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Abstract. Language models (LMs) are essential components of many applica-
tions such as speech recognition or machine translation. LMs factorize the prob-
ability of a string of words into a product of P(wj;|h;), where h; is the context
(history) of word w;. Most LMs use previous words as the context. The paper
presents two alternative approaches: post-ngram LMs (which use following words
as context) and dependency LMs (which exploit dependency structure of a sen-
tence and can use e.g. the governing word as context). Dependency LMs could
be useful whenever a topology of a dependency tree is available, but its lexical
labels are unknown, e.g. in tree-to-tree machine translation. In comparison with
baseline interpolated trigram LM both of the approaches achieve significantly
lower perplexity for all seven tested languages (Arabic, Catalan, Czech, English,
Hungarian, Italian, Turkish).

1 Introduction

Language models (LMs) are essential components of many applications such as speech
recognition or machine translation (MT). LM is a statistical model that assigns a
probability to every sentence s which is represented as a sequence of m words,
ie. P(s) = P(wi,...,w,). LMs factorize this joint probability into a product of
conditional probabilities in form P (w; h;), where h; is the context (traditionally called
history) of word w;. Most LMs (e.g. standard n-gram LMs, maximum entropy LMs [[1]],
factored LMs [2] and even some grammar-based LMs [3]]) use previous words as the
context, so the joint probability can be computed in a left-to-right manner:

P)= [] Pwilwi,....,wiy). 40

i=l..m

N-gram LMs consider only the last n — 1 words using so-called (n — 1) order
Markov property, i.e. h; = (w;_,, ..., w,-_l);E]

Pogram() = [] Pwilhp)= ] Pwilwi, ..., wi ). )
i=l..m i=1..m
However, we can use other factorization orderings instead of left-to-right. For
example, in right-to-left ordering we use so-called post-ngrams (post-bigram, post-
trigram, etc.) as the context, i.e. h; = (w41, ..., Witn—1);
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Poost-ngram(s) =[] Pwilhy) = [] Pwilwisi, ..., wipn-1). 3
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Generally, we can define a directed acyclic graph (DAG) on words of the given
sentence, and define h; = (w; : (j, 1) € Edges(DAG))EI

The key topic of this paper is a comparison of LMs based on different DAGs We
are particularly interested in DAGs which are based on dependency parsing; we call the
resulting language models dependency LMs.

In Sect. [2] we briefly summarize related work on dependency LMs. Afterwards, we
describe possible ways of designing dependency LMs (Sect. (3)) and exploiting additional
context attributes (Sect.d). Experiments are reported in Sect.[5|and concluding discussion
is given in Sect. [6]

2 Related Work on Dependency LMs

There are papers (e.g. [3i4]]) that use the term dependency language model (with
different meanings though), but we are not aware of any universal definition of the
term. Nevertheless, the common idea behind the term is to use some kind of dependency
trees (such as those used in CoNLL shared tasks [5]]) for language modeling. Hereinafter,
parent denotes the governing word (and the corresponding tree node), similarly children
denotes the dependent words (modifiers).

There are many possible ways how to exploit dependency trees in dependency LMs.
Chelba et al. [3] use them in conventional left-to-right factorization ordering — briefly,
the context considered for a word comprises the preceding bigram and a link stack,
which is a list of words that precede the current word, but their parent does not. Shen
et al. [4] compute the probability of a tree (which represents the given sentence) using
probabilistic distributions Py and Pg for left and right side generative probabilities
respectively and Pr for a probability of a word being the root. The probability of a word
is conditioned by its parent and also siblings that lie between the word and the parent.
See Fig.[T]and Formula 4] for illustration.

Prob =Py (the|boy-as-parent)
x P (boy|will, find-as-parent) x P (will|find-as-parent)
X Pr(find)
X Pg(it|find-as-parent) x Pg(interesting|it, find-as-parent)

“)

2 Performing the factorization in DAG’s topological ordering ensures, we condition always
only on words whose probabilities have been already computed. Note that n-gram LMs are
a special case of this generalized DAG-based LM — Edges(DAGngram) = {(j,i) : j €
{i —n+1,...,i — 1}}. Likewise, the before-mentioned post-ngram LMs are a special case of
DAG-based LM — Edges(DAG post-ngram) = {(j,1) : j € {i +1,....,i +n—1}}.

