-target

/T2S/Align : GIZA alignment directory, target-to-source

3.2. Pipeline 2: phrase extraction only

If the user only wants to run phrase extraction, then in addition to source and tar-
get corpus files, the symmetrized word alignments must be supplied. Similar to full
training pipeline, another script is used to set up config file:

$CHASKI_HOME/scripts/setup-chaski SOURCE-CORPUS
TARGET-CORPUS ALIGNMENT $ROOT > chaski.config

and the script to run the training is:
$CHASKI_HOME/scripts/extract chaski.config [first-step] [last-step]

The output will be in the same directory as listed above, but it will not contain GIZA
alignment directories.

3.3. Configuration

Limited by the length of the paper, we only list several important parameters the
user should be aware of:

• heap The Java heap size for every job, the Hadoop installation may have limita-
tions on the value, for large corpus you need to increase the value but it should
not exceed the limitation imposed by the system.

• memorylimit The memory limitation for lexical translation table in the word
alignment step, which is used to determine the size of chunks. Similarly the
limitation should not exceed the limitation of Hadoop installation, but setting it
too small will generate too many chunks and the overhead of loading parame-
ters may impact the training speed.

• train Training sequence of distributed word alignment. The format of the train-
ing sequence is as follows: the number of iterations run on individual child is
specified by characters 1,2,3,4 and H, and the global normalization is specified
by *. For example train=1*1*1*1*1*H*H*H*H*H*3*3*3*4*4*4* will perform
five model 1 iterations, five HMM iterations, and three model 3/4 iterations,
and the normalization will take place after each iteration.

4. Experiments

4.1. Run time comparison

We compared running word alignment using MGIZA++ on quad-core Xeon CPU
with running distributed word alignment using Chaski. The corpus used in the exper-
iment is the GALE Arabic-English training corpus, which contains 6 million sentence

44

Q. Gao, S. Vogel PBMT Training on the Cloud (37–46)

Table 1. Run time comparison of MGIZA++ and Chaski

Run time
Model 1 HMM Model 3 Model 4 1-To-4

System Total Iter Total Iter Total Iter Total Iter
EN-AR 4.25h 0.85h 17.5h 3.50h 5.75h 1.15h 19.2h 3.85h 46.7hMGIZA AR-EN 4.03h 0.80h 15.8h 3.15h 5.86h 1.17h 21.8h 4.35h 47.0h
EN-AR 2.28h 0.46h 2.10h 0.42h 0.97h 0.32h 1.13h 0.38h 6.49hChaski AR-EN 2.45h 0.49h 2.40h 0.48h 1.22h 0.41h 1.27h 0.42h 7.34h

pairs and 200 million words. We ran 5 model 1 iterations, 5 HMM iterations, 3 model
3 iterations and 3 model 4 iterations. We ran Chaski on Yahoo!’s M45 cluster, which
has 400 nodes, each has 6 cores. The corpus is split into 125 chunks. Table 1 shows
the run time comparison of MGIZA++ and Chaski. As we can see, we can cut the run
time to less than 8 hours by using Chaksi.

We performed phrase extraction with Chaski and Moses on the same corpus, for
Moses we used 16G memory in sorting, which is still not enough for loading all phrase
pairs so external sort was triggered. The entire phrase extraction task took 21 hours,
while with Chaski we finished the process in 43 minutes with 100 mappers and 50
reducers.

4.2. Translation result comparison

To compare the translation results, we used NIST MT06 evaluation set (1797 sen-
tences about 50000 tokens) as tuning set and MT08 evaluation set (1360 sentences and
about 45000 tokens) as test set, table 2 shows the BLEU scores of tuning and decod-
ing using alignments and phrase table generated from different tools. “Phrase Table
(Tune)” column lists the phrase table used in MERT and “Phrase Table (Test)” is the
phrase table used in decoding. In the experiment a small tri-gram language model is
used because we are mainly focus on the validity of the result rather than high BLEU
score. As we can see, using phrase tables from Moses or Chaski has minimal differ-
ence due to different precision or float number formats, direct comparison on phrase
table showed no phrase pair has different feature value if rounded to first four digits.
Also, distributed word alignment outputs similar BLEU scores, although out of 6 mil-
lion sentence pairs, 12.9 thousand sentence pairs have at least one different alignment
link, the performance is generally unchanged.

5. Conclusion

In the paper we present a distributed training system, Chaski, for phrase based
machine translation system runs on top of the Hadoop framework. The training time
of word alignment is reduced from 47 hours to 8 hours and the time of phrase extrac-
tion/scoring from 21 hours to 43 minutes by using the system. The output phrase

45

PBML 93 JANUARY 2010

Table 2. Translation Results

Word Aligner Phrase Table (Tune) Phrase Table (Test) BLEU MT06 BLEU MT08
MGIZA Moses Moses 45.48 42.51
MGIZA Moses Chaski 45.40 42.51
MGIZA Chaski Chaski 45.75 42.46
MGIZA Chaski Moses 45.73 42.43
Chaski Chaski Chaski 45.33 42.49

tables are compatible with the Moses decoder. The system enables utilizing large
clusters to train phrase-based machine translation models efficiently.

Acknowledgement

This work is supported by NSF Cluster Exploratory project (CluE- INCA, NSF08560),
and we thank Yahoo! for providing M45 cluster for the research.

Bibliography

Brown, Peter F., Stephen A. Della Pietra, Vincent J. Della Pietra, and Robert L. Mercer. The
mathematics of statistical machine translation: Parameter estimation. In Computational Lin-
guistics, volume 19(2), pages 263–331, 1993.

Dean, Jeffrey and Sanjay Ghemawat. Mapreduce: simplified data processing on large clusters.
Commun. ACM, 51(1):107–113, 2008.

Dyer, Chris, Aaron Cordova, Alex Mont, and Jimmy Lin. Fast, easy, and cheap: Construction of
statistical machine translation models with MapReduce. In Proceedings of the Third Workshop
on Statistical Machine Translation, pages 199–207, June 2008.

Gao, Qin and Stephan Vogel. Parallel implementations of word alignment tool. In Proceedings
of the ACL’08 Software Engineering, Testing, and Quality Assurance Workshop, 2008.

Koehn, Philipp, Hieu Hoang, Alexandra Birch, Chris Callison-Burch, Marcello Federico, Nicola
Bertoldi, Brooke Cowan, Wade Shen, Christine Moran, Richard Zens, Chris Dyer, Ondrej
Bojar, Alexandra Constantin, and Evan Herbst. Moses: Open source toolkit for statistical
machine translation. In Proceedings of ACL’07, pages 177–180, June 2007.

Och, Franz J. and Hermann Ney. A systematic comparison of various statistical alignment
models. In Computational Linguistics, volume 1:29, pages 19–51, 2003.

Uszkoreit, Jakob and Thorsten Brants. Distributed word clustering for large scale class-based
language modeling in machine translation. In Proceedings of ACL-08: HLT, pages 755–762,
June 2008.

Venugopal, Ashish and Andreas Zollmann. Grammar based statistical mt on hadoop: An end-
to-end toolkit for large scale pscfg based mt. The Prague Bulletin of Mathematical Linguistics,
(91):67–78, 2009.

Vogel, Stephan., Hermann Ney, and Christoph Tillmann. HMM based word alignment in sta-
tistical machine translation. In Proceedings of COLING’96), pages 836–841, 1996.

46

The Prague Bulletin of Mathematical Linguistics
NUMBER 93 JANUARY 2010 47–56

Tradubi: Open-Source Social Translation for the Apertium
Machine Translation Platform

Víctor M. Sánchez-Cartagena, Juan Antonio Pérez-Ortiz
Dept. Llenguatges i Sistemes Informàtics, Universitat d’Alacant, Spain

Abstract
Massive online collaboration could become a winning strategy to tear down the language

barriers on the web, and in order for this to happen appropriate computer tools, like reliable
machine translation systems and friendly postediting interfaces, should be widely available.
However, community collaboration should not only involve the postediting of machine trans-
lations, but also the creation of the linguistic resources needed to improve the translation en-
gines. In this paper we introduce Tradubi, a free/open-source web application for social trans-
lation, whose aim is, firstly, to build a platform for collaboratively customising and improving
rule-based machine translation systems and, secondly, to offer an environment for the poste-
diting and subsequent sharing of raw machine translations. Currently, Tradubi is built upon
the free/open-source Apertium machine translation engine. The application can be accessed
at tradubi.com or downloaded and installed on a different server.

1. Introduction

The role of internet users has quickly evolved since the irruption of the web in the
middle of the nineties: early passive consumers have become active prosumers (a word
coined to refer to users which are both producers and consumers) of information.
Under this view, internet companies simply build the spaces for interaction and users
colonise them. This active role of users constitutes one of the main characteristics of
what has been tagged as the web 2.0 (O’Reilly, 2005).

However, in spite of the vast amount of contents uploaded to the cloud (another ne-
ologism which is commonly used as a synonym for internet) during the last years, lin-
guistic barriers are still a significant obstacle to universal collaboration since they end
up creating islands of content, only meaningful to speakers of a particular language.

© 2010 PBML. All rights reserved. Corresponding author: japerez@dlsi.ua.es
Cite as: Víctor M. Sánchez-Cartagena, Juan Antonio Pérez-Ortiz. Tradubi: Open-Source Social Translation for
the Apertium Machine Translation Platform. The Prague Bulletin of Mathematical Linguistics No. 93, 2010,
pp. 47–56. ISBN 978-80-904175-4-0. doi: 10.2478/v10108-010-0012-8.

tradubi.com

PBML 93 JANUARY 2010

Massive online collaboration (involving not only professional translators but also am-
ateurs) is probably the only force capable of tearing down these barriers (Garcia, 2009).
The resulting scenario, which can be defined as social translation, will need efficient
computer translation tools, such as machine translation (MT) systems or shared trans-
lation memories.

In the particular case of MT, collaboration should not only concern the postediting
of raw translations, but also the creation of the linguistic resources needed by MT
systems and the improvement of the translation engines. In this paper, we introduce
for the first time Tradubi1, a free/open-source web application whose aim is to ease
these steps and become a platform for social translation. At the moment, Tradubi is
built upon the Apertium free/open-source platform for rule-based MT (Forcada et al.,
2009). With the help of Tradubi, users can create customised dictionaries for Apertium
which focus on specific linguistic domains or which correct translation errors made
by the default system. Tradubi allows every user or group of users to configure their
own Apertium-based machine translator by defining a hierarchy of dictionaries to be
used when translating texts.

Besides that, the last version of Tradubi includes a simple mechanism for the stor-
age and management of the postedited translations. This feature is expected to im-
prove in future versions so that users can work collaboratively on the postediting,
refinement and publishing of translations.

Section 2 reviews some of the current approaches to social collaboration in the field
of translation. Then, section 3 enumerates the main features of the current version of
Tradubi. After that, some technical issues related to the development of Tradubi are
discussed in section 4. The paper finishes with some conclusions and an overview of
the features to be incorporated into future versions of the application.

2. Social Translation on the Web 2.0

There are a lot of web-based services for human translation. A selection of some
of the the most relevant follows:

• Cucumis2 is an online collaborative translation service based on an exchange
policy: users gain points when they translate a document and these points are
needed if they want to submit a text to be translated by other users (Cucumis’
motto is ”do you want to translate or to be translated?”).

• Traduwiki3 or Worldwide Lexicon4 are similar to Cucumis but with a more open
policy regarding who can translate or ask for a translation.

1Tradubi can be accessed at http://tradubi.com, and its source code can be downloaded from http:
//tradubi.sourceforge.net.

2http://www.cucumis.org
3http://traduwiki.org
4http://www.worldwidelexicon.org

48

http://tradubi.com
http://tradubi.sourceforge.net
http://tradubi.sourceforge.net
http://www.cucumis.org
http://traduwiki.org
http://www.worldwidelexicon.org

V.M. Sánchez-Cartagena, J.A. Pérez-Ortiz Social Translation with Tradubi (47–56)

• OneHourTranslation5 is more business-oriented: users pay for translations and
the company deducts a small commission from every transaction.

None of the previous sites enforce any particular tool to carry on the translations.
A different group of web applications like Wiktionary6 or Lingro7 are focused on the
collaborative building of dictionaries and terminological databases.

Web-based tools for translation can also be found. For example, the recently launched
Google Translator Toolkit8 allows users to create, maintain, use and share translation
memories and terminological databases, as well as combining them with statistical
MT through a specialised interface for translation inspired on the one popularised by
traditional translation memory management systems; users have access to the statis-
tical MT system but they cannot modify directly its behaviour. In connection with
the system presented in this paper, that is, one dealing with the configuration of rule-
based MT system, some similar approaches can be found in the literature, as, for ex-
ample, the translation environment Yakushite Net (Murata et al., 2003). Our proposal is
the first free/open-source and the first to focus on the expanding Apertium platform.

3. Current Features of Tradubi

Tradubi is an Ajax-based (Garret, 2005) web application, that is, an application
which can be run in a browser without requiring installation of any additional plu-
gin. The client side (mostly, the interface) of the application is therefore encoded in
JavaScript (see 4.2 for more details) and communicates with a server responsible for
the tasks which cannot be executed in the browser. This follows an emerging trend
on the web where applications are moving from the desktop to the cloud.

Users of Tradubi create customised dictionaries of translation units, which con-
sist of a word or sequence of words in the source language and their corresponding
translation in the target language (for example, the English–Spanish translation unit
glucose-6-phosphate isomerase/glucosa-6-fosfato isomerasa). Note that in the current ver-
sion no morphological information is attached to the words, which makes it easier
for non-experts to add new entries but might require to add all the lexical variations
of a word in some cases. User dictionaries and translation units can be used in the
following ways:

• Creation: users can add new translation units to the engine.
• Maintenance: the translation units can be modified or deleted at any time.
• Hierarchy definition: a group of user dictionaries (for example, for different lin-

guistic domains) can be used in new translations; in order to avoid conflicts,
users can define a hierarchy of these dictionaries.

5http://www.onehourtranslation.com
6http://www.wiktionary.org
7http://lingro.com
8http://translate.google.com/toolkit/

49

http://www.onehourtranslation.com
http://www.wiktionary.org
http://lingro.com
http://translate.google.com/toolkit/

PBML 93 JANUARY 2010

Figure 1. A screenshot of Tradubi showing the creation of a new English-Spanish user
dictionary intended for biochemical terms. The dictionary will be initially fed with
translation units from the biochemistry.tmx file. Data will be non-public (private or

shareable). The list of current available dictionaries is shown on the top (in this case,
a public dictionary with terminology about metabolism).

• Sharing: a user dictionary can be tagged as public, private or shared (in read-
only mode at this moment) with other users; when defining a dictionary hier-
archy, every available dictionary can be considered.

• Recommendation: Tradubi can suggest before translation a dictionary or a set of
dictionaries for a particular source text according to the number of words in the
text found in the dictionaries.

• Import/export: the translation units in a dictionary can be imported or exported
using the Translation Memory eXchange9 (TMX) standard format.

• Collaborative creation: shared dictionaries may received translation units from
every user with permissions; this feature will allow for the collaborative creation
of dictionaries, but it is not implemented in the stable version of Tradubi yet.

Apart from this, postedited translations can be stored and retrieved at any time;
this feature will evolve to a system for collaborative postediting and dissemination of
translations.

Figures 1 to 3 show some screenshots of the application with some additional com-
ments.

9http://www.lisa.org/standards/tmx/

50

http://www.lisa.org/standards/tmx/

V.M. Sánchez-Cartagena, J.A. Pérez-Ortiz Social Translation with Tradubi (47–56)

Figure 2. A screenshot of Tradubi showing the addition of a new translation unit (Krebs
cycle/ciclo de Krebs). The dictionary already contains three translation units which

can be modified or deleted. The save button triggers the compilation of the dictionary
to the binary form used by Apertium.

4. Technical Issues

Tradubi’s design, development and deployment requires dealing with a number
of technical issues which are discussed in this section.

4.1. License Choice

Tradubi is not only available through a public web server, but also as a free/open-
source program which can be downloaded, installed and modified by everyone. It
is licensed under version 3 of the GNU Affero General Public License10 (AGPL). This
license is fully compatible with the GNU General Public License (GPL) and equally
proposed by the Free Software Foundation, which in fact recommends11 that ”devel-
opers consider using the GNU AGPL for any software which will commonly be run
over a network”. AGPL has been suggested as a means to close a loophole in the ordi-
nary GPL which does not force organisations to distribute derivative code when it is
only deployed as a web service.

Choosing AGPL is a little big controversial (O’Grady, 2009) since this license adds
a new constraint to the well-established GPL license. We consider, however, that in the
web 2.0 era and with the traditional model of software distribution gradually losing
ground to the cloud computing model, AGPL should be being adopted by a higher
number of free/open-source projects.

10http://www.gnu.org/licenses/agpl-3.0.html
11http://www.fsf.org/licensing/licenses/

51

http://www.gnu.org/licenses/agpl-3.0.html
http://www.fsf.org/licensing/licenses/

PBML 93 JANUARY 2010

Figure 3. A screenshot of Tradubi showing a translation with two user dictionaries (one
on metabolism, with higher precedence, and a second one on biochemistry). The two

dictionaries include a different translation for the word glycolysis (glucólisis and
glicolisis) but the one in the first dictionary (glucólisis) has been chosen because of
the hierarchy defined in this case. Apart from this explicit choice of dictionaries, the
suggest button automatically selects the most appropriate dictionary according to the

source text. The resulting machine translated text on the right is ready to be
postedited and then saved.

4.2. Programming Language and Framework

Tradubi client is mostly written in Java with the help of the Google Web Toolkit12

(GWT). GWT is a free/open-source framework for developing web applications. At
the core of the framework is a compiler which translates the code written for the client
in Java to JavaScript code which runs flawlessly in current browsers. GWT simplifies
the development and debugging of Ajax-based web applications which require asyn-
chronous remote procedure calls, history management, bookmarking, internationali-
sation or code splitting.

12http://code.google.com/webtoolkit/

52

http://code.google.com/webtoolkit/

V.M. Sánchez-Cartagena, J.A. Pérez-Ortiz Social Translation with Tradubi (47–56)

The code for the server side is written in Java as well. The project code consists (as
of current version) of 135 classes and around 13 000 lines of code.

4.3. Data Portability and Accessibility

According to the DataPortability Project,13 data portability is the ”ability for people
to reuse their data across interoperable applications”. This is key feature which the
web 2.0 should embrace in order to mitigate the undesirable consequences of walled
gardens. Import and export of the dictionaries in TMX format allow Tradubi users to
seamlessly move their data, for example, to Google Translator Toolkit.14

In addition to this, Tradubi users may log into the application using an existing
OpenID account.15 User interface and dynamic content are more accessible thanks to
the adoption of the WAI-ARIA16 standard.

4.4. Apertium Server

Communication between Tradubi and the Apertium engine is done via an already
implemented scalable architecture (Sánchez-Cartagena and Pérez-Ortiz, 2009) for Aper-
tium. This architecture consists of a router server which forwards incoming translation
requests to one or more slaves running Apertium instances. Our web application
sends requests to the router through the Remote Method Invocation (RMI) protocol;
although a convenient Application Programming Interface (API) is also available, we
chose to use RMI directly since Tradubi and the scalable translation system are both
written in Java.

4.5. Integration with Apertium

As already commented, Tradubi allows every user or group of users to configure
their own Apertium-based machine translator by defining a hierarchy of dictionaries
to be used when translating texts: matched entries in a dictionary at level i of the
hierarchy take precedence over any other match found in a dictionary at level j with
i < j, default system dictionaries being at the highest level (that is, they have the
minimum precedence).

User dictionaries are specified, compiled and accessed as regular Apertium mono-
lingual dictionaries (Forcada et al., 2009), except for the fact that no morphological
information is attached to the entries. Originally, every translation unit is coded in

13http://www.dataportability.org
14Note that, at the time of writing, Google Translator Toolkit does not allow users to export their own

data.
15http://openid.net
16http://www.w3.org/WAI/intro/aria

53

http://www.dataportability.org
http://openid.net
http://www.w3.org/WAI/intro/aria

PBML 93 JANUARY 2010

XML inside an e element containing the source and target words; the following is an
excerpt of an English–Spanish user dictionary:

<e><p>
<l>glucose-6-phosphateisomerase</l>
<r>glucosa-6-fosfato isomerasa</r>

</p></e>

The XML file is then compiled to a binary form by means of the lttoolbox library
included in Apertium. The binary version of the dictionaries implement a finite-state
transducer (Roche and Schabes, 1997) which is used to efficiently detect and translate
the source words. This compilation is done as soon as the user clicks on the save button
after introducing or modifying a set of translation units (see figure 2); therefore, the
new units are ready immediately for new translations.

The resulting transducer is inserted in the Apertium pipeline between the part-
of-speech tagger and the structural transfer module. This way, the tagger has more
information for disambiguation since it can consider the lexical categories of words in
the default dictionaries of Apertium which, however, are going to be translated with
a user dictionary. If a user defines a hierarchy of dictionaries the system is set up as a
cascade of modules that successively search for the words in the source text and keep
the first translation found.

Some problems arise when a translation unit contains a word that is part of a multi-
word in the default system dictionaries. For example, if default dictionaries contain an
entry for an arm and a leg and a user dictionary contains the translation unit leg/etapa,
then the word etapa will never appear in the target text when translating a source
sentence which includes the multiword.

4.6. Compilation and Installation

Source code can be downloaded from the SVN repository of Tradubi located at
Sourceforge.net.17 It includes documentation with additional instructions on how to
compile and install the application.

5. Future Work on Tradubi

Tradubi is still in its early stages of development, but with some of the following
improvements we expect it to become a mature and stable framework for social trans-
lation.

It is worth studying alternative places of insertion into the Apertium pipeline of the
new modules dealing with user dictionaries. Currently they are located just before the

17http://tradubi.sourceforge.net

54

http://tradubi.sourceforge.net

V.M. Sánchez-Cartagena, J.A. Pérez-Ortiz Social Translation with Tradubi (47–56)

structural transfer module, but locating them in other positions (for example, before
the morphological analyser) could result in the overcoming of the multiword problem
(see 4.5) while keeping functionality the same.

We also plan to consider the inclusion of other MT engines in addition to Apertium.
The open-source nature of Apertium has allowed us to easily insert the new modules
for user dictionaries in the middle of its pipeline, but it might be very interesting
to research how to extend these modules to engines with no source code available
and which can be accessed online through web services only. This would require to
consider how to isolate the words found in the user dictionaries from the rest of the
text which should be translated by the MT engine.

In harmony with the idea of adopting the principles of open data (see 4.3), we
will also implement an option for downloading for local installation a package with
the Apertium engine and all the linguistic data and user dictionaries making up a
particular translator that a user has configured online.

The current simple interface for postediting will evolve into a more friendly inter-
face which benefits from information extracted from the MT engine in a way similar
to recent proposals in the statistical MT field (Koehn, 2009). The information col-
lected from the interaction of the users with the postediting interface will also be
used to improve the linguistic data (both dictionaries and structural transfer rules)
of the Apertium-based translators in a similar manner to the Translation Correction
Tool (Font-Llitjós et al., 2005).

Finally, more social features could be added to the application.

6. Conclusions

This is the first paper to introduce Tradubi, a free/open-source Ajax-based web
application for the collaborative configuration of rule-based MT systems. Currently,
Tradubi works as a layer over Apertium, allowing users to create and use hierarchies of
dictionaries which override default system dictionaries in case of conflict. We expect
to augment the functionalities of Tradubi so that it becomes a powerful application
for social translation.

7. Acknowledgements

This work has been partially funded by Spanish Ministerio de Ciencia e Innovación
through project TIN2009-14009-C02-01.

Bibliography

Font-Llitjós, Ariadna, Jaime Carbonell, and Alon Lavie. A framework for interactive and auto-
matic refinement of transfer-based machine translation. In Proceedings of EAMT 10th Annual
Conference, 2005.

55

PBML 93 JANUARY 2010

Forcada, Mikel L., Francis M. Tyers, and Gema Ramírez-Sánchez. The Apertium machine trans-
lation platform: five years on. In Proceedings of the First International Workshop on Free/Open-
Source Rule-Based Machine Translation, pages 3–10, 2009.

Garcia, Ignacio. Beyond translation memory: Computers and the professional. The Journal of
Specialised Translation, 12:199–214, 2009.

Garret, Jesse James. Ajax: A new approach to web applications. AdaptivePath.com, http://
www.adaptivepath.com/ideas/essays/archives/000385.php, 2005.

Koehn, Philipp. A Web-Based interactive computer aided translation tool. In Proceedings of the
ACL-IJCNLP 2009, Software Demonstrations, pages 17–20, 2009.

Murata, T., M. Kitamura, T. Fukui, and T. Sukehiro. Implementation of collaborative translation
environment: YakushiteNet. In Proceedings of MT Summit IX, 2003.

O’Grady, Stephen. AGPL: Open source licensing in a networked age. RedMonk.com, http:
//redmonk.com/sogrady/2009/04/15/open-source-licensing-in-a-networked-age/,
2009.

O’Reilly, Tim. What is web 2.0. O’Reilly Network, http://oreilly.com/web2/archive/
what-is-web-20.html, 2005.

Roche, Emmanuel and Yves Schabes. Finite-state language processing. MIT Press, 1997.
Sánchez-Cartagena, Víctor M. and Juan Antonio Pérez-Ortiz. An open-source highly scalable

web service architecture for the Apertium machine translation engine. In Proceedings of the
First International Workshop on Free/Open-Source Rule-Based Machine Translation, pages 51–58,
2009.

56

http://www.adaptivepath.com/ideas/essays/archives/000385.php
http://www.adaptivepath.com/ideas/essays/archives/000385.php
http://redmonk.com/sogrady/2009/04/15/open-source-licensing-in-a-networked-age/
http://redmonk.com/sogrady/2009/04/15/open-source-licensing-in-a-networked-age/
http://oreilly.com/web2/archive/what-is-web-20.html
http://oreilly.com/web2/archive/what-is-web-20.html

The Prague Bulletin of Mathematical Linguistics
NUMBER 93 JANUARY 2010 57–66

Adding Multi-Threaded Decoding to Moses

Barry Haddow
School of Informatics, University of Edinburgh, Informatics Forum, 10 Crichton Street, Edinburgh, Scotland, EH8 9AB

Abstract
The phrase-based translation system Moses has been extended to take advantage of multi-

core systems by using multi-threaded decoding. This paper describes how these extensions
were implemented and how they can be used, as well as offering some experimental measure-
ments of the potential speed-ups available. Details are also provided of how the multi-threaded
Moses library is used to create the Moses server, a platform for building online translation sys-
tems.

1. Introduction

A recent trend in computing has been the growth in popularity of multi-core pro-
cessors, able to execute several processes simultaneously. Ordinary desktop and lap-
top machines are frequently equipped with dual-core processors while servers may
have one or more 8-core processors. In order to take advantage of this parallel com-
puting capability, software can be developed to execute with multiple threads. Whilst
both threads and processes are units of execution, the difference between the two is
that threads share the same address space, meaning that multiple threads can access
the same in-memory data structures. The consequence is that threads can cooperate
more tightly to accomplish a task, but also that the developer must take more care to
ensure that common data structures are not damaged by interleaved instructions.

The aim of this paper is to describe some recent modifications to the Moses1 de-
coder (Koehn et al., 2007) which enable it to take advantage of this parallel computing
capability by decoding several sentences simultaneously in separate threads. Within
the typical machine translation (MT) research environment, the main advantage of a

1Available under the LGPL from http://sourceforge.net/projects/mosesdecoder/

© 2010 PBML. All rights reserved. Corresponding author: bhaddow@inf.ed.ac.uk
Cite as: Barry Haddow. Adding Multi-Threaded Decoding to Moses. The Prague Bulletin of Mathematical
Linguistics No. 93, 2010, pp. 57–66. ISBN 978-80-904175-4-0. doi: 10.2478/v10108-010-0006-6.

http://sourceforge.net/projects/mosesdecoder/

PBML 93 JANUARY 2010

multi-threaded decoder is that it can make more efficient use of the available hard-
ware, enabling quicker decoding. Since the most widespread method for optimis-
ing statistical machine translation systems, minimum error rate training (mert) (Och,
2003), involves decoding the tuning set multiple times, improvements in decoding
speed lead to faster experimental turnarounds.

The traditional method of parallelising decoding (as implemented in Moses by
the moses-parallel.pl script) was to split the input file into equal sized segments
and send each segment to a separate process, probably running on a separate ma-
chine. This method requires a cluster of machines running some kind of job schedul-
ing software (such as Sun grid engine), requiring specialist knowledge to install and
administer. It also requires each machine to have access to the translation, language
and reordering models, and to have sufficient RAM for the decoder to be able to load
them into memory. With the increasing size of the models that are used in MT re-
search, copying these across a network and providing sufficient RAM are non-trivial
tasks. The advantage of using threads for parallel decoding is that, since all the par-
allel execution takes place in the same process, only one copy of each of the models
needs to be loaded into memory. Furthermore, it is easier to balance the decoding
load between threads than between different processes, as they can cooperate more
closely.

Parallel decoding is also essential for the provision of on-line translation services.
In this setting, it is clearly undesirable for one user to be blocked whilst another user’s
translation job is running, and for translating larger blocks of text (such as web pages)
it would be useful if some of the sentences could be translated in parallel. Adding
multi-threading to the Moses library meant that the decoder could be embedded
within a server which is able to process multiple simultaneous requests. Of course,
to create a truly scalable online translation system, it is also necessary to allow trans-
lation to be spread across multiple machines (Sánchez-Cartagena and Pérez-Ortiz,
2009), as adding more machines an easier way of scaling hardware if the current
server’s capacity has been reached. Nevertheless, a multi-threaded moses server is
an important component in a moses-based online translation system, since it can take
advantage of multi-core servers.

The main disadvantage of multi-threaded software is that it can be more compli-
cated to develop, and leads to a new types of bugs which may be difficult to diagnose.
In this paper, the techniques used to add thread safety to an existing decoder (namely,
Moses) will be discussed, with the aim of providing guidance to others working on
similar engineering problems.

The paper is organised as follows: in the following section, techniques for safe
multi-threaded programming are described, while Sections 3 and 4 explain the de-
sign of multi-threaded Moses and the Moses server, respectively. In Section 6 some
experimental results are presented showing the speed-ups possible when decoding
with multi-threaded Moses, whilst Section 7 offers some conclusions and suggestions
for future developments.

58

Barry Haddow Multi-Threaded Moses (57–66)

2. Techniques for Multi-threaded Programming

The aim of this section is to briefly introduce some of the concepts and techniques
used in multi-threaded programming. It is not meant to be a comprehensive treat-
ment of the topic, merely to provide sufficient background for the design description
in the following section.

In most operating systems, programs are executed as processes which are separate
units of execution (as seen by the scheduler) and have separate address spaces, so
they cannot normally access each other’s data. A process may, however, have one or
more separate threads, which are also units of execution with their own call stack, but
share the same address space. On a single-processor, single-core machine, threads
are mainly used so that the process can continue doing work whilst it is waiting on
another task (typically input/output) to complete. However on today’s multi-core
and multi-processor machines, genuine parallelism is possible.

Allowing multiple threads of execution to access the same memory space is poten-
tially dangerous and can easily lead to memory corruption. To allow safe concurrent
access to data structures, a device called a mutex (mutual exclusion), or a lock, is used
to protect critical sections of code so that only one thread is allowed to execute it at
any one time. One particularly useful type of mutex is a reader-writer lock, which has
two modes of locking; one for reading which allows many threads to access the crit-
ical section simultaneously, and one for writing where only one thread is allowed to
access it.

If mutexes are not used correctly then performance can suffer due to either lock
contention or deadlock. The former is where threads hold on to mutexes for longer
than is necessary, thus reducing performance because many other threads may be
waiting on the mutex to continue performing their tasks. The latter situation can arise,
for example, where a first thread acquires lock A and then lock B, whilst a second
thread attempts to acquire the same locks in the opposite order. Depending on the
timing of lock acquisition, each thread can be left waiting for the lock that the other
one holds, and so neither will be able to continue executing.

As an alternative to the coordinated sharing of data using mutexes, it is sometimes
appropriate for each thread to have its own data, for example to provide a thread-
specific cache. On many platforms developers implement this using a construct called
thread local storage. Conceptually, this can be thought of as a common pointer, which
when dereferenced returns a block of memory which is unique to the calling thread.

It is possible to create and destroy threads whenever needed, however, creating
and destroying threads can be expensive (if they use a lot of thread specific data)
and it may be necessary to limit the number of threads active at any time. To avoid
constant creation and destruction, threads are often organised into a thread pool, whose
size may be fixed or subject to upper and lower bounds. A work queue can be used
in conjunction with a thread pool to allocate work to the threads, by queueing up the
tasks and allocating them to the next available thread.

59

PBML 93 JANUARY 2010

Programming languages and operating systems differ in the amount of support
they offer for multi-threaded programming. In general, Java has very good multi-
threaded support, having been created as a multi-thread enabled platform right from
the start, and possessing a broad range of thread synchronisation primitives, as well
as thread-safe data structures and classes for implementing typical threaded pro-
gramming patterns. In C++ the multi-threaded support is not as good, with no sin-
gle standard library for multi-threaded programming, and many platform specific
thread libraries. However, there are some mature cross-platform libraries for C++
which include all the appropriate multi-threaded programming primitives, such as
ACE2 (Adaptive Communications Environment) and boost3. In addition, there is
OpenMP4, a cross-platform API supported by many leading software vendors which
is implemented mainly using compiler directives. In multi-threaded Moses, the boost
libraries were used since they offer the required primitives in a cross-platform library
which is steadily being incorporated into the C++ standard.

3. Multi-threaded Moses

The aim of this section is to explain the changes that were made to Moses in order
for it to support multi-threaded decoding. The threading model adopted for multi-
threaded Moses assigns each sentence to a distinct thread so that each thread works
on its own decoding task, but shares models with the other threads. This design was
chosen to minimise the data sharing between threads.

