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Abstract. Factored models have been successfully used in many lan-
guage pairs to improve translation quality in various aspects. In this
work, we analyze this paradigm in an attempt at automating the search
for well-performing machine translation systems. We examine the space
of possible factored systems, concluding that a fully automatic search
for good configurations is not feasible. We demonstrate that even if re-
sults of automatic evaluation are available, guiding the search is difficult
due to small differences between systems, which are further blurred by
randomness in tuning. We describe a heuristic for estimating the com-
plexity of factored models. Finally, we discuss the possibilities of a “semi-
automatic” exploration of the space in several directions and evaluate the
obtained systems.

1 Introduction

Phrase-based statistical machine translation [1] is probably the most
popular approach to MT today. However, its models use no linguistic in-
formation for translating—words are treated as mere strings, no internal
structure is considered. As such, phrase-based models suffer from certain
inherent limitations that some linguistic insight might help to overcome.
Factored models are an extension of phrase-based translation. They were
introduced by [2] with the aim to reduce several problems of the paradigm,
centered around the inability to handle linguistic description beyond sur-
face forms. In a factored model, the system no longer translates words.
Instead, each word is represented by a vector of factors that can contain
the surface form, but also lemma, word class, morphological characteris-
tics or any other information relevant for translation.
Factored models can employ various types of additional information to
improve translation quality on many language pairs in various aspects
like morphological coherence [3–8], grammatical coherence [9], compound
handling [10] or domain adaptation [11, 12].
In factored translation, decoding is decomposed into a series of mapping
steps: translation steps map source factors to target factors, generation
steps operate solely on the target side. There are many ways of defining
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a factored system. We can vary the set of source and target factors, but
also the mapping steps and the order of their application.
Factored systems are mainly designed based on linguistic intuition, yet
there may exist interesting configurations which lack a straightforward
linguistic interpretation. The aim of this work is to analyze whether
factored systems could be generated automatically, i.e. whether we can
create an algorithm to decide, given a language pair and possible factors,
which configuration will produce the best translations.

2 Factored Phrase-Based Translation

As in phrase-based translation, the main source of data for training a fac-
tored model is a parallel corpus. In this case, the corpus can be factored;
each word can be annotated with arbitrary linguistic information.
In factored models, translation consists of applying translation and gen-

eration steps that gradually fill in the target-side factors and produce a
final translation.
Translation steps (T) operate on phrases, they map a defined subset
of source factors to a defined subset of target factors. The translation
proceeds similarly as in the phrase-based scenario, it operates on phrases,
i.e. contiguous sequences of words regardless of any syntactic structure.
Generation steps (G) operate on the target side, their input is a subset
of factors (already generated, e.g. by a previous translation step) and
they give at output another subset of target factors. Generation steps
operate on single target words, so no word alignment is necessary. In
fact, additional monolingual data can be used in their training.
The example in Figure 1 shows a scenario with two translation steps
and one generation step. Source lemmas are translated to target lemmas,
similarly for tags (translation). The joint information is then used on the
target side to generate final surface forms (generation); for each word,
the step generates its surface form based on lemma and tag (factors
that were filled in by the previous translation steps). Note that factored
models used in practice are synchronous—the same segmentation into
phrases is used for all translation steps.

2.1 Translation Options in Factored Models

Factored models, especially the more complex setups, can dramatically
increase the computational cost—the combination of translation options
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Fig. 1. Factored translation. An example of translation and generation steps.
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Fig. 2. Phrase expansion in factored models. Options can be used multiple times, such
as “DT N”→“N”, or completely discarded if they are inconsistent, such as “DT N”→“I
N N”.

