Machine Translation Zoo Tree-to-tree transfer and Discriminative learning

Martin Popel

ÚFAL (Institute of Formal and Applied Linguistics) Charles University in Prague

May 5th 2013, Seminar of Formal Linguistics, Prague

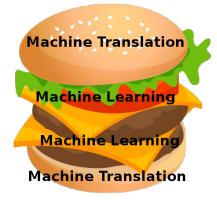
Today's Menu

1 MT Intro

- Taxonomy
- Hybrids

2 Online Learning

- Perceptron
- Structured Prediction
- Guided Learning
- Back to MT
 - Easy-First Decoding in MT
 - Guided Learning in MT

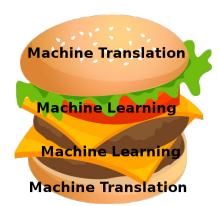


Today's Menu

MT Intro Taxonomy Hybrids

2 Online Learning

- Perceptron
- Structured Prediction
- 3 Guided Learning
- 4 Back to MT
 - Easy-First Decoding in MT
 - Guided Learning in MT



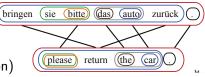
	ed MT (Moses)		00000
MT Intro	Online Learning	Guided Learning	Back to MT

Training

- word-alignment (GIZA++ & symmetrization)
- phrase extraction
- tune parameters (MERT)

Decoding

- get all matching *rules*
- find one *derivation* with a maximum score (beam search)



TectoMT

Training

- analyze CzEng to t-layer
- t-node alignment
- learn one MaxEnt model for each source lemma and formeme

Decoding

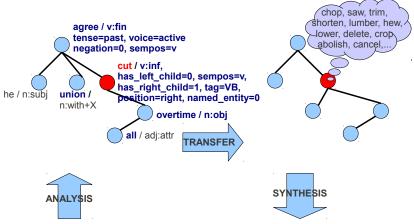
- get all translation variants for each lemma and formeme
- find a labeling with a maximum score (HMTM)

Online Learning

Guided Learning

Back to MT 00000

TectoMT – MaxEnt Model



He agreed with the unions to cut all overtime.

Dohodl se s odbory na zrušení všech přesčasů.

0000000	0000000	Guided Learning	00000
Machine Tr	anslation Taxonon	ny	

- Level of transfer:
- Base translation unit (BTU):
- Extract more segmentations in training?
- Try (search) more segmentations in decoding?
- Use more segmentations in the output translation?
- What is the context X in $P(BTU_{target}|BTU_{source}, X)$?

0000000	0000000	Guided Learning	00000
Machine Tran	slation Taxonomy		

- Level of transfer: surface
- Base translation unit (BTU): word
- Extract more segmentations in training? no
- Try (search) more segmentations in decoding? no
- Use more segmentations in the output translation? no
- What is the context X in $P(BTU_{target}|BTU_{source}, X)$? Considering just Translation Model: nothing

0000000	0000000	Guided Learning	00000
Machine Transl	ation Taxonomy		

- Level of transfer: surface
- Base translation unit (BTU): word, phrase
- Extract more segmentations in training? yes
- Try (search) more segmentations in decoding? yes
- Use more segmentations in the output translation? no
- What is the context X in $P(BTU_{target}|BTU_{source}, X)$? Considering just Translation Model: nothing

(Brown et al., 1993) word-based

0000000	0000000	Guided Learning	00000
Machine Transl	ation Taxonomy		

- Level of transfer: surface
- Base translation unit (BTU): word, phrase, phrase with gaps
- Extract more segmentations in training? yes
- Try (search) more segmentations in decoding? yes
- Use more segmentations in the output translation? no
- What is the context X in $P(BTU_{target}|BTU_{source}, X)$? Considering just Translation Model: nothing

(Brown et al., 1993) word-based

(Chiang, 2005) hierarchical

MT Intro	Online Learning	Guided Learning	Back to MT
000●000	0000000		00000
Machine Tra	nslation Taxonor	ny	

- Level of transfer: surface, shallow syntax
- Base translation unit (BTU): word, phrase, phrase with gaps, treelet
- Extract more segmentations in training? no
- Try (search) more segmentations in decoding? no
- Use more segmentations in the output translation? no
- What is the context X in $P(BTU_{target}|BTU_{source}, X)$? Considering just Translation Model: neighboring treelets

(Brown et al., 1993) word-based

Koehn et al., 2003) phrase-based

Research

(Quirk and Menezes, 2006) dep. treelet to string

(Chiang, 2005) hierarchical

M I Intro	Online Learning	Guided Learning	Back to M I
000●000	0000000		00000
Machine Trans	lation Taxonomy		

- Level of transfer: surface, shallow syntax, tectogrammatical
- Base translation unit (BTU): word, phrase, phrase with gaps, treelet, node
- Extract more segmentations in training? no
- Try (search) more segmentations in decoding? no
- Use more segmentations in the output translation? no
- What is the context X in $P(BTU_{target}|BTU_{source}, X)$? Considering just Translation Model: neighboring nodes

Research

dep. treelet to string

Microsoft

(Chiang, 2005) hierarchical

(Brown et al., 1993) word-based

M I Intro	Online Learning	Guided Learning	Back to M I
0000000	0000000		00000
Machine Transl	lation Taxonomy		

- Level of transfer: surface, shallow syntax, tectogrammatical
- Base translation unit (BTU): word, phrase, phrase with gaps, treelet, node
- Extract more segmentations in training? yes
- Try (search) more segmentations in decoding? yes
- Use more segmentations in the output translation? yes
- What is the context X in $P(BTU_{target}|BTU_{source}, X)$? Considering just Translation Model: nothing

dep. treelet to string

Microsoft^{*}

(Chiang, 2005) hierarchical

(Mareček et al., 2010) TectoMT

(Arun, 2011) Monte Carlo

(Brown et al., 1993) word-based

Research (Quirk and Menezes, 2006)

0000000	0000000	Guidea Learning	00000
Hybrids: Tecto	Moses		
Linearize source t-	trees (two factors:	emma and formeme), tra	inslate

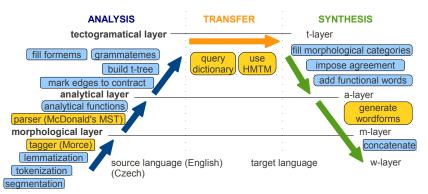
Rock to MT

with Moses, project dependencies and use TectoMT synthesis.