In making the required changes for multi-threading, one of the considerations was
to cause as little disruption to the existing codebase as possible, so the design decisions
are not necessarily the same as those that would be employed when building a new
piece of software. It was important not to introduce extra dependencies to the Moses
build, except where necessary, so the thread-safe version of the Moses library is only
built when the appropriate compiler directives are switched on. The work involved in
adding multi-threaded decoding to Moses can be divided into two parts; updating the
Moses libraries to be thread-safe, and adding the thread creation and management to
the Moses mainline.

3.1. Moses Library

To enable the multi-threaded decoding, the Moses libraries need to ensure that,
when two different threads are processing their respective sentences, they do not at-
tempt to modify data structures potentially being used by the other threads. The
principal shared data structures used in decoding are language models, translation

2http://www.cse.wustl.edu/~schmidt/ACE.html
3http::/www.boost.org
4http://openmp.org/wp/

60

http://www.cse.wustl.edu/~schmidt/ACE.html
http::/www.boost.org
http://openmp.org/wp/

Barry Haddow Multi-Threaded Moses (57–66)

models and reordering models, and at first sight one might think that all the decoder
needs to do is read from these data structures, in which case there would be no is-
sue with simultaneous access. However the extensive use of caching within Moses,
necessary to reduce levels of disk access during decoding, meant that the data struc-
tures representing the models were not necessarily read only. Furthermore, Moses
tended to rely on the global singleton object StaticData to store data connected with
the translation process, even if it was only relevant for one sentence.

The first strategy employed to ensure the thread-safety of the Moses libraries was
to use the Manager object to store sentence specific data, rather than StaticData. An
instance of the Manager is created for each sentence to be translated, and only contains
data relevant to that particular sentence. So in the ’thread per sentence’ model em-
ployed in multi-threaded Moses, these objects can only be accessed by one thread at
a time. The disadvantage of using the Manager object to store sentence-specific data
is that it must be made available at all points at which this data is needed, thus clut-
tering up interfaces. In the thread-safe Moses, the Manager is now responsible for the
pre-loaded portion of the translation table pertaining to its sentence, as well as certain
debug data such as timing information.

The translation table (phrase dictionary) in Moses can either be loaded it to mem-
ory or utilised in a ’binarised’ (on-disk) mode. The former presents no thread-safety
issues since it is just loaded into memory at decoder start-up, and is used in a read-
only fashion. However, with large translation models it is usual to compile them into
a binary format and use them in the on-disk mode, which means that some caching
is necessary to reduce the amount of disk access. The system-wide disk cache would
be of some help here, but a cache that works at the phrase level is more effective.

The binarised translation model is controlled by the PhraseDictionaryTree class
which is really just a wrapper for the PDTImpl class, the actual implementation. Since
the latter is is a read-write data structure, it needed modification to allow concurrent
access, and in order to minimise the code changes involved it was decided to use
thread specific data to make sure that there was only ever one PDTImpl object per
thread. The thread specific data class in the boost library has the advantage that it
has the same interface as an auto_ptr, making it easy to switch between two using
compiler directives.

A third solution to the problem of allowing multiple threads to simultaneously
access data structures was to use mutexes. For example, the FactorCollection object
(essentially a vocabulary cache) is now protected by a reader-writer lock so that mul-
tiple threads can read from it at any one time, but if a thread wishes to write to it then
it must obtain an exclusive lock. For the translation options cache held in the global
StaticData object, a single mutex is used to synchronise access to the cache. As this
is an LRU (least recently used) cache, it must update a timestamp every time an item
in the cache is accessed, so a reader-writer lock is not appropriate here.

61

PBML 93 JANUARY 2010

3.2. Mainline

In order to run multi-threaded decoding, the Moses mainline must create threads
and organise the assignment of decoding work to threads. Due to the multiplicity of
input/output options in the existing mainline, it was decided that it would be easier
to create a new multi-threaded mainline (MosesMT.cpp) rather than updating the old
one. This has resulted in some undesirable duplication of code, complicating regres-
sion testing, which hopefully will be resolved in a future refactoring.

A UML sequence diagram for the important parts of the new Moses mainline is
shown in Figure 1. The mainline creates a ThreadPool object whose job it is to manage
a pool of worker threads. The specified number of threads is created on construction
and then jobs are submitted to the pool using the Submit() method until the Stop()
method is called which causes the pool to stop accepting new work, flush the queue
and stop all the threads. The unit of work processed by the thread pool is represented
by a Task object, which in the multi-threaded decoder contains a single sentence to
be translated. The tasks are queued up in the pool and as threads become available,
they pop a task off the queue and execute it.

When multi-threaded Moses is processing a file, the file is read in, split into lines,
and placed in the ThreadPool’s queue as a series of Task objects. Since these may be
executed out of order, it is necessary to put the translated sentences into the appro-
priate order before outputting them. This reordering is performed by the OutputCol-
lector class which uses the input line number to order the sentences correctly.

Figure 1. UML Sequence diagram for multi-threaded Moses mainline

62

Barry Haddow Multi-Threaded Moses (57–66)

4. Moses Server

The main purpose of the Moses server is to enable network access to a Moses-based
translation system, for example to build an on-line demo. Making the server multi-
threaded offers the advantage that it can process translation requests from more than
one user simultaneously, and also it can decode multiple sentences in batches, for
example when translating a web page.

The Moses server use the xmlrpc5 protocol to communicate with its clients. This
protocol has the advantage of having mature implementations available in many pro-
gramming languages; the Moses server has been used with clients written in java,
perl, python and php. The specific implementation used in Moses is xmlrpc-c6.

Since the xmlrpc implementation takes care of managing the server infrastructure,
for example listening for client requests and running a thread pool to deal with these
requests, the Moses server code only has to implement the remote procedure calls
(rpc). Currently the only call that the Moses server implements is the translate()
call, which receives an input sentence in its text field, and returns the translated text
in the same field. If the align flag is switched on in the method call then the phrase
alignment is returned as a sequence of (target-start, source-start, source-end)
index triples, in target order.

5. Usage

Using multi-threaded Moses is straightforward. The new mainline (mosesmt) is
intended as a drop-in replacement for the existing mainline. It responds to exactly
the same arguments as moses and adds a -threads n argument to specify the number
of threads. Increasing the verbosity of multi-threaded Moses is not recommended as
some of the debug code uses non-threadsafe global variables, and the debug messages
will be interleaved and difficult to read anyway.

The Moses server mainline (mosesserver) also accepts all the usual Moses argu-
ments and adds two of its own. The argument --server-port n is used to specify the
port on which the server listens, and the --server-log can be used to specify a log file
for the server to write to. For extra diagnostic information, set the XMLRPC_TRACE_XML
environment variable before launching the server.

6. Experiments

In this section the results of some timing experiments are presented, comparing
multi-threaded and single-threaded Moses. The experiments were run on a Dell Pow-
erEdge server with 4 Intel Xeon Quad Core processors (so it has 16 cores), and 32GB
RAM.

5http://www.xmlrpc.com/
6http://xmlrpc-c.sourceforge.net/

63

http://www.xmlrpc.com/
http://xmlrpc-c.sourceforge.net/

PBML 93 JANUARY 2010

For the first set of experiments, decoding speed of single and multi-threaded Moses
was directly compared, using a translation model similar to the Edinburgh French-
English submission for the WMT2009 shared task (Callison-Burch et al., 2009; Koehn
and Haddow, 2009). This includes translation models and reordering models trained
on all the shared task parallel data, plus a language model trained on the English
side of this data, interpolated with the monolingual news data. The translation and
reordering models were used in binarised (on-disk) format, but the language model
was loaded into memory.

The experiment consisted of decoding the news test set from this shared task (3027
sentences) using plain (single-threaded) Moses, and using multi-threaded Moses whilst
varying the number of threads from 2 to 6. In order to account for the fixed costs of
loading the models into memory and initialising other data structures, a decoding
run was also done for one sentence. Decoding was repeated five times for each type
of decoder. The mean times (in seconds) are shown in Table 1.

Decoder Full corpus One sentence Difference sd(Difference)
Plain Moses 4677 282 4395 623
Moses MT 2 threads 3292 283 3009 505
Moses MT 3 threads 2024 284 1740 154
Moses MT 4 threads 1781 283 1498 100
Moses MT 5 threads 1591 278 1313 37
Moses MT 6 threads 1492 278 1214 45

Table 1. Decoding time (in seconds) for single and multi-threaded decoders, averaged
over five runs. The second last column is the difference between the first two, in other
words the time to decode 3026 sentences not including start-up and shut-down times.

The final column shows the standard deviation of this 3026 sentence time.

From Table 1 it can be seen that there is around a speed increase of around 3.5
going from single-threaded Moses to multi-threaded Moses with 6 threads. Whilst
this speed-up is clearly useful, the question arises of why there isn’t a six-fold in-
crease in speed. The most likely answer to this question is some sort of resource con-
tention; in other words the six threads are not spending all their time decoding but
spending some time waiting for other threads to release a resource. One possible type
of resource contention is lock contention, where threads spend time in a block state
waiting for other threads to release locks, however the only locks used during the de-
coding are those on the translation options cache, and running experiments with this
cache removed results in similar timing behaviour. It is also possible, depending on
the hardware architecture, that there is resource contention at the RAM or disk level,

64

Barry Haddow Multi-Threaded Moses (57–66)

since decoding requires a substantial amount of data to be accessed from the different
models employed.

The next timing experiment compares minimum error rate training (mert) runs
using single-threaded and multi-threaded Moses. This experiment uses the French-
English europarl corpus (Callison-Burch et al., 2009) for training the translation model
and 5-gram language model, with the 2000 sentence dev2006 corpus for tuning, and
the test2007 and test2008 corpora for testing. The tuning runs were done on the same
machine as the first set of experiments, although because of the length of these exper-
iments it was not possible to ensure that the machine remained unloaded throughout
this time. Table 2 shows the timings for single-threaded Moses, and Table 3 shows the
corresponding timings for multi-threaded Moses, demonstrating around a two-fold
speed-up in mert when using 4 threads.

Run Iterations Time Time per Iteration Bleu
1 17 2054 120.8 33.4
2 12 1258 104.8 33.3
3 14 1362 97.3 33.3
4 14 1172 83.7 33.3
5 16 1283 80.2 33.3
mean 14.6 1425 97.4 33.3

Table 2. MERT times for single-threaded Moses, in minutes

Run Iterations Time Time per Iteration Bleu
1 15 735 49.0 33.3
2 23 1320 57.4 33.3
3 8 319 39.9 33.5
4 15 615 47.7 33.4
5 10 456 45.6 33.4
mean 14.2 689 46.6 33.4

Table 3. MERT times for multi-threaded Moses (4 threads), in minutes

7. Conclusions and Future Work

This article has described extensions to the Moses decoder which permit multi-
threaded decoding, and also allow Moses to be used as a server to run an online

65

PBML 93 JANUARY 2010

translation system. Experimental results demonstrated that using 6 threads can speed
up decoding by 3.5 times, and a two-fold speed-up in mert was demonstrated, when
using a multi-threaded decoder with 4 threads. Further investigation is required to
determine why the speed of decoding is not linear in the number of threads. The other
outstanding task in multi-threaded Moses is to make the generation tables (used in
some factored models) thread-safe; these can be addressed using the same techniques
as the translation tables.

The Moses server is already being used successfully in the University of Edin-
burgh’s demo site7. A limitation of the current server is that a separate server is
required for each language pair so, for instance, to deploy both French-English and
German-English systems, each server must load its own copy of the English language
model. A proposed update to the Moses server would be to allow configuration switch-
ing, where one server would be able to run more than one translation system, with
the choice of translation system to translate a given sentence would be selected by an
rpc argument. This arrangement would save on the RAM used to run multiple Moses
servers on the same host with the same target language.

Bibliography

Callison-Burch, Chris, Philipp Koehn, Christoph Monz, and Josh Schroeder, editors. Proceed-
ings of the Workshop on Statistical Machine Translation, 2009.

Koehn, Philipp and Barry Haddow. Edinburgh’s submission to all tracks of the WMT 2009
shared task with reordering and speed improvements to Moses. In Proceedings of the Work-
shop on Statistical Machine Translation, pages 160–164, 2009.

Koehn, P., H. Hoang, A. Birch Mayne, C. Callison-Burch, M. Federico, N. Bertoldi, B. Cowan,
W. Shen, C. Moran, R. Zens, C. Dyer, O. Bojar, A. Constantin, and E. Herbst. Moses: Open
source toolkit for statistical machine translation. In Proceedings of ACL Demonstration Session,
pages 177–180, 2007.

Och, Franz J. Minimum error rate training in statistical machine translation. In Proceedings of
ACL, 2003.

Sánchez-Cartagena, Víctor M. and Juan Antonio Pérez-Ortiz. An open-source highly scalable
web service architecture for the Apertium machine translation engine. In Proceedings of the
First International Workshop on Free/Open-Source Rule-Based Machine Translation, pages 51–58,
2009.

7http://demo.statmt.org

66

http://demo.statmt.org

The Prague Bulletin of Mathematical Linguistics
NUMBER 93 JANUARY 2010 67–76

Free/Open-Source Resources in the Apertium Platform for
Machine Translation Research and Development

Francis M. Tyersa, Felipe Sánchez-Martíneza, Sergio Ortiz-Rojasb,
Mikel L. Forcadaac

a Grup Transducens, Departament de Llenguatges i Sistemes Informàtics, Universitat d’Alacant, E-03071 Alacant, Spain
b Prompsit Language Engineering, Av. St. Francesc d’Assís, 74, 1r-L, E-03195 l’Altet, Spain

c CNGL, Dublin City University, Dublin 9, Ireland

Abstract
This paper describes the resources available in the Apertium platform, a free/open-source

framework for creating rule-based machine translation systems. Resources within the platform
take the form of finite-state morphologies for morphological analysis and generation, bilingual
transfer lexica, probabilistic part-of-speech taggers and transfer rule files, all in standardised
formats. These resources are described and some examples are given of their reuse and recy-
cling in combination with other machine translation systems.

1. Introduction

Apertium (http://www.apertium.org) is a free/open-source (FOS) platform for
creating rule-based machine translation systems (Forcada et al., 2009). There are cur-
rently stable data for 21 language pairs available within the platform. Resources
within the platform take the form of finite-state morphologies for morphological anal-
ysis and generation, bilingual transfer lexica, probabilistic part-of-speech taggers and
transfer rule files, all in standardised formats. These resources are described and some
examples are given of their reuse and recycling in combination with other machine
translation systems.

This article is organised as follows: section 2 describes the Apertium engine; sec-
tion 3 describes the current status of the resources available in the platform; section 4

© 2010 PBML. All rights reserved. Corresponding author: fsanchez@dlsi.ua.es
Cite as: Francis M. Tyers, Felipe Sánchez-Martínez, Sergio Ortiz-Rojas, Mikel L. Forcada. Free/Open-Source
Resources in the Apertium Platform for Machine Translation Research and Development. The Prague Bulletin
of Mathematical Linguistics No. 93, 2010, pp. 67–76. ISBN 978-80-904175-4-0.
doi: 10.2478/v10108-010-0015-5.

http://www.apertium.org

PBML 93 JANUARY 2010

morph.
analyser

POS
tagger

lexical
transfer

morph.
generator

post-
generator

SL
text

TL
text

deformatter

reformatter

chunker interchunk postchunk

structural transfer

Figure 1: The modular architecture of the Apertium MT platform.

gives some details of ways these resources can be re-used within other machine trans-
lation systems, finally section 5 gives some directions of future work and discussion.

2. The Apertium platform

A very brief outline of Apertium will be given here. Turn to existing descriptions,
such as Armentano-Oller et al. (2006) and Forcada et al. (2007), for details.

The Apertium platform provides: (a) A FOS modular shallow-transfer MT engine
with text format management, finite-state lexical processing, statistical lexical disam-
biguation, and shallow structural transfer based on finite-state pattern matching; (b)
FOS linguistic data in well-specified XML formats for a wide variety of language pairs;
and (c) FOS tools such as compilers to turn linguistic data into a fast and compact form
used by the engine and software to learn disambiguation or structural transfer rules,
and (d) extensive documentation on usage.1 The Apertium engine is a pipeline or
assembly line consisting of the following stages or modules (see figure 1):

• A deformatter which encapsulates the format information in the input document
as superblanks that will then be seen as blanks between words by the rest of the
modules.

• A morphological analyser which segments the text in surface forms (“words”) and
delivers, for each surface form, one or more lexical forms consisting of lemma,
lexical category and morphological inflection information. It reads a finite-state
transducer (FST) generated from a source-language (SL) morphological dictio-
nary (MD) in XML.

• An optional constraint grammar2 (Karlsson et al., 1995) to reduce or remove en-
tirely part-of-speech (PoS) ambiguity before the statistical PoS tagger, and to
provide syntactic and semantic labelling.

1Documentation on a wide variety of development and usage scenarios can be found on the Apertium
Wiki (http://wiki.apertium.org/).

2http://beta.visl.sdu.dk/constraint_grammar.html

68

http://wiki.apertium.org/
http://beta.visl.sdu.dk/constraint_grammar.html

F. M. Tyers et al. Apertium: Free Resources for MT R&D (67–76)

• A statistical PoS tagger which chooses, using a first-order hidden Markov model
(HMM: Cutting et al. (1992)), the most likely lexical form corresponding to an
ambiguous surface form, as trained using a corpus and a tagger definition file
in XML.

• A lexical transfer module which reads each SL lexical form and delivers the cor-
responding target-language (TL) lexical form by looking it up in a bilingual dic-
tionary in XML using a FST generated from it.

• A structural transfer, generally consisting of three sub-modules (some language
pairs use only the first module and some others call more than three, see below):

– A chunker which, after invoking lexical transfer, performs local syntactic
operations and segments the sequence of lexical units into chunks. A chunk
is defined as a fixed-length sequence of lexical categories that corresponds
to some syntactic feature such as a noun phrase or a prepositional phrase.

– An interchunk module which performs more global operations with the
chunks and between them. More than one interchunk module can be used
in sequence.

– A postchunk module which performs finishing operations on each chunk
and removes chunk encapsulations so that a plain sequence of lexical forms
is generated.

Each of the modules reads rules from files written in XML.
• A morphological generator which delivers a TL surface form for each TL lexical

form, by suitably inflecting it. It reads a FST generated from a TL MD in XML.
• A post-generator which performs orthographic operations such as contractions

(e.g. Spanish del = de + el) and apostrophations (e.g. Catalan l’institut = el +
institut), using a FST generated from a rule file written in XML.

• A reformatter which de-encapsulates any format information.

3. Resources

As mentioned in the previous section, creating a machine translation system in
the Apertium platform requires creating or adapting linguistic resources. As a con-
sequence, for each of the 21 language pairs available there is at least: a finite-state
morphology for analysis, another one for generation, a trained HMM-based part-of-
speech tagger, a bilingual transfer lexicon,3 and a set of transfer rules.

We describe below the current status of these resources for the platform as a whole,
focussing on those resources which are stable (tested and proven). Apertium includes,
in the words of Streiter et al. (2007), a pool of free resources for natural language pro-
cessing targeted specifically at machine translation.

3A bilingual transfer lexicon contains correspondences between lemmas, parts-of-speech and in some
cases between other morphological features.

69

PBML 93 JANUARY 2010

3.1. Format filters

Format filters can be used also by other MT applications. The encapsulation of
formatting is simple and eases the processing of multiple document formats in an
efficient manner. The format filters available in Apertium include ODT, HTML, RTF,
MediaWiki and others. Format descriptions are based on a simple XML specification.

3.2. Morphological dictionaries

The morphological transducers used in Apertium are built using the lttoolbox finite-
state toolkit (Ortiz-Rojas et al., 2005). The toolkit provides: a compiler, to transform
the dictionaries described in XML into the fast, compact finite-state transducers that
are then used by the engine.

Morphological dictionaries (MDs) are written in a format (see Forcada et al. (2007)
for details) that allows users to encode regularities in the form of paradigms that may
in turn call other paradigms. The compiler takes advantage of this and builds the
finite-state transducer recursively, performing local minimization at each step (Ortiz-
Rojas et al., 2005).

It is worth noting during the discussion of MDs that there are many languages
covered where the morphology in Apertium does not provide the widest coverage for
a given language. This is certainly the case for English and Spanish. However, they are
included as the uniform nature of the formats and tagsets can facilitate performing
experiments, and the single licence (the GNU General Public Licence4 (GPL) used
throughout) ease their integration with other free software.

Table 1 gives a breakdown of the MDs currently available and some statistics of
coverage. Some of these have been built from existing resources such as the the Norsk
Ordbank (http://www.edd.uio.no/prosjekt/ordbanken/), Eurfa (http://kevindonnelly.
org.uk/eurfa/), Gramadóir (http://borel.slu.edu/gramadoir/), or Matxin (http:
//matxin.sf.net). Numbers of lemmata are approximate and include multi-word
units encoded in the lexicon, the lemmata of surface forms with attached clitics and,
in some cases, duplicate entries for differing orthographies.

The surface column gives the total number of surface forms recognised by the anal-
yser. The mean ambig. column gives the mean ambiguity for each surface form, that is
the mean number of lexical forms (analyses) returned per surface form. This gives an
indication of the completeness of the morphology, although in the case of languages
with prefix inflection, such as Afrikaans and Persian, the dictionary may recognise
surface forms that will never appear in running texts (overanalysis).

The coverage column gives naïve coverage, that is, the fraction of surface forms in a
representative corpus for which at least one analysis is returned. The list of analyses
returned may not be complete, hence the word naïve. Finally the corpus column gives

4http://www.fsf.org/copyleft/gpl.html

70

http://www.edd.uio.no/prosjekt/ordbanken/
http://kevindonnelly.org.uk/eurfa/
http://kevindonnelly.org.uk/eurfa/
http://borel.slu.edu/gramadoir/
http://matxin.sf.net
http://matxin.sf.net
http://www.fsf.org/copyleft/gpl.html

F. M. Tyers et al. Apertium: Free Resources for MT R&D (67–76)

Language Lemmata Surface Mean ambig. Coverage Corpus
N. Nynorsk1 (nn) 47,193 402,096 1.33 89.6% --
N. Bokmål1 (nb) 46,945 571,411 1.30 88.2% --
English (en) 33,033 75,761 1.23 95.2% --
Afrikaans (af) 14,033 42,107 1.25 80.0% --
Danish (da) 10,659 80,106 1.15 86.2% --
Icelandic (is) 7029 206,353 2.41 82.0% --
Swedish (sv) 5,130 37,191 1.08 80.0% --
Asturian (ast) 46,550 13,549,353 1.16 86.3% --
Spanish (es) 41,735 4,600,370 1.40 97.6% --
Catalan (ca) 37,635 7,185,455 1.15 89.8% --
French (fr) 28,691 275,007 1.32 95.6% --
Galician (gl) 21,298 9,764,319 1.30 86.6% --
Romanian (ro) 18,719 612,511 1.28 83.6% --
Occitan (oc) 18,079 6,084,575 1.05 81.0% --
Portuguese (pt) 11,156 9,330,910 1.78 94.9% --
Italian (it) 10,117 462,319 1.25 88.8% --
Breton (br) 13,999 278,279 1.10 87.6% --
Welsh2 (cy) 11,081 438,856 1.21 86.1% --
Irish3 (ga) 8,769 165,787 1.53 83.6% --
Persian (fa) 11,087 514,539 1.06 80.0% --
Bulgarian (bg) 14,413 169,121 1.11 80.5% --

1. From Norsk Ordbank 2. From Eurfa 3. From An Gramadóir 4. From Matxin

Table 1: Statistics on Apertium finite-state morphological dictionaries organised by language
family

details of the corpus on which the evaluation was performed, stands for Wikipedia
and is followed by the date of the database dump,5 stands for EuroParl (Koehn,
2005) and is followed by the release date. These corpora were chosen as they are
available under free licences and are widely used in machine translation.

3.3. Bilingual lexica

Along with morphological analysers, Apertium also has a number of bilingual
lexica. These are encoded in the same XML-based format used by the morphological
analysers, but represent correspondences between lemmata, including multi-word
units, parts of speech and, in some cases, morphological information (e.g. to specify

5http://download.wikipedia.org/

71

http://download.wikipedia.org/

PBML 93 JANUARY 2010

Pair Entries Pair Entries Pair Entries Pair Entries
fr–ca 10,554 es–ca 40,446 en–gl 31,286 en–es 27,540
en–ca 24,601 fr–es 23,295 es–ro 21,511 oc–ca 18,896
es–it 17,294 oc–es 15,772 br–fr 15,762 es–ast 13,778
eu–es 12,174 pt–gl 11,844 es–pt 11,447 cy–en 11,405
sv–da 11,398 es–gl 10,807 pt–ca 7,716 is–en 5,875
nn–nb 73,809 ga–gd 7,863

Table 2: Statistics on bilingual lexica available in Apertium as of November 11, 2009 (ISO-639
codes in Table 1; ga: Irish, gd: Scottish Gaelic)

changes in the inflection information from SL to TL, and also to mark some ambigui-
ties that should be solved by the structural transfer module).

A summary of the available bilingual lexica in Apertium can be found in table 2.
Included are dictionaries which are either in released language pairs, or otherwise
considered reasonably stable.

3.4. Part-of-speech taggers

Apertium uses a first-order (bigram) HMM-based POS tagger (Cutting et al., 1992)
that is trained from corpora and a tagger definition file (see below). It can be trained
using classical methods —either supervised or unsupervised (Baum-Welch algorithm)—
or by means of a novel unsupervised approach that uses the rest of the MT engine
and a TL model to estimate the HMM parameters (Sánchez-Martínez et al., 2008).6
An XML-based tagger definition file is used to specify how the lexical forms deliv-
ered by the morphological analyser must be grouped into coarse tags. Grouping lex-
ical forms (consisting of a lemma and morphological information making up a rather
“fine-grained” PoS tag) into coarse PoS tags is needed to reduce the amount of pa-
rameters of the HMM. Each coarse tag is defined by means of a list of fine-grained
tags in which wild-cards can be used. Lexicalised coarse tags (Pla and Molina, 2004)
may be defined where needed by specifying the lemma of the word in the correspond-
ing attribute. HMM observable outputs are all the possible ambiguity classes, or sets of
coarse tags occurring in the dictionary, plus a reasonable open set for unknown words.

It is also possible to define constraint rules in the form of forbid and enforce rules.
Forbid rules define restrictions as sequences of two coarse tags that cannot occur. En-
force rules are used to specify the set of coarse tags allowed to occur after a particular
coarse tag. These rules are applied to the HMM parameters by introducing quasi-
zeroes in the state transition probabilities of forbidden sequences and re-normalising.

6A free/open-source implementation is provided by package apertium-tagger-training-tools.

72

F. M. Tyers et al. Apertium: Free Resources for MT R&D (67–76)

3.5. Transfer rules

Transfer rules for each of the three transfer stages, chunker, interchunk, and postchunk
are written using a very similar syntax. The rules are based on finite-state pattern
matching and are non-recursive. They are largely hand-written (but see 4.2). Chun-
ker rules deal with local phenomena such as number and gender agreement in noun
phrases, local word reorderings, some lexical changes (e.g. of prepositions). Inter-
chunk rules are used for analogous longer-range phenomena (such as the reordering
of complete chunks) and can also be used to merge chunks; Postchunk may be used
for internal adjustments after application of interchunk rules.

The average number of rules per direction in a language pair with multi-stage
transfer is approximately 300, and in single stage transfer around 100. For example,
the Spanish to Catalan direction has 104 single-stage rules, where the English to Cata-
lan direction has 227 chunker rules, 59 interchunk rules and 38 postchunk rules.

4. Reuse and recycle

This section gives a review of ways in which the resources available in Apertium
can be re-used in other MT systems, for example those based on the Moses (Koehn
et al., 2007) statistical MT system, and how other machine translation systems can be
used to create or improve resources for Apertium.

4.1. Reuse of resources in other systems

As described in Tyers (2009), the dictionaries of Apertium (sections 3.2 and 3.3),
together with very basic transfer rules can be used to create full-form bilingual vocab-
ulary lists which can be added to an existing parallel corpus for training a statistical
machine translation system based on Moses. The idea of this list is to improve cover-
age of word forms for inflected languages, when using a small corpus, or when the
corpus is of a limited domain (for example generating second-person singular forms
of verbs where the corpus contains overwhelmingly third-person singular).

Adding the dictionary also eases the computation of accurate word alignments
since one-to-one word mappings are explicitly provided. In Sánchez-Martínez and
Forcada (2009), table 4 (p. 22) results are given for an SMT system trained on a small
corpus when the generated bilingual corpus is added and when it is not.

4.2. Corpus-based creation and improvement of resources

A corpus-based approach to infer shallow structural transfer rules is proposed by
Sánchez-Martínez and Forcada (2009).7 The authors extend the alignment template

7A free implementation is provided by package apertium-transfer-tools.

73

PBML 93 JANUARY 2010

approach (Och and Ney, 2004) used in statistical MT with a set of restrictions derived
from the bilingual dictionary of Apertium to control their application as transfer rules.
For the translation between closely-related languages, the authors report an improve-
ment over word-for-word translation and a translation quality close to the one pro-
vided by hand-coded transfer rules. Their approach also provides better translation
results than the Moses statistical MT system trained on the same small parallel corpus
when it is extended with the Apertium bilingual dictionary (see Section 4.1).

It is worth noting that there has been another approach to the inference of shallow
structural transfer rules using corpora and Apertium resources (Caseli et al., 2006)
which, in addition to transfer rules, also automatically infers Apertium bilingual lex-
ica.8

4.3. Hybridisation of Apertium and other machine translation systems

Sánchez-Martínez et al. (2009) have tested the integration of sub-sentential trans-
lation units (bilingual chunks) into the Apertium MT engine.9 In their approach
the bilingual chunks were automatically obtained from parallel corpora by using the
marker-based chunkers and sub-sentential aligners used in the example-based MT
system MTE (Gough and Way, 2004; Tinsley et al., 2008).10 Note, however, that
bilingual chunks obtained in a different way could have been used, for instance the
chunks11 extraction algorithm (Zens et al., 2002) used by state-of-the-art statistical MT
systems such as Moses.

In the integration of bilingual chunks into a rule-based MT system like Apertium,
special care must be taken so as not to break the application of structural transfer
rules, since this would increase the number of ungrammatical translations. Thanks
to the modular design of Apertium this has been possible by developing a wrap-
per around the translation engine. The approach consists of (i) the application of a
dynamic-programming algorithm to compute the best translation coverage of the in-
put sentence given the collection of bilingual chunks available; (ii) the translation of
the input sentence as usual by Apertium; and (iii) the application of a language model
to choose one of the possible translations for each of the bilingual chunks detected.
Sánchez-Martínez et al. (2009) report improvements, although not statistically signif-
icant, in the translation from English to Spanish, and vice versa.

8A free/open-source implementation can be downloaded from http://retratos.sf.net.
9A free/open-source implementation is provided by package apertium-chunks-mixer.

10Selected components from MTE will soon be made available as the free/open-source package Mar-
clator at http://www.computing.dcu.ie/~mforcada/marclator.html.

11Usually referred as phrases by statistical MT practitioners.

74

http://retratos.sf.net
http://www.computing.dcu.ie/~mforcada/marclator.html

F. M. Tyers et al. Apertium: Free Resources for MT R&D (67–76)

5. Discussion

We have presented in this paper the resources available in the Apertium machine
translation platform, and some possible uses of these resources in improving other
MT systems, or creating hybrid systems. The resources we present are currently used
in 21 released rule-based machine translation systems.12 Future research is aimed at:
expanding the number of languages covered by the linguistic resources, increasing
the number of language pairs, implementing a module for lexical selection, integrat-
ing other free/open-source software, such as HFST13 or foma (Huldén, 2009) for man-
aging more complex morphologies, and the implementation of a module for deeper
structural transfer. Improving integration with other free/open-source machine sys-
tems such as Moses, Cunei and Matxin is also a priority.

Acknowledgements: We thank the support of the Spanish Ministry of Science and
Innovation through project TIN2009-14009-C02-01. Mikel L. Forcada thanks the sup-
port given by Science Foundation Ireland (SFI) through ETS Walton Award 07/W.1/I1802.

Bibliography
Armentano-Oller, Carme, Rafael C. Carrasco, Antonio M. Corbí-Bellot, Mikel L. Forcada,

Mireia Ginestí-Rosell, Sergio Ortiz-Rojas, Juan Antonio Pérez-Ortiz, Gema Ramírez-
Sánchez, Felipe Sánchez-Martínez, and Miriam A. Scalco. Open-source Portuguese–
Spanish machine translation. In Computational Processing of the Portuguese Language, Pro-
ceedings of the 7th International Workshop on Computational Processing of Written and Spoken
Portuguese, PROPOR 2006, volume 3960 of Lecture Notes in Computer Science, pages 50–59.
Springer-Verlag, May 2006. ISBN 3-540-34045-9.

Caseli, H.M., M.G.V. Nunes, and M.L. Forcada. Automatic induction of bilingual resources
from aligned parallel corpora: application to shallow-transfer machine translation. Machine
Translation, 20(4):227–245, 2006.

Cutting, D., J. Kupiec, J. Pedersen, and P. Sibun. A practical part-of-speech tagger. In Third
Conference on Applied Natural Language Processing. Association for Computational Linguistics.
Proceedings of the Conference, pages 133–140, Trento, Italy, 31 mar–3 apr. 1992.

Forcada, Mikel L., Boyan Ivanov Bonev, Sergio Ortiz-Rojas, Juan Antonio Pérez-Ortiz, Gema
Ramírez-Sánchez, Felipe Sánchez-Martínez, Carme Armentano-Oller, Marco A. Montava,
and Francis M. Tyers. Documentation of the open-source shallow-transfer machine transla-
tion platform Apertium. http://xixona.dlsi.ua.es/~fran/apertium2-documentation.
pdf, May 2007.