of various steps can cause a combinatorial explosion. Generating all of
them is costly in terms of computational time and memory. During de-
coding, pruning will likely discard good hypotheses, as stacks will be
filled with too many factor combinations.
Consider the example shown in Figure 1. This particular translation
system uses two translation tables (lemma→lemma, tag→tag) and one
generation table (target lemma|tag→form). For each source phrase, the
decoder generates all possible translations of the lemmas. Then it com-
bines each lemma with all consistent translations of the tags (resulting
in a subset of Cartesian product of the lemma/tag options). Finally, each
combination generates zero, one or more (phrases of) target forms. The
first two expansions are illustrated in Figure 2.
An expansion is considered consistent if the target side has the same
length (we are filling in additional factors of a given target phrase) and
if the shared factors match.
If the steps share some of the output factors, the order of application of
mapping step plays a significant role. In this case, only consistent trans-
lation options can be generated during expansion. This restriction has
two effects for phrase expansion. First, it limits the number of trans-
lation options generated from the existing options. Second, it discards
those partial options for which no consistent expansion exists.
For example, suppose that we define two separate translation steps:
1. lemma→lemma
2. tag→lemma

If the steps are applied in this order, the decoder will first generate pos-
sible lexical translations. The second step then ensures consistency with
the source morphology (e.g. disambiguate between translating English
words as nouns or verbs). If we invert the order, the tags will be “trans-
lated” first, resulting in an explosion of translation options (the decoder
has to produce all lemmas that the source tag can be mapped to).



2.2 Factors

We process our data with Treex,1 a modular framework for natural lan-
guage processing. We use tagging and shallow and deep parsing on both
sides (English and Czech), enabling us to work with a wide range of lin-
guistic information. Detailed documentation of the discussed factors can
be found in PDT2 and PCEDT3.

From the morphological layer, we extract the lemma and morphological

tag of each word. Czech lemmas are disambiguated. English tags come
from the Penn Treebank tagset [13], Czech tags use the positional system
of the Prague Dependency Treebank 2.0 [14]. This tagset is much richer
than the English counterpart—about a half of the 4000 possible tags
were actually seen in a corpus.

On the surface-syntactic (so-called analytical) layer, words are annotated
with their analytical function. Examples of analytical functions include
Sb for subject or Pred for predicate.

The tectogrammatical layer describes the deep syntactic structure of sen-
tences. It contains annotation of phenomena that border on the syntax
and semantics, such as semantic roles, (grammatical) coreference or va-
lency. We draw a number of factors directly from the annotation:

t-lemma Tectogrammatical lemma, i.e. the deep-syntactic lemma.

functor Describes syntactic-semantic relation of a node to its parent
node. Its possible values include ACT (actor), PAT (patient) or
ADDR (addressee).

grammatemes A set of factors that describe meaning-bearing morpho-
logical properties of t-nodes. We extracted the following categories:

gender Grammatical gender.
number Grammatical number.
sempos Semantic part of speech. This factor classifies autosemnatic

words into 4 classes: nouns, adjectives, adverbs and verbs (with
their respective subcategories).

tense This attribute specifies the tense of verbs.
verbmod This factor indicates the verb mood.
negation Indicator of negation.

formeme Contains a projection of some morpho-syntactic information
from the morphological and analytical layers.

2.3 Software

We use a common set of tools for statistical MT: GIZA++ [15] for com-
puting word alignments, SRILM [16] for creating language models and
the Moses toolkit [17] for decoding.

1 http://ufal.mff.cuni.cz/treex/
2 http://ufal.mff.cuni.cz/pdt2.0/doc/pdt-guide/en/html/
3 http://ufal.mff.cuni.cz/pcedt2.0/en/



3 Space of Factored Configurations

In this section, we describe the space of possible factored configurations.
A taxonomy of factored systems was proposed by [18]. From this per-
spective, our work considers Direct (one translation step) and Single-Step
(multiple mapping steps within a single search) factored setups.