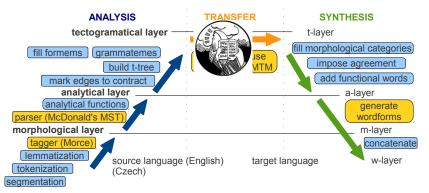
Online Learnir

MT Intro

rule based & statistical blocks



0000000	0000000		00000
Hybrids: Tectol	Moses		
	(na and formeme), transla use TectoMT synthesis.	ate



0000000	0000000	Guidea Ecanning	00000
Hybrids:	TectoMoses		
	source t-trees (two factors oses, project dependencie rule based &	s and use TectoM	T synthesis.
	ANALYSIS tectogramatical layer		SYNTHESIS layer

Guided Learning

MT Intro

Hybrids: PhraseFix

Done for WMT 2013 by Petra Galuščáková:

- Post-edit TectoMT output using Moses
- trained on cs-tectomt \rightarrow cs-reference (whole CzEng).
- How to post-edit only when confident?
 - filter phrase table
 - add "confidence" feature for MERT
 - improve alignment (monolingual)
 - boost phrase table (e.g. with identities)

Future work:

- use also source (English) sentences \Rightarrow multi-source translation
- project only content words (using TectoMT)
- factored translation with non-synchronous (overlapping) factors

Online Learning

Guided Learning

Back to MT 00000

Hybrids: PhraseFix

Done for WMT 2013 by Petra Galuščáková

- Post-edit TectoMT output using Mose
- trained on cs-tectomt ightarrow cs-reference (
- How to post-edit only when confident?
 - filter phrase table
 - add "confidence" feature for MERT
 - improve alignment (monolingual)
 - boost phrase table (e.g. with identities)

Future work:

- use also source (English) sentences \Rightarrow multi-source translation
- project only content words (using TectoMT)
- factored translation with non-synchronous (overlapping) factors

DepFix (Rosa et al., 2012)

- post-edit SMT using syntactic analysis and rules
- exploit also the source sentences, robust parsing

AddToTrain (Bojar, Galuščáková)

- translate monolingual news (or WMT devsets) with TectoMT
- add this to Moses parallel training data

Chimera

- post-edit AddToTrain output with DepFix
- sent to WMT 2013 in attempt to beat Google

Back to MT 00000

Even More Hybrids: DepFix, AddToTrain, Chimera

DepFix (Rosa et al., 2012)

- post-edit SMT using syntactic analysis and r
- exploit also the source sentences, robust pars

AddToTrain (Bojar, Galuščáková)

- translate monolingual news (or WMT devset
- add this to Moses parallel training data

Chimera

- post-edit AddToTrain output with DepFix
- sent to WMT 2013 in attempt to beat Goog

MT Intro Taxonomy

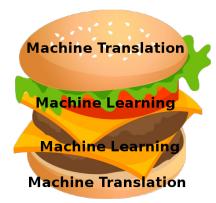
Hybrids

2 Online Learning

- Perceptron
- Structured Prediction

3 Guided Learning

- 4 Back to MT
 - Easy-First Decoding in MT
 - Guided Learning in MT



Online Learning

Guided Learning

Back to M1 00000

General Algorithm for Online Learning

$$\begin{split} \mathbf{w} &:= 0 \\ \text{while } (\mathbf{x}, y_{gold}) &:= \text{get_new_data}() \\ y_{pred} &:= \text{prediction}(\mathbf{w}, \mathbf{x}) \\ \mathbf{w} &+= \text{update}(\mathbf{x}, y_{gold}, y_{pred}) \end{split}$$

Output: w

Online Learning

Guided Learning

Back to MT 00000

General Algorithm for Online Learning

Output: w

initialize all weights to zero

Online Learning

Guided Learning

Back to MT 00000

General Algorithm for Online Learning

$$\begin{split} \mathbf{w} &:= 0 \\ \text{while } (\mathbf{x}, y_{gold}) &:= \texttt{get_new_data()} \\ y_{pred} &:= \texttt{prediction}(\mathbf{w}, \mathbf{x}) \\ \mathbf{w} &+= \texttt{update}(\mathbf{x}, y_{gold}, y_{pred}) \end{split}$$

Output: w

Online Learning

Guided Learning

Back to MT 00000

General Algorithm for Online Learning

$$\begin{split} \mathbf{w} &:= 0 \\ \text{while } (\mathbf{x}, y_{gold}) &:= \text{get_new_data}() \\ y_{pred} &:= \text{prediction}(\mathbf{w}, \mathbf{x}) \\ \mathbf{w} &+= \text{update}(\mathbf{x}, y_{gold}, y_{pred}) \end{split}$$

Output: w

initialize all weights to zerofor each instance (observation)1. get its features x

Online Learning

Guided Learning

Back to MT 00000

General Algorithm for Online Learning

$$\begin{split} \mathbf{w} &:= 0 \\ \text{while } (\mathbf{x}, y_{gold}) &:= \text{get_new_data}() \\ y_{pred} &:= \text{prediction}(\mathbf{w}, \mathbf{x}) \\ \mathbf{w} &+= \text{update}(\mathbf{x}, y_{gold}, y_{pred}) \end{split}$$

Output: w

initialize all weights to zero
for each instance (observation)
1. get its features x
2. do the prediction y_{pred}

Online Learning ●000000 Guided Learning

Back to MT 00000

General Algorithm for Online Learning

$$\begin{split} \mathbf{w} &:= 0 \\ \text{while } (\mathbf{x}, y_{gold}) &:= \text{get_new_data}() \\ y_{pred} &:= \text{prediction}(\mathbf{w}, \mathbf{x}) \\ \mathbf{w} &+= \text{update}(\mathbf{x}, y_{gold}, y_{pred}) \end{split}$$

Output: w

- 1. get its features ${\bf x}$
- 2. do the prediction y_{pred}
- 3. get the correct label y_{gold}

Guided Learning

Back to MT 00000

General Algorithm for Online Learning

$$\begin{split} \mathbf{w} &:= 0 \\ \text{while } (\mathbf{x}, y_{gold}) &:= \text{get_new_data}() \\ y_{pred} &:= \text{prediction}(\mathbf{w}, \mathbf{x}) \\ \mathbf{w} &+= \text{update}(\mathbf{x}, y_{gold}, y_{pred}) \end{split}$$

Output: w

- 1. get its features ${\boldsymbol x}$
- 2. do the prediction y_{pred}
- 3. get the correct label y_{gold}
- 4. update the weights

Online Learning

Guided Learning

Back to MT 00000

General Algorithm for Online Learning

$$\begin{split} \mathbf{w} &:= 0 \\ \text{while } (\mathbf{x}, y_{gold}) &:= \text{get_new_data}() \\ y_{pred} &:= \text{prediction}(\mathbf{w}, \mathbf{x}) \\ \mathbf{w} &+= \text{update}(\mathbf{x}, y_{gold}, y_{pred}) \end{split}$$