Forcada, Mikel L., Francis M. Tyers, and Gema Ramírez-Sánchez. The free/open-source ma-
chine translation platform Apertium: Five years on. In Proceedings of theFirst Interna-
tional Workshop on Free/Open-Source Rule-Based Machine Translation FreeRBMT’09, pages 3–10,
November 2009.

12A full list may be found on the front page of the Apertium Wiki (http://wiki.apertium.org).
13http://www.ling.helsinki.fi/kieliteknologia/tutkimus/hfst/

75

http://xixona.dlsi.ua.es/~fran/apertium2-documentation.pdf
http://xixona.dlsi.ua.es/~fran/apertium2-documentation.pdf
http://wiki.apertium.org
http://www.ling.helsinki.fi/kieliteknologia/tutkimus/hfst/

PBML 93 JANUARY 2010

Gough, N. and A. Way. Robust large-scale EBMT with marker-based segmentation. In Pro-
ceedings of the Tenth Conference on Theoretical and Methodological Issues in Machine Translation
(TMI-04), pages 95–104, Baltimore, MD., 2004.

Huldén, Måns. Foma: a finite-state compiler and library. EACL 2009, pages 29–32, 2009.
Karlsson, F., A. Voutilainen, J. Heikkilä, and A. Anttila. Constraint Grammar: A Language-

Independent System for Parsing Unrestricted Text. Natural Language Processing, No 4. Mouton
de Gruyter, Berlin and New York, 1995.

Koehn, Philipp. Europarl: A parallel corpus for statistical machine translation. MT Summit
2005, 2005.

Koehn, Philipp, Hieu Hoang, Alexandra Birch, Chris Callison-Burch, Marcello Federico, Nicola
Bertoldi, Brooke Cowan, Wade Shen, Christine Moran, Richard Zens, Chris Dyer, Ondrej
Bojar, Alexandra Constantin, and Evan Herbst. Moses: Open source toolkit for statistical
machine translation. Annual Meeting of the Association for Computational Linguistics (ACL),
demonstration session, Prague, Czech Republic, June 2007, 2007.

Och, F. J. and H. Ney. The alignment template approach to statistical machine translation.
Computational Linguistics, 30(4):417–449, 2004.

Ortiz-Rojas, Sergio, Mikel L. Forcada, and Gema Ramírez-Sánchez. Construcción y mini-
mización eficiente de transductores de letras a partir de diccionarios con paradigmas. Proce-
samiento del Lenguaje Natural, (35):51–57, 2005.

Pla, F. and A. Molina. Improving part-of-speech tagging using lexicalized HMMs. Journal of
Natural Language Engineering, 10(2):167–189, June 2004.

Sánchez-Martínez, Felipe and Mikel L. Forcada. Inferring shallow-transfer machine translation
rules from small parallel corpora. Journal of Artificial Intelligence Research, 34:605–635, 2009.

Sánchez-Martínez, Felipe, Juan Antonio Pérez-Ortiz, and Mikel L. Forcada. Using target-
language information to train part-of-speech taggers for machine translation. Machine Trans-
lation, 22(1-2):29–66, 2008.

Sánchez-Martínez, Felipe, Mikel L. Forcada, and Andy Way. Hybrid rule-based – example-
based MT: Feeding apertium with sub-sentential translation units. In Proceedings of the
3rd Workshop on Example-Based Machine Translation, pages 11–18, Dublin, Ireland, Novem-
ber 2009.

Streiter, Oliver, Kevin P. Scannell, and Mathias Stuflesser. Implementing NLP Projects for Non-
Central Languages: Instructions for Funding Bodies, Strategies for Developers. Machine
Translation, 20(4):267–289, 2007.

Tinsley, J., Y. Ma, S. Ozdowska, and A. Way. M: the DCU MT system for WMT 2008. In
Proceedings of the Third Workshop on Statistical Machine Translation, ACL 2008, pages 171–174,
Columbus, OH., 2008.

Tyers, Francis M. Rule-based augmentation of training data in Breton–French statistical ma-
chine translation. In Proceedings of the 13th Annual Conference of the European Association of
Machine Translation, EAMT09, pages 213–218, 2009.

Zens, R., F. J. Och, and H. Ney. Phrase-based statistical machine translation. In KI 2002: Ad-
vances in Artificial Intelligence: Proceedings 25th Annual German Conference on AI, volume 2479
of Lecture Notes in Computer Science, pages 18–32. Springer-Verlag, 2002.

76

The Prague Bulletin of Mathematical Linguistics
NUMBER 93 JANUARY 2010 77–86

Combining Content-Based and URL-Based Heuristics to Harvest
Aligned Bitexts from Multilingual Sites with Bitextor

Miquel Esplà-Gomisa, Mikel L Forcadaab

a Grup Transducens, Departament de Llenguatges i Sistemes Informàtics, Universitat d’Alacant, E-03071 Alacant, Spain
b Centre for Next Generation Localisation, Dublin City University, Dublin 9, Ireland

Abstract
Nowadays, many websites in the Internet are multilingual and may be considered sources

of parallel corpora. In this paper we will describe the free/open-source tool Bitextor, created to
harvest aligned bitexts from these multilingual websites, which may be used to train corpus-
based machine translation systems. This tool uses the work developed in previous approaches
with modifications and improvements in order to obtain a tool as adaptable as possible to make
it easier to process any kind of websites and work with any pairs of languages. Content-based
and URL-based heuristics and algorithms applied to identify and align the parallel web pages in
a website will be described and, finally, some results will be presented to show the functionality
of the application and set the future work lines for this project.

1. Introduction and background

Nowadays the biggest and most heterogeneous text corpus in the world is the
World Wide Web. In fact, during the last years there have been many approaches
to profit from the web as a corpus and, especially, as a text corpus. In our case, our
approach is focused on using the web as a source of bitexts (parallel texts). It is known
that many websites are, totally or partially, available in more than one language. This
means that some of their web pages can be paired into bitexts.

Currently, bitexts have become a very important source of knowledge for the ma-
chine translation. It is in the area of corpus-based machine translation where the bi-
texts are more important. Example-based machine translation (EBMT) and statistical
machine translation (SMT) need this kind of resources, for the process of training
(Hutchins and Somers, 1992). In fact, there are corpora which have been obtained

© 2010 PBML. All rights reserved. Corresponding author: miquel.espla@ua.es
Cite as: Miquel Esplà-Gomis, Mikel L Forcada. Combining Content-Based and URL-Based Heuristics to Harvest
Aligned Bitexts from Multilingual Sites with Bitextor. The Prague Bulletin of Mathematical Linguistics No. 93,
2010, pp. 77–86. ISBN 978-80-904175-4-0. doi: 10.2478/v10108-010-0003-9.

PBML 93 JANUARY 2010

from the Internet with the aim of training SMT, such as the Europarl Corpus (Koehn,
2005). There are even approaches to extract translation rules from parallel corpora
used to create rule-based machine translation (RBMT) systems (Caseli and Nunes, 2007;
Sánchez-Martínez and Forcada, 2009).

Based on this idea, different systems have been developed to harvest bitexts from
the Internet. One of the earliest approaches is the STRAND system (Resnik and Smith,
2003), which is designed to identify web pages which are candidates to be bitexts. This
system uses the HTML structure and the text-block length to compare files between
them through the application of different calculations and thresholds. Similar ap-
proaches have been developed with this kind of methods to harvest bitext from the
web (Chen and Nie, 2000; Kit et al., 2005; Désilets et al., 2008). In these cases, the sys-
tem used to obtain the preliminary candidates for each web page is the identification
and substitution of language markers in the URLs (Nie et al., 1999) (this will be cov-
ered in the section 3). In our approach we have not used this system in order to create
an application as independent as possible of the website structure and the language
pair searched.

Taking all these ideas, Bitextor was created as a free/open-source tool with the
aim of obtaining the maximum number of parallel texts from multilingual websites,
aligning them and generating translation memories (TMs) in TMX format.1 To do
this, the content comparison techniques developed in the cited projects have been
applied with some modifications, combining them with other heuristics which will be
explained in next sections. To assist in this task, another free/open-source application
has been used: the TagAligner tool (Sanchez-Villamil et al., 2006), which both uses the
tag structure in XML files and the length of the sentences in a pair of documents to
align them (Brown et al., 1991; Gale and Church, 1994).

2. Obtaining and preprocessing web pages

To start the process of obtaining TM from a multilingual website with Bitextor, the
first step is to download the entire website. To do this, Bitextor uses the tool HTTrack,2
which is able to filter and download only the HTML files in the website. All these files
are saved locally and are tagged with their URL.

Once this is done, some normalisation tasks are performed on the files in order
to convert them into a valid format for processing. Firstly, Bitextor uses the library
LibEnca3 to detect the original character set encoding. It then uses LibTidy4 to nor-
malize the HTML files into valid XHTML files and to convert the detected original
encoding into UTF-8.

1http://www.lisa.org/Translation-Memory-e.34.0.html [Last visited: 26th November 2009]
2http://www.httrack.com [Last visited: 26th November 2009]
3http://sourceforge.net/projects/freshmeat_enca/ [Last visited: 26th November 2009]
4http://tidy.sourceforge.net [Last visited: 26th November 2009]

78

http://www.lisa.org/Translation-Memory-e.34.0.html
http://www.httrack.com
http://sourceforge.net/projects/freshmeat_enca/
http://tidy.sourceforge.net

M. Esplà-Gomis, M.L. Forcada Harvesting TM from the Web with Bitextor (77–86)

3. Choosing the parameters for the comparison

To look for web page pairs that are bitexts, Bitextor needs to obtain and save some
features from these pages. In this section, we will explain how this is done.

3.1. Surface features

The first features observed in a web page are those which we will consider, in this
paper, surface features. These are the features that may not be used for an accurate
comparison, but can be used as a indicator to discard very unlikely pairs of files. In
our approach, these features are:

• Text-language comparison: It is obvious that if two files are written in the same
language, one of them can not be a translation of the other one. The language in
which each text has been written is detected and stored by using LibTextCat.5

• File size ratio: This parameter is relative and is used to filter pairs of files whose
size is very different.

• Total text length difference: This parameter has the same function that the previous
one, but compares the size of each file’s plain text in characters.

3.2. Web page content

In order to obtain a more precise comparison Bitextor uses web page content in the
comparison process. Web pages have an advantage over plain text: they are tagged
with format and structure tags, which provide additional information that can be
used to compare them. The idea is that two parallel web pages should have the same
HTML tag structure (or, at least, a similar one).

Basically, two elements in the content of the web pages are considered in our ap-
proach: the HTML tag structure and the text block length. This is the same informa-
tion used in the STRAND approach. In Bitextor, the extraction of this information is
divided into two steps: the file cleaning and the encoding. In the first one, the ob-
jective is to remove all the irrelevant information, such as comments, the heading of
the web page, the tag parameters, the irrelevant HTML tags and the extra spaces in
the text blocks. In the second step Bitextor encodes the remaining information into a
string in which two kinds of information can be represented: the tag names and the
text block lengths (measured in characters6). This string acts as a fingerprint of the web
page.7 We can see an example of this kind of encoding in the Figure 1. This method
of encoding provides the possibility of using the edit-distance algorithm to make the
comparison.

5 http://software.wise-guys.nl/libtextcat/ [Last visited: 26th November 2009]
6An interesting study issue could be to analyse the differences in the results calculating the length of

the text blocks in characters or in words
7To optimise calculations, this information is encoded with integers.

79

http://software.wise-guys.nl/libtextcat/

PBML 93 JANUARY 2010

Figure 1. Example of conversion from HTML to a fingerprint string.

3.3. URL

One difference between this work and other previous approaches is that Bitextor
does not download the candidate files by using rules of detection and substitution of
language markers in the URL (Nie et al., 1999). Bitextor downloads the whole website
and, then, uses the URLs as one more parameter to discard pairs of files with low
probability to be bitexts. In order to do this, Bitextor divides the URL of a file into
three sections: thedirectory path, the filename and the variables. In this way, it can
compare each section separately.

4. Web page comparison process

To compare the web pages, the features explained in the previous section are com-
pared one by one. Firstly, the surface features are compared in order to discard the
most obviously incorrect pairs of files. With the remaining files the following two
methods are applied.

4.1. URLs comparison

For the URL comparison Bitextor applies a restriction: candidate pairs can have at
most, one difference in their URL. In practice, this implies one of these three possibil-
ities in which the difference can be:

The filename: This is the simplest difference. When both files are saved in the same
directory but they have a different name:

80

M. Esplà-Gomis, M.L. Forcada Harvesting TM from the Web with Bitextor (77–86)

http://www.gnu.org/home. ca .html ⇒ http://www.gnu.org/home. en .html

A directory: This means that the directory structure differs in the name of a direc-
tory. For example it happens when files are saved in a path with the same structure
but that is forked in a particular level in the directory tree. This can also happen when
one of the files is saved in a subdirectory of the directory where the other one is saved:

http://www.ua.es/ va /index.html ⇒ http://www.ua.es/ en /index.html

http://www.ua.es/index.html ⇒ http://www.ua.es/ en /index.html

A variable: This difference consists in the fact that the same file is called using a
variable with a different value in each of the cases. It can also happen when one file
has one more variable:

http://www.dlsi.ua.es/index.html?id= val ⇒ http://www.dlsi.ua.es/index.html?id= eng

http://www.dlsi.ua.es/index.html ⇒ http://www.dlsi.ua.es/index.html?id= eng

With this system, Bitextor tries to take advantage of the information provided by
the URL without having to manually generate the rules of pattern recognition and
substitution of language markers in the web pages URL. It means that Bitextor can be
used directly on any website without having to analyse its structure.

4.2. Web page content comparison

Finally, those pairs that have not been discarded in the previous step are compared
through their fingerprint (see section 3.2). To do this, Bitextor uses the Levenshtein
edit distance algorithm (Levenshtein, 1966). It is important to explain that, when Bi-
textor applies this algorithm on the obtained fingerprints, it has to process two kinds
of elements (tags and text blocks). The comparison between XHTML tags is simple:
they can be different or equal. However, the comparison between text blocks is not as
easy. As in other methods (Gale and Church, 1994), the length is the parameter used
to perform the comparison between text blocks, so the most reasonable option seems
to be to use the following measure of divergence between the length two text block
lengths b1 and b2:

D(b1, b2) =
|b1 − b2|

max(b1, b2)
(1)

In fact, in our approach we implement two ways to use this information in order
to obtain two different values as a result of the edit distance calculation. The first
way is to set a threshold for D(b1, b2) for each pair of languages. In this way, we can
evaluate if two texts blocks could be parallel or not. The value obtained from applying
the edit-distance with this method is used to discard improbable pairs by defining a
maximum number of absolute differences between both fingerprints. The other way

81

http://www.gnu.org/home.
ca
.html
http://www.gnu.org/home.
en
.html
http://www.ua.es/
va
/index.html
http://www.ua.es/
en
/index.html
http://www.ua.es/index.html
http://www.ua.es/
en
/index.html
http://www.dlsi.ua.es/index.html?id=
val
http://www.dlsi.ua.es/index.html?id=
eng
http://www.dlsi.ua.es/index.html
http://www.dlsi.ua.es/index.html?id=
eng

PBML 93 JANUARY 2010

to compare the text block lengths is to directly use D(b1, b2) as a cost. The value
obtained from the edit-distance calculation with this method is used to know which
is the most probable candidate for a given file from the group of files that may have
passed all the other heuristics (the one having the lowest value).

In this way, for the operations defined for the Levenshtein edit-distance (insertion,
deletion and substitution) we can define the following cost functions: for insertions
Ci(x) and deletions Cd(x), the cost is the same for tags and a text block lengths, inde-
pendently of its length x:

Ci(x) = 1 Cd(x) = 1 (2)

For substitutions of tags (t) we will have the cost function Cs(t1, t2):

Cs(t1, t2) =

{
0 if t1 = t2

1 if t1 ̸= t2
(3)

In the case of text block lengths b1 and b2, as we have said, we have two functions:
the direct cost function without using the threshold Cs(b1, b2) and the cost function
using the threshold C ′

s(b1, b2):

Cs(b1, b2) = D(b1, b2) C ′
s(b1, b2) =

{
1 if D(b1, b2) > tb

0 if D(b1, b2) ≤ tb
(4)

Substitutions between tags and text block lengths are not allowed:8

Cs(t1, b1) → ∞ Cs(b1, t1) → ∞ (5)

5. Aligning the obtained websites

The last task performed by Bitextor is the alignment of the candidates. In order to
align a pair of XHTML files, Bitextor uses the LibTagAligner to perform the alignment.
The method used by TagAligner to align files is similar to the one used by Bitextor to
compare them. TagAligner encodes the file with a fingerprint (as Bitextor does), but
it uses a more detailed weight structure with the edit-distance algorithm. In contrast
to Bitextor, when this algorithm is performed, not all tags are compared in the same
way. This tool allows the user to group the tags in categories. For these categories, the
user can define weights for the operations defined in the edit-distance algorithms.

Thus, for a tag t in a category k, the cost of an insertion Ci(t) or deletion Cd(t)
operation is expressed by the functions:

Ci(k) = Wi(t) Cd(t) = Wd(k) (6)

8In our approach, we assign the C++ MAXDOUBLE value to these cost functions.

82

M. Esplà-Gomis, M.L. Forcada Harvesting TM from the Web with Bitextor (77–86)

where Wi(k) and Wd(k) are the functions that return the weights assigned by the user
for the insertion and deletion operations.

In the case of substitution, the cost function for two tags (t1 and t2) in two cate-
gories (k1 and k2) is:

Cs(t1, t2) =

{
0 if t1 = t2

Ws(k1, k2) if t1 ̸= t2
(7)

where Ws(k1, k2) is the function that determines the cost of a substitution on a pair
of different tags belonging to the same category or two different categories.9

Weights are also assigned to text block length operations, and they are relative to
the length of the blocks operated. But, in contrast to the fingerprint comparison used
by Bitextor, in LibTagAligner the user can choose whether the length of the text block
is measured in characters or words. So, in our case, the set of cost functions for text
blocks b is:

Ci(b) = Wi(b) · b Cd(b) = Wd(b) · b (8)

Cs(b1, b2) = Ws(b1, b2) · |b1 − b2| (9)

Again, tag–text block substitutions are not allowed, so, the cost of the operation will
be implemented as an infinite (as has been explained in section 4.2).

6. Results

This section presents results from the system. These tests have been performed by
using version 3.2.0 of Bitextor.10 What we are going to analyse is the capacity of Bi-
textor to find the parallel web pages in a given website. In terms of alignment quality,
there is a complete study (Sanchez-Villamil et al., 2006) with results about this issue.
The metrics used to evaluate Bitextor have been precision and recall. We define pre-
cision (P) as the number of correct pairs obtained (NC) over the total number of pairs
obtained (NT). The recall (R) is then the number of correct pairs obtained (NC) over
the total number of possible pairs in the website (N):

P = NC

NT
R = NC

N
(10)

It is obvious that it would be a huge work to check all the pairs of files generated
by Bitextor, or find the total number of possible pairs of files in a website composed
of thousands of web pages. To obtain an approximate estimation of the precision,
we have randomly obtained a sample of 100 pairs generated by Bitextor and have
checked them by hand. In the same way, we have obtained a list of 300 web pages

9An optimal set of weights can be found in (Sanchez-Villamil et al., 2006).
10The configuration file used to perform the tests can be looked up in the trunk of the SVN server of

Bitextor for its revision 146: https://bitextor.svn.sourceforge.net/svnroot/bitextor/trunk/

83

https://bitextor.svn.sourceforge.net/svnroot/bitextor/trunk/

PBML 93 JANUARY 2010

from the downloaded website and have tried to find them in the list of pairs generated
by Bitextor. Then, have checked if these pairs were correct or not.

For a first test, we have tried with a very simple case: the website of the Parliament
of Canada.11 This country has two official languages (English and French), and this
website must have all its pages in the both languages, so, in theory, all the pages must
have a bitext candidate. The website was downloaded by using HTTrack and 56,173
HTML files were obtained. Bitextor was applied with a threshold of 10 maximum
differences between fingerprints. From the website, 24,717 pairs of web pages were
found. The results in this case were very satisfactory: P=99% and R=85,33%.

These are very promising results, but, probably, the quality of the extraction is
probably due to the fact that this is a very well structured website, with uniform lan-
guage markers in the URL and highly parallel contents. Because of this, we wanted
to try with a more complex case. The next results were obtained from a website from
the Universitat d’Alacant,12 which is written in three languages: English, Catalan and
Spanish. This website is heterogeneous, with some pages without any translation and
with multiple systems to mark the language in the URL. In this way, these were the
obtained results: P = 86% and R = 61%. Obviously, these results are worse than the
obtained in the previous test. There are some reasons to explain what has happened
in this case with the precision: the noise caused by web pages without any translation,
the fact that some pages have no language marker in the URL, the presence of pages
with a very similar content and the same structure (for example, the staff section,
which uses a template for all the web pages and only changes a few lines of text).

Analysing the results one by one, we have noticed that, in many occasions it is
better to have a lower recall because in many of the discarded pairs, the information
contained in the pages was minimal (only some words), with mixed languages, only
numeric data, etc. So, it is important to understand that the recall can be more related
with the quality of the website as a parallel corpus than with the performance of the
application.

7. Conclusions

After this study, we can extract some conclusions. Firstly, it is clear that this system
gives promising results for webpages with a high number of parallel pages and with
not much noise. Certainly, it is probable that many of the multilingual webpages in
the Internet do not fit this profile. Thus, it seems that one of the most important future
lines of work in this project will be to develop new heuristics to clean all the possibly
noisy files.

Regarding a comparison of previous works in the area and Bitextor, we have ob-
tained some good results, comparable to those obtained with other similar approaches

11http://www.parl.gc.ca
12That of the Department of Computer Languages and Systems, http://www.dlsi.ua.es

84

http://www.parl.gc.ca
http://www.dlsi.ua.es

M. Esplà-Gomis, M.L. Forcada Harvesting TM from the Web with Bitextor (77–86)

(although it is difficult to quantify without applying them on the same websites in a
controlled work environment). In addition, the system of comparison of URLs of Bi-
textor has been designed to be more adaptable and, as consequence, obtain better
results for any website without studying its structure.

One important point in our approach is the fact that it is a free/open-source tool.
We think that free/open-source is very important in this kind of applications, since we
are working with a very heterogeneous material: websites are very different between
them, different corpora with different languages can present very different problems
(for example, the alignment), etc. With a free application we are allowing people to
try our application and to add new features to face all the possible problems.

8. Where to find Bitextor and TagAligner

Bitextor and LibTagAligner are under the GNU General Public License (GPL) ver-
sion 2.013 and they are available for UNIX-like platforms. Its code and releases can
be found at http://sourceforge.net/projects/bitextor and http://sourceforge.net/
projects/tag-aligner.

9. Future work

Currently, there are various tasks pending for the Bitextor project. We are explor-
ing ways to increase the precision of our system in order to obtain better results on
noisy websites. Another important task planned is the integration of Bitextor with
other free tools, like Bitext2TMX14 to create a more powerful work environment for
the creation and editing of translation memories.

Another important improvement would be to add a new module to allow Bitextor
to acquire by itself candidate websites to be parallel (for a given pair of languages)
(Leturia et al., 2009).

Acknowledgements: The original development of Bitextor was funded by the Min-
isterio de Ciencia y Tecnología (Spanish Government) between 2004 and 2006 through
grant (TIC2003-08681-C02). Later, it was funded by the Universitat d’Alacant. En-
rique Sánchez Villamil was the author of the 1.0 version of Bitextor and the 1.0 ver-
sion of TagAligner (on which the initial version of LibTagAligner, used by Bitextor
was based). Miquel Simón i Martínez was the author of the second version (v2.0)
of TagAligner, with an improvement in configurability through the incorporation of
an XML configuration file. MLF’s stay at Dublin City University is funded by Sci-
ence Foundation Ireland through an ETS Walton Award. We thank the support of the

13http://www.gnu.org/licenses/gpl-2.0.html [Last visited: 26th November 2009]
14http://www.sf.net/projects/bitext2tmx

85

http://sourceforge.net/projects/bitextor
http://sourceforge.net/projects/tag-aligner
http://sourceforge.net/projects/tag-aligner
http://www.gnu.org/licenses/gpl-2.0.html
http://www.sf.net/projects/bitext2tmx

PBML 93 JANUARY 2010

Spanish Ministry of Science and Innovation through project TIN2009-14009-C02-01.
We thank Francis M. Tyers for comments on the manuscript.

Bibliography

Brown, P.F., J.C. Lai, and R.L. Mercer. Aligning sentences in parallel corpora. In Proceedings of
the 29th annual meeting on Association for Computational Linguistics, pages 169–176. Associa-
tion for Computational Linguistics Morristown, NJ, USA, 1991.

Caseli, HM and MGV Nunes. Automatic induction of bilingual lexicons for machine transla-
tion. Int J Transl, 19:29–43, 2007.

Chen, J. and J.Y. Nie. Parallel web text mining for cross-language IR. In Proceedings of RIAO
2000: Content-Based Multimedia Information Access, volume 1, pages 62–78, 2000.

Désilets, A., B. Farley, M. Stojanovic, and G. Patenaude. WeBiText: Building Large Heteroge-
neous Translation Memories from Parallel Web Content. Proc. of Translating and the Com-
puter, 30:27–28, 2008.

Gale, W.A. and K.W. Church. A program for aligning sentences in bilingual corpora. Compu-
tational linguistics, 19(1):75–102, 1994.

Hutchins, W.J. and H.L. Somers. An introduction to machine translation. Academic Press New
York, 1992.

Kit, Chunyu, Xiaoyue Liu, KingKui Sin, and Jonathan J. Webster. Harvesting the bitexts of the
laws of Hong Kong from the Web. 2005.

Koehn, P. Europarl: A parallel corpus for statistical machine translation. In MT summit, vol-
ume 5. Citeseer, 2005.

Leturia, I., I. San Vicente, and X. Saralegi. Search engine based approaches for collecting
domain-specific Basque-English comparable corpora from the Internet. In Proceedings of
the 5th Web As a Corpus, Sociedad Española de Procesamiento del Lenguaje Natural Conference,
2009.

Levenshtein, V.I. Binary codes capable of correcting deletions, insertions and reversals. In
Soviet Physics Doklady, volume 10, pages 707–710, 1966.

Nie, J.Y., M. Simard, P. Isabelle, and R. Durand. Cross-Language Information Retrieval based
on Parallel Texts and Automatic Mining of Parallel Texts from the Web. In Proceedings of
SIGIR’99: 22nd International Conference on Research and Development in Information Retrieval:
University of California, Berkeley, August 1999, page 74. Association for Computing Machinery
(ACM), 1999.

Resnik, P. and N.A. Smith. The web as a parallel corpus. Computational Linguistics, 29(3):
349–380, 2003.

Sánchez-Martínez, Felipe and Mikel L. Forcada. Inferring shallow-transfer machine translation
rules from small parallel corpora. Journal of Artificial Intelligence Research, 34:605–635, 2009.

Sanchez-Villamil, E., S. Santos-Anton, S. Ortiz-Rojas, and M.L. Forcada. Evaluation of align-
ment methods for HTML parallel text. Lecture Notes in Computer Science, 4139:280, 2006.

86

The Prague Bulletin of Mathematical Linguistics
NUMBER 93 JANUARY 2010 87–96

Fast and Extensible Phrase Scoring for Statistical Machine
Translation

Christian Hardmeier
Fondazione Bruno Kessler, Trento, Italy

Abstract
Existing tools for generating phrase tables for phrase-based Statistical Machine Translation

(SMT) are generally optimised towards low memory use to allow processing of large corpora
with limited memory. Whilst being a reasonable design choice, this approach does not make
optimal use of resources when the sufficient memory is available. We present memscore, a new
open-source tool to score phrases in memory. Besides acting as a faster drop-in replacement
for existing software, it implements a number of standard smoothing techniques and provides
a platform for easy experimentation with new scoring methods.

1. Motivation

Phrase tables for Statistical Machine Translation (SMT) systems are commonly built
from very large parallel corpora in order to obtain ample vocabulary coverage and suf-
ficient quality of the translation probability estimates. On usual desktop computers,
the size of the phrase tables extracted from a large corpus will often exceed the size
of the physical memory available on the machine. Software tools used to estimate
phrase tables from parallel corpora are designed to take this constraint into account.
They do not try to load the complete data into memory at once. Instead, they process
their inputs as data streams, relying on local information only, and make extensive
use of temporary disk files and intermediate disk-bound sorting passes to access the
right information at the right moment.

This approach ensures that the size of the parallel corpus that can be processed
is limited only by the potentially very large amount of disk space available; the use
of working memory is kept to a minimum. The result is almost unlimited scalability

© 2010 PBML. All rights reserved. Corresponding author: hardmeier@fbk.eu
Cite as: Christian Hardmeier. Fast and Extensible Phrase Scoring for Statistical Machine Translation. The
Prague Bulletin of Mathematical Linguistics No. 93, 2010, pp. 87–96. ISBN 978-80-904175-4-0.
doi: 10.2478v10108-010-0007-5.

PBML 93 JANUARY 2010

to very large corpora given sufficient disk space, but it seems wasteful not to exploit
the available memory resources as fully as possible. Moreover, the stream-based ap-
proach to data processing makes it very expensive to access data that is not locally
available, so the scoring functions that can be implemented are essentially limited to
those that require only a small number of straight passes through the data. In recent
years, random-access memory has become much cheaper, and the general availability
of 64-bit computers has lifted another important restriction on memory size, such that
academic sites now have access to computing equipment which can handle data sets
in memory that were beyond reach even a few years ago. It is reasonable to use soft-
ware that takes advantage of these new capabilities, not only to speed up SMT system
training, but also to make it feasible to implement new phrase scoring algorithms that
require more than just a few passes through the data.

Phrase-based Statistical Machine Translation (SMT) uses translation models in the
form of phrase tables, in which phrase pairs consisting of a source language (SL) and
a target language (TL) word sequence, s and t, are associated with a number of scores
corresponding to different models of translation probabilities between s and t. Fol-
lowing Koehn et al. (2003), candidate phrase pairs are usually extracted from a parallel
corpus with automatically generated word alignments. The forward and reverse con-
ditional phrase translation probabilities p(s|t) and p(t|s) are then estimated by the
relative frequency of a SL phrase in alignment with a given TL phrase and vice versa.
To overcome the unreliability of these estimates for low-frequency phrases, phrase ta-
bles usually include maximum likelihood scores for both p(s|t) and p(t|s) as well as
two additional lexical weight scores based on the word alignment probabilities of the
individual component words of the source and the target phrases (Koehn et al., 2003).

The widely used moses toolkit for Statistical Machine Translation (Koehn et al.,
2007) includes a tool called phrase-extract to extract phrase pairs from a word-aligned
corpus and compute phrase translation probabilities and lexical weights. It is de-
signed to process large amounts of corpus data on computers with relatively little
random-access memory (RAM). To achieve this, the file system is used extensively
to store temporary data. Phrases pairs are extracted from the parallel corpus and
stored to disk. Scoring is done individually for the two forms of the conditional prob-
ability, p(s|t) and p(t|s), and for each scoring pass, the extracted phrases have to be
sorted by target or source phrase, respectively. After scoring, the output of one of
the two scoring runs is sorted again to match the order of the other run for merging.
Another open-source implementation of SMT phrase scoring, Thot (Ortiz-Martínez
et al., 2005), also works with temporary disk files to cut down on RAM usage.

In this paper, we present memscore, an open-source phrase scoring tool replicating
and extending the functionality of the score component of the phrase-extract software
bundled with moses. Like score, it takes as input a list of phrase pairs produced by the
extract tool of phrase-extract and calculates phrase translation scores. Unlike score, it
performs all the computations in RAM and does not require the input to be sorted in
any way. As a result, scoring is much faster for data sets that fit completely in memory.

88

Ch. Hardmeier Fast and Extensible Phrase Scoring for SMT (87–96)

p(s|t) p(t|s)

-s ml -r ml maximum likelihood score
-s wittenbell -r wittenbell Witten-Bell smoothing
-s absdiscount -r absdiscount absolute discounting
-s lexweights <file> -r lexweights <file> lexical weights

-s const <constant> constant phrase penalty

Table 1. memscore command line options

Its implementation as a C++ program designed with modularity in mind makes it
easy to experiment with different scoring techniques. A small number of smoothing
techniques are already implemented, and other methods can easily be added. The
framework has also been used successfully for an experimental implementation of
an iterative scoring algorithm. In the rest of the paper, we are going to describe the
typical usage of memscore, some implementation details useful to those who want to
implement their own scoring algorithms in the framework provided by the tool and a
comparison of memscore with the phrase-extract scorer in terms of runtime performance
on two common SMT tasks.

2. Usage
2.1. Invocation

The memscore tool takes as input a list of phrases extracted from a parallel corpus in
the format used by the phrase-extract tool bundled with the moses decoder. The phrase
list is read from standard input and does not need to be sorted. It prints to standard
output a phrase table in the format used by moses.

The scores to be included in the phrase table are specified on the command line
with the switches listed in table 1. Each score is selected by one of the command
line options -s or -r followed by the identifier of the scorer. Additional arguments
may follow if the scorer requires this. When the option -s is used to specify a scorer
producing a conditional probability, the probability p(s|t) is generated. Using the
scoring option -r requests that the inverse probability p(t|s) be output instead. Thus,
to produce a phrase table with maximum likelihood probabilities and lexical weights
in both directions and a constant phrase penalty, as typically created by the moses
training scripts, you would use the following command line:

gzip -cd model/extract.gz |
memscore -s ml -s lexweights model/lex.e2f \

-r ml -r lexweights model/lex.f2e \
-s const 2.718 |

gzip >model/phrase-table.gz

89

PBML 93 JANUARY 2010

Here, the files lex.e2f and lex.f2e contain the lexical translation tables generated
by the moses training script in training step 4, and extract.gz is the phrase extraction
file produced in step 5. The memscore command itself replaces the scoring step 6. We
plan to integrate this step smoothly into the standard moses training script, but at the
time of writing, this has not been done yet.