3.1 Enumeration of Possible Configurations

We can partially order factored setups by the number of mapping steps
and explore them in a canonical order (T, TT, TG, TTT,...). Each of
these setups can use many combinations of factors and mappings.
Even for one mapping step (this must be a translation step), there are
many possible configurations: on the source side, it must use at least one
of the lexical factors, but it can also include any number of additional
factors, leading to an exponential number of possibilities.4 The situation
on the target side is similar. An exhaustive evaluation is thus intractable
even with one translation step.
When multiple mapping steps are involved, the number of configurations
explodes further. We analyzed configurations of two mapping steps and
the number of factors on each side restricted to 2. Let the first factor
(denoted by 0) be the surface form on both sides.
Table 1 shows the viable configurations. For each combination, we pro-
vide an example of a potentially good translation system to demonstrate
that these combinations warrant exploration. The last column contains
our estimate of the number of possible combinations of factored values,
given our setting: 12 factors on top of the surface forms, two of which
are lexically informative (lemma, tlemma).
We found 13 possible factored scenarios for two mapping steps and es-
timate that 1142 systems would have to be evaluated if our goal was to
explore the space exhaustively. These results demonstrate that an ex-
haustive search is unrealistic even in this extremely restricted setting. If
we hope to find good configurations in this space automatically, we have
to guide our search somehow.

4 Evaluation of Factored Configurations

In order to navigate in this space, ideally, we would hope to find a heuris-
tic that would help us predict the translation quality without much com-
putation. But let us back off to a simpler question—can we even reliably
compare two factored systems?
The simplest way of evaluating two MT systems is to translate a test set
using both of them and compare the achieved BLEU scores [19]. This
procedure however disregards the fact that model tuning is randomized.
Factored systems can have many parameters (usually 5 for each transla-
tion step, 2 for generation steps), adding dimensions to the weight space
and thus increasing the effects of randomness.

4 The number of configurations is proportional to the size of the power set of the set
of source factors S, i.e. 2|S|.



Table 1. Enumeration of configurations with two mapping steps.

Mapping Steps Sample Plausible Setup Estimated
First Second First Mapping Step Second Mapping Step Combinations

0→0 1→0 form→form tag→form 12
0→1 1→0,1 form→POS lemma→form|POS 48
1→0 0→0 lemma→form form→form 2
1→0 0→0,1 lemma→form form→form|tag 24
1→1 0→0,1 tag→tag form→form|tag 144
1→0,1 0→0 lemma→form|POS form→form 24
1→0,1 0→1 lemma→form|POS form→POS 24
0→0,1 1→0 form→form|tag lemma→form 144
0→0,1 1→1 form→form|tag tag→tag 144
0,1→0 0→0,1 form|tag→form form→form|tag 144
0,1→0 1→0,1 form|lemma→form lemma→form|tag 144
0,1→1 0→0,1 form|tag→lemma form→form|lemma 144
0,1→1 1→0,1 form|lemma→lemma lemma→form|lemma 144

Our task also requires us to compare systems which are very close in
performance. Can we distinguish the random variance in tuning from a
true difference between systems?

We evaluated two algorithms for tuning, minimum error rate training
[20] and pairwise-ranked optimization [21]. MERT uses random starting
points to avoid reaching local optima. PRO samples its training exam-
ples randomly (pairs of translations with high differences in BLEU), but
unlike MERT, it is empirically very stable.

In these experiments, we used CzEng 0.9 [22], a richly annotated parallel
Czech-English corpus. We trained on a random subset of 200 thousand
sentences, development a test data were random 1000-sentence samples
from the respective sections of the same corpus.

We used two alternative decoding paths, one that translated form|factor
→ form and another that only mapped form → form (as a back-off).
Each of these paths represents five weights that need to be optimized.

Table 2 shows the evaluated factors. We ran MERT for each factor three
times. We can see that differences in BLEU scores in MERT runs are
often as high as 0.5 absolute point, which is roughly the same as the
improvement we expect from incorporating a useful factor in the system.

Furthermore, if we disregard statistical significance and look simply at
the BLEU scores, we might draw very different conclusions depending on
which MERT run we consider. We can even entirely invert the ordering
of some factors:

– tag (25.07) > functor (25.03) > sempos (25.01) > baseline (24.66)

– baseline (25.16) > sempos (25.01) > functor (24.99) > tag (24.61)

Moreover, if we use just one MERT run and do a statistical significance
test, specifically the bootstrap resampling as introduced by [23], the con-



Table 2. BLEU scores achieved by multiple MERT runs and PRO.