Output: w

- 1. get its features ${\boldsymbol x}$
- 2. do the prediction y_{pred}
- 3. get the correct label y_{gold}
- 4. update the weights

Online Learning

Guided Learning

Back to MT 00000

General Algorithm for Online Learning

$$\begin{split} \mathbf{w} &:= 0 \\ \text{while } (\mathbf{x}, y_{gold}) &:= \text{get_new_data}() \\ y_{pred} &:= \text{prediction}(\mathbf{w}, \mathbf{x}) \\ \mathbf{w} &+= \text{update}(\mathbf{x}, y_{gold}, y_{pred}) \end{split}$$

Output: w

initialize all weights to zero for each instance (observation)

- 1. get its features ${\boldsymbol x}$
- 2. do the prediction y_{pred}
- 3. get the correct label y_{gold}
- 4. update the weights

Definition: conservative online learning

no error \Rightarrow no update

i.e., if $y_{pred} = y_{gold}$ then update($\mathbf{x}, y_{gold}, y_{pred}$) = 0

Online Learning

Guided Learning

Back to MT 00000

General Algorithm for Online Learning

initialize all weights to zero for each instance (observation)

- 1. get its features ${\boldsymbol x}$
- 2. do the prediction y_{pred}
- 3. get the correct label y_{gold}
- 4. update the weights

Definition: conservative online learning

no error \Rightarrow no update

i.e., if
$$y_{\textit{pred}} = y_{\textit{gold}}$$
 then $\mathsf{update}(\mathbf{x}, y_{\textit{gold}}, y_{\textit{pred}}) = 0$

Definition: aggressive online learning

after the update, the instance would be classified correctly

MT Intro	Online Learning	Guided Learning	Back to MT
0000000	●000000		00000
Perceptron			

$$\begin{split} \mathbf{w} &:= 0 \\ \text{while } (\mathbf{x}, y_{gold}) &:= \text{get_new_data}() \\ y_{pred} &:= \text{prediction}(\mathbf{w}, \mathbf{x}) \\ \mathbf{w} &+= \text{update}(\mathbf{x}, y_{gold}, y_{pred}) \end{split}$$

Output: w

$$prediction(\mathbf{w}, \mathbf{x}) \stackrel{\text{def}}{=} \begin{bmatrix} \mathbf{W} \cdot \mathbf{x} > 0 \end{bmatrix}$$
$$update(\mathbf{x}, y_{gold}, y_{pred}) \stackrel{\text{def}}{=} \alpha(y_{gold} - y_{pred}) \cdot \mathbf{x}$$

ΜT	Intro

Online Learning ●○○○○○○

Guided Learning

Back to MT 00000

Perceptron

$$\begin{split} \mathbf{w} &:= 0 \\ \text{while } (\mathbf{x}, y_{gold}) &:= \text{get_new_data}() \\ y_{pred} &:= \text{prediction}(\mathbf{w}, \mathbf{x}) \\ \mathbf{w} &+= \text{update}(\mathbf{x}, y_{gold}, y_{pred}) \end{split}$$

Output: w

L

dot product (similarity score)
of weights and features
$$\mathbf{w} \cdot \mathbf{x} = \sum_{i} w_i x_i$$

prediction(
$$\mathbf{w}, \mathbf{x}$$
) $\stackrel{\text{def}}{=}$
Binary Perceptron
[$\mathbf{w} \cdot \mathbf{x} > 0$]
apdate($\mathbf{x}, y_{gold}, y_{pred}$) $\stackrel{\text{def}}{=}$ $\alpha(y_{gold} - y_{pred}) \cdot \mathbf{x}$

ΜT	Intro

Online Learning

Guided Learning

Back to MT 00000

Perceptron

$$\begin{split} \mathbf{w} &:= 0 \\ \text{while } (\mathbf{x}, y_{gold}) &:= \text{get_new_data}() \\ y_{pred} &:= \text{prediction}(\mathbf{w}, \mathbf{x}) \\ \mathbf{w} &+= \text{update}(\mathbf{x}, y_{gold}, y_{pred}) \end{split}$$

Output: w

L

dot product (similarity score) of weights and features $\mathbf{w} \cdot \mathbf{x} = \sum_{i} w_i x_i$

 $[P] = \begin{cases} 1 & \text{if } P \text{ is true;} \\ 0 & \text{otherwise.} \end{cases}$

prediction(
$$\mathbf{w}, \mathbf{x}$$
) $\stackrel{\text{def}}{=}$ [$\mathbf{w} \cdot \mathbf{x} > 0$]
update($\mathbf{x}, y_{gold}, y_{pred}$) $\stackrel{\text{def}}{=}$ $\alpha(y_{gold} - y_{pred}) \cdot \mathbf{x}$

ΜT	Intro

Online Learning

Guided Learning

Back to MT 00000

Perceptron

$$\begin{split} \mathbf{w} &:= 0 \\ \text{while } (\mathbf{x}, y_{gold}) &:= \text{get_new_data}() \\ y_{pred} &:= \text{prediction}(\mathbf{w}, \mathbf{x}) \\ \mathbf{w} &+= \text{update}(\mathbf{x}, y_{gold}, y_{pred}) \end{split}$$

Output: w

dot product (similarity score)
of weights and features
$$\mathbf{w} \cdot \mathbf{x} = \sum_{i} w_i x_i$$

 $[P] = \begin{cases} 1 & \text{if } P \text{ is true;} \\ 0 & \text{otherwise.} \end{cases}$

prediction(
$$\mathbf{w}, \mathbf{x}$$
) $\stackrel{\text{def}}{=}$ [$\mathbf{w} \cdot \mathbf{x} > 0$]
update($\mathbf{x}, y_{gold}, y_{pred}$) $\stackrel{\text{def}}{=}$ $\alpha(y_{gold} - y_{pred}) \cdot \mathbf{x}$

learning rate (step size) $\alpha > 0$

MT Intro	Online Learning	Guided Learning	Back to MT
000000	●000000		00000
Perceptron			

$$\begin{split} \mathbf{w} &:= 0 \\ \text{while } (\mathbf{x}, y_{gold}) &:= \text{get_new_data}() \\ y_{pred} &:= \text{prediction}(\mathbf{w}, \mathbf{x}) \\ \mathbf{w} &+= \text{update}(\mathbf{x}, y_{gold}, y_{pred}) \end{split}$$