In the configuration mentioned in the previous paragraph, the output of memscore
is essentially identical to that of the reference implementation, phrase-extract. The es-
timates of the maximum-likelihood scores are exactly the same as those produced by
phrase-extract. The lexical weights can be different if a certain phrase pair occurs in
the input with more than one set of alignments. According to Koehn et al. (2003),
the maximum score generated by any of the alignments should be used in this case.
However, the reference implementation does not conform to this recommendation.
Instead, it computes the lexical weight based on the alignment with the highest count
in the input. If there are several alignments with equal counts, the one occurring
earliest in the input stream is selected. Thus, the actual choice depends on the sort-
ing order of the input. In our implementation, two different modes of operation are
available: By default, memscore outputs the maximum lexical weight as suggested by
Koehn et al. (2003). If the command line switch of the lexical weight scorer is given as
-s lexweights -AlignmentCount model/lex.e2f, the lexical weight is based on the
most frequent alignment instead. If there is a tie for the maximal count, the greatest
score generated by any of the competing alignments is chosen. This mode of calcula-
tion matches the phrase-extract scoring more closely, but differences are still possible
in a small number of cases.

2.2. File formats

The file formats processed by memscore are the same as those produced and used
by the moses toolkit. They are illustrated in table 2. As input, a list of phrase pairs
extracted from a parallel corpus is read. The three fields in each line, separated by the
characters ‘␣|||␣’, are the source phrase, the target phrase and the word alignment.
The alignment is specified as a list of alignment links between word numbers, where,
e. g., a link 0-1 indicates that the first source word is aligned to the second target
word. Each phrase pair should occur in the input as often as it can be extracted from
the corpus. Sorting is not required. A suitable file is produced by the moses training
procedure under the name extract.gz. The inverse extraction file extract.inv.gz is
not needed when memscore is used.

The phrase table produced by memscore uses the same field delimiters. After the
source and target phrases, the word alignment is given in a different format. For each
source word, the third field contains a pair of parentheses with a comma-separated list
of word indices in the target phrase aligned to this word. In the fourth field, there is a
similar list for each target word. When a phrase pair occurs with different alignments
in the input, the most frequent alignment is output. Ties are broken arbitrarily. The

90

Ch. Hardmeier Fast and Extensible Phrase Scoring for SMT (87–96)

Phrase extraction file (input):
gemäß ||| in accordance with ||| 0-0 0-1 0-2

Phrase table (output):
gemäß ||| in accordance with ||| (0,1,2) ||| (0) (0) (0) ||| s1 s2 . . .

Lexical translation table:
gemäß accordance 0.0445155

Table 2. File record formats used by memscore

fifth field of the phrase table record contains the scores s1, s2, . . . as floating point
numbers in the order in which the scorers were specified on the command line.

The lexical weight scorer additionally requires a list of lexical translation table as
input. This table has records with three blank-separated fields giving the source word,
the target word and the lexical translation score, which is estimated as the number of
alignments between the source word and the target word in the corpus, divided by
the number of occurrences of the target word. When the lexical weight scorer is used
in reverse mode, the word translation probabilities must also be reversed. These are
the files lex.e2f and lex.f2e provided by the moses training scripts.

3. Implementation

3.1. Architecture

The architecture of memscore has been designed to favour extensibility. Develop-
ers should be able to implement quickly new scoring mechanisms without having
to spend time on parsing input files, designing compact data structures and dealing
with memory management. The scoring code is cleanly separated from these ancillary
functions. Also, computing the forward and reverse conditional probabilities p(s|t)
and p(t|s) is handled transparently by memscore. The programmer only has to provide
one implementation for the form p(s|t); reverse scoring is available automatically.

The main components of memscore are outlined in table 3. The classes PhraseTable,
PhraseInfo and PhrasePairInfoprovide access the data structures in which informa-
tion about the phrase table is stored. The algorithmic components are encapsulated
in the subclasses of PhraseStatistic, which can be used to compute statistics about
individual source language and target language phrases, and those of PhraseScorer,
which represent the actual scoring algorithms, respectively.

The class MemoryPhraseTable takes care of parsing the input data and storing it
in memory using a hash table provided by the C++ standard template library. The
source and target phrases are stored in hash tables of their own and represented in-
ternally by numeric identifiers. For each phrase pair, a PhrasePairInfo data struc-
ture encapsulates the joint counts. For each SL or TL phrase, a PhraseInfo structure

91

PBML 93 JANUARY 2010

Parent class Derived classes Description

PhraseTable MemoryPhraseTable
ReversePhraseTable

provide access to the phrase table

PhraseInfo stores data about single phrases
PhrasePairInfo stores data about phrase pairs

PhraseStatistic PhraseLanguageModel
ClosedPhraseLanguageModel

compute phrase-level statistics

PhraseScorer MLPhraseScorer
WittenBellPhraseScorer
AbsoluteDiscountPhraseScorer
ConstantPhraseScorer

implement phrase scoring algorithms

Table 3. Principal components of memscore

contains the marginal counts and the number of distinct phrases of the other lan-
guage it is aligned with. Both the PhraseInfo and the PhrasePairInfo classes also
have a mechanism by which more sophisticated scoring algorithms can request addi-
tional storage to be associated with phrases or phrase pairs. If, e. g., a phrase language
model is used, it will ask for space to be reserved to cache the language model scores
for each phrase. To avoid excessive memory consumption by features that are not ac-
tually used, the extra information for phrase pairs is stored in a variable-sized data
structure that only includes the information actually used by the scoring algorithms
selected by the user in a particular run. For the implementor of a scoring algorithm,
this is handled transparently.

The class ReversePhraseTable is an adapter that provides access to the phrase
table with the source and the target side exchanged. This makes it possible to use
exactly the same implementations of any scorer for computing both p(s|t) and p(t|s).

Subclasses of PhraseStatistic calculate statistics of single SL or TL phrases, which
can then be used by the actual scoring algorithm. This feature is not used by the stan-
dard scorers, all of which estimate scores based on phrase counts alone. However, an
experimental scorer might also take into account other characteristics of the phrases.
We provide two implementations of this interface: The PhraseLanguageModel class
scores the phrases with an IRSTLM language model (Federico et al., 2008). The Closed-
LanguageModel does the same, but normalises the language model scores over the
phrases encountered in the phrase table, assuming a closed world of phrases enu-
merated by the input.

Finally, the subclasses of PhraseScorer do the actual scoring. At the moment,
three algorithms with very simple implementations are available (table 4). The ML-
PhraseScorer computes the standard maximum likelihood estimate for a multino-
mial distribution based on relative frequencies. The WittenBellPhraseScorer uses

92

Ch. Hardmeier Fast and Extensible Phrase Scoring for SMT (87–96)

p(s|t) =
c(s, t)

c(t)
p(s|t) =

c(s, t)

c(t) + Ns(t)
p(s|t) =

c(s, t) − β

c(t)

maximum likelihood Witten-Bell absolute discounting

c(·): (joint or marginal) counts β: discounting constant (see text)
Ns(t): number of distinct s occurring with t

Table 4. Scoring methods implemented in memscore

the Witten-Bell estimate known from language modelling (Witten and Bell, 1991).
Another estimate borrowed from language modelling (Ney et al., 1994) is calculated
by the AbsoluteDiscountPhraseScorer, which reduces the joint count of each event
by a discounting constant β = n1/(n1 + 2n2), where n1 and n2 are the number of
phrase pairs occurring exactly once or twice in the parallel corpus, respectively. In
both cases, the probability mass is not redistributed to any backoff distributions, so
the probabilities will not sum to 1 over the closed world of the phrase table. This
type of smoothing avoids the typical overconfident estimates for phrase pairs with
low counts that maximum likelihood estimation is subject to.

3.2. Memory management

The operation of memscore can be divided in three phases. First, the input data
is loaded and the internal data structures are constructed. Next, the PhraseScorer
classes have the opportunity to collect any statistics they require by accessing the data
in an arbitrary way. The maximum likelihood and Witten-Bell scorers do nothing
in this stage; the absolute discounting scorer computes its discounting constant β.
Finally, the scorers are requested to emit their score estimates in a final, ordered pass
through all the phrase pairs.

In terms of memory consumption, the first stage is characterised by the alloca-
tion of a very large amount of memory for a multitude of small objects representing
phrase or phrase pair properties. In the next two phases, memory usage remains
essentially constant; all the memory is freed at once on program termination. The de-
fault memory allocators do not cope well with this usage pattern. Memory and execu-
tion time profiling revealed that the excessive allocation of small objects leads to over-
head memory consumption of up to one third of the total amount of space requested
because the memory allocator associates a certain amount of accounting information
with each memory block allocated, and the time wasted on memory allocation and
deallocation far exceeds the time spent on scoring. To overcome these problems, con-
siderable effort went into the optimisation of memory allocation patterns. In some
important cases, allocation and freeing of large numbers of small objects was made
considerably more efficient by judicious use of the memory pools provided by the

93

PBML 93 JANUARY 2010

Europarl NIST
DE-EN AR-EN

Corpus size (sentences) 1,252,747 4,654,686
Corpus size (English tokens) 34,731,010 147,135,694
Phrase pairs (types) 28,251,755 115,474,492
Phrase pairs (instances) 64,271,574 318,961,124

score memscore score memscore
Time (h : mm) 1 : 05 0 : 26 5 : 46 2 : 14
Peak memory usage 12.3 GB 15.7 GB 5 GB 62.2 GB

Single iteration 13.2 s 38.6 s

Table 5. Scorer performance on Europarl and NIST tasks

Boost library, which allocate single large pools of memory to hold many small objects
of equal size. In this way, the memory management overhead could be significantly
reduced both in terms of time and space, so that under normal conditions most of the
delays now stem from input/output operations, not from memory management.

4. Performance

To evaluate the performance of memscore relative to phrase-extract, we tested it on
two tasks of different sizes. As a medium size task, we trained a phrase table on the
German-English portion of the Europarl corpus (Koehn, 2005). The large task uses
all parallel data of the Arabic-English constrained data set of the 2009 NIST Machine
Translation evaluation campaign. The experiments were performed on the comput-
ing cluster of Fondazione Bruno Kessler (FBK-irst), Trento, on Linux computers with
2.5 GHz Intel Xeon CPUs. The cluster setup at FBK also defined the constraints for the
practical usability of the scoring tool and for the comparison with phrase-extract. The
maximum amount of random-access memory on a single machine is 70 GB. The local
disks of the computing nodes are relatively small, so that all data must be read from
and written to a network-mounted drive, which has a significant negative impact on
the performance of both memscore and phrase-extract. Temporary files created during
the initial and intermediate sorting steps of the phrase-extract procedure were kept on
the local disk. The memscore procedure did not require any sorting steps.

The results of the experiments can be found in table 5. On the cluster hardware at
FBK, it is possible to train even a NIST system in memory using memscore, even though
this is clearly pushing it to the limit. The memory usage of memscore is approximately
proportional to the size of the phrase table, which in turn depends on the corpus size.
In this way, the maximum corpus size that can be handled on a machine with a given

94

Ch. Hardmeier Fast and Extensible Phrase Scoring for SMT (87–96)

amount of memory can be estimated. The memory consumption of the scoring pro-
cedure with phrase-extract, on the other hand, is clearly not correlated with the corpus
size; indeed, in our example runs it was greater for the smaller corpus. The score
program itself consumes hardly any memory except for storing the lexical translation
table. It is likely that the peak values reported in table 5 are due to the GNU sort utility
which for some reason settled on a different trade-off between using temporary disk
files and increased resident memory usage in the two conditions.

The time required to estimate a phrase table is roughly halved by the use of mem-
score. This time is largely dominated by network input/output operations, and the
difference roughly reflects the fact that phrase-extract scores the two phrase table halves
separately, whereas memscore can do it in one step. It should also be noted that, as a
result of being I/O-dominated, the timing is very sensitive to the overall load on the
machines and the network, a factor not controlled in the experiments, so the indica-
tions should be taken with a grain of salt. Experience shows that the actual scoring is
very fast compared to loading and saving the data, so it is possible to apply iterative
scoring methods even for large data sets without incurring a noticeable performance
penalty.

To illustrate this effect, we ran another experiment to determine the cost of a sin-
gle iteration through the complete phrase table excluding the time to load and save
the table. We simulated a simple iterative scoring algorithm performing 200 passes
through the whole data. In each pass, an operation identical in cost to a relative fre-
quency computation, composed of looking up the marginal count in the phrase infor-
mation structure and a division, was executed for every phrase pair. The last row in
table 5 reports the average time per iteration, which gives an estimate of the marginal
cost of an additional pass through the data in an iterative algorithm once the loading
and saving times are accounted for.

5. Future work

In its current state, memscore can be a useful tool to speed up the training pipeline
of an SMT system when computers with large amounts of random-access memory are
available. Its extensible design also makes it easy to implement and test new scoring
methods. We hope that the public availability of an extensible scoring framework will
reduces the work involved in publishing new scoring methods in the form of ready-
to-use implementations.

So far, we have been concentrating on implementing the phrase scoring algorithm,
relying on the moses training scripts to extract phrases from the word-aligned parallel
corpus and to estimate the word-to-word translation probabilities used in calculating
lexical weights. It should be relatively straightforward, however, to integrate these
steps directly into memscore. The scoring tool would build its internal representations
directly from the parallel corpus. Phrase extraction files and word-to-word dictionar-
ies would be saved to disk only on request. In addition to making memscore more

95

PBML 93 JANUARY 2010

self-contained, this could also lead to a considerable reduction in the total amount of
disk space required, on the one hand, and of disk input/output activity, on the other
hand. In a networked environment, where data resides on remote disks, loading only
the aligned parallel corpus rather than loading and storing large phrase extraction
files could speed up the training process even further.

Another sorting step in the training pipeline could be avoided by making memscore
output the phrase table in the order required by processPhraseTable, which creates bi-
nary phrase tables to be used with moses. Since memscore internally stores the phrase
pairs in a hash table, which naturally iterates over its elements in a well-defined order,
this only requires defining suitable comparison operators for the phrase representa-
tion based on numerical identifiers used internally.

Finally, memscore could be extended to estimate lexical reordering tables, so that
it would cover the complete training of a phrase-based SMT system given the word
alignments.

Acknowledgements

This work was supported by the EuroMatrixPlus project (IST-231720), which is
funded by the European Commission under the Seventh Framework Programme for
Research and Technological Development. I am indebted to Gabriele Musillo and
Marcello Federico for their valuable comments on this paper.

Bibliography

Federico, Marcello, Nicola Bertoldi, and Mauro Cettolo. Irstlm: an open source toolkit for
handling large scale language models. In Proceedings of Interspeech, Brisbane, 2008.

Koehn, Philipp. Europarl: a corpus for statistical machine translation. In Proceedings of MT
Summit X, pages 79–86, Phuket, Thailand, 2005. AAMT.

Koehn, Philipp, Franz Josef Och, and Daniel Marcu. Statistical phrase-based translation. In Pro-
ceedings of the 2003 conference of the North American chapter of the Association for Computational
Linguistics on Human Language Technology, pages 48–54, Edmonton, 2003.

Koehn, Philipp et al. Moses: open source toolkit for statistical machine translation. In Annual
meeting of the Association for Computational Linguistics: Demonstration session, pages 177–180,
Prague, 2007.

Ney, Hermann, Ute Essen, and Reinhard Kneser. On structuring probabilistic dependences in
stochastic language modelling. Computer Speech and Language, 8:1–38, 1994.

Ortiz-Martínez, D., I. García-Varea, and F. Casacuberta. Thot: a toolkit to train phrase-based
statistical translation models. In Proceedings of MT Summit X, pages 141–148, Phuket, Thai-
land, 2005. AAMT.

Witten, Ian H. and Timothy C. Bell. The zero-frequency problem: Estimating the probabilities
of novel events in adaptive text compression. IEEE Transactions on Information Theory, 37(4):
1085–1094, 1991.

96

The Prague Bulletin of Mathematical Linguistics
NUMBER 93 JANUARY 2010 97–106

ScaleMT: a Free/Open-Source Framework for Building Scalable
Machine Translation Web Services

Víctor M. Sánchez-Cartagena, Juan Antonio Pérez-Ortiz
Departament de Llenguatges i Sistemes Informàtics, Universitat d’Alacant, Spain

Abstract
Machine translation web services usage is growing amazingly mainly because of the trans-

lation quality and reliability of the service provided by the Google Ajax Language API. To allow
the open-source machine translation projects to compete with Google’s one and gain visibility
on the internet, we have developed ScaleMT: a free/open-source framework that exposes ex-
isting machine translation engines as public web services. This framework is highly scalable
as it can run coordinately on many servers, efficiently managing the resources needed by the
engines, and its API is compatible with Google’s one. ScaleMT is based on previous efforts to
build a web service for the Apertium machine translation toolbox, but we have also tested it
with Matxin, another free/open-source transfer-based machine translation engine. Addition-
ally, we have compared ScaleMT to an alternative web service implementation for Apertium,
obtaining satisfactory results.

1. Introduction

Machine translation (MT) web services are becoming very useful in the web 2.0
era. One of the key features of web 2.0 applications (O’Reilly, 2005) is that they profit
from the contributions of users collaborating in the creation of content. However,
linguistic barriers make the massive collaboration and understanding of the contents
very difficult. Web applications which integrate machine translation services usually
attract users speaking different languages and therefore receive more contributions,
as can be seen by the increasing number of web applications relying on the Google
Ajax Language API1. As a result, the MT engine that provides the service receives a

1http://code.google.com/apis/ajaxlanguage/

© 2010 PBML. All rights reserved. Corresponding author: vmsanchez@dlsi.ua.es
Cite as: Víctor M. Sánchez-Cartagena, Juan Antonio Pérez-Ortiz. ScaleMT: a Free/Open-Source Framework for
Building Scalable Machine Translation Web Services. The Prague Bulletin of Mathematical Linguistics No. 93,
2010, pp. 97–106. ISBN 978-80-904175-4-0. doi: 10.2478/v10108-010-0011-9.

http://code.google.com/apis/ajaxlanguage/

PBML 93 JANUARY 2010

high amount of useful feedback and its visibility is increased. In the case of an open-
source project, being popular would make people feel more interested in it and even
join the community of developers.

Unfortunately, open-source MT projects, such as Apertium (Forcada et al., 2009)
or Matxin (Alegria et al., 2007), are usually not designed to act as web services: they
are not scalable, since they cannot run coordinately on many computers, and spend
many CPU cycles loading resources; and they do not have an easy-to-use and internet-
friendly API (Application Programming Interface).

With the aim of overcoming these problems, we introduce ScaleMT, a free/open-
source framework that exposes existing machine translation engines as public web
services, with an API compatible with Google Ajax Language API. Additionally, it
allows the MT engines to be deployed on multiple servers in order to achieve high
scalability. ScaleMT is based on a previously developed scalable web service archi-
tecture for Apertium (Sánchez-Cartagena and Pérez-Ortiz, 2009), that have been gen-
eralised to work with different MT engines. The main advantage of ScaleMT is that
the architecture of the engines to be exposed does not need to be changed, although
it must meet some requirements explained in section 2.

As the API of the web service has already been described previously (Sánchez-
Cartagena and Pérez-Ortiz, 2009), this paper will focus on the ScaleMT architecture
and how it can run with different MT engines. Firstly, section 2 will explain which
kind of translation engines this framework is focused on. Later, in section 3 we will
describe the ScaleMT architecture. After that, section 4 explains the steps needed to
add a new translation engine to the service. Section 5 contains the description and
results of two different experiments: a comparison between the different MT engines
that can run with ScaleMT, and a comparison between ScaleMT and another efficient
MT web service that can be found in the literature (Minervini, 2009). Finally, the paper
ends with some conclusions that can be drawn from the development of the system
and from the experiments, and with a list of future tasks.

2. Translation Engines that Can Profit from this Architecture

ScaleMT has been designed to work with MT engines which have these two fea-
tures:

1. The translation engine is a process that reads the input text from its standard in-
put and writes the translation to its standard output. It starts to translate before
reading the full text from the input and dies when the standard input is closed.

2. Every time the process is launched, it needs to perform some start-up operations
that require many CPU cycles before it can translate.

The second feature is very common on transfer-based MT systems such as Aper-
tium or Matxin: rules and dictionaries need to be loaded before the engines can use
them to translate the input text; therefore, translating many small texts is extremely
inefficient. Our framework reuses the processes of the translation engine, translating

98

V.M. Sánchez-Cartagena, J.A. Pérez-Ortiz ScaleMT: Translation Web Services (97–106)

many source texts with the same ones, thus avoiding loading rules and dictionaries
time after time. The reuse is possible thanks to the first feature, as will be explained
with more detail in the next section.

3. System Architecture

In this section we present the architecture of ScaleMT. Our proposal makes the
translation engines more efficient by turning them into daemons (that is, processes
running in the background rather than under the interaction of a user). Besides that, it is
able to run on multiple servers thanks to an algorithm which decides which daemons
should run on each server and a load balancing method that decides which server
should process each request. ScaleMT consists of two main Java applications:
ScaleMTSlave runs on a machine with the translation engine installed and man-

ages a set of running translation engine instances (daemons); it performs the
requested translations by sending them to the right daemon.

ScaleMTRouter (request router) runs on a web server; it processes the translation re-
quests and sends them to the right ScaleMTSlave instance.

The different components of the architecture are explained in detail next.

3.1. Daemonising Engines

As we stated before (see section 2), our framework is designed to work with trans-
lation engines that spend many CPU cycles performing start-up operations when they
are launched. Since the start-up cost is so high, a daemon to reuse translation engine
processes and minimise the amount of start-ups must be found. A daemon is a pro-
cess that is launched once and can perform many translations. Taking advantage from
the first feature described in section 2, we have built a daemon by queueing translation
requests, sequentially writing source texts from the requests to the standard input of
the translation engine process, and not closing it when there are not requests in the
queue. This approach has to deal with two issues that are solved in different ways
depending on the translation engine (see section 4):

• Separating the different translations: the process behaves as if it was translating
a long text but we need the different translations to be easily isolated from the
output of the process.

• Making the daemon translate immediately: input/output implementations in
many operating systems and programming languages use buffers for efficiency
reasons. It can happen that a translated text is stored in a buffer and not returned
until the buffer is completely filled.

A daemon can only translate with the language pair for which it has loaded the data.

99

PBML 93 JANUARY 2010

3.2. Load Balancing

The request router sends each translation request to a ScaleMTSlave instance run-
ning a daemon for the involved language pair. Choosing that server and fairly dis-
tributing the work between all the available ones is called load balancing.

ScaleMTRouter manages one queue for each language pair. When a request ar-
rives, it is put on the queue corresponding to its language pair. For each queue, there
is a dispatcher thread that consumes requests from it independently from the other
queues, and sends them to the most suitable server. Each request in the queue has an
associated CPU cost. The dispatcher thread keeps track of the sum of the CPU costs
of the requests that have been sent to each server, but have not been completed yet,
namely waiting rate. Dispatching works as follows:

1. The dispatcher thread checks whether the lowest waiting rate in the set of servers
with a daemon for the associated pair is lower than a particular threshold. If this
condition is not held, it waits a short time and executes this step again.

2. It takes the first request from the queue, sends it to the server with the lowest
waiting rate, and returns to step 1. Server’s waiting rate is updated accordingly.

This way, although queues are independent, work is fairly distributed. If a server is
processing many requests for a language pair A, requests for language pair B will take
a long time to be processed because both need to share CPU. If there is another server
that is not processing A requests, it will translate B requests faster and, consequently,
receive more B requests as it will be more often the server with less waiting rate.

3.3. Application Placement

Servers usually do not have enough memory to run a daemon for every supported
language pair. Consequently, we should run the daemons which receive more trans-
lation requests, and adapt the number of daemons and the power of the machines
where they run to the amount of work they have to perform. Additionally, load
changes throughout time, so the running daemons should change too. To deal with
these problems we have developed a placement algorithm based on the work by Tang
et al. (2007) that is executed periodically and decides which daemons should run on
each server.

The algorithm is widely based on the concept of load. The load is an estimation
of the CPU power needed to perform translations measured in translated characters
per second. Each server has a load capacity, estimated by translating a set of texts on
it, and a memory capacity. Each language pair has a memory requirement, estimated
once by simply running its daemon and measuring the memory it needs, and a load
requirement, estimated periodically from the requests received by the service. After
new load requirements are estimated, the algorithm is executed to decide how many
daemons of each language pair should run on each server, following these guidelines:

• Satisfied load must be maximised, since the load capacity of a server is dis-
tributed between the language pairs of the daemons running on it.

100

V.M. Sánchez-Cartagena, J.A. Pérez-Ortiz ScaleMT: Translation Web Services (97–106)

• The number of daemons to be started or stopped must be minimised.
• The summation of the memory requirements of the daemons running on a server

must not be higher than its memory capacity.

3.4. Scaling

The whole system is able to scale by adding new servers running ScaleMTSlave.
These servers can be added manually, or we can let a dynamic server manager decide
when to add or remove them. The servers added by the dynamic server manager can be
machines from a local network (with SSH access enabled) or Amazon EC2 instances.2
This component decides when the system needs more servers based on the placement
algorithm output: if the amount of load satisfied by the placement proposed by the al-
gorithm is lower than the total load demand (because the servers do not have enough
CPU capacity or enough memory), then new servers are added.

4. Adding a New Translation Engine

With the aim of achieving engine-independence, ScaleMT uses an XML config-
uration file for defining relevant information about the translation engines without
changing a single line of Java code nor recompiling the project.

Firstly, we must specify the language pairs and formats supported by the engine.
Then, the commands which run the translation engine need to be defined. Most trans-
lation engines are made of a deformatter module, that removes the format information
from the input text; a translation core, that translates the text; and a reformatter, that
restores the format information. Therefore, a pipeline of programs can be defined.
One of the components of the pipeline (the one with the highest start-up time, usu-
ally the core) should be chosen to be kept in execution, and the other components
allowed to be executed once for every translation, even with different parameters de-
pending on the translation type. The configuration format allows a high flexibility on
the communication between the pipeline components.

The most important part of the configuration file contains the solution to the prob-
lems defined in section 3.1:

• The strategy to isolate the different translations in the engine flow consists of
adding extra sentences containing an unique identifier before and after the text
to be translated. Then, their translation and the unique identifier of the text are
searched in the output.

• Ensuring that the translation engine returns the translation immediately and
it does not remain stored in buffers involves sending some extra text (padding
sentences) to the daemon after each translation to completely fill the buffers. A
padding sentence should be included in the configuration file and the system em-

2http://aws.amazon.com/ec2/

101

http://aws.amazon.com/ec2/

PBML 93 JANUARY 2010

pirically estimates how many units of that sentence has to send after each trans-
lation source to completely fill the buffers and get the translation. To avoid over-
loading the system, padding is not sent unless the daemon local queue is empty,
which means that it will not receive more requests soon.

Sample configuration files with detailed comments about each section can be found
with the source code of ScaleMT3. As a proof of concept, we have evaluated our frame-
work with Apertium and Matxin.

4.1. Apertium

In the Apertium pipeline (Forcada et al., 2009), text is first deformatted, and the
format information is put into superblanks, special blocks between square brackets that
are not translated. The output of the deformatter is then translated by the core, and
finally the format is restored by the reformatter. We decided to keep in execution only
the core, a decision which has two advantages. First, we can use superblanks to separate
the different translations, and forget to worry about how the separation sentences will
be translated. And second, since the deformatter and reformatter are executed for
each translation, we can use the same daemon to translate different formats.

With Apertium there is no need of sending padding after each source text to be
translated as all the modules in the Apertium pipeline have an mechanism called null
flush that makes them flush their buffers when they receive a null character in their in-
put. Consequently, the configuration XML includes and option to enable the sending
a null character after each translation request.

4.2. Matxin

Matxin pipeline architecture (Alegria et al., 2007) is different from the Apertium
one. Matxin deformatter has two outputs: the text without format and the format
information. The unformatted text is translated by the core and later joint with the
format information by the reformatter. As a consequence of that, we have to keep
in execution only the core because a pipeline cannot be built with two flows. We
have used as separator sentences unknown words since they do not fire any transfer
rule that could waste CPU. As Matxin does not support null flush, we use the padding
mechanism to ensure that the translation engine returns the translations immediately.
We have chosen a long sequence of random characters as padding because a single
unknown word consumes residual CPU time, and a long word fills the buffers faster.

Additionally, two more problems arose during the adaptation process. First, one of
the components of the Matxin pipeline is iconv, a process that changes text encoding.
It does not write the text with the new encoding until it reads the end-of-file (EOF)
character. So, we wrote a modified version of iconv that processes input file line

3http://apertium.svn.sourceforge.net/svnroot/apertium/trunk/scaleMT/ScaleMTSlave/
sampleconfs

102

http://apertium.svn.sourceforge.net/svnroot/apertium/trunk/scaleMT/ScaleMTSlave/sampleconfs
http://apertium.svn.sourceforge.net/svnroot/apertium/trunk/scaleMT/ScaleMTSlave/sampleconfs

V.M. Sánchez-Cartagena, J.A. Pérez-Ortiz ScaleMT: Translation Web Services (97–106)

per line. Second, the Matxin process crashes with some inputs making the daemon
running on the top of that process to die. To deal with this problem we have created
a mechanism which detects if a process has died and launches it again.

5. Experiments and Results

Note that in order to ensure reproducibility, scripts that automatically perform the
following experiments are available4.

5.1. Efficiency Gain for Apertium and Matxin

First, we will estimate the performance improvement in Apertium and Matxin
when translating a text with ScaleMT. The main idea under Amdahl’s law (Amdahl,
1967) is that the performance improvement obtained by using some faster mode of ex-
ecution in a program is limited by the fraction of the time the faster mode can be used.
Analysing the time needed to perform a translation with Apertium or Matxin, we
can split it in the time needed to load resources (start-up time) and the time needed
to perform the actual translation (translation time). ScaleMT reduces the start-up time
because the time needed to start the whole MT engine process is replaced by a little
overhead caused by launching the deformatter and the reformatter, and by translating
the separation sentences; but translation time is unchanged. Therefore, the fraction
of the time the faster mode can be used corresponds to the start-up time.

The plot on the left of figure 1 shows the time needed to translate input texts
of different lengths by four different systems: Apertium (Spanish–English), Matxin
(Spanish–Basque), ScaleMT running Apertium (Spanish–English) and ScaleMT run-
ning Matxin (Spanish–Basque). The time needed to translate a 0-length text is the
start-up time. The plot on the right shows the performance gain in Apertium and
Matxin. The experiments have been run with an instance of ScaleMTRouter and and
a single instance of ScaleMTSlave running on the same machine.5 Following Am-
dahl’s law, Apertium’s gain is greater than Matxin’s because, for the same source text
length, the percentage of time spent in the start-up operations is greater too.

5.2. Comparing with Other Scalable Apertium Web Service Implementations

Different approaches to build scalable MT web services have been proposed. For
instance, Minervini (2009) designed Apertium-service, an efficient Apertium-based
web service, by completely changing Apertium architecture. The key idea under his
approach is replacing the original pipeline-based architecture with a multithreaded

4http://apertium.svn.sourceforge.net/svnroot/apertium/trunk/scaleMT/ScaleMTRouter/
experiments

5An AMD Turion TL-56 with 2 GB of RAM memory

103

http://apertium.svn.sourceforge.net/svnroot/apertium/trunk/scaleMT/ScaleMTRouter/experiments
http://apertium.svn.sourceforge.net/svnroot/apertium/trunk/scaleMT/ScaleMTRouter/experiments

PBML 93 JANUARY 2010

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 1000 2000 3000 4000 5000 6000

tr
a
n
s
la

ti
o
n
 t
im

e
 (

m
ill

is
e
c
o
n
d
s
)

text length (characters)

Apertium
Apertium with ScaleMT

Matxin
Matxin with ScaleMT

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 1000 2000 3000 4000 5000 6000

g
a

in

text length (characters)

Apertium
Matxin

Figure 1. Translation time and efficiency gain with the use of ScaleMT.

resource pool in which linguistic data is kept loaded. We have performed some exper-
iments comparing ScaleMT with Apertium-service. They are similar to the exper-
iments originally performed by Minervini (2009) comparing his Apertium-service
with the predecessor of ScaleMT, but they cover a wider data range.

The plot on the left of figure 2 shows the time needed to translate (English–Spanish)
fragments of different lengths of the GPL license text6 by a single client. The plot on
the right shows the average time needed to translate (again from English to Spanish)
the preamble of the GPL license text (2531 characters) when requested by different
amounts of concurrent clients. Both experiments have been performed on an Amazon
EC2 small instance. In the case of ScaleMT, there is only one slave running on the same
machine as the router.

5.3. Other Interesting Results

The previous experiments have targeted only a single slave instance. However, it
is also important to check if the architecture is able to scale to a high number of slaves.
The experiments performed by Sánchez-Cartagena and Pérez-Ortiz (2009) about this
topic show that, running on a not very powerful machine (an Amazon EC2 small in-
stance), the router can process up to 19 000 requests per minute. With input texts
that do not need a high CPU capacity to be processed (56 characters, Apertium Span-
ish–Catalan), 20 slaves are needed to perform the work needed by such a high request
rate. Since the changes made to generalise the architecture have been mainly focused
on the structure of the slaves, that maximum request rate is still valid. However,
since translating a text with Matxin needs more CPU capacity, the number of servers
needed to manage this rate could be even higher.