3 The quality of LMs is measured by cross-entropy H = —(1/|T|) Zl.ill logy P(w; |h;), where
T is test data. For convenience, we report perplexity (PP = 2 as it is usual in literature.
Lower perplexity implies better LM.
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find

TN

boy will it interesting
the

Fig. 1. Dependency tree of sentence “the boy will find it interesting”

Most related to our experiments is a research by Charniak [6]], who defines two LMs
based on his immediate-head parser. The first LM is called bihead — the probability of a
word is conditioned by its parent, similarly to our model wp as it is defined in Sect. [3.1}
The second LM is called trihead — it conditions by word’s parent and grandparent,
similarly to our model wp,wq. Charniak reports 22% improvement in perplexity over
trigram LME]

3 Designing Dependency LMs

In Sect.[T]we introduced DAG-based LMs. DAGs of dependency LMs can be constructed
from the dependency tree of a given sentence s using several methods. Actually, we need
just the topology T of the dependency treeE]

3.1 Model wp (Word Form of Parent)

The simplest method for constructing dependency LMs is to use T itself with
edges directed from parent to child as the DAG, which means that each word
is conditioned by its parent. For example, the probability of the sentence from
Fig. E] is factorized as follows: Pyp(s|T) = P(thelboy)P (boy|find)P(will| find)
P(find|<NONE>) P (it| find) P(interesting| find).

3.2 Model wp,wg (Word Forms of Parent and Grandparent)

Inspired by [6], we also define model in which each word is conditioned by word
forms of its parent and grandparent. For example, in phrase “listen to news” we have
P(news|parent = to, grandparent = listen).

3.3 Other Possible Models

Both the models, wp and wp, wg, are to be applied in bottom-up factorization ordering.
Alternatively, we could define models in which a word is conditioned by its children, so
the models would be applied in top-down factorization ordering. Similarly to [4], we
could enhance the models with conditioning also on siblings.

4 Charniak reports perplexity of trigram LM = 167, perplexity of trihead LM = 130, but the
absolute values are not comparable to our results, because he uses a special “speech-like” corpus
with reduced vocabulary, see [6] for details.

5 Formally, T = (V,r, p, ord), where V are nodes, r € V istheroot, p : V\ {r} - Visa
function which assigns parent nodes and ord C V x V is total ordering of nodes.
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4 Additional Context Information

All LMs in our experiments (in Sect. [5) are computed using distribution of form P (w|h),
so they can be described by the contexth = Ay, ..., hr they use. Performance of LMs
can be improved by supplying additional context factors &y that can be used either for
enlarging the context or for better smoothing. In addition to using various word-positions
(e.g. preceding word, parent,...) in the context, we can extract various attributes from
each word-position (word form, POS tag, number of children,...). Every context factor
hy has form [attribute][word-position]. For example, context tp,wp, tg means POS
tag of parent, word form of parent and POS tag of grandparent. Possible attributes and
word-positions are:

attributes word-positions
w word form -1,-2,... preceding words (1%, 2”d,. )
1 lemma +1,+2,... following words (1°7, ond )
t POS tag P parent
T coarse-grained POS tag g grandparent
N the word is N child of its parent| |default current word (applicable
C number of children only for attributes N,C and E)
E edge direction (left or right)

Attributes N and C are quantized — possible values are 0,1,2,3 and more.

S Experiments

5.1 Data

For experiments, we used the data from CoNLL 2007 shared task [5], and we choose
following seven languages: Arabic (ar), Catalan (ca), Czech (cs), English (en), Hungarian
(hu), Italian (it), and Turkish (tr). Properties of this data are summarized in Tab. (1| The
data are divided into two parts: train which was used for training the LMs, and test
which was used solely for computing perplexity.

5.2 Four Experimental Settings

We consider four experimental settings which correspond to resources that may be
available when using LMs in real applications:

Table 1. CoNLL data statistics. (OOV = percentage of test words not seen in train)

language ar ca cs en hu it tr
sentences (train) 2,912| 14,957 25,363| 18,576 6,033| 3,109| 5,634
tokens (train) 111,669(430,844(432,296|446,573(131,799|71,199|65,182
unique words (train)| 21,058| 35,213| 63,151| 26,599| 33,754(13,003|18,181
sentences (test) 130 166 285 213 389 248 299
tokens (test) 5,124| 5,016| 4,724 5,003| 7,344| 5,095| 4,513
oov 11.7%| 3.8%| 10.2%| 2.6%| 22.1%|12.0%|26.0%
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PLAIN: no additional information available, just word forms (Sect. @
— TAGS: part-of-speech (POS) tags and lemmata available (Sect.[5.3),
DEP: topology of dependency trees available (Sect. [5.6),

DEP+TAGS: topology, POS tags and lemmata available (Sect.[5.7).