Output: w

prediction(
$$\mathbf{w}, \mathbf{x}$$
) $\stackrel{\text{def}}{=}$
update($\mathbf{x}, y_{gold}, y_{pred}$) $\stackrel{\text{def}}{=}$
Binary Perceptron
 $[\mathbf{w} \cdot \mathbf{x} > 0]$
 $\alpha(y_{gold} - y_{pred}) \cdot \mathbf{x}$
Hulti-class Perceptron
 $\arg \max_{y} \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, y)$
 $\alpha(\mathbf{f}(\mathbf{x}, y_{gold}) - \mathbf{f}(\mathbf{x}, y_{pred}))$
learning rate (step size) $\alpha > 0$

MT Intro	Online Learning	Guided Learning	Back to MT
000000	●○○○○○○		00000
Perceptron			

$$\begin{split} \mathbf{w} &:= 0 \\ \text{while } (\mathbf{x}, y_{gold}) &:= \text{get_new_data}() \\ y_{pred} &:= \text{prediction}(\mathbf{w}, \mathbf{x}) \\ \mathbf{w} &+= \text{update}(\mathbf{x}, y_{gold}, y_{pred}) \end{split}$$

Output: w

Special case: *multi-prototype* features

$$\begin{aligned} \mathbf{f}(\mathbf{x}, y) \stackrel{\text{def}}{=} & [y = c lass_1] \cdot \mathbf{x} \,, \\ & [y = c lass_2] \cdot \mathbf{x} \,, \\ & \cdots \end{aligned}$$

$$[y = class_C] \cdot \mathbf{x}$$

	Binary Perceptron	Multi-class Perceptron
$prediction(\mathbf{w},\mathbf{x}) \stackrel{def}{=}$	$[\mathbf{w} \cdot \mathbf{x} > 0]$	$\operatorname{argmax}_{y} \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, y)$
$update(\mathbf{x}, y_{\textit{gold}}, y_{\textit{pred}}) \stackrel{def}{=}$	$\alpha(y_{gold} - y_{pred}) \cdot \mathbf{x}$	$\alpha \big(\mathbf{f}(\mathbf{x}, y_{gold}) - \mathbf{f}(\mathbf{x}, y_{pred}) \big)$
	$\mathbf{w} := \mathbf{w} + lpha \mathbf{f}$	$\sigma(\mathbf{x}, y_{gold}) - lpha \mathbf{f}(\mathbf{x}, y_{pred})$

MT Intro	Online Learning	Guided Learning	Back to MT
0000000	●000000		00000
Perceptron			

$$\begin{split} \mathbf{w} &:= 0 \\ \text{while } (\mathbf{x}, y_{gold}) &:= \text{get_new_data}() \\ y_{pred} &:= \text{prediction}(\mathbf{w}, \mathbf{x}) \\ \mathbf{w} &+= \text{update}(\mathbf{x}, y_{gold}, y_{pred}) \end{split}$$

Output: w

General case: any *label-dependent* features, e.g. $f_{101}(\mathbf{x}, y) \stackrel{\text{def}}{=} [(y=\text{NNP or } y=\text{NNPS})$ and \mathbf{x} capitalized]

	Binary Perceptron	Multi-class Perceptron
$prediction(\mathbf{w},\mathbf{x}) \stackrel{def}{=}$	$[\mathbf{w} \cdot \mathbf{x} > 0]$	$\operatorname{argmax}_{y} \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, y)$
$update(\mathbf{x}, y_{gold}, y_{pred}) \stackrel{def}{=}$	$\alpha(y_{gold} - y_{pred}) \cdot \mathbf{x}$	$\alpha \big(\mathbf{f}(\mathbf{x}, y_{gold}) - \mathbf{f}(\mathbf{x}, y_{pred}) \big)$

MT Intro	Online Learning	Guided Learning	Back to MT
0000000	000000		00000
Structured	Prediction		

- the number of possible labels is huge
- labels **y** have a structure (graph, tree, sequence,...)
- usually can be decomposed (factorized) into subproblems
- local features
 - $f_i(\mathbf{x}, \mathbf{y}, j)$ can use whole \mathbf{x} , but only such y_k where k is "near" j
 - $f_{101}(\mathbf{x}, \mathbf{y}, j) \stackrel{\text{def}}{=} [(y_j = \text{NNP or } y_j = \text{NNPS}) \text{ and word } x_j \text{ capitalized }]$
 - $f_{102}(\mathbf{x}, \mathbf{y}, j) \stackrel{\text{def}}{=} [y_j = \text{NNP and } y_{j-1} = \text{NNP and } |\mathbf{x}| \le 6]$
- global features
 - $F_i(\mathbf{x}, \mathbf{y}) \stackrel{\text{def}}{=} \sum_j f_i(\mathbf{x}, \mathbf{y}, j)$
 - F_{101} ... number of capitalized words with tag NNP or NNPS
 - F_{102} ... number of NNP followed by NNP

or 0 if the sentence is longer than six words

• We can define also features that cannot be decomposed

MT Intro	Online Learning	Guided Learning	Back to MT
0000000	○○●○○○○		00000
Structured	Prediction using	Online Learning	

local approach

- update after each local decision
- output of previous decisions used in local features
- e.g. Structured Perceptron (Collins, 2002)
- $y_{pred} = \arg \max_{y} \sum_{i} w_i f_i(\mathbf{x}, y_j, y_{j-1}, ...)$

global approach

- $\bullet\,$ generate n-best list (lattice) of outputs y for the whole x
- $\bullet\,$ compute global features, do update for each x (sentence)
- we are re-ranking the n-best list
- e.g. MIRA (Crammer and Singer, 2003)
- $\mathbf{y}_{pred} = \arg \max_{\mathbf{y}} \sum_{i} w_i F_i(\mathbf{x}, \mathbf{y})$

Guided Learning

Back to MT 00000

Margin-based Online Learning

Definitions

- $score(y) = \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, y)$
- margin(y) = score(y_{gold}) - score(y)
 - $margin > 0 \Rightarrow no error$
 - $|margin| \sim \text{confidence}$

 hinge_loss(y) = max(0, 1 - margin(y))

Online Prediction and Update

$$y_{pred} \stackrel{\text{def}}{=} \arg \max \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, y)$$
$$\mathbf{w} += \alpha \big(\mathbf{f}(\mathbf{x}, y_{gold}) - \mathbf{f}(\mathbf{x}, y_{pred}) \big)$$

Guided Learning

Back to MT 00000

Margin-based Online Learning

Definitions

- $score(y) = \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, y)$
- margin(y) = score(y_{gold}) - score(y)
 - $margin > 0 \Rightarrow no error$
 - $|margin| \sim \text{confidence}$

• hinge_loss(y) = max(0,1 - margin(y))

Online Prediction and Update

$$y_{pred} \stackrel{\text{def}}{=} \arg \max \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, y)$$
$$\mathbf{w} += \alpha \big(\mathbf{f}(\mathbf{x}, y_{gold}) - \mathbf{f}(\mathbf{x}, y_{pred}) \big)$$