6http://www.gnu.org/licenses/gpl.html

104

http://www.gnu.org/licenses/gpl.html

V.M. Sánchez-Cartagena, J.A. Pérez-Ortiz ScaleMT: Translation Web Services (97–106)

 0

 1000

 2000

 3000

 4000

 0 5000 10000 15000 20000 25000 30000

tr
a
n
s
la

ti
o
n
 t
im

e
 (

m
ill

is
e
c
o
n
d
s
)

text length (characters)

ScaleMT
Apertium-service

 0

 4000

 8000

 12000

 16000

 0 10 20 30 40 50

tr
a
n
s
la

ti
o
n
 t
im

e
 (

m
ill

is
e
c
o
n
d
s
)

number of concurrent clients

ScaleMT
Apertium-service

Figure 2. Comparison between ScaleMT and Apertium-service.

6. Conclusions

We have developed ScaleMT, a free/open-source framework to automatically cre-
ate web services from existing MT engines. According to our experiments, ScaleMT
is more suitable to work with Apertium than with Matxin. When translating texts
of around 500 characters, Apertium performance gain is 5.6, and Matxin’s is only
2.6, mainly because the start-up time of Apertium is bigger than the start-up time
of Matxin, compared with the time needed to translate a typical text. Additionally,
Matxin, as of revision 248, is unstable and unpredictably crashes with some inputs.
Consequently, the daemon is started more times than necessary, causing performance
loss.

When comparing with Apertium-service, the time needed to translate individual
texts is similar in both architectures, although ScaleMT performs better with longer
texts. This is not a clear advantage because translations requested from web pages to
a JSON API are not usually very long. However, when testing the systems in a more
realistic scenario (many concurrent clients), ScaleMT outperforms Apertium-service.
Furthermore, ScaleMT is engine-independent and, consequently, adaptable to future
changes in Apertium, while Apertium-service is an ad-hoc solution.

ScaleMT is currently under evaluation to be the official Apertium web service. Source
code for ScaleMT can be downloaded from http://apertium.svn.sourceforge.net/
svnroot/apertium/trunk/scaleMT.

7. Future Work

It would be interesting to consider ScaleMT to build a web service over the Moses
decoder (Koehn et al., 2007). Firstly, it should be checked whether it meets the require-
ments explained in section 2, and then find the appropriate sentences to separate the

105

http://apertium.svn.sourceforge.net/svnroot/apertium/trunk/scaleMT
http://apertium.svn.sourceforge.net/svnroot/apertium/trunk/scaleMT

PBML 93 JANUARY 2010

different requests in the pipeline. We originally did not address Moses because there
is already a web service implementation for it. However, we could draw interesting
conclusions by comparing ScaleMT with the Moses web service.

It is worth improving scalability by increasing the maximum request rate sup-
ported by the router. This is not an easy task because it probably would involve having
many router instances and synchronising them.

8. Acknowledgements

This work has been partially funded by Google through the Google Summer of
Code program and by Spanish Ministerio de Ciencia e Innovación through project
TIN2009-14009-C02-01.

Bibliography

Alegria, I., A.D. de Ilarraza, G. Labaka, M. Lersundi, A. Mayor, and K. Sarasola. Transfer-based
MT from Spanish into Basque: reusability, standardization and open source. Lecture Notes
in Computer Science, 4394:374–384, 2007.

Amdahl, G.M. Validity of the single processor approach to achieving large scale computing
capabilities. In Proceedings of the April 18-20, 1967, spring joint computer conference, pages
483–485. ACM New York, NY, USA, 1967.

Forcada, M.L., F.M. Tyers, and G. Ramírez-Sánchez. The Apertium machine translation plat-
form: five years on. In Proceedings of the First International Workshop on Free/Open-Source
Rule-Based Machine Translation, pages 3–10, 2009.

Koehn, P., H. Hoang, A. Birch, C. Callison-Burch, M. Federico, N. Bertoldi, B. Cowan, W. Shen,
C. Moran, R. Zens, et al. Moses: Open source toolkit for statistical machine translation. In
Annual Meeting of the Association for Computational Linguistics: Demonstration Session, 2007.

Minervini, P. Apertium goes SOA: an efficient and scalable service based on the Apertium
rule-based machine translation platform. In Proceedings of the First International Workshop on
Free/Open-Source Rule-Based Machine Translation, pages 59–66, 2009.

O’Reilly, T. What is web 2.0. In Design Patterns and Business Models for the Next Gen-
eration of Software, http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/
what-is-web-20.html, 2005.

Sánchez-Cartagena, V.M. and J.A. Pérez-Ortiz. An open-source highly scalable web service
architecture for the Apertium machine translation engine. In Proceedings of the First Interna-
tional Workshop on Free/Open-Source Rule-Based Machine Translation, pages 51–58, 2009.

Tang, C., M. Steinder, M. Spreitzer, and G. Pacifici. A scalable application placement controller
for enterprise data centers. In Proceedings of the 16th international conference on World Wide
Web, pages 331–340. ACM, 2007.

106

http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/3 0/what-is-web-20.html
http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/3 0/what-is-web-20.html

The Prague Bulletin of Mathematical Linguistics
NUMBER 93 JANUARY 2010 107–116

Integrating Output from Specialized Modules in Machine
Translation

Transliterations in Joshua

Ann Irvinea, Mike Kayserb, Zhifei Lia, Wren Thorntonc,
Chris Callison-Burcha

a Center for Language and Speech Processing, Johns Hopkins University
b BBN Technologies

c Cognitive Science Program, Indiana University

Abstract
In many cases in SMT we want to allow specialized modules to propose translation frag-

ments to the decoder and allow them to compete with translations contained in the phrase
table. Transliteration is one module that may produce such specialized output. In this paper,
as an example, we build a specialized Urdu transliteration module and integrate its output into
an Urdu–English MT system. The module marks-up the test text using an XML format, and
the decoder allows alternate translations (transliterations) to compete.

1. Introduction

The phrase tables used in statistical machine translation (SMT) systems are often
incomplete, and they may not take full advantage of the linguistic knowledge that
we have about a language. However, many data-driven NLP tools exist for specific
linguistic tasks. For this reason, it is often useful to create specialized modules that
employ other methods of translation not so dependent on the training text. Such mod-
ules may include noun phrase taggers and translators (Koehn and Knight, 2004), mor-
phological analyzers, modality taggers and translators,1 and transliteration systems.
These modules may then be integrated into the MT pipeline (Dugast et al., 2007; Yang
and Kirchhoff, 2006).

1Verbal modality expresses the notions of possibility, necessity, permission, and obligation

© 2010 PBML. All rights reserved. Corresponding author: annirvine@gmail.com
Cite as: Ann Irvine, Mike Kayser, Zhifei Li, Wren Thornton, Chris Callison-Burch. Integrating Output from
Specialized Modules in Machine Translation: Transliterations in Joshua. The Prague Bulletin of Mathematical
Linguistics No. 93, 2010, pp. 107–116. ISBN 978-80-904175-4-0. doi: 10.2478/v10108-010-0009-3.

PBML 93 JANUARY 2010

Previous SMT systems have integrated the subtask output of specialized mod-
ules using an XML-markup on input text (Koehn, 2004; Senellart et al., 2003). Here
we present an XML format to integrate the output of our specialized transliteration
module into the Joshua decoder (Li et al., 2009a). It necessarily differs from the XML
schemes used in phrase-based decoders because Joshua is a parsing-based decoder.
We illustrate its use with an example transliteration module.

2. Decoding Constraints

Joshua (Li et al., 2009a) is an open source2 SMT system that uses synchronous con-
text free grammars (SCFGs) as its underlying formalism. SCFGs provide a convenient
and theoretically grounded way of incorporating linguistic information into statisti-
cal models of translation. Joshua implements all the essential algorithms described in
(Chiang, 2007) and supports Hiero-style rules (Chiang, 2005) as well as richer syntax
augmented rules (Zollmann et al., 2008). The version of Joshua that we have used in
this work incorporates the grammar extraction software that comes as part of their
open source SAMT toolkit.3 Joshua translates by applying the extracted SCFG rules
to the source language text using a general chart parsing framework (Li et al., 2009b).

A probabilistic SCFG consists of a set of source-language terminal symbols TS, a
set of target-language terminal symbols TT , a set of nonterminals N that is shared
between both languages, and set of production rules of the form

X → ⟨γ, α, ∼, w⟩

where X ∈ N, γ ∈ [N∪TS]∗ is a (possibly mixed) sequence of nonterminals and source
terminals that form the lefthand side of the rule, α ∈ [N ∪ TT]∗ is a (again possibly
mixed) sequence of nonterminals and target-language terminals that form the right-
hand side of the rule, and ∼ is a one-to-one correspondence between the nonterminals
of γ and α. w is a weight for the production rule.

To support integrating specialized modules we introduced the ability to specify
alternate translation rules in the document to be translated. In order to support both
the use of alternate translation rules and regular decoding (without alternate rules),
we introduced a new parameter in Joshua’s configuration file for specifying which
parser to use on the input file. Each input file parser reads in the file and emits a
sequence of segments to be translated. In order to avoid storing the whole file in
memory, the sequence is returned as a co-iterator.4 By using a co-iterator, the sequence
is produced lazily and consumed on-line, invoking the chart parser as a co-routine.

2http://cs.jhu.edu/∼ccb/joshua/
3http://www.cs.cmu.edu/zollmann/samt/
4We use some object instance which implements the joshua.util.CoIterator interface. Both iterators

and co-iterators are examples of abstractions over enumerations. Whereas an iterator captures the notion
of producing the elements, a co-iterator captures the notion of consuming those elements.

108

Irvine, Kayser, Li, Thornton, Callison-Burch Specialized Modules in MT (107–116)

To avoid interrupting translation in the middle of a file, we want to detect malformed
files before translation begins. So in order to detect malformed file errors eagerly, the
file is read once with a co-iterator that consumes the segments but does nothing with
them, and then re-read to produce segments for the chart parser.

Each translation segment consists of an ID, a source sentence, and a collection
of spans covering the sentence where each span contains a collection of constraints.
Spans containing only soft constraints are allowed to overlap, whereas hard constraint
spans may not overlap. Constraints are drawn from three types: lefthand side (LHS)
constraints, righthand side (RHS) constraints, and rule constraints. LHS constraints
are hard constraints specifying that the span be treated as a specified nonterminal,
thus filtering the regular grammar to generate translations only from that nonter-
minal. One use for LHS constraints is to integrate chunking or tagging information
before decoding. RHS constraints are hard constraints filtering the regular grammar
such that only rules generating the desired translation can be used. A use for RHS
constraints would be integrating word sense disambiguation before decoding. Rule
constraints specify a new grammar rule including a LHS nonterminal, source RHS
(derived from the source sentence), target RHS, and feature values. Rule constraints
can be either hard or soft; if they are hard, they override the regular grammar; if they
are soft, they are considered an addition to the regular grammar and will compete
with regular rules. Rule constraints for any given span must be marked collectively
as all hard or all soft.

2.1. XML Markup

The XML format follows straightforwardly from the specification of segments. The
XML file must be valid XML, and thus must have a root element. Underneath the root
element are some number of <seg> tags with a required id attribute that specifies the
input segment number. The source sentence is given as raw text under the <seg> tag.
Each <seg> tag may contain one or more tags with required start and end
attributes and an optional hard attribute for rule constraints. Each tag must
contain one or more <constraint> tags each of which contains an optional <lhs>
tag, containing nonterminal text, followed by an optional <rhs> tag with an optional
features attribute and containing target text. Any other tags are ignored by the XML
parser.

This specification of the XML format is overly liberal and could admit files which
are non-sensical or which cannot be represented internally. In order to rule out such
files, the generated objects are run through a type checker to ensure semantic validity.
The type checker verifies the following invariants:

• Each constraint adheres to one of the three types, thus it has
– only a <lhs> tag, or
– only a <rhs> tag with no features attribute, or
– a <lhs> tag, a <rhs>, and a features attribute

109

PBML 93 JANUARY 2010

• For each span,
– the start and end indices are within the width of the sentence
– the start index is smaller than the end index

• There are no overlapping hard spans
While the features attribute is considered optional in terms of the DTD for the

XML grammar, that is only because DTDs are unable to capture the dependency re-
lation between the three valid constraint types.5 If both <lhs> and <rhs> tags are
provided but there is no feature attribute, this is considered a type error since the
constraint does not belong to any of the three types: LHS constraints do not have
<rhs> tags, RHS constraints do not have <lhs> tags, and rule constraints require a
features attribute.

3. Decoder Integration

To enforce the three kinds of constraints (i.e., rule, LHS, and RHS) during decod-
ing, we modified the regular chart-based decoding algorithm in Joshua. Rule con-
straints can be hard or soft. A rule constraint provides a new translation option for a
source span, in addition to those translation options (hereafter called grammar-based
translations) provided by the regular grammars. If the rule constraint is hard, all the
grammar-based translations will be disallowed in the final translation output. Other-
wise, the new translation option will compete with those grammar-based translations,
in a probabilistic manner. Different from a rule constraint, LHS and RHS constraints
are always hard, meaning that a grammar-based translation will be disallowed if its
LHS or RHS does not match the LHS or RHS constraint.

Figure 1 presents the modified algorithm, where lines 1, 4, and 5 are added to the
regular chart-parsing algorithm in order to support manual constraints. As shown in
line 1, the algorithm first adds the rule constraints (regardless of being soft or hard)
into the chart so that the decoding algorithm will consider these rule translations
as candidate translations. To support the hard constraints, the algorithm will run
through two filtering processes. In line 4, if a span is within the coverage of a hard
rule constraint, all the grammar-based rules applicable to this span will be disallowed.
Similarly, all the applicable grammar rules that do not match any LHS or RHS con-
straints for the span will be filtered out, as shown in line 5.

4. Transliteration Module

Here we present a specialized transliteration module that uses Joshua’s new XML
markup. We developed an Urdu-English transliterator, which is useful because our

5XML Schema and RelaxNG are also unable to capture all the necessary dependency relations. Even
if they can capture the tag and attribute dependencies between the three constraint types, type checking
would still be necessary due to the context-sensitive restrictions on valid start and end indices depending
on the length in words of the source text.

110

Irvine, Kayser, Li, Thornton, Callison-Burch Specialized Modules in MT (107–116)

DecodingWithConstraints(grammars, sentence, constraints)
1 Add the rule constraints into the Chart
2 For each span [i, j] with increasing length (i.e., j − i + 1)
3 Identify applicable grammar rules for the span
4 Filter the grammar rules based on hard rule constraints
5 Filter the grammar rules based on LHS and RHS constraints
6 Add the surviving grammar rules into the chart

Figure 1. Constraining Chart-based Decoding with Manual Constraints.

LDC Urdu Language Pack bilingual parallel corpus 6 has only 88,108 sentence pairs
with 1,586,065 English tokens and 1,664,409 Urdu tokens. In this data, we observed
that 2% of words in a development set were out-of-vocabulary (OOV) with respect to
the training bitext. With the help of a human annotator, we found that approximately
33% of these words were phonetically transliterable; for example, proper names or
borrowed words. Introducing a module for generating transliterations and integrat-
ing that output into the output of an end-to-end MT system clearly has the potential
to improve performance.

4.1. Basic Framework

We treat transliteration as a monotone character translation task, similar to the work of
(Knight and Graehl, 1997). We used the Joshua MT system to build an Urdu transliter-
ation module using a semantically-informed framework, described below, and several
sources of transliteration pairs for training.

At training time, given a list of Urdu–English name pairs, we first perform character-
to-character alignment using the freely available Berkeley Word Aligner.7 Next, we
find character-sequence pairs which conform to the alignment graph for a word pair;
these are analogous to phrase pairs in phrase-based statistical MT. We build a table of
such character-sequence mappings, annotated with translation probabilities. Finally
we extract a frequency-annotated list of 1.3 million names from the English Gigaword
corpus using a named entity tagger (Finkel and Manning, 2009). We then use this
to train a character language model prior. Having trained these components, we use
them in conjunction with the off-the-shelf Joshua MT decoder.

During decoding, a novel Urdu word is segmented into sequences of characters,
and each character sequence is translated to an English character sequence. Unlike
in the closely analogous process of phrasal machine translation, in phonetic translit-
eration the translated character sequences are never reordered. Transliteration hy-

6LDC catalog number LDC2009E12, ”NIST Open MT08 Urdu Resources”
7http://code.google.com/p/berkeleyaligner/

111

PBML 93 JANUARY 2010

potheses are scored using a log-linear model which makes use of character sequence
translation scores and a character-LM prior score. The result is a single English pho-
netic gloss of the Urdu word.

4.2. Semantically-targeted transliteration

We trained two transliteration systems, one for person names and one for all other
semantic types (including non-names). These two systems shared all components ex-
cept for the character LM and the dataset used for decoder weight tuning. For the
person-name transliteration system, we trained our character language model from
the large list of English person names automatically extracted from the Gigaword cor-
pus. In the non-person-name transliteration system, we trained a model from a large
list of English words, without regard to semantic type.

4.3. Training the module

In order to train the transliteration module, we gathered pairs of names that were
likely to be transliterations of one another. We obtained unique name pairs from three
sources: the Urdu–English parallel corpus (about 2,000 pairs, extracted from align-
ments and checked by a human annotator), Amazon’s Mechanical Turk system (over
12,000 pairs), and linked people pages from the Urdu and English Wikipedias (about
1,000 pairs). Our final system used about 15,000 pairs of Urdu–English transliterated
name pairs.8 Transliteration performance improved with increasing amounts of train-
ing data, and our final module outperformed the baseline system available from the
LDC Urdu Language Pack.

4.4. Integrating the module

When using the rule constraint mechanism to add externally constructed theories
to Joshua’s search space, it is necessary to specify a left-hand-side nonterminal for
each rule. Since this nonterminal label is used by Joshua in decoding, it is helpful
to choose a label which accurately represents the grammatical content of the covered
phrase. Rather than compute a single guess for this label, we add multiple arcs to the
search space, each with a different nonterminal. We use the automatically determined
named-entity-category of the source word to construct the set of possible labels for a
transliterated word.

In particular, before decoding we compute from training the N most frequent tar-
get nonterminal labels assigned to low-frequency words of each source name category
(the name categories are: Person, Location, Organization, Geopolitical Entity, Facil-
ity). At decoding time, we use an automatic name tagger to compute the semantic
category of each source word. For every transliteration candidate, we add N arcs to

8The complete name pair list is freely available at http://www.clsp.jhu.edu/∼anni/

112

Irvine, Kayser, Li, Thornton, Callison-Burch Specialized Modules in MT (107–116)

<seg id="20">
 !"#$%&" '()*+ ,-./0" 12 34-*5 /'6789: 1"02 #'(2 '$"'; $<= >2 ? @"A B! C<D 3E-F" "#$67%G ,2 *<H '? 1= @IE%-B "%J 3%G B& K6-; #L+ (M2 ,- .

 <constraint>
 <lhs>[NNP-PERSON]</lhs><rhs features="0;0;0;0;0;0;0;0;0;0;0;0;0;1;0;0;-6.907755279;0.3361808473;
 -9.0926338104;-0.5569314994;0">gardner</rhs></constraint>
 <constraint>
 <lhs>[NNP-PERSON]</lhs><rhs features="0;0;0;0;0;0;0;0;0;0;0;0;0;1;0;0;-6.907755279;0;
 -10.4980070804;-0.7064663926;0">gardiner</rhs></constraint>
 <constraint>
 <lhs>[NNP-PERSON]</lhs><rhs features="0;0;0;0;0;0;0;0;0;0;0;0;0;1;0;0;-6.907755279;0;
 -11.1132723471;-0.8203325663;0">gardener</rhs></constraint>
 <constraint>
 <lhs>[NNP-PERSON]</lhs><rhs features="0;0;0;0;0;0;0;0;0;0;0;0;0;0;1;0;0;0;0
 ;0;0">##UNKNOWN##</rhs></constraint>
 <constraint>
 <lhs>[NN-PERSON]</lhs><rhs features="0;0;0;0;0;0;0;0;0;0;0;0;0;1;0;0;-6.907755279;0.3361808473;
 -9.0926338104;-0.5569314994;0">gardner</rhs></constraint>

 <constraint>
 <lhs>[NNP]</lhs><rhs features="0;0;0;0;0;0;0;0;0;0;0;0;0;1;0;0;-6.907755279;0.003016175;
 -13.1667265966;-0.863364734;1">datong</rhs></constraint>
 <constraint>
 <lhs>[NNP]</lhs><rhs features="0;0;0;0;0;0;0;0;0;0;0;0;0;1;0;0;-6.907755279;0;-12.3903889565;
 -0.7339666773;1">dating</rhs></constraint>
 <constraint><lhs>[NNP]</lhs><rhs features="0;0;0;0;0;0;0;0;0;0;0;0;0;0;1;0;0;0;
 0;0;0">##UNKNOWN##</rhs></constraint>
 <constraint>
 <lhs>[NN]</lhs><rhs features="0;0;0;0;0;0;0;0;0;0;0;0;0;1;0;0;-6.907755279;0.003016175;-13.1667265966;
 -0.863364734;1">datong</rhs></constraint>

</seg>

Figure 2. An example of XML markup on Urdu text. Each span has 21 associated
feature weights. The first 13 features represent the feature space of traditionally

extracted Joshua translation rules. Since transliteration rules do not exist in the same
feature space, these feature values are always set to 0 for transliteration rules.

the search space, each with a different label from the semantically-targeted set. In our
experiments, we use the value N=5.

An example of the XML markup for an input Urdu sentence is shown in Figure 2.
In this example, two word spans are tagged with constraints and hypothesis translit-
erations. Each span and transliteration hypothesis is tagged with the N most frequent
target nonterminal labels (e.g. NNP, NN, etc. for a PERSON tag).

5. Results

We tested the impact of transliterator integration in a small number of blind sub-
missions to the NIST MT09 Urdu–English evaluation. We integrated the transliter-
ator into the current Joshua system. In one experiment, we transliterated all low-
frequency words, while in a second experiment we transliterated only low-frequency

113

PBML 93 JANUARY 2010

Joshua Translation System NIST MT09 BLEU Score
No Transliteration .2958

Transliterate names only .2980
Transliterate all types .3010

Table 1. Impact of transliteration on BLEU in submissions to NIST MT09 evaluation.

person names. Our baseline for comparison was the identical Joshua system without
transliterations.

We compared the baseline against the transliteration-aware systems both quanti-
tatively and qualitatively. In a quantitative comparison, whose results are in Table
1, transliteration yielded a small but notable BLEU improvement. As shown in the
table, transliterating words of all semantic types yielded slightly better performance
than transliterating only words marked as person names.

We also qualitatively compared the best transliteration-aware system with the base-
line system via manual inspection of decoder output. As expected, some sentences
showed clear improvement via the increased lexical coverage allowed by the translit-
eration model, while other sentences showed little benefit. In some sentences, the
transliteration model hypothesized incorrect transliterations for OOV words. More
effectively filtering such incorrect translation options, such as through a more devel-
oped measure of confidence, is a potential avenue for future work. Tables 2 and 3
show examples of Joshua decoder output with and without the transliteration fea-
ture.

6. Conclusion

In this work, we created an XML format to markup the output of specialized sub-
task modules and integrate alternate translations into the SMT decoder. We created
a transliteration module using a character-based statistical MT system and several
thousand pairs of transliterated words. The results are promising. In particular, a
qualitative analysis suggests that the transliterations were able to appropriately com-
pete with the phrase-based translation output. This work has also opened the door to
integrating additional specialized translation modules. Such modules have a poten-
tial to increase translation performance, particularly in low-resource conditions.9

9This research was supported in part by the European Commission through the EuroMatrixPlus project,
by the US National Science Foundation under grant IIS-0713448, and by the Human Language Technology
Center of Excellence. Any opinions, findings, and conclusions or recommendations expressed in this ma-
terial are the authors’ and do not necessarily reflect the views of the sponsor.

114

Irvine, Kayser, Li, Thornton, Callison-Burch Specialized Modules in MT (107–116)

Without Transliteration [UNKNOWN] Members said that the economic plan, ex-
pensive, and will not be effective.

With Transliteration Republican members said that the economic plan, expen-
sive, and will not be effective.

Reference The republican members said that this economic plan is
very “expensive” and will not be effective.

Without Transliteration However, [UNKNOWN] said that he [UNKNOWN]
president to respect their age and are also due to yell at
them, but they were saying truth from miles away.

With Transliteration “However, Erdogan said that he respects the Israeli Pres-
ident and his age as a result of which they yell at them ,
but they were saying the truth from miles away.

Reference However, later Erdogan said that he respects Israeli
President and his age as well which is why he did not yell
at him but whatever he was saying was miles away from
truth.

Table 2. Examples of improvements from transliteration.

Without Transliteration In southern germany [UNKNOWN] a resident of the
area of [UNKNOWN] [UNKNOWN] has left behind a big
business group

With Transliteration A resident of the area of Cuba in south Germany Adolf
Merkel has left behind a big business group

Reference Adolf Merckle of southern Germany’s Swabia area has
left a large business group behind

Table 3. Impact of transliteration. Note that the location name “Swabia” was
incorrectly transliterated to “Cuba.” This example indicates the future room for

improvement.

115

PBML 93 JANUARY 2010

Bibliography

Chiang, David. A hierarchical phrase-based model for statistical machine translation. In Pro-
ceedings of the 43rd Annual Meeting of the Association for Computational Linguistics (ACL-2005),
2005.

Chiang, David. Hierarchical phrase-based translation. Computational Linguistics, 33(2):201–228,
2007.

Dugast, Loïc, Jean Senellart, and Philipp Koehn. Statistical post-editing on systran’s rule-based
translation system. In Proceedings of the Workshop on Statistical Machine Translation, part of the
45th Annual Meeting of the Association for Computational Linguistics (ACL-2007), 2007.

Finkel, Jenny Rose and Christopher D. Manning. Nested named entity recognition. In Proceed-
ings of the 2009 Conference on Empirical Methods in Natural Language Processing (EMNLP-2009),
2009.

Knight, Kevin and Jonathan Graehl. Machine transliteration. In Proceedings of the 8th Conference
of the European Chapter of the Association for Computational Linguistics (EACL-1997), 1997.

Koehn, Philipp. Pharaoh: a beam search decoder for phrase-based statistical machine transla-
tion models. In Proceedings of the 6th Biennial Conference of the Association for Machine Trans-
lation in the Americas (AMTA-2004), 2004.

Koehn, Philipp and Kevin Knight. Feature-rich statistical translation of noun phrases. In Pro-
ceedings of the 42nd Annual Meeting of the Association for Computational Linguistics (ACL-2004),
2004.

Li, Zhifei, Chris Callison-Burch, Chris Dyer, Juri Ganitkevitch, Sanjeev Khudanpur, Lane
Schwartz, Wren Thornton, Jonathan Weese, and Omar Zaidan. Joshua: An open source
toolkit for parsing-based machine translation. In Proceedings of the Workshop on Statistical
Machine Translation, part of the Proceedings of the 47th Annual Meeting of the Association for
Computational Linguistics (ACL-2009), 2009a.

Li, Zhifei, Chris Callison-Burch, Sanjeev Khudanpur, and Wren Thornton. Decoding in joshua:
Open source, parsing-based machine translation. In Prague Bulletin of Mathematical Linguis-
tics, number 91, 2009b.

Senellart, Jean, Christian Boitet, and Laurent Romary. XML machine translation. In Proceedings
of the 9th Machine Translation Summit, 2003.

Yang, Mei and Katrin Kirchhoff. Phrase-based backoff models for machine translation of highly
inflected languages. In Proceedings of the 11th Conference of the European Chapter of the Associ-
ation for Computational Linguistics (EACL-2006), 2006.

Zollmann, Andreas, Ashish Venugopal, Franz Och, and Joy Ponte. A systematic comparison of
phrase-based, hierarchical and syntax-augmented statistical MT. In Proceedings of the 22nd
International Conference on Computational Linguistics (COLING-08), 2008.

116

The Prague Bulletin of Mathematical Linguistics
NUMBER 93 JANUARY 2010 117–126

The Machine Translation Toolpack for LoonyBin: Automated
Management of Experimental Machine Translation

HyperWorkflows

Jonathan H. Clarka, Jonathan Weeseb, Byung Gyu Ahnb,
Andreas Zollmanna, Qin Gaoa, Kenneth Heafielda, Alon Laviea

a Language Technologies Institute, Carnegie Mellon University
b Center for Language and Speech Processing, Johns Hopkins University

Abstract
Construction of machine translation systems has evolved into a multi-stage workflow in-

volving many complicated dependencies. Many decoder distributions have addressed this by
including monolithic training scripts – train-factored-model.pl for Moses and mr_runmer.pl
for SAMT. However, such scripts can be tricky to modify for novel experiments and typically
have limited support for the variety of job schedulers found on academic and commercial com-
puter clusters. Further complicating these systems are hyperparameters, which often cannot be
directly optimized by conventional methods requiring users to determine which combination
of values is best via trial and error. The recently-released LoonyBin open-source workflow man-
agement tool addresses these issues by providing: 1) a visual interface for the user to create and
modify workflows; 2) a well-defined logging mechanism; 3) a script generator that compiles vi-
sual workflows into shell scripts, and 4) the concept of Hyperworkflows, which intuitively and
succinctly encodes small experimental variations within a larger workflow. In this paper, we
describe the Machine Translation Toolpack for LoonyBin, which exposes state-of-the-art ma-
chine translation tools as drag-and-drop components within LoonyBin.

1. LoonyBin Background

Empirical research in machine translation has become a complex multi-stage pro-
cess with many stages being run under multiple experimental conditions (i.e. with
different corpora and different sets of hyperparameters). The management of such

© 2010 PBML. All rights reserved. Corresponding author: jhclark@cs.cmu.edu
Cite as: Jonathan H. Clark, Jonathan Weese, Byung Gyu Ahn, Andreas Zollmann, Qin Gao, Kenneth Heafield,
Alon Lavie. The Machine Translation Toolpack for LoonyBin: Automated Management of Experimental Machine
Translation HyperWorkflows. The Prague Bulletin of Mathematical Linguistics No. 93, 2010, pp. 117–126. ISBN
978-80-904175-4-0. doi: 10.2478/v10108-010-0002-x.

PBML 93 JANUARY 2010

workflows presents a real challenge in terms of keeping results organized, analyzing
results at every stage, and automating the workflow.

For example, in syntactic statistical machine translation, a typical experiment con-
sists of over 20 tools with a complex network of dependencies spanning multiple ma-
chines or even clusters of machines. Parsing and phrase extraction might be run on
a large cluster of hundreds of low-memory machines, preprocessing and word align-
ment might be run on a local server, while tuning and decoding might be done on a
small cluster of large-memory machines. Further, this system might be run for two
language pairs and using 10 sets of features in the translation model to verify some
experimental hypothesis.

With these needs in mind, LoonyBin (Clark and Lavie, 2010) accommodates work-
flows that:

• span various machines, clusters, and schedulers
• involve many separate tools, which can be invoked by arbitrary UNIX com-

mands
• have components that are run multiple times under multiple conditions
• evolve quickly with tools frequently being added, removed, and swapped
LoonyBin accomplishes this by providing the following advantages over current

common practices:
• associating sanity checks and logging directly with tools, separating these from

ad hoc wrappers and automation scripts
• maintaining a cleanly organized directory structure for each step and each con-

dition under which a step is run
• providing a resume-on-failure mechanism for every stage in the pipeline
• making it easy for those without a detailed knowledge of each tool’s internals to

run the system by providing textual descriptions of each parameter, input file,
and output file in a graphical workflow designer

• automatically copying required files between machines/clusters via SSH
• compiling workflows into shell scripts, a medium already in widespread use by

NLP researchers

1.1. Workflow Semantics

We now discuss the representation of workflows in LoonyBin. In their most ba-
sic form, LoonyBin represents workflows as Directed Acyclic Graphs (DAGs). In this
form, each vertex represents a , which produces output files given input files
and parameters, and directed edges indicate relative temporal ordering of tools and
information flow (files or parameters) by mapping the output of one tool to the in-
puts of the next. A defines the commands necessary to run a tool
given inputs, outputs, and parameters. Custom tool descriptors can be implemented
via simple user-defined Python scripts that generate shell commands. These tool de-
scriptors contain - to check the sanity of the inputs and log information

118

J. Clark et al. Machine Translation Toolpack (117–126)

Filter
Corpus

{syntax-st,
syntax-ch,
moses}

Word Alignment

Stanford
Parser

Build
Syntactic

Translation
Model

Minimum
Error
Rate

Training

Decode
Sentences

Build
Language

Model

Parallel
Corpus

Target
Language

Corpus

Moses Phrase
Table Training

syntax

moses

Charniak
Parser

st

ch {st,ch}

{syntax-st,
syntax-ch,
moses}

Figure 1. A simplified version of the CMU StatXfer system HyperWorkflow for the GALE
Phase 4 Machine Translation Evaluation showing the multiple experiments that were

run

and - to check the sanity of the output files, log information about the
outputs, and extract log data from any third-party log file formats.

1.2. HyperWorkflow Semantics

LoonyBin also represents the running of workflows under multiple experimental
conditions (i.e. with different input files or parameters). We call this a HW-
. A HyperWorkflow contains , which introduce variations
into a shared workflow. Each realization variable can take on a ,
which is a set of files and parameters. For instance the realization variable “language
model file and order” could take on the realization value {english.txt, 4}. Finally, a -
 is a regular workflow unpacked from a hyperworkflow; it is a con-
figuration of a hyperworkflow such that all realization variables have been assigned
a particular realization value. Hyperworkflows are useful for performing exploration
of hyperparameters, ablation studies, variation of input corpora, etc.

For HyperWorkflows, we use a HDAG, the hypergraph formulation of a DAG.
shown in Figure 1. In LoonyBin, a is an edge originating from a
 (displayed as a triangle in Figure 1) , which is used to introduce a realization
variable. These packing nodes act like a switch to select one of its input edges so
that each edge feeding a packing node can create a new realization variable in the
workflow. These realization variables are then propagated through the remainder
of the workflow. Where multiple realization variables meet, LoonyBin produces the
cross-product of their realization values. A HyperDAG is a packed representation of

119

PBML 93 JANUARY 2010

multiple workflow DAGs and a realization instance is a particular unpacked instance
of a workflow. For instance, in Figure 1 edges st and ch enter a packing node and
then propagate realization values st and ch. By representing workflows in this way,
we avoid rerunning steps having the same experimental conditions.