In Sections[5.4]-[5.7| we compare perplexity of several LMs conforming the given
setting. Note that the perplexity values are not directly comparable across the languages,
because of different training data size and domain.

5.3 Smoothing

We use linear interpolation of modelsﬁ
Pmoothed WIh1, ... hp) = hoPo(w) + A Purw) + D Apyi Purlhi, ..., hy),

f=1...F
where Py is the maximum likelihood estimate and Py is so-called probability
of unseen words. Pop(w) = O if word w was observed in training data and

Py(w) = 1/(dictionary_upper_bound —train_vocabulary_size) otherwise (we set
dictionary_upper_bound = 106). Weights 1¢...AF are trained using EM algorithm, so
that they sum to one. We used 20% of the training data as “held-out data” for estimating
the lambda weights. Note that the probability of unseen words always obtains the same
weight Ao for all models — it is the ratio of held-out words that were not seen in the rest
of training data.

5.4 PLAIN: Just Word Forms

As expected, enlarging the context lowers perplexity, i.e. bigrams have higher perplexity
than trigrams, post-bigrams than post-trigrams, etc. However, for the training data sizes
used in our experiments the improvement for 4-grams compared to trigrams is negligible.

Most surprising outcome of Tab. [2]is that post-ngram LMs have significantly better
perplexity than standard ngram LMs. The difference is so prominent, that for five of
the seven languages it is even better to use one following word as the context than two
preceding words and for all the languages it is better to use two following words than
three preceding words.

5.5 TAGS: POS Tags and Lemmata Available

In the TAGS setting (Tab. [3), we still do not exploit dependency structure of sentences
— we try to lower the perplexity as much as possible just by enriching the context with
additional attributes of following words[] The attributes are: POS tag (t), coarse-grained
POS tag (T) and lemma (1). We trained a naive tagger on the train data, which assigns

6 1t would be beneficial to compare also other smoothing techniques (see [7]] for an overview),
especially Generalized Parallel Backoff 2], but it is beyond the scope of this paper.

7 We performed experiments also with additional attributes of preceding words, but similarly to
the PLAIN setting, preceding words gave higher perplexity than following words. For clarity
and space reasons, we do not show the results in Tab. E}



174 Martin Popel and David Marecek

Table 2. Perplexity of PLAIN models

Model Perplexity

ar ca cs en hu it tr
w-1 (bigram) 2,052 | 368 | 3,632 | 387 | 5,203 | 1,606 | 4,034
w+1 (post-bigram) 2,006 | 337 | 3,391 | 355 | 4,735 | 1,440 | 3,720
w-1,w-2 (trigram) 1,988 | 325 | 3,530 | 356| 5,183 | 1,552 | 4,015
w+l,w+2 (post-trigram) | 1,950 | 301 | 3,298 | 328 | 4,721 | 1,399 | 3,712
w-1,w-2,w-3 1,989 | 324 | 3,531 | 355| 5,183 | 1,553 | 4,015
wHl,w+2,w+3 1,951 | 299 | 3,299 | 327 | 4,721 | 1,400 | 3,712

the most frequent (full/coarse-grained) POS tag for a given word or the overall most
frequent tag if the word was unseen in training data. Similarly, we created a naive
lemmatizer and tagged and lemmatized the test data.

We confirm the well-known finding (see e.g. [2]) that additional attributes improve
the perplexity. In our experiments, for six of the seven languages it is even better to use
one following word & its POS tag than two following words. In Tab. 3] we can see that
adding coarse-grained POS tags to POS tags helps a little and adding lemmata helps
only for some languages (it helps for morphologically rich languages such as Czech and
Hungarian)

Table 3. Perplexity of TAGS models

Model Perplexity
ar| ca cs| en hu it tr
w-1,w-2 (trigram baseline) 1,988 | 325 | 3,530 | 356 | 5,183 | 1,552 | 4,015
t+1,w+l 1,706 | 310 | 2,999 | 316 | 4,091 | 1,277 | 3,346
t+1,w+l, t+2,w+2 1,641 | 276 | 2,909 | 287 | 4,067 | 1,246 | 3,340
T+1,t+1,w+1,T+2,t+2,w+2 1,641 | 271 | 2,901 | 286 | 4,059 | 1,243 | 3,315
T+1,t+1,1+1,w+1,T+2,t+2,1+2,w+2 | 1,611 | 271 | 2,884 | 286 | 3,924 | 1,242 | 3,060

5.6 DEP: Topology of Dependency Trees Available

We used Malt parser [8] and trained it on the train data with manual annotation of
dependency structure, but automatic annotation of POS tags and lemmatization (using
naive tagger and lemmatizer from the previous section). Subsequently, we parsed both
the train and test data. We trained and tested our dependency LMs on this new data.