Guided Learning

Back to MT 00000

Margin-based Online Learning

Definitions

- $score(y) = \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, y)$
- margin(y) = score(y_{gold}) - score(y)
 - $margin > 0 \Rightarrow no error$
 - $|margin| \sim \text{confidence}$

• hinge_loss(y) =
max(0,1-margin(y))

Online Prediction and Update

$$y_{pred} \stackrel{\text{def}}{=} \arg \max \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, y)$$
$$\mathbf{w} += \alpha \big(\mathbf{f}(\mathbf{x}, y_{gold}) - \mathbf{f}(\mathbf{x}, y_{pred}) \big)$$

Margin-based Online Learning

Definitions

•
$$score(y) = \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, y)$$

- margin(y) = $score(y_{gold}) - score(y)$
 - $margin > 0 \Rightarrow$ no error
 - $|margin| \sim \text{confidence}$
- $hinge_loss(y) =$ max(0, 1 - margin(y))

Online Prediction and Update

$$y_{pred} \stackrel{\text{def}}{=} \arg \max \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, y)$$

 $\mathbf{w} += \alpha (\mathbf{f}(\mathbf{x}, y_{gold}) - \mathbf{f}(\mathbf{x}, y_{pred}))$

Perceptron

$$\frac{\alpha_{\mathsf{Perc}}}{\alpha_{\mathsf{Perc}}} \stackrel{\mathsf{def}}{=} 1 \text{ (or any fixed value } > 0)$$

Passive Aggressive (PA)

$$\alpha_{\mathsf{PA}} \stackrel{\text{def}}{=} \frac{\textit{hinge_loss}(y_{\textit{pred}})}{||f(x, y_{\textit{gold}}) - f(x, y_{\textit{pred}})||^2}$$

Passive Aggressive I

$$\boldsymbol{\alpha}_{\mathsf{PA-I}} \stackrel{\mathsf{def}}{=} \min\left\{\boldsymbol{C}, \boldsymbol{\alpha}_{\mathsf{PA}}\right\}$$

Passive Aggressive II

 $\alpha_{\mathsf{PA-II}} \stackrel{\text{def}}{=} \frac{hinge_loss(y_{pred})}{||\mathbf{f}(\mathbf{x}, y_{eold}) - \mathbf{f}(\mathbf{x}, y_{pred})||^2 + \frac{1}{2C}}$

Online Learning 0000000

Guided Learning

Margin-based Online Learning

Online Prediction and Update

$$y_{pred} \stackrel{\text{def}}{=} \arg \max \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, y)$$
$$\mathbf{w} += \alpha \big(\mathbf{f}(\mathbf{x}, y_{gold}) - \mathbf{f}(\mathbf{x}, y_{pred}) \big)$$

Perceptron

$$lpha_{ ext{Perc}} \stackrel{\mathsf{def}}{=} 1$$
 (or any fixed value $>$ 0)

Passive Aggressive (PA)

$$\alpha_{\mathsf{PA}} \stackrel{\mathsf{def}}{=} \frac{\mathit{hinge_loss}(y_{\mathit{pred}})}{||\mathbf{f}(\mathbf{x}, y_{\mathit{gold}}) - \mathbf{f}(\mathbf{x}, y_{\mathit{pred}})||^2}$$

Passive Aggressive I

$$\alpha_{\mathsf{PA-I}} \stackrel{\mathsf{def}}{=} \min\left\{ \mathcal{C}, \alpha_{\mathsf{PA}} \right\}$$

Passive Aggressive II

 $\alpha_{\mathsf{PA-II}} \stackrel{\text{def}}{=} \frac{hinge_loss(y_{pred})}{||\mathbf{f}(\mathbf{x}, y_{gold}) - \mathbf{f}(\mathbf{x}, y_{pred})||^2 + \frac{1}{2C}}$

ΜT	

Cost-sensitive Online Learning

Definitions

• cost(y) = external error metric (non-negative)

e.g. 1 - similarity of
$$y$$
 and y_{gold}

• $hinge_loss(y) = max(0, cost(y) - margin(y))$

Hope and Fear

• w +=
$$\alpha(\mathbf{f}(\mathbf{x}, y_{gold}) - \mathbf{f}(\mathbf{x}, y_{pred}))$$

• min-cost
$$y_{hope} \stackrel{\text{def}}{=} \arg \max_{y} -cost(y)$$

• max-score
$$y_{fear} \stackrel{\text{def}}{=} \arg \max_y score(y)$$

- cost-diminished $y_{hope} \stackrel{\text{def}}{=} \arg \max_y score(y) cost(y)$
- cost-augmented $y_{fear} \stackrel{\text{def}}{=} \arg \max_{y} score(y) + cost(y)$
- max-cost $y_{fear} \stackrel{\text{def}}{=} \arg \max_{y} cost(y)$

ΜT	

Cost-sensitive Online Learning

Definitions

- cost(y) = external error metric (non-negative)
 - e.g. 1 similarity of y and y_{gold}
- $hinge_loss(y) = max(0, cost(y) margin(y))$

Hope and Fear

• w +=
$$\alpha (\mathbf{f}(\mathbf{x}, y_{gold}) - \mathbf{f}(\mathbf{x}, y_{pred}))$$

• min-cost
$$y_{hope} \stackrel{\text{def}}{=} \arg \max_{y} -cost(y)$$

• max-score
$$y_{fear} \stackrel{\text{def}}{=} \arg \max_y score(y)$$

• cost-diminished
$$y_{hope} \stackrel{\text{def}}{=} \arg \max_y score(y) - cost(y)$$

• cost-augmented
$$y_{fear} \stackrel{\text{def}}{=} \arg \max_{y} score(y) + cost(y)$$

• max-cost
$$y_{fear} \stackrel{\text{def}}{=} \arg \max_y cost(y)$$

ΜT	

Cost-sensitive Online Learning

Definitions

- cost(y) = external error metric (non-negative)
 - e.g. 1 similarity of y and y_{gold}
- $hinge_loss(y) = max(0, cost(y) margin(y))$

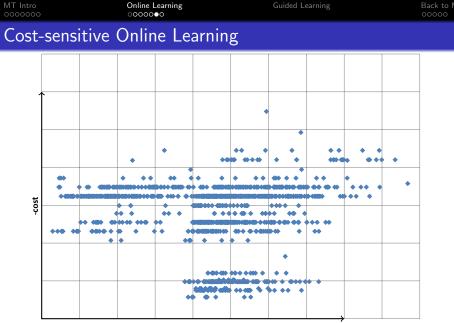
Hope and Fear

• w +=
$$\alpha (\mathbf{f}(\mathbf{x}, y_{hope}) - \mathbf{f}(\mathbf{x}, y_{fear}))$$