1.3. Standardized Logging and Organized Directory Structure

While being able to automatically execute and reproduce workflows is good, sim-
ply completing the job is not enough. We also want to know where the output files
came from and some aggregate facts about them. LoonyBin provides a framework for
automatically calculating such information and storing it in a uniform format: tab-
delimited key-value pairs form a single record, and each record is newline-delimited,
making it easy to process these log files using standard command-line tools or scripts.
Finally, the log files for all antecedent steps of the same realization instance are con-
catenated together so that all information from all steps run under a single experi-
mental condition is collected in one place.

Since the user might want to run further analysis later, it is important to be able
to easily find the data itself. To accommodate this, LoonyBin maintains a highly or-
ganized directory structure for each workflow. Under a master directory, LoonyBin
creates a directory with the name of each vertex in the hyperworkflow with subdirec-
tories for each realization. If steps were run on remote machines, pointers to those
machines and the relevant output files are stored on a central machine.

1.4. Designing and Deploying a Workflow

LoonyBin provides a graphical tool, which lists all tools in browsable tree. Tools
can simply be dragged and dropped into the workflow as vertices and edges can be
drawn by dragging arrows between these vertices.

Once a workflow has been designed, LoonyBin can then compile it into an exe-
cutable shell script. Thus, the only requirement on the machine that executes the
workflow is Bash. Before any tools are ever executed, the generated script checks that
all input files and all directories containing required tools exist. Because LoonyBin
handles all filenames other than the initial inputs, this eliminates the common issue
of pipelines crashing due to typos in file and directory names. The generated script
will log into remote machines, copying files and executing processes as necessary.

2. A Machine Translation Toolpack

While LoonyBin provides a mechanism for combining tools into workflows, it does
not in itself enable the use of tools. For this, we need tool descriptors, which give
LoonyBin 1) what inputs, outputs, and parameters a tool requires 2) analyzers that
extract aggregate information from output files and perform sanity checks and 3) doc-
umentation on the tool that is shown to the user in the graphic interface. The primary

120

J. Clark et al. Machine Translation Toolpack (117–126)

purpose of the MT Toolpack is to provide these descriptors, their analyzers, and com-
mon workflows that put the tools together.

2.1. Installation and Configuration

First, we will set up the where the visual workflow designer will be
used to compile workflows into scripts (e.g. a personal laptop). The only dependency
on this machine is Java since the Python tool descriptors are executed via Jython. On
this machine, download the latest version of LoonyBin and the MT toolpack1 and
extract the tarballs in the same location. You should now have a LoonyBin directory
that contains a tool-packs directory.

Next, we will set up the s where the compiled workflow script
will be run (e.g. head nodes of various clusters). There, download the MT toolpack
and extract the tarball, but also execute the installer script install-dependencies.py.
This will install only the tool binaries, not their dependencies. Other dependencies
that must already be installed on the machine include: Python (for the installer), Perl
(various), Ruby (Multi-Metric Scorer, MEMT), Java (various), Hadoop (SAMT and
Chaksi), Boost (MEMT), and Boost Jam (MEMT). The installer will install these bi-
naries in the user-specified directory and also create a P D, which tells
LoonyBin where to find the tool binaries on each execution machine. You can prevent
a given tool X from being installed by using the --without-X switch.

LoonyBin can be launched on most platforms by double-clicking the LoonyBin.jar
file. Alternatively, it can be invoked with java -jar LoonyBin.jar.

2.2. Creating a Workflow

In this section, we describe the creation of an example workflow. This is done on
the , which need not have any network connection to the machines on
which the workflow will run. In “editing” mouse mode, select the “manual filesys-
tem” tool from the panel on the left and then click in the center window to create a
vertex in the workflow. Use the panel on the right to give the vertex the name 100-
files (the number in the name is just to help us remember what order the steps were
run when looking at the names of vertex subdirectories on the file system) and set the
fileNames parameter to example1.txt. Next, add the Head tool from the left toolbox
into the workflow and name it 200-take-head. Create an edge between the vertices
by dragging and, in the Add Edge Dialog that appears, connect example1.txt to cor-
pusIn.

While we could generate a working script from the workflow created so far, we
will continue on and create a HyperWorkflow that demonstrates how to “experiment”
with the effect head on 2 different files.

Right-click on the edge from 100-files to 200-take-head and select remove ver-
tex. Next, add another manual filesystem vertex just as above except with the file-

1LoonyBin and the MT Toolpack are available at http://www.cs.cmu.edu/~jhclark/loonybin/
121

PBML 93 JANUARY 2010

names as example2.txt and call it 110-different-files. Create an OR vertex using
the OR tool and give the vertex a unique name. Create a hyperedge from 100-files
to the OR vertex by dragging and, in the Add Edge Dialog that appears, connect ex-
ample1.txt to OR and press OK. Similarly, connect 110-different-files to the OR
vertex, and in the dialog connect example2.txt to example1.txt to indicate that these
2 files will be fulfilling the same role in subsequent steps. Now, in “selecting” mouse
mode, click on each of the hyperedges and, using the right panel, name them one and
two, respectively. Finally, draw an edge between the OR vertex and 200-take-head
and connect example1.txt as the input of corpusIn. You will notice that all of the
realization names now appear under the new tool vertex. The tool will be run once
for each realization using the inputs from each realization edge.

If you wish multiple tools to feed into the same realization variable, you can give
the same name to multiple hyperedges feeding into a single packing vertex. Much
like each realization instance had different input files above, you can conduct param-
eter sweeps using multiple Parameter Boxes from the tool tree on the left; each of the
parameter boxes can specify a different set of parameter values to be passed to a tool.

2.3. Generating and Running Workflow Script

LoonyBin allows you to design your pipeline on one machine (the)
and then execute the generated bash script on another machine such as a server –
hereafter the . The home machine will use passwordless SSH to contact
any other remote (see Section 2.1).

The “Generate bash script” dialog will ask you for this path of the LoonyBin scripts
on the home machine. Also, you need to tell LoonyBin a base directory on the home
machine where log data and pointers to output data generated during workflow ex-
ecution will be placed (see Section 1.3). You should also specify the path and name
of the bash script that will be generated. We recommend a .work extension. Finally,
you can give LoonyBin a space-separated list of email addresses to notify when the
pipeline either fails or succeeds. Now just copy the bash generated bash script to the
home machine you specified and execute it by passing the -run flag. All required in-
put files for each step will automatically be transferred to the proper machine before
the tool is executed.

3. Included Tools

We now turn to describing the tools that are included in this MT Toolpack. Since
LoonyBin provides documentation within the visual workflow designer for each pa-
rameter and file of each tool, we will not focus on the low-level details of the tools here.
Instead, we discuss the high-level models they implement and what design decisions
were made to incorporate each tool into LoonyBin. In general, the style of LoonyBin is
to split tasks into as many LoonyBin tools. This allows easy embedding of novel tools,

122

J. Clark et al. Machine Translation Toolpack (117–126)

resumption on failure, analysis of intermediate results, and sharing partial results in a
dynamic programming fashion when later models are run with different parameters.

3.1. MGIZA and Chaksi

MGIZA is a multi-threaded word alignment tool based on GIZA++ (Och and Ney,
2003) that utilizes multiple threads to speed up the time-consuming word alignment
process. It also supports forced alignment (the process of aligning an unseen test set
given trained models) and incremental training with existing models. It can be dis-
tributed over a cluster via its integration with Chaksi, a Hadoop MapReduce train-
ing framework for phrase-based machine translation. In addition to word alignment,
Chaski supports training of Moses-compatible phrase tables and lexicalized reorder-
ing models. In our experience, Chaksi has reduced the time to produce a transla-
tion model from parallel data from 4 to 5 days to 9-10 hours. For the initial release
of LoonyBin we include tools for generating word classes, both Chaksi and MGIZA
versions of the most used word alignment models 1/HMM/3/4, and a phrase table
builder. Each of these alignment models is exposed as a separate tool to provide the
benefits described above in Section 3.

In building LoonyBin MT tools, we aim to encourage best practice. For instance,
MGIZA uses the expectation maximization (EM) algorithm to train word alignment
models. In every iteration, the sentences are first aligned using the model parame-
ters from previous step, and then the posteriors are collected and re-normalized to
generate models for next step. Therefore, the final alignment output is aligned using
the model from second-to-last step instead of the final model. Thus, neither concate-
nating the sets nor force-aligning using the final model is a good comparison for the
way the final model was actually aligned. To encourage proper evaluation of word
alignments (by using the second-to-last set of EM parameters), we clearly label the
output files that should be used for forced alignment in each tool.

3.2. Berkeley Aligner

The Berkeley Aligner provides an implementation for joint or independent train-
ing of IBM Model 1, the HMM alignment model, a syntactic variant of HMM, and a
novel symmetrization technique called competitive thresholding (DeNero and Klein,
2007). The aligner provides a supervised inverse transduction grammar (ITG) align-
ment model (Haghighi et al., 2009). While LoonyBin aims to expose subcomponents
as much as possible so that it is easier to combine tools in novel ways, the initial re-
lease of the MT toolpack contains only 2 tools for the Berkeley aligner corresponding
to the supervised and unsupervised models. In the future, we may attempt to expose
each direction, model, and symmetrization heuristic employed in the unsupervised
model.

123

PBML 93 JANUARY 2010

3.3. Joshua

Joshua (Li et al., 2009) is an open-source MT toolkit for synchronous context-free
grammar models such as Chiang (2005). It includes suffix array extraction of these
grammars from an aligned parallel corpus. The toolkit also includes a built-in sub-
sampler for training on large corpora and an implementation of minimum error-rate
training. Each step in the training pipeline is exposed as a separate tool in the Loony-
Bin MT Toolpack.

3.4. Syntax-Augmented Machine Translation (SAMT)

The SAMT model (Zollmann and Venugopal, 2006) is a synchronous context-free
grammar based approach to translation that extends the hierarchical phrase based MT
model of (Chiang, 2005) to learn grammars with multiple nonterminals. Grammar
rules are extracted from a training sentence pair based on a lattice of its contained
eligible phrase pairs and a phrase-structure parse tree of the target sentence, yielding
rules such as

NP+SBAR → NP , die meine NN zuletzt VBD | NP who last VBD my NN
for a German-to-English translation task, expressing the reordering of the verb trig-
gered by a relative clause. The current release of SAMT uses the open-source Hadoop
MapReduce framework to distribute its expensive computations (Venugopal and Zoll-
mann, 2009). Each step in the SAMT training and evaluation pipeline has been wrapped
as a separate tool in the LoonyBin MT Toolpack.

3.5. Moses

We replace the train-phrase-model.perl from Moses (Koehn et al., 2007) with
tools that encapsulates each step such as “build lexical translation table,” “construct
lexicalized reordering model,” and “Run Minimum Error Rate Training” rather than
wrapping the entire pipeline. Steps that use GIZA++ are not included in the MT
Toolpack since with the release of MGIZA++ and Chaksi, there is little motivation to
use GIZA++. For the initial release of the MT toolpack, we do not support factored
models.

3.6. Common Evaluation Metrics

We provide a tool that runs some of the most common translation metrics in par-
allel while transparently handling formatting issues: BLEU (Papineni et al., 2001) as
implemented by mteval-13a.pl (Peterson et al., 2009), NIST (Doddington, 2002), TER
0.7.25 (Snover et al., 2006), Meteor 1.0 (Banerjee and Lavie, 2005), unigram precision
and recall, and length ratio. It accepts a simple input format: flat files with one line per
segment, or consecutive lines for multiple references. Aside from translation metrics,

124

J. Clark et al. Machine Translation Toolpack (117–126)

we also include alignment error rate (AER) (Och and Ney, 2003), despite its imperfect
correlation with translation quality. In addition to providing the files generated by
each metric as output, the LoonyBin tool descriptor places all of these scores in the
LoonyBin log giving the benefit of standard formatting.

3.7. Multi-Engine Machine Translation (MEMT)

Multi-engine machine translation (Heafield et al., 2009) combines one-best outputs
from different translation systems. Translations are aligned using METEOR (Banerjee
and Lavie, 2005) and navigated using these alignments. System-specific weights are
learned via tuning with MERT; a separate tuning set works best. Typical gains range
from one to five BLEU points above the best system, depending on system diversity
and score distribution. MEMT is presented as three tools in LoonyBin: The Meteor
aligner, MEMT Tuning, and MEMT Decoding.

3.8. Additional NLP Tools

Since modern MT systems often depend on more basic NLP tools, we have also
included a few of these tools in the MT Toolpack. For creating language models, we
include SRILM and for creating parse trees, we include the Stanford English parser.

4. Recommendations During Tool Development
LoonyBin aims to make it easy to reproduce results. Well-behaved tool descriptors

should write the software version to the log files so that the user knows not only what
files were used as input and what tools processed that data, but also what version of
the tools were used.

However, research often involves iteratively coding and experimentation. For this,
we recommend creating a custom tool descriptor that checks out your branch of a
source code management system (e.g. subversion), logs the revision number, com-
piles the code, and then runs the tool. By doing this, researchers can ensure that
results are reproducible2. Step-by-step instructions on how to create tool descriptors
are included as part of LoonyBin’s documentation, but are beyond the scope of this
paper.

5. Conclusion
We have presented an open-source Machine Translation Toolpack for LoonyBin.

We hope that by releasing this tool pack more research effort may be placed on mod-
eling rather engineering, automation, and logging. Further, we hope that this tool-
pack encourages future research to include the multiple baseline systems and enables
more systematic comparisons between them.

2As a side benefit, this encourages the best practice of “commit early, commit often”

125

PBML 93 JANUARY 2010

Bibliography

Banerjee, S. and A. Lavie. METEOR: an automatic metric for MT evaluation with improved cor-
relation with human judgments. In Proceedings of the ACL Workshop on Intrinsic and Extrinsic
Evaluation Measures for Machine Translation and/or Summarization, 2005.

Chiang, David. A hierarchical phrase-based model for statistical machine translation. In Pro-
ceedings of the 43rd Annual Meeting on Association for Computational Linguistics, 2005.

Clark, Jonathan H. and Alon Lavie. Loonybin: Keeping language technologists sane through
automated management of experimental (hyper)workflows. In Forthcoming, 2010.

DeNero, J. and D. Klein. Tailoring word alignments to syntactic machine translation. In Asso-
ciation for Computational Linguistics (ACL), volume 45, page 17, 2007.

Doddington, G. Automatic evaluation of machine translation quality using n-gram co-
occurrence statistics. In Proceedings of the second international conference on Human Language
Technology Research, page 145. Morgan Kaufmann Publishers Inc., 2002.

Haghighi, A., J. Blitzer, J. DeNero, and D. Klein. Better word alignments with supervised ITG
models. In Meeting of the Association for Computational Linguistics, 2009.

Heafield, Kenneth, Greg Hanneman, and Alon Lavie. Machine translation system combination
with flexible word ordering. In Proceedings of the Fourth Workshop on Statistical Machine Trans-
lation, pages 56–60, Athens, Greece, March 2009. Association for Computational Linguistics.
URL http://www.aclweb.org/anthology/W/W09/W09-0x08.

Koehn, Philipp, Hieu Hoang, Alexandra Birch, Chris Callison-Burch, Marcello Federico, Nicola
Bertoldi, Brooke Cowan, Wade Shen, Christine Moran, Richard Zens, Chris Dyer, Ondrej
Bojar, Alexandra Constantin, and Evan Herbst. Moses: Open source toolkit for statistical
machine translation. In Association for Computational Linguistics (ACL), 2007.

Li, Zhifei, Chris Callison-Burch, Chris Dyer, Juri Ganitkevitch, Sanjeev Khudanpur, Lane
Schwartz, Wren Thornton, Jonathan Weese, and Omar Zaidan. Joshua: An open source
toolkit for parsing-based machine translation. In Workshop on Statistical Machine Translation
(WMT09), 2009.

Och, Franz Josef and Hermann Ney. A systematic comparison of various statistical alignment
models. In Computational Linguistics, 2003.

Papineni, K., S. Roukos, T. Ward, and W. J Zhu. Bleu: a method for automatic evaluation of
machine translation. In Proc. of ACL, 2001.

Peterson, Kay, Mark Przybocki, and Sébastien Bronsart. NIST 2009 open
machine translation evaluation (MT09) official release of results, 2009.
http://www.itl.nist.gov/iad/mig/tests/mt/2009/.

Snover, M., B. Dorr, R. Schwartz, L. Micciulla, and J. Makhoul. A study of translation edit rate
with targeted human annotation. In Proc. of AMTA, page 223–231, 2006.

Venugopal, Ashish and Andreas Zollmann. Grammar based statistical MT on hadoop. The
Prague Bulletin of Mathematical Linguistics, 91, 2009.

Zollmann, Andreas and Ashish Venugopal. Syntax augmented machine translation via chart
parsing. In Workshop on Machine Translation (WMT) at ACL, 2006.

126

http://www.aclweb.org/anthology/W/W09/W09-0x08

The Prague Bulletin of Mathematical Linguistics
NUMBER 93 JANUARY 2010 127–136

Visualizing Data Structures in Parsing-Based Machine
Translation

Jonathan Weese, Chris Callison-Burch
Center for Language and Speech Processing, Johns Hopkins University

Abstract
As machine translation (MT) systems grow more complex and incorporate more linguistic

knowledge, it becomes more difficult to evaluate independent pieces of the MT pipeline. Be-
ing able to inspect many of the intermediate data structures used during MT decoding allows
a more fine-grained evaluation of MT performance, helping to determine which parts of the
current process are effective and which are not. In this article, we present an overview of the
visualization tools that are currently distributed with the Joshua (Li et al., 2009) MT decoder.
We explain their use and present an example of how visually inspecting the decoder’s data
structures has led to useful improvements in the MT model.

1. Introduction

The Joshua machine translation decoder uses a formalism known as synchronous
context-free grammars (SCFGs) (Chiang, 2006). A probabilistic SCFG consists of a set
of source-language terminal symbols, a set of target-language terminal symbols, a set
of nonterminals that is shared between both languages, and set of production rules
of the form

X → ⟨γ, α, ∼, w⟩
where X is a nonterminal symbol, γ is a (possibly mixed) sequence of nonterminals
and source terminals, α is a (again possibly mixed) sequence of nonterminals and
target-language terminals, ∼ is a one-to-one correspondence between the nontermi-
nals of γ and α, and w is a weight for the production rule.

Using an SCFG to parse the input sentence automatically creates a corresponding
target-language sentence. We take the generated sentence as a candidate translation

© 2010 PBML. All rights reserved. Corresponding author: jonny@cs.jhu.edu
Cite as: Jonathan Weese, Chris Callison-Burch. Visualizing Data Structures in Parsing-Based Machine Transla-
tion. The Prague Bulletin of Mathematical Linguistics No. 93, 2010, pp. 127–136. ISBN 978-80-904175-4-0.
doi: 10.2478/v10108-010-0016-4.

PBML 93 JANUARY 2010

!"#$"%"&'(")"&*"$

!"+",-."+"&*"&/0123

!"+",-4"+"&* !"+"4-."+"&/0123

!"+"5-."+"6"/&"&*"&/0123 !"+"5-."+"6"7'88'9"&*"&/0123

!"#$"%":2"0;<0"!")"6"/&"!"$!"#$"%":2"0;<0"!")"6"7'88'9"!"$

!"#$"%"!="!,")"!="!,"$

!"#$"%"&/>132")"&/0123"$

:2 0;<0 &'(&/>132

?"+"5-.

?"#$"%"!")"!"$?"#$"%"!")"!"$

Figure 1. A hypergraph showing two candidate translations of Je suis mon maître.

for the input sentence. The sequence of rules used to generate tm
1 is called a derivation.

The derivation encodes synchronous parse trees on the source and target sides.
Since we are parsing the input sentence with a probabilistic grammar, we can gen-

erate many possible candidate parses for a particular sentence. These parses may
share a lot of structure — for example, two different parse trees may contain subtrees
that are identical. As part of the search procdeure, the Joshua system compactly stores
these structure-sharing trees as a hypergraph or packed forest where identical subtrees
from many parses are represented by a single copy. Structure-sharing hypergraphs
are commonly used to represent the result of parsing a sentence with a probabilistic
CFG (Billott and Lang, 1989; Klein and Manning, 2001). So it is natural that Joshua’s
SCFG-based model should use this data structure.

Figure 1 shows an example of a hypergraph with two candidate translations for the
French sentence “Je suis mon maître.” Note that both translations — “I am my master”
and “I follow my master” — use the same derivation of “my master” as a phrasal
translation for the French mon maître. Therefore, the hypergraph maintains only one
copy of this shared structure, saving space.

We focus on two data structures used in the decoding process: first, each candidate
translation has a derivation tree describing how the decoder generated the candidate.
Second, there is a hypergraph that represents all the choices made by the decoder when

128

J. Weese, C. Callison-Burch Visualizing Machine Translation (127–136)

translating a single input sentence and shows us the relationships among all the var-
ious candidates.

2. Joshua’s Visualization Tools

The visualization tools are included in the Joshua Decoder release.1 They have only
one outside dependency: the Java Universal Network/Graph Framework2 (JUNG), a
toolkit for drawing graphs in Java, which is available under the BSD License.

The derivation-tree viewer does not depend on the Joshua decoder. It can visualize
any derivation tree as long as the tree representation is identical to Joshua’s output.
The hypergraph visualizer, on the other hand, depends on the decoding process itself,
and therefore on the Joshua decoder.

2.1. Synchronous Derivation Trees

The Joshua decoder includes an option to output text-based representations of
the target-side parse tree rather than the plain candidate translation. These textual
representations can also be annotated with the source-side span of each nontermi-
nal in the tree. (These outputs can be chosen by setting use_tree_nbest and in-
clude_align_index to true in the Joshua configuration file.) The core of the derivation-
tree visualizer takes a string that represents an annotated parse tree and uses JUNG
to draw a graph representing the tree.

Using the source-side annotations, the visualizer also draws the parse tree for the
input sentence. Since the grammar is synchronous, there is a one-to-one correspon-
dence between nonterminals in the source- and target-side trees. Any differences in
the tree structure arise from possible reordering of the nonterminals. The bottom of
Figure 2 shows part of the derivation tree generated by Joshua’s output of (ROOT{0-
24} ([GOAL]{0-23} ([GOAL]{0-6} ([NP]{0-6} ([NP]{4-6} this meeting) in
([NNP-GPE]{0-1} jerusalem))) ([S]{6-23} ([VP/NP]{14-22} is
([VBG]{19-21} being) considered as ([NP+IN]{14-18} a ([NN]{17-18} show)
of ([NN]{15-16} support) for)) ([NP]{6-14} palestinian ([JJ-GPE-ite\NP]
{7-14} president ([NP-PERSON]{8-10} mahmoud abbas) ([PP]{10-14} for
([NNP-GPE]{12-13} israel)))) .)))

The tree visualizer takes the following arguments: a file containing source-side
sentences (one per line), a file containing the parallel target-side reference transla-
tions, and then one or more files containing n-best translations of the source sen-
tences. Multiple n-best files can be specified in order to contrast different runs of
the decoder on the same test set. For example, Figure 3 shows one sentence from
the 2009 NIST Urdu–English evaluation, decoded once under a Hiero-style grammar

1http://cs.jhu.edu/~ccb/joshua/
2http://jung.sourceforge.net/

129

http://cs.jhu.edu/~ccb/joshua/
http://jung.sourceforge.net/

PBML 93 JANUARY 2010

Figure 2. The Derivation Tree browser’s sentence selection and tree-viewing windows.

with only one nonterminal symbol X, as introduced in (Chiang, 2005), and once un-
der a syntactically-motivated grammar with a richer nonterminal set as presented in
(Zollmann and Venugopal, 2006).

When the visualizer starts up, it creates two types of windows. First there is a
window listing all the reference translations. This window is shown on the top of
Figure 2. (This is the reason for the reference translation file — an earlier version of
the program had the sentences listed by the source side, but this was less useful for
users who had no knowledge of the source language.) The second type of window
displays a derivation tree.

The browser creates one tree-displaying window (as seen on the bottom of Figure
2) for every n-best file that is passed as an argument. This allows the user to easily
compare derivation trees created by different grammars (these are saved in different
n-best files, since they’re the result of different runs of the decoder). In a tree window,

130

J. Weese, C. Callison-Burch Visualizing Machine Translation (127–136)

Figure 3. An example visualization of two derivation trees for SCFGs that use a
Hiero-style grammar and a syntactically-motivated grammar.

the user can click and drag to inspect different parts of the tree and can use the scroll
wheel to zoom in and out.

There are two ways to change trees: clicking the sentence in the list window or
using the left- and right-arrow buttons in the tree windows. In either case, all the tree
windows are synchronized; that is, whenever the user changes to a different sentence,
all tree windows are updated to show the derivation for that sentence. The tree views
are anchored; for example, if a user were zoomed in on the first target-side nontermi-
nals of one tree, when he changed to a new sentence and the new tree was displayed,
its view would start zoomed in on that same area of the new sentence’s tree.

The tree view windows also have a button to give the user more information about
the current tree. This button shows the source sentence, the reference translation, and
the text of the translation candidate.

2.2. Hypergraphs

The derivation tree viewer is used after running the decoder to inspect its ouput.
Since the hypergraph is used during the decoding process and is discarded after-
wards, the hypergraph visualizer depends on the decoder itself. Internally, it works
by setting a flag to build the graph visualization on-the-fly as the decoder processes
the input.

131

PBML 93 JANUARY 2010

Figure 4. The visualization window for the hypergraph browser.

The command line arguments for the hypergraph visualizer are slightly different
from the derivation tree viewer. A reference translation is used in the same way as
in the derivation tree viewer — it allows the user to choose a sentence to translate
based on the reference translation. Now because the decoder translates source sen-
tences on demand, the other two arguments are a source-sentence file and a Joshua
configuration file that should be used for the decoding.

On startup, the hypergraph viewer presents a list of sentences to translate. The
reference translations are displayed instead of the source to make it easier for the
user. The user selects a sentence from the list and presses the “Decode” button at the
bottom. Internally, the hypergraph viewer chooses the associated source sentence and
calls Joshua to decode the sentence using the supplied configuration file.

As the hypergraph structure is constructed, the hypergraph viewer uses JUNG to
build a corresponding graph. At first glance, the graph that is displayed looks very
similar to a derivation tree. In fact, it is a hypergraph representation of the one-best
candidate for the source sentence. Recall that the nodes of the hypergraph represent
nonterminals or terminals in the derivation of a given source sentence, and the hy-
peredges represent production rules that are applied at each step. Each node of the
hypergraph is a rectangular box in this visualization, and each hyperedge is a small

132

J. Weese, C. Callison-Burch Visualizing Machine Translation (127–136)

circle. There may be many possible hyperedges leading from a particular node, each
one representing a different rule that could be applied to that node. When only one
hyperedge is visualized at each node, the resulting graph represents one candidate
translation.

Using the hypergraph viewer, we can inspect the choices that the decoder made at
each point. When the user clicks on a node of the hypergraph, a list of all hyperedges
leading from that node is displayed on the left. If the user selects a hyperedge from
the list, the corresponding subtree is displayed in the graph. A user can even select
multiple rules, and all of the resulting subtrees are displayed side-by-side. Figure 4
shows this hypergraph view. We can see four subtrees giving possible derivations of
the candidate translation “hamid ansari nominated for vice president.”

3. Other Visualization Tools

This section describes two other visualization tools developed by other researchers,
and contrasts the goals of the various visualization systems and how the goals are re-
flected in design choices.

3.1. The Chinese Room

The Chinese Room (Albrecht et al., 2009) is a collaborative translation interface. It
uses visualization techniques to allow a user who has no knowledge of the source-side
language to collaborate with an MT system to create good translations. This is differ-
ent from earlier approaches to collaborative MT where the user was often assumed to
be a professional translator.

The Chinese Room is designed to allow translators (even those with limited or no
knowledge of the source language) to produce good translations of the input sen-
tences. Joshua’s visualization tools, on the other hand, are designed to help researchers
debug grammars and improve their translation models. The Chinese Room tries to
give the user as much information as possible to create a correct translation. This
includes word alignments, glosses for source words from a dictionary, source-side
parse structure and so on. All of this information would be useful for a translator.
The current tools for Joshua are focused on improving the grammars used in a trans-
lation model. We need comparatively less information to gain useful insight into this
smaller domain. That is why we have focused only on displaying the derivation trees
and hypergraphs.

3.2. DerivTool

DerivTool is a tool for interactively directing the decoding of a sentence using a
syntax-based MT model (DeNeefe et al., 2005). Users can choose which rules to apply
to a derivation at which time. In the end, the user ends up building up a derivation

133

PBML 93 JANUARY 2010

Figure 5. An example of bad production rules that parse pieces of the source sentence
without producing any target-side output.

tree for a particular candidate translation. DerivTool is useful for analyzing gram-
mars: a user can immediately tell when a needed rule is missing (they can’t continue
their intended derivation) and can see which rules are favored by the decoder at a
particular point (since rules are displayed in order of frequency).

Joshua’s tools and DerivTool both produce derivation trees. The difference is that
DerivTool is interactive and Joshua is not. The main advantage of working in batch
mode is that it is faster than building up a derivation tree manually step-by-step. We
run the decoder seperately, letting it make the translation decisions. Afterwards, the
user can evaluate the quality of the trees produced. The Joshua visualization tool
can produce many derivation trees all at once (it reads in a file containing the n-best
derivations for each sentence of a test set). This makes it easy to compare the different
decisions that were possible at decoding time without the user having to manually
make the decisions himself.

4. How Joshua’s Visualization Tools Help

By visualizing derivation trees for different candidate translations, we can find
problems with the SCFGs that underly translations. For example, we used the visual-

134

J. Weese, C. Callison-Burch Visualizing Machine Translation (127–136)

ization tool to inspect derivation trees that were produced on the 2009 NIST Urdu–English
test set, and noticed that many rules consumed part of the input sentence without pro-
ducing any output. These rules were used often in the top candidates, but brought
down the translation quality. Having discovered that, we manually removed where
the target side contained no terminal symbols. This helped improve the translation
quality. In Figure 5, we can see rules of the form [IN] → ⟨[IN]γ, [IN]⟩ and [.] →
⟨[.]γ, [.]⟩ being applied.

Pruning grammars of systematically bad production rules is a good way to im-
prove translation quality, and manual inspection of the output to see which grammar
rules have been used, and which ones correlate with low translation quality, is an
effective way to prune. The derivation tree visualizer helps researchers too notice
patterns in rule application among different candidate translations.

Visualizing hypergraphs lets the researcher inspect the decisions that the decoder
made when choosing among different rules that could be applied at some point in a
derivation. This could be useful, for example, in determining if a particular type of
rule is being systematically overweighted or underweighted,

Visualizing the data structures involved in MT decoding allows the researcher to
determine empirical rules for improving the grammars involved.

5. Future Work

There are still many improvements that should be made to these visualization
tools. We would like to be able to show the terminal alignments that are induced
by a particular derivation. But that requires more information than is currently given
by the Joshua decoder. It only annotates nonterminals with source-side spans. As
an example, consider the French phrase l’objectif de X est de which corresponds to the
English phrase the goal of X is to. We know that those two phrases have corresponding
spans, and that the two X symbols also correspond. But despite this, we don’t have
word-level alignment information: we don’t know if l’objectif de corresponds to the goal
of or to is to. Such fine-grained information would be useful for visualizing reordering
in MT models.

Another improvement that we think would greatly increase the utility of these
visualization tools for research is to add support for exporting the displayed trees as
files. It would be nice to be able to save an interesting tree in PDF format so that it
could be easily embedded in a research paper.

There are other parts of the Joshua pipeline that might benefit from visualization.
During rule extraction, SCFG rules are automatically generated given an aligned par-
allel corpus. Being able to visually inspect both the aligner output and the results of
the rule extraction on an individual phrase could provide some insight into this pro-
cess. The decoder works by CKY parsing, so it would be advantageous for researchers
to be able to view the parse chart that is produced — which constituents are gener-
ates where, what their associated weights are, which ones have been pruned, and so

135

PBML 93 JANUARY 2010

on. This would help to determine if translation errors are caused by search errors or
something else.

Acknowledgments

This research was supported in part by the EuroMatrixPlus project funded by the
European Commission under the Seventh Framework Programme, and by the US
National Science Foundation under grant IIS-0713448. The views and findings are
the authors’ alone.

Bibliography

Albrecht, Joshua, Rebecca Hwa, and G. Elisabeta Marai. Correcting automatic translations
through collaborations between MT and monolingual target-language users. In Proceedings
of the 12th Conference of the European Chapter of the ACL (EACL 2009), pages 60–68, Athens,
Greece, March 2009. URL http://www.aclweb.org/anthology/E09-1008.

Billott, Sylvie and Bernard Lang. The structure of shared forests in ambiguous parsing. In
Proceedings of the 27th Annual Meeting of the Association for Computational Linguistics, pages
143–151, Vancouver, British Columbia, Canada, June 1989. URL http://www.aclweb.org/
anthology/P89-1018.

Chiang, David. A hierarchical phrase-based model for statistical machine translation. In Pro-
ceedings of the 43rd Annual Meeting of the Association for Computational Linguistics (ACL-2005),
Ann Arbor, Michigan, 2005.

Chiang, David. An introduction to synchronous grammars. Tutorial available at
http://www.isi.edu/∼chiang/papers/synchtut.pdf, 2006. URL http://www.isi.edu/
~chiang/papers/synchtut.pdf.

DeNeefe, Steve, Kevin Knight, and Hayward H. Chan. Interactively exploring a machine
translation model. In Proceedings of the ACL Interactive Poster and Demonstration Sessions,
pages 97–100, Ann Arbor, Michigan, June 2005. doi: 10.3115/1225753.1225778. URL
http://www.aclweb.org/anthology/P05-3025.