Factor BLEU (3 runs) Mean StDev BLEU-PRO

child(0)→tlemma 24.75, 25.12, 25.43 25.10 0.28 24.82
functor 24.99, 25.03, 25.26 25.09 0.12 24.56
— 24.66, 25.15, 25.16 24.99 0.23 24.84
formeme 24.58, 25.08, 25.09 24.92 0.24 24.79
sempos 24.75, 25.00, 25.01 24.92 0.12 24.90
tag 24.61, 24.74, 25.07 24.81 0.19 24.90
lemma 24.34, 24.80, 24.88 24.67 0.24 24.81

fidence intervals are so wide that we cannot consider any two systems to
be significantly different.5

Regarding PRO, our experiments confirmed the stability of the algo-
rithm. However, notice that the order of factors achieved by MERT and
PRO is very different. Also, even though MERT is much less stable, it
often finds a better set of weights than PRO.
We therefore decided to evaluate all of our experiments by running
MERT several (3) times and calculating mean and standard deviation.
However we cannot rely on these scores to guide a fully automatic search.

5 Estimating Complexity of Factored Setups

We developed a tool that estimates the number of partial translation op-
tions (i.e. translation with factors partially filled in) generated by each
step. This estimation is done without decoding and only uses small sam-
ple phrase tables. An automatic search for configurations can use this
estimate of complexity to prevent training of unrealistic setups. The es-
timates for individual steps can provide further insights for analysis.
If we estimate the average number of options for a single step, we cannot
use the arithmetic mean because extracted phrases obey the power law
in a sense: phrases that occur only once have only one translation in the
phrase table. These phrases actually make up most of the phrase table
but in fact they are almost never used. On the other hand, very frequent
phrases tend to have a large number of translations. We therefore use a
frequency-weighted average (ti denotes the number of translations and
fi is the source phrase frequency):

avg =

∑
i
fi · ti

∑
i
fi

(1)

When multiple steps are used, the decoder first generates partial options
according to the first step and then expands them in the following steps.
Each expansion must be consistent. An example of an expansion was
shown in Figure 2.

5 Recently, pair-wise significance tests that sample from multiple runs of the optimizer
have been suggested [24].



To approximate this procedure of expansion, we factor each source phrase
according to the length of translations and the values of fixed target
factors. So each source phrase effectively becomes several source phrases.
We then count their translation options separately.
So far we have discussed how to approximate the number of translation
options for translation steps. Generation steps are slightly different as
generation is done word-by-word. This implies that for a phrase of length
k, there will be about avgk translation options. Instead of k we use the
average phrase length according to the first translation table.
When combining the translation and generation steps to obtain an esti-
mate of the number of full translation options, we simply multiply the
individual estimates. For each step, we also account for the observed
difference in the average number of translation options between tables
trained on the full data set and our sample tables (this only needs to be
computed once). In our case the ratio was roughly 1.3.
We did not find a way to estimate the effect of implicit pruning: for
example, we might have a step that translates tag → tag and a following
translation step form → form|tag. Some of the previously generated tags
will be discarded (if the second step did not generate them) and some
of the expansions as well (if their tag was not generated by the previous
step). This is the primary source of errors in our estimates, especially for
generation steps.

5.1 Evaluation

We evaluated the estimation accuracy for several factored systems. We
modified Moses to emit the average number of translation options and
compared the results obtained when translating a test set with our pre-
diction. Table 3 shows the results (”t:” and ”g:” distinguish translation
and generation steps).
As we progress to more complicated setups, the results start to suffer
from the deficiency of the heuristic (as discussed above). However, while
the absolute values are wrong, the ordering of the setups is correct. This
allows us to use the heuristic to pinpoint difficult configurations and the

Table 3. Estimation of the number of translation options per phrase.