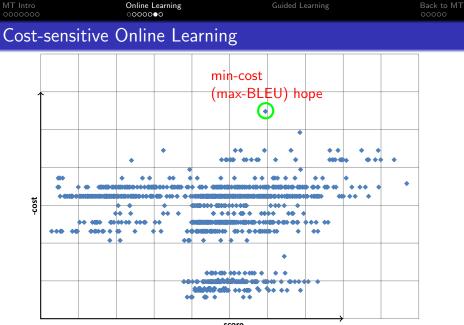
• min-cost
$$y_{hope} \stackrel{\text{def}}{=} \arg \max_y -cost(y)$$

• max-score
$$y_{fear} \stackrel{\text{def}}{=} \arg \max_y score(y)$$

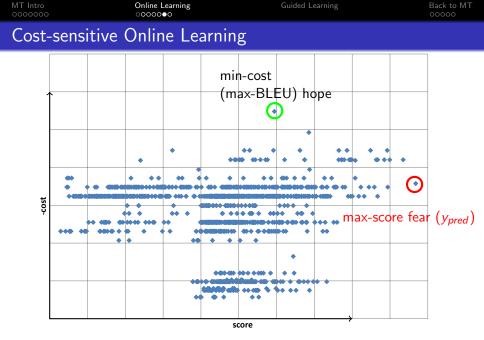
- cost-diminished $y_{hope} \stackrel{\text{def}}{=} \arg \max_y score(y) cost(y)$
- cost-augmented $y_{fear} \stackrel{\text{def}}{=} \arg \max_{y} score(y) + cost(y)$
- max-cost $y_{fear} \stackrel{\text{def}}{=} \arg \max_{y} cost(y)$

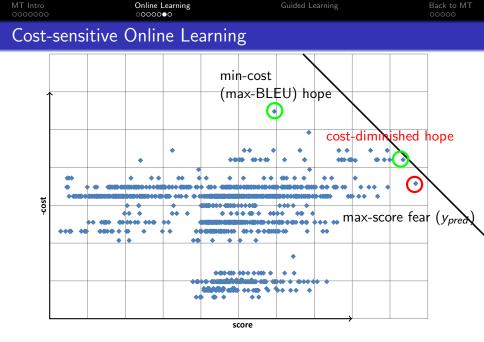


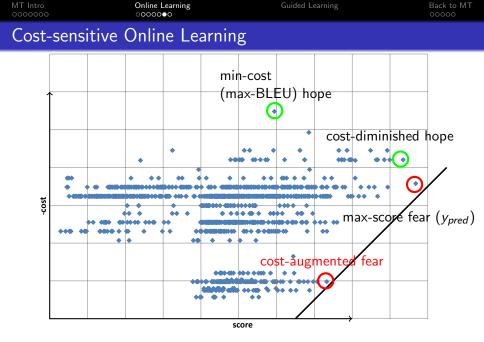
score

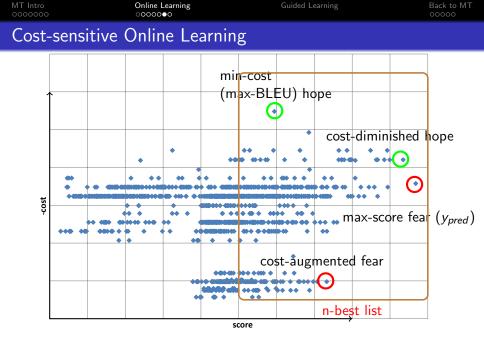


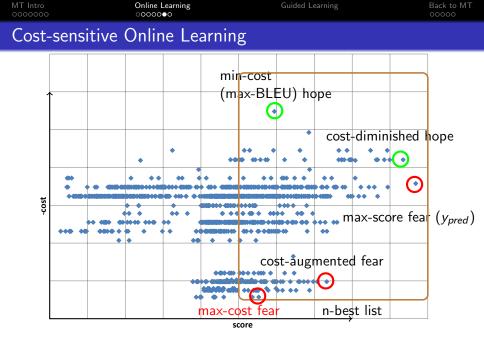
score











MT Intro	Online Learning	Guided Learning	Back to MT
0000000	○○○○○○●		00000
Application	n to MT		

- x = source sentence $y_{gold} =$ its reference translation
 - more references sometimes available
 - reference may be *unreachable*
 - we score *derivations* (which include latent variables) one translation may have more derivations

- Taxonomy
- Hybrids

2 Online Learning

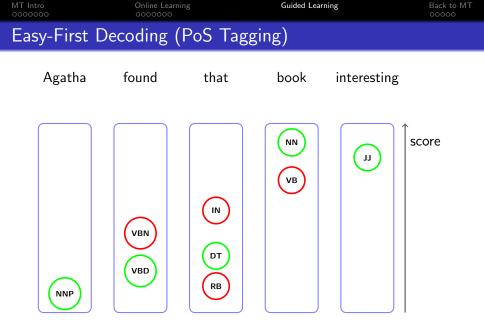
- Perceptron
- Structured Prediction

Guided Learning

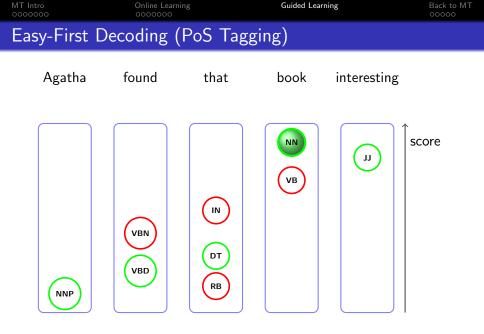
4 Back to MT

- Easy-First Decoding in MT
- Guided Learning in MT

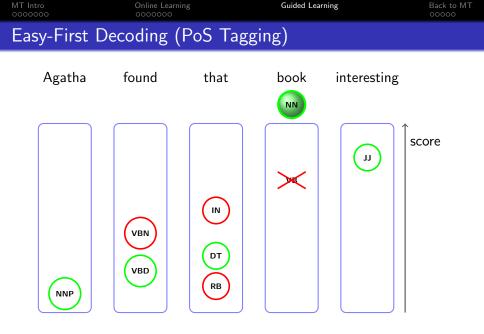


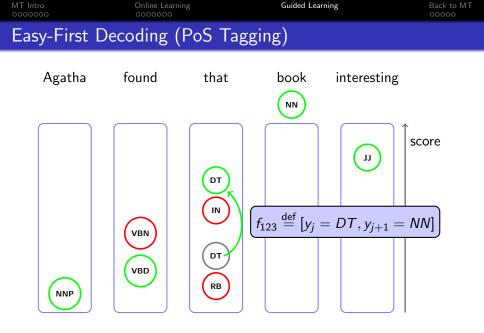


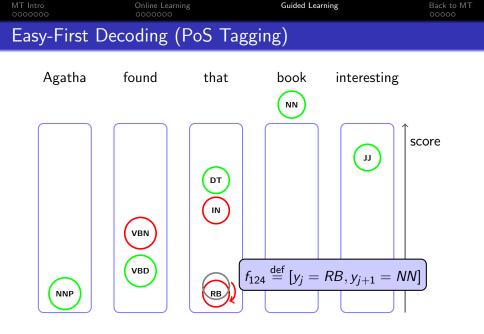
⁽Shen, Satta and Joshi, 2007)