Klein, Dan and Chris Manning. Parsing and hypergraphs. In In Proceedings of the International
Workshop on Parsing Technologies (IWPT), 2001. URL http://www.cs.berkeley.edu/~klein/
papers/klein_and_manning-parsing_and_hypergraphs-IWPT_2001.pdf.

Li, Zhifei, Chris Callison-Burch, Chris Dyer, Juri Ganitkevitch, Sanjeev Khudanpur, Lane
Schwartz, Wren Thornton, Jonathan Weese, and Omar Zaidan. Joshua: An open source
toolkit for parsing-based machine translation. In Proceedings of the Fourth Workshop on
Statistical Machine Translation, pages 135–139, Athens, Greece, March 2009. URL http:
//www.aclweb.org/anthology/W/W09/W09-0x24.

Zollmann, Andreas and Ashish Venugopal. Syntax augmented machine translation via chart
parsing. In Proceedings of the NAACL-2006 Workshop on Statistcal Machine Translation (WMT-
06), New York, New York, 2006.

136

http://www.aclweb.org/anthology/E09-1008
http://www.aclweb.org/anthology/P89-1018
http://www.aclweb.org/anthology/P89-1018
http://www.isi.edu/~chiang/papers/synchtut.pdf
http://www.isi.edu/~chiang/papers/synchtut.pdf
http://www.aclweb.org/anthology/P05-3025
http://www.cs.berkeley.edu/~klein/papers/klein_and_manning-parsing_and_hypergraphs-IWPT_2001.pdf
http://www.cs.berkeley.edu/~klein/papers/klein_and_manning-parsing_and_hypergraphs-IWPT_2001.pdf
http://www.aclweb.org/anthology/W/W09/W09-0x24
http://www.aclweb.org/anthology/W/W09/W09-0x24

The Prague Bulletin of Mathematical Linguistics
NUMBER 93 JANUARY 2010 137–146

Continuous-Space Language Models for
Statistical Machine Translation

Holger Schwenk
LIUM, University of Le Mans, France

Abstract
This paper describes an open-source implementation of the so-called continuous space lan-

guage model and its application to statistical machine translation. The underlying idea of this
approach is to attack the data sparseness problem by performing the language model probabil-
ity estimation in a continuous space. The projection of the words and the probability estimation
are both performed by a multi-layer neural network. This paper describes the theoretical back-
ground of the approach, efficient algorithms to handle the computational complexity, and gives
implementation details and reports experimental results on a variety of tasks.

1. Introduction

Language models play an important role in statistical machine translation (SMT),
i.e. phrase-based systems like Moses (Koehn et al., 2007) or hierarchical phrase-based
systems like Joshua (Li et al., 2009). The classical equation of SMT shows this explic-
itly. Let us assume that we translate a French sentence f into English e:

e∗ = arg max
e

P(e|f) = arg max
e

P(f|e)P(e) (1)

the term P(e|f) was explicitly rewritten with the Bayes rule in order to decompose the
overall task into two components:

1. P(f|e) gives the probability that f is a translation of e without necessarily paying
much attention to the fact whether the generated sentence is well-formed or not;

2. P(e) expresses the probability that the produced sentence is grammatically and
semantically correct without looking at the source sentence.

© 2010 PBML. All rights reserved. Corresponding author: holger.schwenk@lium.univ-lemans.fr
Cite as: Holger Schwenk. Continuous-Space Language Models for Statistical Machine Translation. The Prague
Bulletin of Mathematical Linguistics No. 93, 2010, pp. 137–146. ISBN 978-80-904175-4-0.
doi: 10.2478/v10108-010-0014-6.

PBML 93 JANUARY 2010

The language model (LM) is responsible for the second task. It is clear that the im-
portance of the LM increases when translating into morphologically rich languages.
Despite this importance there seems to be only a limited amount of research in im-
proved language modeling for SMT, and most of the state-of-the-art systems use the
well-known n-gram back-off LMs, introduced more than 20 years ago. There is a
large body of research on smoothing techniques, i.e. how to obtain probabilities for
n-grams that were not observed in the training data, see for instance (Chen and Good-
man, 1999) for an extensive comparison. In practice, modified Kneser-Ney smoothing
is used in most of the cases. Today, there is a clear tendency to train those models on
ever larger amounts of data, up to hundreds of billions of words. Several authors
propose variants of the back-off n-gram approach to tackle the enormous computa-
tional and storage complexity during training and decoding, for instance (Federico
and Cettolo, 2007; Brants et al., 2007; Talbot and Osborne, 2007).

In standard back-off n-gram language models words are represented in a discrete
space, the vocabulary. This prevents “true interpolation” of the probabilities of un-
seen n-grams since a change in this word space can result in an arbitrary change of the
n-gram probability. An alternative approach is based on a continuous representation of
the words (Bengio et al., 2003; Schwenk, 2007). The basic idea is to convert the word
indices to a continuous representation and to use a probability estimator operating in
this space. Since the resulting distributions are smooth functions of the word repre-
sentation, better generalization to unknown n-grams can be expected. This is still an
n-gram approach, but an LM probability is available for any possible n-gram without
the need to back-off to shorter contexts.

This continuous space LM was very successfully applied in large vocabulary con-
tinuous speech recognition (Schwenk, 2007) and references therein, and more recently
in statistical machine translation (Schwenk et al., 2006a, 2007; Schwenk and Estève,
2008). In this paper we present an open-source implementation of this approach.

The paper is organized as follows. In the next section we first summarize the the-
oretical background of the CSLM. Section 3 presents implementation details of the
toolkit and section 4 gives an overview on the performance of this approach.

2. Architecture of the continuous space language model

The architecture of the continuous space LM is shown in Figure 1. A standard
fully-connected multi-layer perceptron is used. The inputs to the neural network are
the indices of the n−1 previous words in the vocabulary hj=wj−n+1, . . . , wj−2, wj−1

and the outputs are the posterior probabilities of all words of the vocabulary:

P(wj = i|hj) ∀i ∈ [1,N] (2)

where N is the size of the vocabulary. The input uses the so-called 1-of-n coding, i.e.
the ith word of the vocabulary is coded by setting the ith element of the vector to
1 and all the other elements to 0. The ith line of the N × P dimensional projection

138

H. Schwenk CSLM for SMT (137–146)

input

hidden
layer

projection
layer

Neural Network

probability

estimation
projection
shared

P(wj = i|hj)

P(wj = n|hj)
wj−1

wj−n+2

wj−n+1
P(wj = 1|hj)

N

N

N

H

N

P

Figure 1. Architecture of the continuous space LM. hj denotes the context
wj−n+1, . . . , wj−1. P is the size of one projection and H,N is the size of the hidden

and output layer respectively. When short-lists are used the size of the output layer is
much smaller then the size of the vocabulary.

matrix corresponds to the continuous representation of the ith word. Let us denote
cl these projections, dj the hidden layer activities, oi the outputs, pi their softmax
normalization, and mjl, bj, vij and ki the hidden and output layer weights and the
corresponding biases. Using these notations, the neural network performs the follow-
ing operations:

dj = tanh
(∑

l

mjl cl + bj

)
j ∈ [1,H] (3)

oi =
∑

j

vij dj + ki i ∈ [1,N] (4)

pi = eoi /

N∑
r=1

eor (5)

The value of the output neuron pi corresponds directly to the probability P(wj = i|hj).
Training is performed with the standard back-propagation algorithm minimizing the

139

PBML 93 JANUARY 2010

following error function:

E =

N∑
i=1

ti log pi + β

∑
jl

m2
jl +

∑
ij

v2
ij

 (6)

where ti denotes the desired output, i.e. the probability should be 1.0 for the next
word in the training sentence and 0.0 for all the other ones. The first part of this equa-
tion is the cross-entropy between the output and the target probability distributions,
and the second part is a regularization term that aims to prevent the neural network
from over-fitting the training data (weight decay). This is a well known technique
when training neural networks by the back-propagation algorithm The parameter β

has to be determined experimentally – in our experiments a value of 3−5 was used.
Training is done using a resampling algorithm to weight multiple corpora.

It is well known that the outputs of a neural network trained by back-propagation
converge to the posterior probabilities. Therefore, the neural network directly mini-
mizes the perplexity on the training data. Note also that the gradient is back-propagated
through the projection-layer, which means that the neural network learns the projec-
tion of the words onto the continuous space that is best for the probability estimation
task.

The complexity to calculate one probability with this basic version of the continu-
ous space LM is quite high due to the large output layer. To speed up the processing
several improvements are implemented:

1. Short-lists: the neural network is only used to predict the LM probabilities of a
subset of the whole vocabulary.

2. Bunch mode: several examples are propagated at once through the network. In-
stead of performing matrix/vector operations we have now matrix/matrix op-
erations which can be heavily optimized on current CPU architectures.

3. Grouping: LM probabilities are not requested in a arbitrary order, but requests
with the same context hj are grouped together. By these means, only one for-
ward pass through the neural network is needed.

The idea behind short-lists is to use the neural network to only predict the s most
frequent words, s being much smaller than the size of the vocabulary. All words
in the vocabulary are still considered at the input of the neural network. The LM
probabilities of words in the short-list (P̂N) are calculated by the neural network and
the LM probabilities of the remaining words (P̂B) are obtained from a standard 4-gram
back-off LM:

P̂(wt|ht) =

{
P̂N(wt|ht)PS(ht) if wt ∈ short-list
P̂B(wt|ht) else

(7)

PS(ht) =
∑

w∈short-list(ht)

P̂B(w|ht) (8)

140

H. Schwenk CSLM for SMT (137–146)

It can be considered that the neural network redistributes the probability mass of
all the words in the short-list.1 This probability mass is precalculated and stored with
the models. A back-off technique is used if the probability mass for an input context
is not directly available. In practice the short-list have a size of 8192 or 12288. This
allows to cover about 90% of the LM requests.

It would be relatively straightforward to integrate the CSLM into the Moses de-
coder. This would however lead to very slow decoding time since the complexity
to calculate an arbitrary n-gram probability is much higher for the CSLM than for a
standard back-off LM (which in principle just does a table look-up). Several speed-up
techniques are possible, but they are not yet implemented. It would be in particular
necessary to group requests with the same context.

Instead we use the Moses decoder to create n-best lists which are then processed
by a separate tool. This tool supports recalculation of the LM score using a CSLM or
a higher-order back-off LM. Several CSLMs can be interpolated on the fly (it is not
possible to merge multiple CSLMs into an bigger one like this is done for back-off
n-gram models). This tool collects all the LM requests of an n-best lists and groups
together requests with the same context hj. By these means the number of forward
passes through the neural network are drastically reduced. In addition, bunch mode
is used.

3. Implementation details

The tool is written in C++ and all the routines are contained in the library libc-
slm. The current version is closely interfaced with the SRILM toolkit (Stolcke, 2002).
We use in particular classes to load the vocabulary or back-off LMs for the short-list.
Therefore, the SRILM toolkit must be installed. It is planed to also support IRSTLM
and randomized language models in future versions. In addition, BLAS libraries2 and
the numerical optimization tool CONDOR are needed (see below). The CSLM toolkit
provides the following executables:

• cslm_train: main tool to train CSLMs.
• nbest_tool: tool to process n-best lists (rescoring with a CSLM, recalculation

of global scores, solution extraction, . . .)
• text2bin: convert text files to a binary representation for faster loading
The tool kit can be downloaded from the following web-page: http://liumtools.

univ-lemans.fr. Detailed documentation on the available options of the executables
and examples are provided with the software.

The neural network routines of the library are generic and can be used for other
applications of neural networks. Arbitrary multi-layer networks can be created, either

1Note that the sum of the probabilities of the words in the short-list for a given context is normalized∑
w∈short-list P̂N(w|ht) =1.
2Basic Linear Algebra Subprograms, a commonly used library for matrix operations.

141

http://liumtools.univ-lemans.fr
http://liumtools.univ-lemans.fr

PBML 93 JANUARY 2010

by composing them sequentially, i.e. the output of one layer is fed to the input of the
following layer; or in parallel, i.e. the outputs of several layers are concatenated and
build up a larger layer (this is used to compose the projection layer of the CSLM).
Currently, only fully connected layers are implemented, i.e. each neuron in the input
layer is connected with each neuron in the output layer. Training is performed with
the standard back-propagation algorithm. Weight decay regularization is available
(see equation 6). The neural network functions are implemented with the goal to
achieve very fast training and recognition. For this high performance BLAS libraries
are needed which take advantage of specifics of the processor to achieve fast matrix
operations, e.g. SSE and multi-threading on Intel processors. We use the libraries
MKL which are available from Intel for a very small fee,3 but there are also freely
available libraries, like ATLAS.4 Speed comparison between different BLAS libraries
were not performed.

The program nbest_tool is used to process Moses-style n-best list. Its main func-
tion is to calculate LM probabilities with the CSLM for all the hypotheses. In addition,
it can be used to recalculate the global scores for a given set of parameters λ, sort the
scores and extract the best hypotheses. This is used to reoptimize the system (see
figure 2). It is planed to extend this tool with other operations on n-best lists, in par-
ticular MBR decoding.

The CSLM toolkit provides the program text2bin to convert the training texts into
a binary representation. Basically, each word is replaced with its integer index in the
word-list. It is more efficient to process this representation when using the resampling
algorithm.

4. Experimental evaluation

The CSLM was initially applied to large vocabulary continuous speech recognition
systems. It achieved significant reductions in the word error rate of up to 1% absolute
for a large variety of languages and domains (Schwenk, 2007). Based on this success,
the application to SMT was investigated, first in the framework of a system to translate
texts from the European parliament proceedings (Schwenk et al., 2006b). The good
results were then confirmed on a variety tasks, ranging from the resource-poor IWSLT
evaluations (Schwenk et al., 2006a, 2007) to large NIST systems (Schwenk and Estève,
2008). These experiments are summarized in the following.

In all cases a two-pass approach was applied: first Moses was run using a 4-gram
back-off LM and distinct 1000-best lists were created. Those 1000-best lists were then
rescored with the program nbest_tool. The LM probabilities calculated by the CSLM
can be used to replace those of the standard back-off LM or added as an additional
feature function. In both cases we performed a minimum error training of the coeffi-

3Math Kernel Library, http://software.intel.com/en-us/intel-mkl/
4http://math-atlas.sourceforge.net/

142

http://software.intel.com/en-us/intel-mkl/
http://math-atlas.sourceforge.net/

H. Schwenk CSLM for SMT (137–146)

Moses
n

bests
n

bests

Condor

Scoringtrg
Dev

hyp. extract.

nbest−tool
hyp

λ

BLEU

LM rescoring

nbest−tool

4g CSLM4g LMphrase table

src
Dev

2nd pass

tuning

Figure 2. Two pass decoding architecture. First distinct n-best lists are created with
Moses using a 4-gram back-off LM. These n-best lists are rescored with the CSLM. The
resulting n-best lists are then used to retune the coefficients of the feature functions
(2nd pass tuning). For this the freely numerical optimization tool Condor is used. It
iteratively provides a set of parameters λ which are used to recalculate the global
score and to extract the current best hypotheses. This is done with the program

nbest-tool. Those hypotheses are evaluated against the reference translations. The
BLEU score is used by the Condor tool to propose a new set of parameters λ, until

convergence.

cients of the feature functions, using the freely available numerical optimization tool
CONDOR (Berghen and Bersini, 2005). CONDOR performs a Powell-style numeri-
cal optimization. The two-pass architecture is summarized in figure 2. Examples of
tuning with CONDOR and supporting scripts are provided with the CSLM toolkit.

The goal of the IWSLT BTEC5 task is to translate typical expressions from the travel
domain, mainly between Asian languages and English. There are about 200 to 400
thousand words of bitexts available to train the translation models, in function of the
source language. The LM is trained on the English side of those texts. Given the par-
ticular domain of this task, adding texts from other sources, e.g. newspaper texts from
LDC’s Gigaword corpora, has only a small impact. Therefore, it should be promising
to apply the CSLM to this task since it is expected to take better advantage of the
limited amount of in-domain LM training data. This could be confirmed by the ex-

5Basic Travel Expression Corpus

143

PBML 93 JANUARY 2010

perimental results using standard phrase-based as well as n-gram based SMT systems
(Schwenk et al., 2006a). Those results are summarized in Table 1.

Phrase-based N-gram-based
Ref. CSLM Ref. CSLM

Zh/En 19.74 21.01 20.34 21.16
Ja/En 15.11 15.73 16.14 16.35

Ar/En 23.72 24.86 23.83 23.70
It/En 35.55 37.41 35.95 37.65

Table 1. BLEU scores on the IWSLT 2006 test data, 4-gram back-off versus CSLM for
phrase-based and n-gram-based translation systems.

It is also interesting to use the CSLM in conjunction with an n-gram based SMT sys-
tem to improve the translation model. This approach basically uses a language model
on bilingual tuples (Mariño et al., 2006), resulting in the same data sparseness prob-
lems as for the model on the target language. Practically, we just need to apply the
CSLM to change the corresponding feature function in the n-best list. Table 2 presents
those results for the Italian/English language pair (Schwenk et al., 2007). The contin-
uous space language model achieved a gain of 1 point BLEU while the continuous
space translation model only brought a little more than 0.2 BLEU points. However,
both models together achieved a gain of 1.5 points BLEU.

Back-off neural neural neural
TM+LM TM LM TM+LM

It/En 36.97 37.21 38.04 38.50

Table 2. BLEU scores on IWSLT 2006 test data for the combination of a neural
translation model (TM) and a neural language model (LM).

Finally, the method was applied to a task for which very large amounts of LM
training data are available, namely the NIST evaluation tasks. The goal of this evalu-
ations is to translate newspaper and web texts from Chinese and Arabic into English.
In addition to the English side of about 200 million words of bitexts, the LDC collec-
tion of newspaper texts can be considered to be close to in-domain. Those texts are
known as the Gigaword corpus and they amount to more than 3 billion words. It is of
course impossible to train a neural network on so many examples and this would be
even a bad idea: large collections like the AFP texts would dominate the smaller but
important text sources. It is well known that it is better to build separate back-off LMs

144

H. Schwenk CSLM for SMT (137–146)

on each text source, to determine a coefficient for each one and to interpolate them
together. Loosely inspired by this technique, a resampling method was used to train
the neural network. At each epoch of back-propagation training, we resample ran-
domly a subset of each corpus. The resampling coefficient is chosen to take all of the
small and important corpora, and smaller subsets of the other “background corpora”.
More details of this procedure are given in (Schwenk, 2007) and references therein.

The Arabic English system was optimized on the NIST’06 test set and tested on the
NIST’08 data. The reference systems achieves a BLEU score of 47.02 using a very large
back-off LM that was trained by keeping all the 4-grams that appear in more than 3.3
million words of texts. Applying the CSLM, again by rescoring distinct 1000-best lists,
improves the BLEU score to 47.90. The final system achieved a very good ranking in
the 2009 NIST evaluation.6

5. Conclusion

This paper described an open-source implementation of a continuous space lan-
guage model for SMT. The integration of the CSLM into the translation process is
performed by a two-pass approach: first n-best lists are generated which are then
rescored using a provided tool. This approach can be used with different types of
machine translation systems, as long as they are able to produce n-best lists that con-
tain the scores of all the feature functions. During the last years, continuous space
LMs were successfully applied to a variety of SMT systems. Improvements of the
BLEU scores of more than 1 point BLEU were observed and, in general, this also lead
to better human judgments.

The CSLM toolkit is meant to be a starting point for ongoing research in the field
of estimating probabilities in the continuous domain. Future versions may include
factored representations of the words, support for lattices instead of n-best lists and
an application of the approach to the translation model.

6. Acknowledgments

This work has been partially funded by the French Government under the project
I (ANR JCJC06 143038) and the European project FP7 EP.

6http://www.itl.nist.gov/iad/mig/tests/mt/2009/ResultsRelease/currentArabic.html

145

PBML 93 JANUARY 2010

Bibliography

Bengio, Yoshua, Rejean Ducharme, Pascal Vincent, and Christian Jauvin. A neural probabilistic
language model. Journal of Machine Learning Research, 3(2):1137–1155, 2003.

Berghen, Frank Vanden and Hugues Bersini. CONDOR, a new parallel, constrained extension
of powell’s UOBYQA algorithm: Experimental results and comparison with the DFO algo-
rithm. Journal of Computational and Applied Mathematics, 181:157–175, 2005.

Brants, Thorsten, Ashok C. Popat, Peng Xu, Franz J. Och, and Jeffrey Dean. Large language
models in machine translation. In Empirical Methods in Natural Language Processing, pages
858–867, 2007.

Chen, Stanley F. and Joshua T. Goodman. An empirical study of smoothing techniques for
language modeling. Computer Speech & Language, 13(4):359–394, 1999.

Federico, Marcello and Maura Cettolo. Efficient handling of n-gram language models for sta-
tistical machine translation. In Second ACL Workshop on Statistical Machine Translation, pages
88–95, 2007.

Koehn et al., Philipp. Moses: Open source toolkit for statistical machine translation. In ACL,
demonstration session, 2007.

Li, Zhifei, Chris Callison-Burch, Sanjeev Khudanpur, and Wren Thornton. Joshua: Open
source, parsing-based machine translation. The Prague Bulletin of Mathematical Linguistics,
(91), 2009.

Mariño, J.B., R.E. Banchs, J.M. Crego, A. de Gispert, P. Lambert, J.A.R. Fonollosa, and
M. R. Costa-jussà. Bilingual n-gram statistical machine translation. Computational Linguis-
tics, 32(4):527–549, December 2006.

Schwenk, Holger. Continuous space language models. Computer Speech & Language, 21:
492–518, 2007.

Schwenk, Holger and Yannick Estève. Data selection and smoothing in an open-source system
for the 2008 NIST machine translation evaluation. In Interspeech, pages 2727–2730, 2008.

Schwenk, Holger, Marta R. Costa-jussà, and José A. R. Fonollosa. Continuous space language
models for the IWSLT 2006 task. In International Workshop on Spoken Language Translation,
pages 166–173, November 2006a.

Schwenk, Holger, Daniel Déchelotte, and Jean-Luc Gauvain. Continuous space language mod-
els for statistical machine translation. In Proceedings of the COLING/ACL 2006 Main Confer-
ence Poster Sessions, pages 723–730, 2006b.

Schwenk, Holger, Marta R. Costa-jussà, and José A. R. Fonollosa. Smooth bilingual n-gram
translation. In Empirical Methods in Natural Language Processing, pages 430–438, 2007.

Stolcke, Andreas. SRILM - an extensible language modeling toolkit. In International Conference
on Speech and Language Processing, pages II: 901–904, 2002.

Talbot, David and Miles Osborne. Randomised language modelling for statistical machine
translation. In Proceedings of the Annual Meeting of the Association for Computational Linguis-
tics, pages 512–519, 2007. URL http://www.aclweb.org/anthology/P07-1065.

146

http://www.aclweb.org/anthology/P07-1065

The Prague Bulletin of Mathematical Linguistics
NUMBER 93 JANUARY 2010 147–155

MANY
Open Source Machine Translation System Combination

Loïc Barrault
LIUM, University of Le Mans

Abstract
This paper describes a push-the-button MT system combination toolkit. The combination is

based on the creation of a lattice made on several confusion networks (CN) connected together.
This lattice is then decoded with a token-pass decoder to provide the best and/or n-best out-
puts. Each CN is built using a modified version of the TERp tool. The toolkit is made of several
scripts along a core program developed in Java. It is totally configurable and the parameters
can be tuned quite easily.

1. Introduction

Machine translation (MT) system combination has taken a great importance these
past few years. This is mainly due to the fact that single systems achieved good per-
formance and the possibility of taking the most of their complementarity in a system
combination framework is very attractive. Many techniques can be used for system
combination. One concerns hypothesis selection using nbest list reranking based on
various features as described in (Hildebrand and Vogel, 2009). Another approach is
to consider source text and systems outputs as bitext and train a new SMT system on
these data (Chen et al., 2009).

In this paper, a system combination based on confusion network (CN) is described.
This approach is not new, and numerous publications are available on that subject, see
for example, (Rosti et al., 2007); (Shen et al., 2008); (Karakos et al., 2008) and (Leusch
et al., 2009). Such an approach is presented in Figure 1. The protocol can be decom-
posed into three steps :

© 2010 PBML. All rights reserved. Corresponding author: loic.barrault@gmail.com
Cite as: Loïc Barrault. MANY: Open Source Machine Translation System Combination. The Prague Bulletin of
Mathematical Linguistics No. 93, 2010, pp. 147–155. ISBN 978-80-904175-4-0.
doi: 10.2478/v10108-010-0001-y.

PBML 93 JANUARY 2010

System 0

System 1

TERp
alignment LM

output

1-best
output

1-best
output

TERp
alignment DECODEMerge

System M
1-best
output

TERp
alignment

{best hypo
nbest listLattice

CN

CN

CN

Figure 1. MT system combination. Each 1-best outputs are aligned to create as many
Confusion Networks which are connected together to form a lattice. This lattice is then
decoded with a token-pass decoder using a Language Model to produce 1-best and/or

n-best hypotheses.

1. 1-best hypotheses from all M systems are aligned in order to build confusion
networks.

2. All confusion networks are connected into a single lattice.
3. A language model is used to decode the resulting lattice and the best hypothesis

is generated.
Section 2.1 describes the alignment process and in particular the new features

added to TERp in order to be enable alignment of an hypothesis against a CN. The
decoder is presented in section 3. Some example results obtained at the IWSLT’09
evaluation campaign are given in section 5. Finally, a description of the toolkit is
given in section 6.

2. Hypotheses alignment and confusion network generation

The goal of this step is to put the words provided by different systems in compe-
tition with each other inside a confusion network (Mangu et al., 1999).

For each segment, the best hypotheses of M − 1 systems are aligned against the
last one used as backbone. A modified version of the TERp tool (Snover et al., 2009a)
(Snover et al., 2009b) is used to generate a confusion network (see section 2.1 for de-
tails). This is done by incrementally adding the hypotheses to the CN. The hypotheses
are added to the backbone beginning with the nearest (in terms of TER) and ending
with the more distant one. This differs from the result of (Rosti et al., 2007) where
the nearest hypothesis is computed at each step, which is supposed to be better. M

confusion networks are generated in this way. Then all the confusion networks are
connected into a single lattice by adding a first and last node. The probability of the

148

L. Barrault Open Source MT System Combination (147–155)

first arcs (later named priors) must reflect how well such system provides a well struc-
tured hypothesis.

2.1. Modified TERp

The modified TERp is based on TERp v0.1 and is written in Java. Some classes have
been modified and new ones were created to add some functionalities such as align-
ment between a sentence and a confusion network. This has been done by modifying
the data structure and extending some heuristic to find better alignment.

When using relaxed constraints with TERp, the shift heuristics allow a block of
words to be moved if it matches (or is a paraphrase of) another block of words some-
where else. Shifts are also allowed when a stem or synonym is found somewhere
else.

When considering confusion networks, the same heuristics are applied except that
the block of words must match (be a paraphrase, synonyms or stem of) one of the
sequence of words represented in the CN. An example of such a case is presented
in figure 2. In figure 2, we can notice that the paraphrase the dinner / supper allow

Is
the dinner

included ?

Do you dinnercalculated ?have

Is the dinner included ?

isSupper ?included

Paraphrase

{

Match

Is the dinner included

?

NULLsupper

Match

Match

Match

Sub

SubIns
Sub

Do you NULL
supper

calculated
have

NULL

Match

Figure 2. Incremental alignment with TERp resulting in a confusion network.

a switch of block of word. However, the word supper is aligned with the word the
because no rule is used in order to make inside-paraphrase word alignment, yet ! (see
section 6.4 for future features).

149

PBML 93 JANUARY 2010

In addition to the confusion network generation, the possibility of using scores
on words has been added, which can be very useful during the decoding. For the
moment, these scores must be computed separately from MANY. The underlying idea
is to provide an option to include confidence measure at word level, though it can be
computed at any level (see for example, (Ueffing and Ney, 2005)). In this version of
the software, the scores are equal to the priors of the systems. However, these values
can be modified in the configuration file.

3. Decoding

The decoder is based on the token pass decoding algorithm (see for example (Young
et al., 1989)). The principle of this decoder is to propagate tokens over the lattice and
accumulate various scores into a global score for each hypotheses.

The scores used to evaluate the hypotheses are the following :
• the system score : this replace the score of the translation model. Until now, the

words given by all systems have the same probability which are equal to their
priors, but any confidence measure can be used at this step.

• the language model (LM) probability.
• a fudge factor to balance the probabilities provided in the lattice with regard to

those given by the language model.
• a null-arc penalty : this penalty avoids to always go through null-arcs encoun-

tered in the lattice.
• a length penalty : this score helps to generate correctly sized hypotheses.
The probabilities computed in the decoder can be expressed as follow :

log(PW) =

Len(W)∑
n=0

[log(Pws(n)) + αPlm(n)] (1)

+Lenpen(W) + Nullpen(W)

where Len(W) is the length of the hypothesis, Pws(n) is the score of the nth word
in the lattice, Plm(n) is its LM probability, α is the fudge factor, Lenpen(W) is the
length penalty of the word sequence and Nullpen(W) is the penalty associated with
the number of null-arcs crossed to obtain the hypothesis.

At the beginning, only one token is created at the first node of the lattice. Then this
token spread over the consecutive nodes, accumulating the score on the arc it crosses,
the language model probability of the word sequence generated so far and null or
length penalty if applicable. The number of tokens can increase really quickly to cover
the whole lattice, and, in order to keep it tractable, only the Nmax best tokens are kept
(the others are discarded), where Nmax can be configured in the configuration file.
Other methods to restrict the number of tokens (like pruning based on score or other
heuristics) can easily be implemented in this software, but this is not done already.

150

L. Barrault Open Source MT System Combination (147–155)

3.1. Technical details about the token pass decoder

This software is based on the Sphinx4 library and is highly configurable (Walker
et al., 2004). The maximum number of tokens being considered during decoding, the
fudge factor, the null-arc penalty and the length penalty can all be set within the xml
configuration file. This is useful for tuning (see the config file generator description
in section 6.2).

The probabilities which are manipulated within the decoder are all obtained from
the LogMath class which ensures the consistency of the values.

3.2. Language model

There are two ways of loading a LM with this software.
The first solution is to use the LargeTrigramModel class, but as its name tells us,

only a 3-gram model can be loaded with this class.
The second and easiest way is to use a language model hosted on a lm-server. This

kind of LM can be accessed via the LanguageModelOnServer class which is based on
the generic LanguageModel class from the Sphinx4 library. This allows us to load a
n-gram LM with n higher than 3, which is not possible with a standard LM class in
Sphinx4 yet (it is currently being done).

In addition, the Dictionary interface has been extended in order to be able to load
a simple dictionary containing all the words known by the LM (no need to know the
different pronunciations of each words in this case).

As the language model interface is also written in java and is using the Sphinx4
library, one could easily write a new class to load a LM in a proprietary file format.

4. Tuning

There is a lot of parameters which can be tuned in MANY. The edit costs of the
modified TERp, the prior costs of each systems in the lattice, the fudge, null-arc penalty
and length penalty for the decoder. This can easily been done by generating configu-
ration files (with the help of genSphinxConfig.pl, see section 6.3). Parameters for mod-
ified TERp, for the decoder and systems weights are currently tuned together. The
separate tuning of TERp and decoder parameters is an ongoing work, and I could not
say whether it is preferable or not yet.

Any method can then be used to provide new values for these parameters. As an
example, we are using Condor (Berghen and Bersini, 2005) to optimize those param-
eters.

5. Some example results

MANY software has been used for the IWSLT’09 evaluation campaign. Table 1
presents the results obtained with this approach. The SMT system is based on MOSES,

151

PBML 93 JANUARY 2010

the SPE system corresponds to a rule-based system from SYSTRAN whose outputs
have been corrected by a SMT system and the Hierarchical is based on Joshua.

Systems Arabic/English Chinese/English
Dev7 Test09 Dev7 Test09

SMT CSLM 54.75 50.35 41.71 36.04
SPE CSLM 48.13 - 41.23 38.53
Hierarchical 54.00 49.06 39.78 31.89
SMT CSLM + SPE CSLM 42.55 40.14
+ tuning 43.06 39.46
SMT CSLM + Hier. 55.89 50.86
+ tuning 57.01 51.74

Table 1. Results of system combination on Dev7 (development) corpus and Test09,
the official test corpus of IWSLT’09 evaluation campaign.

In these task, the system combination approach yielded +1.39 BLEU on Ar/En and
+1.7 BLEU on Zh/En. One observation is that tuning parameters did not provided
better results for Zh/En.

6. Software description

The software is available at the following address :

http://www-lium.univ-lemans.fr/~barrault/MANY

6.1. Data

The software takes several files as input (which are supposed to be synchronized1)
containing the 1-best hypothesis of all systems, one sentence per line. These hypothe-
ses can contain foreign words if no translation have been found for them, and they
will be considered as unknown words during the decoding step.