Results in Tab. [4] show perplexity just for selected models (because possible
configurations are numerous). Note that there is no single best ordering of context
factors, e.g. for Arabic, Hungarian and Turkish it is better to use N before wp, while other
languages have lower perplexity with the opposite ordering. The improvement of the
DEP setting against PLAIN is even greater than with the TAGS setting.

8 Actually, for English there are no lemmata in CoONLL 2007 data.
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Table 4. Perplexity of DEP models

Model Perplexity

ar ca cs en hu it tr
w-1,w-2 (trigram baseline)| 1,988 325| 3,530| 356| 5,183| 1,552| 4,015
wp 2,160| 456| 3,500| 506 5,706\ 1,767| 3,850
Wp,Wg 2,128| 424| 3,482 492| 5,711 1,740| 3,847
E,wp 1,993 327| 3,070| 391| 4,891| 1,393] 3,386
E,C,N,wp 1,533| 239 2,529\ 287| 3,746 1,177 2,977
E,C,wp,N 1,570 232| 2,410| 277| 3,879| 1,137| 2,988
E,C,N,wp,wg 1,525| 229 2,522 283| 3,746| 1,174] 2,976
E,C,wp,N,wg 1,561 222 2,403| 272| 3,879 1,135| 2,986

100.00%

90.00%
4 w-1,w-2 (BASELINE)

- w+1,w+2 (PLAIN)

V- T+H1,t+1, 1+ 1,w+1, T+2,t+2,1+2,w+2 (TAGS)
-4 E,C,wp,N,wg (DEP)

- E,C,Tp,tp,N,Ip,wp, Tg,tg,lg (DEP+TAGS)

80.00%
70.00%
60.00%
50.00%

40.00% - T T T T T 1
ar ca cs en hu it tr

Fig. 2. Percentage comparison of perplexity of new LMs with the baseline (trigram
LM = 100%). The best LM was chosen for each of settings: PLAIN, TAGS, DEP and
DEP+TAGS.

5.7 DEP+TAGS: Both POS Tags and Topology Available

Tab. [5] shows that overall best results (i.e. lowest perplexity) for all the languages were
reached by combination of both types of additional context information (DEP+TAGS).

Table 5. Perplexity of DEP+TAGS models

Model Perplexity
ar ca cs en hu it tr
w-1,w-2 (trigram baseline) 1,988| 325| 3,530| 356| 5,183| 1,552| 4,015
E,C,Tp,tp,N,wp,Tg,tg,vg 1,303 202| 2,077| 242| 3,392| 1,051| 2,659
E,C,Tp,tp,N,1lp,wp,Tg,tg 1,280 209| 2,034| 244| 3,346| 1,052| 2,555
E,C,Tp,tp,N,1p,wp,Tg,tg,1g| 1,270| 200| 2,028 244| 3,346 1,050 2,555
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6 Discussion

Perplexity is traditionally considered as a good indication of LM performance in an
intrinsic evaluationﬂ Fig. [2| illustrates that we achieved significant improvements in
perplexity over the baseline (trigram LM) for all seven tested languages and all four
settings (e.g. for English, PLAIN ~ 8% improvement, TAGS =~ 20% improvement, DEP
~ 24% improvement, DEP+TAGS ~ 31% improvement). We conclude with three main
outcomes:

— In contrast to the common practice of using preceding words as context in language
modeling, we observed better perplexity when using following words (i.e. post-
ngram LMs).

— Dependency LMs achieved even better perplexity than post-ngram LMs.

— Using additional context information (e.g. POS tag and lemma) improved the
perplexity both for post-ngram LMs and for dependency LMs.

The drawback of our dependency LMs is that they cannot be easily combined with
ngram LMs nor translation/acoustic models at the word level. Unless we know the parse
topology from another source, we must use a dependency parser that needs to see the
whole sentence in advance, so the dependency LMs can be used merely for re-ranking of
n-best lists of whole sentences. According to [6], this drawback of dependency LMs is
not necessarily compelling. Similarly, we hope that the superior perplexity of our new
LMs will result in improvements in real applications. In future, we would like to perform
experiments with post-ngram LMs in speech recognition and with dependency LMs in
tree-to-tree MT.
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