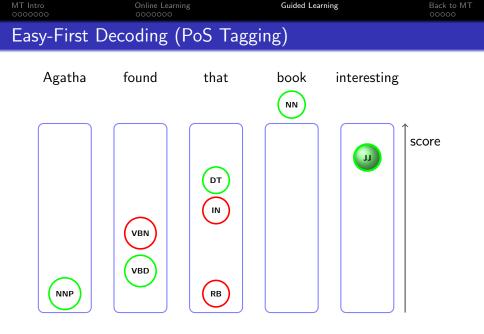
⁽Shen, Satta and Joshi, 2007)

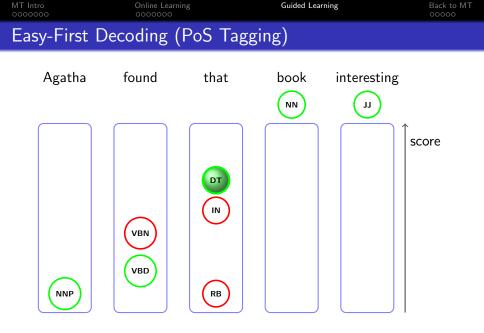


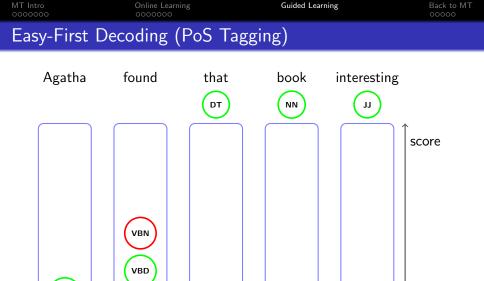




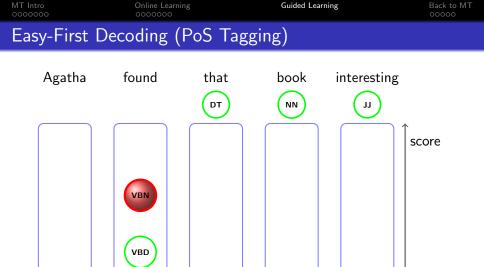
(Shen, Satta and Joshi, 2007)



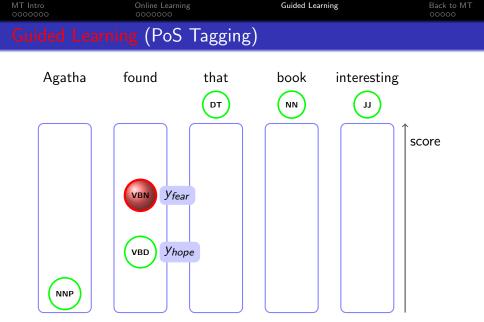




NNP



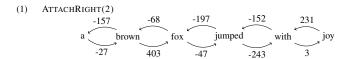
NNP



 MT Intro
 Online Learning
 Guided Learning
 Back to N

 Coord
 Coord
 Coord
 Coord
 Coord

 Easy-First Decoding (Dependency Parsing)
 Coord
 Coord
 Coord

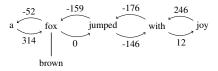


(Goldberg and Elhadad, 2010)

MT Intro Online Learning Guided Learning Bac

Easy-First Decoding (Dependency Parsing)

(2) ATTACHRIGHT(1)



Online Learning

Guided Learning

Back to MT 00000

Easy-First Decoding (Dependency Parsing)

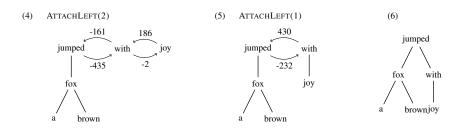
(3) ATTACHRIGHT(1)

Online Learning

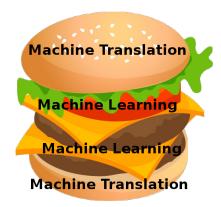
Guided Learning

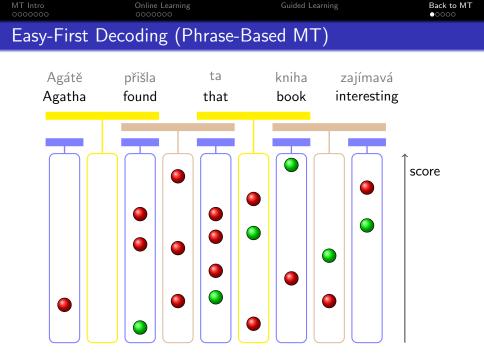
Back to MT 00000

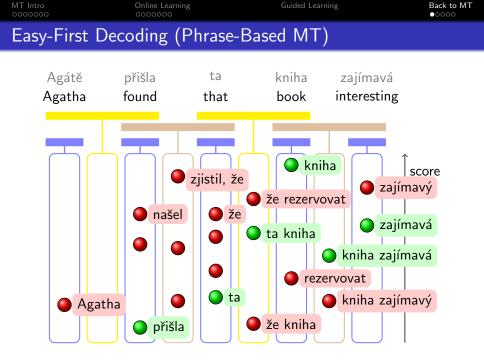
Easy-First Decoding (Dependency Parsing)

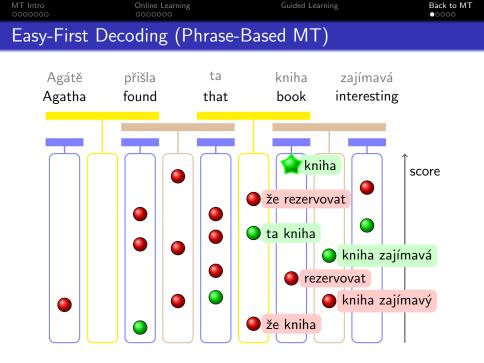


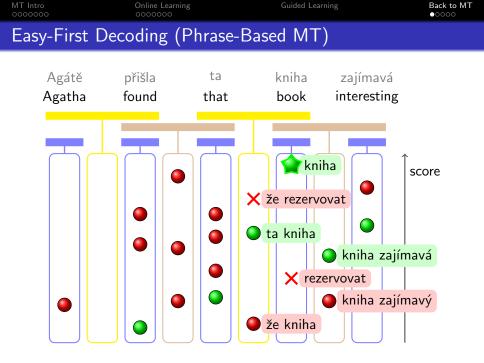
- Taxonomy
- Hybrids
- 2 Online Learning
 - Perceptron
 - Structured Prediction
- 3 Guided Learning
- Back to MT
 - Easy-First Decoding in MT
 - Guided Learning in MT