6.2. Configuration file

The configuration file is an xml file similar to those used with Sphinx4.
<component name="decoder" type="edu.loic.decoder.TokenPassDecoder">
<property name="dictionary" value="dictionary"/>
<property name="logMath" value="logMath"/>
<property name="logLevel" value="INFO"/>

1i.e. each nth line is the translation of the same source sentence

152

L. Barrault Open Source MT System Combination (147–155)

<property name="lmonserver" value="lmonserver"/>
<property name="fudge" value="0.2"/> <!-- This value is multiplied by 10 in the software -->
<property name="null_penalty" value="0.3"/>
<property name="length_penalty" value="0.5"/> <!-- This value is multiplied by 10 in the software -->
</component>

This part allows us to configure the decoder parameters such and more particularly
the fudge factor, the null-arc penalty and the length penalty.
<component name="lmonserver" type="edu.cmu.sphinx.linguist.language.ngram.LanguageModelOnServer">
<property name="lmserverport" value="1234"/>
<property name="lmserverhost" value="machine1"/>
<property name="maxDepth" value="4"/>
<property name="logMath" value="logMath"/>
</component>

This part configures the LM class which will connect to the lm-server hosted on ma-
chine1 on port ”1234”. The maxDepth field correspond to the depth of the LM loaded
on the server.
<component name="MANY" type="edu.lium.mt.MANY">
<property name="decoder" value="decoder"/>
<property name="terp" value="terp"/>
<property name="output" value="output.many"/>
<property name="priors" value="4.0e-01 4.0e-01 2.0e-01"/>
<property name="hypotheses" value="hyp0.id hyp1.id hyp2.id" />
<property name="hyps_scores" value="hyp0_sc.id hyp1_sc.id hyp2_sc.id" />
<property name="costs" value="1.0 1.0 1.0 1.0 1.0 0.0 1.0" />
<!-- del stem syn ins sub match shift-->
<property name="terpParams" value="terp.params"/>
<property name="wordnet" value="/opt/mt/WordNet-3.0/dict/"/>
<property name="shift_word_stop_list" value="/opt/mt/terp/terp.v1/data/shift_word_stop_list.txt"/>
<property name="paraphrases" value="/opt/mt/terp/terp.v1/data/phrases.db"/>
</component>

This part is the core part. It configures the various files to combine, the costs for
TERp, the location of WordNet and the paraphrases table (also for TERp). The priors
can be set here and are used in the lattice.

6.3. Scripts

The main script is called Many.sh. Some parameters have to be set inside this script
in order to run a system combination experiments. The reader should refer to the
readme file provided with the software.

Each input sentence (as well as the corresponding word scores) must have an id
which is of the following form : [set][doc.##][sent] The shell script add_id.sh is in
charge of adding such an id to the input data (called in the Many.sh script).

The perl script genSphinxConfig.pl is used to generate a new config file with specific
values. This is very useful for generating a new config file with parameters estimated
by a certain optimization procedure.

6.4. Future features

Several features are planned to be added into MANY. One is the possibility of ex-
ploring all shifts which do not decrease the alignment score instead of using heuris-

153

PBML 93 JANUARY 2010

tics. This has been done by (Rosti et al., 2009) and provided good results (even though
the increasing time of processing was not indicated).

Another feature would be the intra-paraphrase word alignment. Like is presented
in figure 2, when a paraphrase is found, it appears that the word alignment inside
that paraphrase is not always the best. In that example, (supper is aligned with the
instead of dinner, which would be better. This could be easily added using a specific
alignment model.

As mentioned before, the load of a n-gram (whatever is n) language model has to
be added. In some cases, that can be faster than using a LM server.

An alternative to the token pass decoder would be the use of Minimum Bayesian
Risk decoder applied on the final lattice (MBR-Lattice) like described in (Tromble
et al., 2008)

7. Discussion

One might notice that the performance of a system combination is highly depen-
dent of the input hypotheses (in terms of number of hypotheses, complementarity of
the systems which provide them, and of course quality), the parameters of the align-
ment module and the language model used to decode the lattice. The tuning of all
parameters plays consequently a big role in the quality of this kind of approach. As
an example, in (Rosti et al., 2009), after the creation of the lattice, three iterations of
tuning have been done in order to obtain good results. This kind of tuning procedure
is not currently implemented in that software, but it is a very important step which
should not be underestimated.

8. Conclusion

This paper presents a machine translation system combination software, MANY,
based on the decoding of a lattice made of several confusion networks connected to-
gether. The software is written in java and is composed of a modified version of TERp
software and a decoder based on Sphinx4 library. This software, which is easily exten-
sible and highly configurable, obtained good results when used during the IWSLT’09
evaluation campaign.

Bibliography

Berghen, Frank Vanden and Hugues Bersini. CONDOR, a new parallel, constrained extension
of powell’s UOBYQA algorithm: Experimental results and comparison with the DFO algo-
rithm. Journal of Computational and Applied Mathematics, 181:157–175, September 2005.

Chen, Yu, Michael Jellinghaus, Andreas Eisele, Yi Chang, Sabine Hunsicker, Silke Theison,
Christian Federmann, and Hans Uszkoreit. Combining multi-engine translations with
moses. In Workshop on Statistical Machine Translation, pages 42–46, Athens, Greece, March
2009.

154

L. Barrault Open Source MT System Combination (147–155)

Hildebrand, Almut Silja and Stephan Vogel. CMU system combination for WMT’09. In Pro-
ceedings of the Fourth Workshop on Statistical Machine Translation, pages 47–50, Athens, Greece,
March 2009.

Karakos, Damianos, Jason Eisner, Sanjeev Khudanpur, and Markus Dreyer. Machine transla-
tion system combination using ITG-based alignments. In 46th Annual Meeting of the Asso-
ciation for Computational Linguistics: Human Language Technologies., pages 81–84, Columbus,
Ohio, USA, June 16-17 2008.

Leusch, G., E. Matusov, and H. Ney. The RWTH system combination system for WMT 2009.
In Proceedings of the Fourth Workshop on Statistical Machine Translation, pages 61–65, Athens,
Greece, March 30-31 2009.

Mangu, L., E. Brill, and A. Stolcke. Finding consensus among words : Lattice-based word error
minimization. In European Conference on Speech Communication and Technology, Interspeech,
volume I, pages 495–498, 1999.

Rosti, A.-V.I., S. Matsoukas, and R. Schwartz. Improved word-level system combination for
machine translation. In Association for Computational Linguistics, pages 312–319, 2007.

Rosti, A.-V.I., B. Zhang, S. Matsoukas, , and R. Schwartz. Incremental hypothesis align-
ment with flexible matching for building confusion networks: BBN system description for
WMT09 system combination task. In EACL/WMT, pages 61–65, 2009.

Shen, Wade, Brian Delaney, Tim Anderson, and Ray Slyh. The MIT-LL/AFRL IWSLT-2008 MT
System. In International Workshop on Spoken Language Translation, Hawaii, U.S.A, 69–76 2008.

Snover, Matthew, Nitin Madnani, Bonnie Dorr, and Richard Schwartz. Fluency, adequacy, or
HTER? exploring different human judgments with a tunable MT metric. In Workshop on
Statistical Machine Translation, Athens, Greece, March 2009a.

Snover, Matthew, Nitin Madnani, Bonnie Dorr, and Richard Schwartz. TER-Plus: Paraphrase,
semantic, and alignment enhancements to translation edit rate. Machine Translation Journal,
2009b.

Tromble, Roy W., Shankar Kumar, Franz Och, and Wolfgang Macherey. Lattice Minimum
Bayes-Risk decoding for statistical machine translation. In Conference on Empirical Methods
in Natural Language Processing, pages 620–629, Honolulu, Oct. 2008.

Ueffing, Nicola and Hermann Ney. Word-level confidence estimation for machine translation
using phrase-based translation models. In International Conference on Human Language Tech-
nology and Empirical Methods in Natural Language Processing, pages 763–770, Morristown, NJ,
USA, 2005. Association for Computational Linguistics. doi: http://dx.doi.org/10.3115/
1220575.1220671.

Walker, Wille, Paul Lamere, Philip Kwok, Bhiksha Raj, Rita Singh, Evandro Gouvea, Peter Wolf,
and Joe Woelfel. Sphinx-4: A flexible open source framework for speech recognition. Tech-
nical Report TR-2004-139l, Sun Microsystems Laboratories, Novembre 2004.

Young, S. J., N. H. Russell, and J. H. S. Thornton. Token passing : a simple conceptual model
for connected speech recognition systems. Technical report, Cambridge University Engi-
neering Department, July 1989.

155

The Prague Bulletin of Mathematical Linguistics
NUMBER 93 JANUARY 2010 157–166

Hierarchical Phrase-Based Grammar Extraction in Joshua
Suffix Arrays and Prefix Trees

Lane Schwartza, Chris Callison-Burchb

a University of Minnesota, Minneapolis
b Center for Language and Speech Processing, Johns Hopkins University, Baltimore

Abstract
While example-based machine translation has long used corpus information at run-time,

statistical phrase-based approaches typically include a preprocessing stage where an aligned
parallel corpus is split into phrases, and parameter values are calculated for each phrase using
simple relative frequency estimates. This paper describes an open source implementation of
the crucial algorithms presented in (Lopez, 2008) which allow direct run-time calculation of
SCFG translation rules in Joshua.

1. Introduction

A significant amount of the recent research in statistical machine translation has
focused on modeling translation based on contiguous strings of words, called phrases,
in the source language and corresponding phrases in the target language. Phrase-
based translation (Och et al., 1999; Koehn et al., 2003; Marcu and Wong, 2002; Och
and Ney, 2004) have proved to be very successful, and many state-of-the-art machine
translation systems are based on these approaches.

A critical component in phrase-based translation is the estimation of a transla-
tion model from a word-aligned parallel text. A phrase table containing the source
phrases, their target translations and their associated probabilities that is typically ex-
tracted in a preprocessing stage before decoding a test set (Koehn et al., 2003; Kumar
et al., 2006). An example of this preprocessing approach is found in the training scripts
provided as part of the open source phrase-based Moses toolkit (Koehn et al., 2007).
Hierarchical phrase-based translation (Chiang, 2005) extends phrase-based transla-

© 2010 PBML. All rights reserved. Corresponding author: lane@cs.umn.edu
Cite as: Lane Schwartz, Chris Callison-Burch. Hierarchical Phrase-Based Grammar Extraction in Joshua: Suffix
Arrays and Prefix Trees. The Prague Bulletin of Mathematical Linguistics No. 93, 2010, pp. 157–166. ISBN
978-80-904175-4-0. doi: 10.2478/v10108-010-0013-7.

PBML 93 JANUARY 2010

tion by allowing phrases with gaps, modeled as a synchronous context-free grammar
(SCFG). The original Hiero implementation (Chiang, 2007) trains its SFCG translation
model in a similar preprocessing stage.

By contrast, example-based machine translation (EBMT) approaches (Nagao, 1981;
Sato and Nagao, 1990; Somers, 2003) are notable for their use of aligned parallel cor-
pora at run time. EBMT research has successfully explored how various efficient data
structures for pattern matching (Brown, 2004) can be leveraged to allow the decoder
to access at decode-time portions of the training text that are most relevant to the
text currently being translated. The Cunei machine translation toolkit (Phillips and
Brown, 2009) is an open source, statistical EBMT system that follows this approach.

Suffix arrays are compact data structures which allow efficient pattern matching to
be performed over all text in a corpus (Manber and Myers, 1990). Callison-Burch et al.
(2005) and Zhang and Vogel (2005) showed that suffix arrays can be adapted to allow
phrase-based translation to calculate translation options for the translation model at
run-time. A subsample of occurrences of given source phrase are used to calculate
translation probabilities. By accessing the target corpus and word alignment data,
the phrasal translations and their associated model parameters can be calculated at
run-time. Lopez (2007) showed that hierarchical phrases can also by obtained at run
time using a suffix array.

This article reports on an implementation of the basic techniques described in
Lopez (2008) that was incoporated into the open source machine translation system
Joshua (Li et al., 2009). The implementation described here enables users of Joshua
to begin translating sentences using an aligned parallel corpus without having to ex-
tract an SCFG before decoding begins. The advantages of using this implementation
are that any input sentence can be decoded (making it appropriate for live demos or
real world use), and that the data structures require much less disk space than full
phrase tables. This comes at the cost of slower running time for the decoder itself,
since phrase translations have to be calculated on the fly.

2. Related Work

While example-based machine translation has long used corpus information at
run-time, statistical phrase-based approaches typically include a preprocessing stage
where an aligned parallel corpus is split into phrases, and parameter values are cal-
culated for each phrase using simple relative frequency estimates. The phrase-based
decoders Pharaoh (Koehn, 2004) and Moses (Koehn et al., 2007) take this approach,
providing users with scripts to estimate a translation model from a sentence-aligned
parallel corpus. Similarly, Hiero (Chiang, 2007) and the syntax-augmented machine
translation (SAMT) system (Zollmann and Venugopal, 2006) both require a prepro-
cessing stage to extract a SCFG translation model. Recent work in Moses (Huang and
Koehn, p.c.) provides similar functionality for extracting an SCFG-based translation
model during a preprocessing stage.

158

L. Schwartz, C. Callison-Burch Grammar Extraction (157–166)

Callison-Burch et al. (2005), Zhang and Vogel (2005), and Lopez (2008) all describe
implementations of traditional phrase-based models extended to take advantage of
suffix array data structures to extract phrase translation options at run-time. How-
ever, functional open source implementations of these have yet to be made available.
Preliminary work has investigated integrating these techniques into Moses, but this
work is not complete.1

Lopez (2008) provides a fast implementation of SCFG grammar extraction for Hi-
ero which uses suffix arrays. This implementation allows Hiero to use an aligned
parallel corpus at run-time in lieu of a pre-extracted SCFG. However, this implemen-
tation is not available as open source software due to intellectual property restrictions
imposed by the University of Maryland. Cunei (Phillips and Brown, 2009)2 is a statis-
tical open source EBMT system that uses suffix arrays to extract relevant phrase pairs
from an aligned parallel corpus at run-time.

3. Implementation: Data Structures and Algorithms

To extract hierarchical translation rules at run-time, the decoder must have access
to the aligned parallel corpus. Internally, Joshua treats all source and target words as
32-bit integers. Each unique string that is encountered is assigned a unique integer.
A hash map maintains the mapping from string to integer, while a corresponding list
of strings maintains the mapping from integer back to string. Together these data
structures comprise the symbol table.

A corpus can be considered a simple list whose size is equal to the number of
words in the corpus. Using this approach with the symbol table, Joshua stores the
source corpus as an integer array. An auxiliary array, with size equal to the number
of sentences in the source corpus, is maintained. Elements in this auxiliary sentence
array indicate the corpus index where each sentence begins. The target corpus is like-
wise represented by a corpus array and corresponding sentence array.

Once the source and target corpus arrays are available, the corresponding suffix
arrays can be constructed. Given a corpus array c and a symbol table, a second array
is created of equal size to the corpus array. This array s is initialized such that s[x] = x.
Where each integer in c represents a word string, each integer in s represents an index
into c. The contents of s are sorted, using the element comparison function defined in
Figure 1. After sorting, the indices of all instances in the corpus of any given phrase
are located in a contiguous segment in the suffix array s.

While a phrase-based decoder can simply look up any required phrase in a suf-
fix array, hierarchical decoders must deal with discontinuous phrases that include
gaps. To deal with such phrases, Lopez (2008) defines an incremental algorithm for

1Much of this preliminary work was conducted by Chris Callison-Burch, Andreas Eisele, Juri Ganitke-
vitch, and Adam Lopez at the Second Machine Translation Marathon in 2008.

2http://sourceforge.net/projects/cunei

159

http://sourceforge.net/projects/cunei

PBML 93 JANUARY 2010

1: function C_E(index1, index2, max, corpusEnd)
2: for i = 0; i < max; i + + do
3: if index1 + i < corpusEnd and index2 + i > corpusEnd then
4: return 1

5: else if index2 + i < corpusEnd and index1 + i > corpusEnd then
6: return −1

7: else if corpus[index1 + i] is lexicographically < corpus[index2 + i] then
8: return −1

9: else if corpus[index1 + i] is lexicographically > corpus[index2 + i] then
10: return 1

11: end if
12: end for
13: return 0

14: end function

Figure 1. During suffix array creation, the contents of a corpus array are sorted using
the element comparison function C_E

constructing a specialized trie (Fredkin, 1960) to represent the SCFG translation gram-
mar. Given a source sentence, this algorithm constructs a prefix tree with suffix links
by first examining all possible contiguous source phrases, and uses the source suffix
array to look up translations for contiguous phrases. Hierarchical phrases that consist
of a contiguous phrase preceded or followed by a single nonterminal X can be con-
structed directly from the corresponding contiguous phrase. In this manner, the tree
is gradually constructed into a grammar containing contiguous phrases and simple
hierarchical phrases.

More complex hierarchical phrases are constructed using the Q_I func-
tion in Figure 2. This function takes two smaller phrases aα and αb (a and b represent
single words and α represents a sequence), along with the list of indices where these
phrases are located. These two lists can be efficiently processed to determine the lo-
cations where the two phrases intersect to form the more complex phrase aαb. In this
way, all source hierarchical phrases can be located.

Each node in the prefix tree corresponds to a unique source phrase. Each node
stores the complete list of all indices in the source corpus where that node’s phrase
occurs. These locations are used in conjunction with the target corpus array and the
word alignment data to construct SCFG translation rules.

Ideally, once translation rules have been extracted for a given source phrase, those
rules would be stored and not calculated again. Memory constraints typically dictate
that not all rules are stored. Rather than storing the translation rules for a given source
phrase at the corresponding node in the prefix tree, a single least-recently-used (LRU)

160

L. Schwartz, C. Callison-Burch Grammar Extraction (157–166)

Algorithm Q_I
Input: Sorted list of corpus locations matching source language pattern aα: Maα

Input: Sorted list of corpus locations matching source language pattern αb: Mαb

1: function Q_I(Maα, Mαb)
2: Maαb ← ∅ ◃ Result list is initially empty
3: I← |Maα| ◃ Number of instances of pattern aα in the source corpus
4: J← |Mαb| ◃ Number of instances of pattern αb in the source corpus
5: j← 0

6: i← 0

7: while i < I and j < J do
8: ◃ Ignore elements in Mαb that are
9: ◃ too distant to intersect with Maα[i]

10: while j < J and Maα[i]>̈Mαb[j] do
11: j← j + 1

12: end while
13: ◃ Verify that the corpus index
14: ◃ for the first terminal symbol
15: k← i ◃ in pattern αb is the same
16: while Mαb[i],1 = Mαb[k],1 do ◃ for locations Mαb[i] and Mαb[k]
17: ℓ← j

18: while ℓ < J and not Maα[i]<̈Mαb[ℓ] do
19: if Maα[i]=̈Mαb[ℓ] then
20: Intersect Maα[i] with Mαb[ℓ] and append result to Maαb

21: end if
22: ℓ← ℓ + 1 ◃ Proceed to next element in Mαb

23: end while
24: i← i + 1 ◃ Proceed to next element in Maα

25: end while
26: end while
27: return Maαb

28: end function

Result: Sorted list of corpus locations matching source language pattern aαb : Maαb

Figure 2. Query intersection algorithm implemented in Joshua. This algorithm is
adapted from a corrected version (Lopez, p.c.) of query intersection (Lopez, 2008).

161

PBML 93 JANUARY 2010

cache is maintained. This cache maps from source phrase to the corresponding set of
translation rules.

Another technique used to save memory is the option of using memory-mapped
data structures. Memory-mapped version of the corpus array, suffix array, and align-
ment grids data structures are implemented and used by default.

4. Using Joshua

Given a word-aligned parallel corpus, the first step in extracting a grammar, ei-
ther at run-time or during a preprocessing stage, is to compile the memory-mappable
data structures to binary files on disk. The joshua.corpus.suffix_array.Compile
program takes four parameters: source corpus text file, target corpus text file, word
alignments text file, and an output directory path. The output directory, by conven-
tion, is named with the suffix .josh. This directory stores the binary representations
of the symbol table, source and target corpus arrays, and the source and target suffix
arrays. These binary files are given canonical names inside the .josh directory, so that
the decoder can use them simply by specifying the .josh directory in the tm_file=. . .
line of the Joshua configuration file.

It is often useful (especially during MERT) to extract a test set specific grammar
once in a preprocessing step, since that test set will be translated many times and
re-extracting the grammar each time would be wasteful. To perform this task, the
program joshua.prefix_tree.ExtractRules can be used. When run directly, this
program accepts either three arguments (a compiled .josh directory, file name for
grammar to extract, and test file) or five arguments (source corpus text file, target
corpus text file, word alignments text file, file name for grammar to extract, and test
file). The following subsections document the mandatory and optional parameters
that can be passed to this program through the extractRules ant task.

4.1. Mandatory parameters

testFile Path to plain text file containing a source language test file. The grammar
extracted by extractRules will be all of the rules required to translate the sen-
tences in this test file.

outputFile Path where extracted grammar will be placed. This grammar will consist
of all of the rules required to translate the sentences in the test file defined in the
testFile option.

joshDir Path to directory containing the binary files representing memory-mappable
aligned parallel corpus.

The following parameters may be specified instead of the joshDir parameter.
sourceFileName Path to text file containing source corpus.
targetFileName Path to text file containing target corpus.
alignmentsFileName Path to text file containing word alignment data.

162

L. Schwartz, C. Callison-Burch Grammar Extraction (157–166)

4.2. Optional parameters

maxPhraseSpan Defines the maximum span (in the source corpus) of any extracted
SCFG rule. Default value is 10.

maxPhraseLength Defines the maximum number of tokens (terminals plus nonter-
minals) allowed in the source right-hand side of any extracted SCFG rule. De-
fault value is 10.

maxNonterminals Defines the maximum number of nonterminal symbols allowed
in the source side of any synchronous context-free rule extracted. Note: the
number and type of nonterminals is the same in the source and target right-
hand sides of a SCFG rule. Default value is 2.

cacheSize Maximum number of source phrases for which translation rules will be
maintained in the least-recently-used (LRU) cache.

encoding Defines the file encoding scheme of the input test file and the output gram-
mar file. Default value is UTF-8.

ruleSampleSize When extracting SCFG rules for a given source language phrase, this
option defines the number of instances of that source phrase will be sampled
from the source training corpus for use in rule extraction. Default value is 300.

startingSentence Defines the (1-based) sentence index in the test file where gram-
mar extraction will begin. Default value is 1, indicating that a grammar will be
extracted capable of translating sentences starting with the first sentence in the
test file.

maxTestSentences Defines the number of sentences in the test file over which gram-
mar extraction will be performed. Default value is Integer.MAX_VALUE. For ex-
ample, given a test file of 100 sentences, the options startingSentence="51"
maxTestSentences="25"would cause grammar extraction to be performed over
test sentences 51–75.

The following parameters can be configured in the extractRules target to make
rule extraction behave like the Hiero suffix array rule extractor (Lopez, 2008) instead
of the behaving according to the rule extraction originally defined in Chiang (2005).
sentenceInitialX Boolean option indicates whether rules with an initial source-side

nonterminal should be extracted from phrases at the start of a sentence, even
though such rules do not have supporting corporal evidence. This option is
provided for compatibility with Hiero’s suffix array rule extractor (Lopez, 2008),
in which this setting is set to true. Default value is true.

sentenceFinalX Boolean option indicates whether rules with a final source-side non-
terminal should be extracted from phrases at the end of a sentence, even though
such rules do not have supporting corporal evidence. This option is provided
for compatibility with Hiero’s suffix array rule extractor (Lopez, 2008), in which
this setting is set to true. Default value is true.

edgeXViolates Boolean option indicates whether rules with an initial or final source-
side nonterminal should be extracted when the source corpus phrase span for

163

PBML 93 JANUARY 2010

the rule, discounting the initial or final nonterminal, is already equal to the max-
imum phrase span value. Since nonterminals conceptually correspond to elided
elements in the training corpus, setting this value to true allows phrases which
have a longer phrase span than the maximum allowed phrase span. This option
is provided for compatibility with Hiero’s suffix array rule extractor (Lopez,
2008), in which this setting is set to true. Default value is true.

requireTightSpans Boolean option; if true, follow the heuristic from (Chiang, 2005):
where multiple initial phrase pairs contain the same set of alignment points,
consider only the smallest when performing rule extraction. For compatibility
with Lopez (2008), set this parameter to false. Default value is true.

Additional options can be configured in the extractRules target to change the
behavior of the prefix tree.
keepTree Boolean option indicates whether the prefix tree should persist from sen-

tence to sentence during grammar extraction. If set to false, a new prefix tree
will be created to process each sentence in the test file. Default value is true.

printPrefixTree Boolean option indicates whether a representation of the prefix tree
should be printed to standard output. If set to true, the tree will be printed after
processing each sentence in the test file. Default value is false.

Acknowledgements

This research was supported in part by the EuroMatrixPlus project funded by the
European Commission under the Seventh Framework Programme, by the US Na-
tional Science Foundation under grant IIS-0713448, and by the DARPA GALE pro-
gram under contract number HR0011-06-2-0001. Any opinions, findings, and conclu-
sions or recommendations expressed in this material are those of the authors and do
not necessarily reflect the views of the sponsors.

Special thanks to Adam Lopez for his help and advice, and for making the LATEXcode
for his algorithms available.

Bibliography

Brown, Ralf D. A modified burrows-wheeler transform for highly-scalable example-based
translation. In Proceedings of the 6th Biennial Conference of the Association for Machine Transla-
tion in the Americas (AMTA-2004), Washington DC, 2004.

Callison-Burch, Chris, Colin Bannard, and Josh Schroeder. Scaling phrase-based statistical ma-
chine translation to larger corpora and longer phrases. In Proceedings of the 43rd Annual
Meeting of the Association for Computational Linguistics (ACL-2005), Ann Arbor, Michigan,
2005.

Chiang, David. A hierarchical phrase-based model for statistical machine translation. In Pro-
ceedings of the 43rd Annual Meeting of the Association for Computational Linguistics (ACL-2005),
Ann Arbor, Michigan, 2005.

164

L. Schwartz, C. Callison-Burch Grammar Extraction (157–166)

Chiang, David. Hierarchical phrase-based translation. Computational Linguistics, 33(2):201–228,
2007.

Fredkin, Edward. Trie memory. In Communications of the ACM, volume 3, pages 490–499, 1960.
Koehn, Philipp. Pharaoh: A beam search decoder for phrase-based statistical machine trans-

lation models. In Proceedings of the 6th Biennial Conference of the Association for Machine
Translation in the Americas (AMTA-2004), Washington DC, 2004. URL http://www.iccs.
informatics.ed.ac.uk/~pkoehn/publications/pharaoh-amta2004.pdf.

Koehn, Philipp, Franz Josef Och, and Daniel Marcu. Statistical phrase-based translation. In
Proceedings of the Human Language Technology Conference of the North American chapter of the
Association for Computational Linguistics (HLT/NAACL-2003), Edmonton, Alberta, 2003. URL
http://www.isi.edu/~koehn/publications/phrase2003.pdf.

Koehn, Philipp, Hieu Hoang, Alexandra Birch, Chris Callison-Burch, Marcello Federico, Nicola
Bertoldi, Brooke Cowan, Wade Shen, Christine Moran, Richard Zens, Chris Dyer, Ondrej
Bojar, Alexandra Constantin, and Evan Herbst. Moses: Open source toolkit for statistical
machine translation. In Proc. ACL-2007 Demo and Poster Sessions, Prague, Czech Republic,
2007.

Kumar, Shankar, Yonggang Deng, and William Byrne. A weighted finite state transducer trans-
lation template model for statistical machine translation. Natural Language Engineering, 12
(1):35–75, 2006.

Li, Zhifei, Chris Callison-Burch, Chris Dyer, Juri Ganitkevitch, Sanjeev Khudanpur, Lane
Schwartz, Wren Thornton, Jonathan Weese, and Omar Zaidan. Joshua: An open source
toolkit for parsing-based machine translation. In Proceedings of the Fourth Workshop on Statis-
tical Machine Translation, pages 135–139, Athens, Greece, March 2009. Association for Com-
putational Linguistics. URL http://www.aclweb.org/anthology/W/W09/W09-0x24.

Lopez, Adam. Hierarchical phrase-based translation with suffix arrays. In Proceedings of the
2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational
Natural Language Learning (EMNLP-CoNLL), 2007.

Lopez, Adam. Machine Translation by Pattern Matching. PhD thesis, University of Maryland,
March 2008.

Manber, Udi and Gene Myers. Suffix arrays: A new method for on-line string searches. In The
First Annual ACM-SIAM Symposium on Dicrete Algorithms, pages 319–327, 1990.

Marcu, Daniel and William Wong. A phrase-based, joint probability model for statistical ma-
chine translation. In Proceedings of the 2002 Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP-2002), Philadelphia, Pennsylvania, 2002. URL http://www.isi.
edu/~marcu/papers/jointmt2002.pdf.

Nagao, Makoto. A framework of a mechanical translation between Japanese and English by
analogy principle. In Elithorn, A. and R. Banerji, editors, Artificial and Human Intelligence:
edited review papers presented at the international NATO Symposium, pages 173–180. 1981.

Och, Franz Josef and Hermann Ney. The alignment template approach to statistical machine
translation. Computational Linguistics, 30(4):417–449, 2004. URL http://acl.ldc.upenn.
edu/J/J04/J04-4002.pdf.

165

http://www.iccs.informatics.ed.ac.uk/~pkoehn/publications/pharaoh-amta2004.pdf
http://www.iccs.informatics.ed.ac.uk/~pkoehn/publications/pharaoh-amta2004.pdf
http://www.isi.edu/~koehn/publications/phrase2003.pdf
http://www.aclweb.org/anthology/W/W09/W09-0x24
http://www.isi.edu/~marcu/papers/jointmt2002.pdf
http://www.isi.edu/~marcu/papers/jointmt2002.pdf
http://acl.ldc.upenn.edu/J/J04/J04-4002.pdf
http://acl.ldc.upenn.edu/J/J04/J04-4002.pdf

PBML 93 JANUARY 2010

Och, Franz Josef, Christoph Tillmann, and Hermann Ney. Improved alignment models for sta-
tistical machine translation. In Proceedings of the Joint Conference of Empirical Methods in Nat-
ural Language Processing and Very Large Corpora, 1999. URL http://www.isi.edu/~koehn/
publications/phrase2003.pdf.

Phillips, Aaron B. and Ralf D. Brown. Cunei machine translation platform: System description.
In 3rd Workshop on Example-Based Machine Translation, Dublin, Ireland, 2009.

Sato, Satoshi and Makoto Nagao. Toward memory-based translation. In Papers presented to the
13th International Conference on Computational Linguistics (CoLing-1990). 1990. URL http:
//acl.ldc.upenn.edu/C/C90/C90-3044.pdf.

Somers, Harold. An overview of EBMT. In Carl, Michael and Andy Way, editors, Recent Ad-
vances in Example-Based Machine Translation, chapter 4, pages 115–153. Kluwer Academic
Publishers, 2003.

Zhang, Ying and Stephan Vogel. An efficient phrase-to-phrase alignment model for arbitrarily
long phrase and large corpora. In Proceedings of the 10th Annual Conference of the European
Association for Machine Translation (EAMT-2005), Budapest, Hungary, 2005.

Zollmann, Andreas and Ashish Venugopal. Syntax augmented machine translation via chart
parsing. In Proceedings of the NAACL-2006 Workshop on Statistcal Machine Translation (WMT-
06), New York, New York, 2006.

166

http://www.isi.edu/~koehn/publications/phrase2003.pdf
http://www.isi.edu/~koehn/publications/phrase2003.pdf
http://acl.ldc.upenn.edu/C/C90/C90-3044.pdf
http://acl.ldc.upenn.edu/C/C90/C90-3044.pdf

The Prague Bulletin of Mathematical Linguistics
NUMBER 93 JANUARY 2010

INSTRUCTIONS FOR AUTHORS

Manuscripts are welcome provided that they have not yet been published else-
where and that they bring some interesting and new insights contributing to the broad
field of computational linguistics in any of its aspects, or of linguistic theory. The sub-
mitted articles may be:

• long articles with completed, wide-impact research results both theoretical and
practical, and/or new formalisms for linguistic analysis and their implementa-
tion and application on linguistic data sets, or

• short or long articles that are abstracts or extracts of Master’s and PhD thesis,
with the most interesting and/or promising results described. Also

• short or long articles looking forward that base their views on proper and deep
analysis of the current situation in various subjects within the field are invited,
as well as

• short articles about current advanced research of both theoretical and applied
nature, with very specific (and perhaps narrow, but well-defined) target goal in
all areas of language and speech processing, to give the opportunity to junior
researchers to publish as soon as possible;

• short articles that contain contraversing, polemic or otherwise unusual views,
supported but some experimental evidence but not necessarily evaluated in the
usual sense are also welcome.

The recommended length of long article is 12–30 pages and of short paper is 6-15
pages.

The copyright of papers accepted for publication remains with the author. The
editors reserve the right to make editorial revisions but these revisions and changes
have to be approved by the author(s). Book reviews and short book notices are also
appreciated.

The manuscripts are reviewed by 2 independent reviewers, at least one of them
being a member of the international Editorial Board.

Authors receive two copies of the relevant issue of the PBML together with 10
offprints of their article.

The guidelines for the technical shape of the contributions are found on the web
site http:// ufal.mff.cuni.cz/pbml.html. If there are any technical problems, please
contact the editorial staff at pbml@ufal.mff.cuni.cz.

	CONTENTS
	EDITORIAL
	A Productivity Test of Statistical Machine Translation Post-Editing in a Typical Localisation Context
	Sulis: An Open Source Transfer Decoder for Deep Syntactic Statistical Machine Translation
	Combining Machine Translation Output with Open Source
	Training Phrase-Based Machine Translation Models on the Cloud
	Tradubi: Open-Source Social Translation for the Apertium Machine Translation Platform
	Adding Multi-Threaded Decoding to Moses
	Free/Open-Source Resources in the Apertium Platform for Machine Translation Research and Development
	Combining Content-Based and URL-Based Heuristics to Harvest Aligned Bitexts from Multilingual Sites with Bitextor
	Fast and Extensible Phrase Scoring for Statistical Machine Translation
	ScaleMT: a Free/Open-Source Framework for Building Scalable Machine Translation Web Services
	Integrating Output from Specialized Modules in Machine Translation
	The Machine Translation Toolpack for LoonyBin: Automated Management of Experimental Machine Translation HyperWorkflows
	Visualizing Data Structures in Parsing-Based Machine Translation
	Continuous-Space Language Models for Statistical Machine Translation
	MANY
	Hierarchical Phrase-Based Grammar Extraction in Joshua
	INSTRUCTIONS FOR AUTHORS