Mapping Steps Estimation Moses Avg.

t:form→form 1.3 · 5.38
.
= 7 12

t:tag→tag + 1.3 · 11.28 ·
+ t:form→form|tag 1.3 · 1.28

.
= 24 85

t:lemma→lemma + 1.3 · 5.23 ·
+ t:tag→tag + 1.3 · 57.25 · 173

+ g:lemma|tag→form 1.3 · 1.13
.
= 655

t:lemma→lemma + 1.3 · 5.19 ·
+ t:functor→functor + 1.3 · 52.48 · 5153

+ g:lemma|functor→form 1.3 · 16.54
.
= 9903



problematic steps in them. For example, the last setup (with functors)
ran many times longer than the identical configuration with tags (despite
the fact that there are far more tags than functors). This difference is
correctly discovered by the heuristic.

6 Experiments

In this section, we describe the conducted experiments. Because of the
discussed difficulties—the absence of a reliable method for evaluation,
the small and insignificant differences in BLEU and the enormous num-
ber of possible configurations—we did not carry out a fully automatic
exploration of the space of factored setups. Instead, we conducted several
sets of experiments in a few targeted research directions; given a small
set of factors, a fixed setting and the predictor of setup complexity, we
were able to carry out a “semi-automatic” search.
The main source of data for our experiments is CzEng in its latest release
1.0 [25]. It is a richly annotated Czech-English parallel corpus with over
15 million parallel sentences from 7 different domains. We do not use the
whole CzEng in the experiments (otherwise the duration of experiments
would prohibit any search), we limit ourselves to the news domain as the
source of both parallel data for translation model training and target-side
monolingual data for language modeling.
Our development data (for system tuning) are the test set for WMT11
translation task [26]. For final evaluation of each system, we use WMT
test set for 2012. The evaluation data for WMT are news articles, hence
the choice of training data. Table 4 shows basic statistics of the data.

6.1 Additional Source Factor

We evaluated the usefulness of all additional factors in combination with
the translation of surface forms. The setup was the following:

1. form|extra → form
2. (form → form)

All factors were evaluated with and without the alternative path. Results
are summarized in Table 5. Baseline system is denoted by ’—’. The ±
sign denotes the standard deviation over 3 runs of the optimizer. MERT
was used for tuning of the systems.
We still see only very little improvements over the baseline BLEU, com-
plicated by variance that makes most of the differences insignificant.

Table 4. Statistics of the data used in experiments.

Data Set Data Source Sentences En Words Cs Words

Training CzEng 1.0 news 197053 4641026 4193078
Development WMT11 test set 3003 74822 65602
Test WMT12 test set 3003 72955 65306



Table 5. BLEU scores of configurations with 1 translation step.

Factor Single Path +Alternative

— 9.93±0.03 —
afun 10.08±0.08 10.11±0.09

formeme 2.41±0.01 9.95±0.02
functor 9.08±0.08 10.07±0.08

gender 9.70±0.05 9.87±0.06
lemma 9.93±0.08 9.66±0.30
negation 10.05±0.03 9.99±0.02
number 10.00±0.03 9.96±0.08
person 9.92±0.03 9.79±0.18
sempos 9.93±0.06 9.95±0.16
tag 10.00±0.07 9.95±0.11
tense 10.06±0.05 10.05±0.06

tlemma 8.62±0.06 9.99±0.15
verbmod 9.56±0.04 9.94±0.10

Even so, several factors stand out in both scenarios as potentially valu-
able for modeling the English-Czech translation.

In the first column, factors that lead to data sparsity were penalized due
to the absence of a back-off. Formeme stands out as the most prominent
example, with the BLEU score 2.41 and almost no deviation; all MERT
runs converged in a few iterations. Adding this factor diluted the data
so much that translation became impossible. Factors that achieved high
scores in this column can be (relatively) safely added to translation sys-
tems: they do not make the data much sparser and increase translation
quality. The best factors are highlighted: analytical function, negation,
tense. Grammatical number and tag are also potentially useful.

Analytical function provides roles of English words (subject, predicate
etc.) which help disambiguate target-side morphology—in Czech, sub-
jects are almost always in nominative case while objects frequently ap-
pear in accusative or dative case.

Tense helped disambiguate verb forms mainly when the predicate con-
tained an auxilliary verb specifying future or past tense. Our annotation
assigns this tense also to the main verb (e.g. “will|post go|post”) mak-
ing its translation easier even when it is translated independently (as a
one-word phrase).