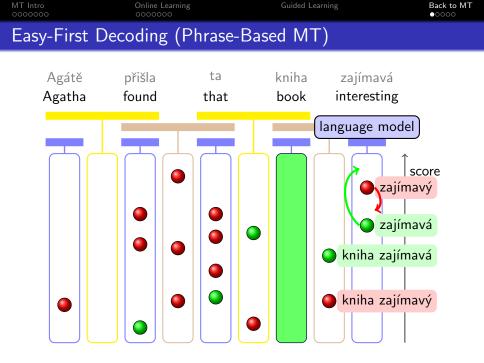


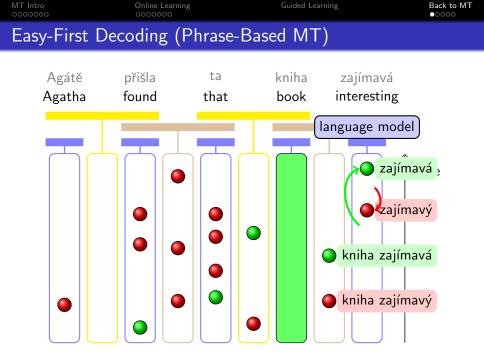


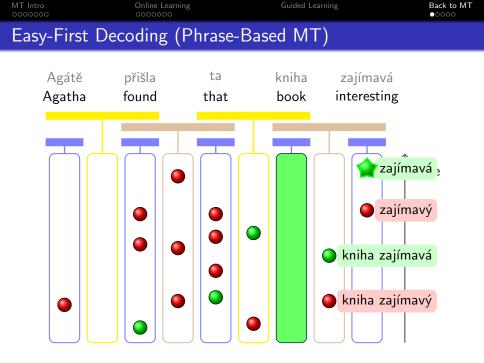


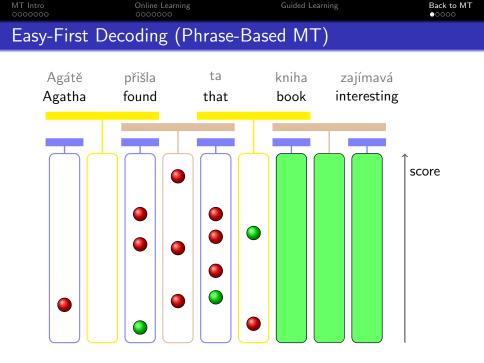


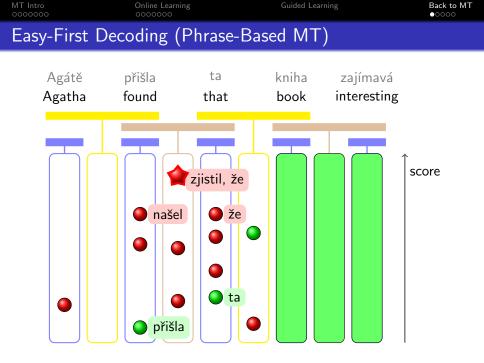












Features for Guided Learning in MT

Source Segment Features

- segment size (number of words)
- entropy $P(target|source) = -\sum_{i} P(src, trg_i) \cdot \log P(trg_i|src)$
- log count(source)
- source language model: log P(source)
- word identity, e.g. $f_{42} \stackrel{\text{def}}{=} [\text{src}=\text{found that}]$
- PoS identity, e.g. $f_{43} \stackrel{\text{def}}{=} [\text{src_pos}=\text{VBD IN}]$

Target-dependent Features

- log P(trg|src)
- target language model: log P(target | previous segment)
- log count(target)?
- identity, e.g. $f_{142} \stackrel{\text{def}}{=} [\text{src}=\text{found that }\& \text{trg}=\text{zjistil}]$

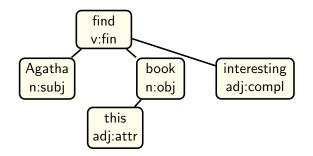
ΜT	Intro

Features for Guided Learning in MT

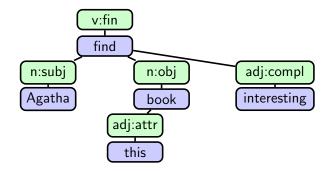
Source Segment Features

- segment size (number of words)
- entropy $P(target|source) = -\sum_{i} P(src, trg_i) \cdot \log P(trg_i|src)$
- log count(source)
- source language
 Combinations and Quantizations
- word identity, e. $[size(src) = 3] \cdot \log P(trg|src)$ [size(src) = 3 & -3 < log P(trg|src) < -2]
- PoS identity, e.g etc.
- **Target-dependent Features**
 - log P(trg|src)
 - target language model: log P(target | previous segment)
 - Iog count(target)?
 - identity, e.g. $f_{142} \stackrel{\text{def}}{=} [\text{src}=\text{found that } \& \text{trg}=\text{zjistil}]$

MT Intro	Online Learning	Guided Learning	Back to MT
0000000	0000000		○0●00
Application to	Tecto Trees		



MT Intro	Online Learning	Guided Learning	Back to MT
0000000	0000000		○0●00
Application to	Tecto Trees		



MT Intro 0000000

Online Learning

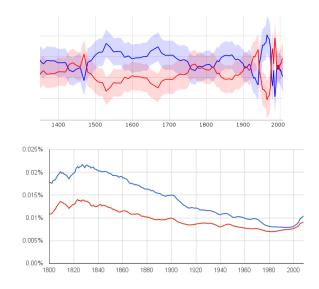
Guided Learning

Back to MT ○00●0

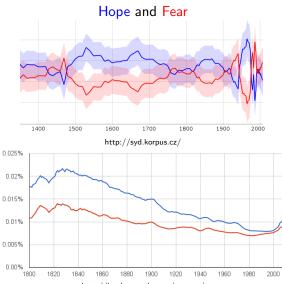
What have you seen in the Zoo

MT Intro 0000000

Predictions?



Predictions?			
MT Intro	Online Learning	Guided Learning	Back to MT
0000000	0000000		○000●



http://books.google.com/ngrams/