We suspect that the benefit of the negation attribute is more due to the
annotation rules—nouns are (almost always) assigned an empty value,
while verbs, adjectives and adverbs are assigned either “neg0” or “neg1”.
Thus the negation attribute provides a coarse-level PoS tagging useful
for modelling the overall sentence structure.

In the second column, even factors that introduce some degree of data
sparsity can achieve high scores—they may help in modeling some rare
but difficult phenomena. In the situations where the additional infor-
mation is not helpful, the alternative path maintains good quality of



translation. Functor, analytical function and tense appear to be the most
promising factors according to this column.
We used the results to create a combination of factors that we then
evaluated separately. As it is not clear which back-offs should be used
when multiple factors are combined, we evaluated several approaches; the
results are summarized in Table 6 and demonstrate quite clearly that the
simplest back-off (just translating surface forms) works best—the overall
BLEU score is the highest and this setup was also the most stable one.

6.2 Multiple Mapping Steps

In this section, we evaluated a typical factored scenario with several
factors. The scenario consists of two consecutive translation steps: lemma
→ lemma and one additional factor to its counterpart. This is followed
by a generation step that takes the lemma and the additional factor
and generates surface form on the target side. All of the factors have
a language model on the target side. An alternative path maps surface
form directly to all three target factors.
This setup has been used with tags in the past and improvements have
been reported on similarly small datasets. Our results are shown in Ta-
ble 7. Systems without a score ran for too long (one MERT iteration took
over a day); this was correctly predicted by our complexity heuristic.
We achieved a large gain in BLEU (roughly 1.1 point absolute) when we
used morphological tag as the additional factor, which confirms previous
findings. However, no other factor was beneficial in this scenario.

7 Discussion

7.1 Experimental Results

We were able to improve translation performance (0.3 BLEU absolute)
when using a single translation step by combining well-performing fac-
tors on the source side. We showed that analytical function, tense and

Table 6. Back-off strategies and achieved BLEU scores.

Translation Steps BLEU

form|afun → form :
: form|functor → form : 10.00±0.29
: form|tense → form

form|afun|functor|tense → form :
: form|afun → form 10.08±0.10

form|afun|functor → form :
: form|tense → form 10.10±0.08

form|afun|functor|tense → form :
: form → form 10.24±0.02



Table 7. BLEU scores of systems with 2 translation and 1 generation steps.

Factor BLEU Prediction
of Complexity

formeme 9.91±0.05 4573
— 9.93±0.03 7
tag 11.05±0.03 655
functor — 9903
sempos — 38412
tense — 13607

functors as used in the PCEDT annotation are the most useful from a
wide range of attributes for modeling factored phrase-based transfer of
English into Czech.

We also evaluated a scenario that consists of multiple mapping steps.
Unfortunately, similarly to the previous set of experiments, we were un-
able to identify any new useful factors, so even though our improvement
in BLEU score is quite large (over 1.1 points), our findings are not new.

7.2 Search for Factored Configurations

It seems that finding the correct combination of steps and factors is not
a task that an algorithm can solve, especially not by brute force—the
number of possibilities explodes no matter which direction of exploration
we take. A clever automatic search in the space of configurations does
not seem feasible due to the low reliability of automatic MT evaluation
and frequent large variance in scores across different optimization runs.

We believe it is possible to search for factored configurations semi-auto-
matically given a particular research goal—the methods and tools that
we developed can assist in selecting the most suitable factored setup from
a limited number of possibilities.

8 Conclusion

We provided an analysis of the paradigm of factored machine translation.
We described the complexity of the space of configurations. We proposed
a heuristic that can successfully predict which factored setups are too
complex to be feasible. We carried out a “semi-automatic” search for
factored configurations in several directions and evaluated the results.

In the future, we would like to apply the developed machinery to more
complex setups and richer sets of factors but obviously with a manual
guidance. We would also like to improve the precision of the heuristic for
complexity estimation.
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